JP2007231203A - Method for gasifying carbonaceous raw material - Google Patents

Method for gasifying carbonaceous raw material Download PDF

Info

Publication number
JP2007231203A
JP2007231203A JP2006056850A JP2006056850A JP2007231203A JP 2007231203 A JP2007231203 A JP 2007231203A JP 2006056850 A JP2006056850 A JP 2006056850A JP 2006056850 A JP2006056850 A JP 2006056850A JP 2007231203 A JP2007231203 A JP 2007231203A
Authority
JP
Japan
Prior art keywords
gasification
slag
furnace
furnace wall
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006056850A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kotsuru
広行 小水流
Shigeaki Tonomura
重彰 殿村
Yasushi Takamoto
泰 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2006056850A priority Critical patent/JP2007231203A/en
Publication of JP2007231203A publication Critical patent/JP2007231203A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To hold a refractory material of an oven wall and the thickness of slag attachment while performing the discharge of the slag stably in a gasification oven of carbonaceous raw materials such as coal, etc. <P>SOLUTION: This method for gasifying the carbonaceous raw material by using a gasification oven of which at least inner wall surface is formed with the refractory material and equipped with an oven wall porous part for putting-in a cooling medium from its outside, while putting-in the cooling medium, gasifying fed materials including the carbonaceous raw materials to fuel by using oxygen-containing gas is provided by increasing the putting-in amount of the cooling medium in the case that at least one content of a component among components constituting molten slag is higher in the molten slag by comparing the ash composition of the fed materials before the gasification with the ash composition of discharged molten slag. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、石炭等の炭素質原料を気流層中で急速にガス化させて燃料ガスを製造し、石炭等に含まれる灰分を溶融スラグとして排出する方法に関するものである。   The present invention relates to a method for producing a fuel gas by rapidly gasifying a carbonaceous raw material such as coal in an air flow layer, and discharging ash contained in the coal or the like as molten slag.

石炭等の炭化物の気流層ガス化では、微粉砕された石炭等の炭化物原料(炭素質原料)を気流搬送によりガス化炉に送り、炉内で酸素あるいは空気により部分酸化させることで、一酸化炭素および水素を主成分とする燃料ガスを製造する方法が一般的である。その際、石炭等の炭化物に含まれる灰分は溶融スラグとして排出される。ガス化炉を構成する炉壁には水冷ジャケットやボイラ管に薄く耐火物を施工し、ガス化炉を操業する過程で耐火物上に溶融スラグを付着させることで炉壁を保護する方法が取られる。特許文献1では、金属精錬炉のスラグ接触部の炉壁に多孔を有するレンガを設け、該多孔より冷却剤を投入する方法が示されている。また、特許文献2では、排出された溶融スラグの比電導度を測定し、測定値からスラグの塩基度を推定して推定結果に応じてスラグ成分を炉内に投入する方法が示されている。
更に、特許文献3には、石炭ガス化炉のガス化室で生成した可燃性ガスの温度を下げるために、ガス化室内の上部の側壁に冷却媒体噴出ノズルを設けた石炭ガス化炉が開示されている。
特開昭59−59820号公報 特開平8−193212号公報 特開平7−278573号公報
In the gas-bed gasification of carbides such as coal, finely pulverized carbide raw materials (carbonaceous raw materials) such as coal are sent to the gasification furnace by airflow conveyance, and are partially oxidized by oxygen or air in the furnace. A method for producing a fuel gas mainly composed of carbon and hydrogen is common. At that time, ash contained in carbides such as coal is discharged as molten slag. A method of protecting the furnace wall by attaching a thin refractory to the water cooling jacket or boiler tube and attaching molten slag on the refractory during the operation of the gasification furnace is used for the furnace wall that constitutes the gasification furnace. It is done. Patent Document 1 discloses a method in which a brick having a hole is provided on a furnace wall of a slag contact portion of a metal refining furnace, and a coolant is introduced from the hole. Patent Document 2 discloses a method of measuring the specific conductivity of the discharged molten slag, estimating the basicity of the slag from the measured value, and introducing the slag component into the furnace according to the estimation result. .
Further, Patent Document 3 discloses a coal gasification furnace in which a coolant jet nozzle is provided on the upper side wall in the gasification chamber in order to lower the temperature of the combustible gas generated in the gasification chamber of the coal gasification furnace. Has been.
JP 59-59820 A JP-A-8-193212 JP 7-278573 A

水冷ジャケットあるいはボイラ管と耐火物で炉壁を構成したガス化炉においては、溶融スラグの排出性能を確保するためにスラグの流動性を高めることが必要になる。その方法としてガス化炉内の温度を高める方法が取られるが、ガス化炉の温度を高めた場合には、炉壁を構成する耐火物成分のひとつであるアルミナが溶融スラグ中に溶け出しスラグの融点を上昇させ、スラグの排出性を悪化させるという問題がある。また、スラグの塩基度を上げてスラグの溶融温度を下げた原料を同様のガス化炉で使用した場合には耐火物の溶損を促進させ、長時間操業を続けると炉壁の耐火物およびスラグ付着の厚みが数mmまで減少するという問題がある。   In a gasification furnace in which a furnace wall is composed of a water-cooled jacket or a boiler tube and a refractory, it is necessary to increase the fluidity of the slag in order to ensure the discharge performance of the molten slag. As a method for this, a method of increasing the temperature in the gasification furnace is taken, but when the temperature of the gasification furnace is increased, alumina, which is one of the refractory components constituting the furnace wall, is melted into the molten slag. There is a problem that the melting point of the slag is raised and the slag discharge property is deteriorated. In addition, when raw materials with increased slag basicity and lower slag melting temperature are used in the same gasification furnace, refractories of the refractory are promoted. There exists a problem that the thickness of slag adhesion reduces to several mm.

特許文献1に記載の耐火物構造を炉壁に使用するには、冷却剤投入量の目安がなく熱収支上の必要量を投入量として設定した場合にはガス化炉の状況によっては冷却が不足し耐火物の溶損が進行したり、必要以上の冷却剤が入ることで生成ガスに不要なガスが多量に混入するなどの問題がある。
特許文献2に記載の方法をガス化炉の操業に適用した場合には、排出された溶融スラグの比電導度を測定し、測定値からスラグの塩基度を推定して推定結果に応じて、スラグ排出が容易になるように塩基度を調整する方法が考えられるが、その場合には前述の通り溶融スラグによる炉壁を構成する耐火物の損耗という問題がある。
特許文献3に開示された発明は、元来スラグ付着を防止する目的であり、壁面が金属で構成され、表面にスラグ層を保持できないという問題がある。
In order to use the refractory structure described in Patent Document 1 for the furnace wall, there is no indication of the amount of coolant input, and if the required amount on the heat balance is set as the input amount, cooling may be performed depending on the situation of the gasification furnace. There is a problem that the refractory melts insufficiently and the unnecessary amount of unnecessary gas is mixed into the generated gas due to excessive coolant.
When the method described in Patent Document 2 is applied to the operation of a gasification furnace, the specific conductivity of the discharged molten slag is measured, the basicity of the slag is estimated from the measured value, and according to the estimation result, A method of adjusting the basicity so that slag can be easily discharged can be considered. In this case, however, there is a problem of wear of the refractory constituting the furnace wall due to the molten slag as described above.
The invention disclosed in Patent Document 3 is originally intended to prevent adhesion of slag, and has a problem that the wall surface is made of metal and the slag layer cannot be held on the surface.

本発明の目的は、炉壁を構成する耐火物の溶損を防ぎ、スラグタップでのスラグ流動性を悪化させることなくガス化炉の操業を安定して行うことにある。   An object of the present invention is to prevent the refractory constituting the furnace wall from being melted and to stably operate the gasification furnace without deteriorating the slag fluidity at the slag tap.

かかる問題を解決するため、本発明の要旨とするところは、以下の通りである。
(1)少なくとも炉壁の内壁面が耐火物で形成されていると共に、外部から冷却媒体を投入するための炉壁多孔部を備えたガス化炉を用いて、冷却媒体を投入しながら、酸素含有ガスを用いて炭素質原料を含む供給材料を燃料ガス化し、灰分を含むその残留物を溶融スラグとして排出する炭素質原料のガス化方法において、燃料ガス化前の供給材料の灰分組成と排出された溶融スラグの灰分組成とを比較して、耐火物を構成する成分のうち少なくとも1つの含有率が、溶融スラグの方が高い場合に冷却媒体の投入量を増加させることを特徴とする炭素質原料のガス化方法。
(2)(1)に係るガス化方法において、更に、ガス化炉に供給材料として石灰系成分からなる塩基度調整剤を投入し、燃料ガス化前の供給材料の灰分の塩基度を0.1以上1.5以下に調整することを特徴とする炭素質原料のガス化方法。
(3)(1)又は(2)に係るガス化方法であり、耐火物が、質量%でアルミナを50%以上含有し、前記溶融スラグ灰分中のアルミナ濃度が25質量%以下となるように前記炉壁多孔部から投入する冷却媒体の投入量を制御することを特徴とする炭素質原料のガス化方法。
In order to solve this problem, the gist of the present invention is as follows.
(1) At least the inner wall surface of the furnace wall is formed of a refractory material, and oxygen is supplied while using a gasification furnace having a furnace wall porous portion for introducing a cooling medium from the outside while introducing the cooling medium. In the gasification method of carbonaceous raw material, the feed material containing carbonaceous raw material is converted into fuel gas using the contained gas and the residue containing ash is discharged as molten slag. Compared with the ash composition of the molten slag, the carbon is characterized in that the amount of the cooling medium is increased when the content of at least one of the components constituting the refractory is higher in the molten slag Gasification method for quality raw materials.
(2) In the gasification method according to (1), a basicity adjusting agent composed of a lime component is supplied as a feed material to the gasification furnace, and the basicity of the ash content of the feed material before fuel gasification is reduced to 0. A method for gasifying a carbonaceous raw material, which is adjusted to 1 or more and 1.5 or less.
(3) The gasification method according to (1) or (2), wherein the refractory contains 50% or more of alumina by mass%, and the alumina concentration in the molten slag ash is 25% by mass or less. A method for gasifying a carbonaceous raw material, wherein the amount of cooling medium introduced from the furnace wall porous portion is controlled.

尚、本発明で言う「炭素質原料」とは、石炭・石油などの化石燃料やバイオマスのように炭素、水素で主に構成される物質を指し、石炭を熱分解した際に発生する固体のチャーや液体のタール、石油残渣、石油コークス、石炭コークス、バイオマス、プラスチック類も含まれ、これらを単独又は組み合わせたものを指す。また、溶融スラグ中には灰分以外に炭素が含まれることが多いが、通常1質量%以下、多くても数質量%であり、灰分が大部分を占める。   The “carbonaceous raw material” as used in the present invention refers to a substance mainly composed of carbon and hydrogen such as fossil fuels and biomass such as coal and petroleum, and is a solid substance generated when pyrolyzing coal. Char and liquid tars, petroleum residues, petroleum coke, coal coke, biomass, plastics are included, and these are used alone or in combination. Moreover, carbon is often contained in the molten slag in addition to the ash, but it is usually 1% by mass or less and at most several mass%, and the ash accounts for the majority.

本発明により、炉壁を構成する耐火物の損耗を防ぎ、溶融スラグの流動性を確保し、安定したガス化炉の操業を行うことが可能となる。   According to the present invention, it is possible to prevent the refractory constituting the furnace wall from being worn, ensure the fluidity of the molten slag, and operate the gasifier stably.

酸素含有ガスを用いて炭素質原料を含んだ供給材料を燃料ガス化すると、主に一酸化炭素、二酸化炭素、水素、水蒸気で構成されるガス化ガスが生成する。ガス化炉の温度はガス化する石炭、バイオマス、プラスチック類等の炭素質原料に含まれる灰分を溶融排出する必要からその融点以上とし、一般には1300から1600℃程度であるのがよい。炭素質原料に含まれる灰分の融点が上記温度範囲よりも高い場合には、融点を低下させるために石灰石等のCaを含む石灰系成分からなる塩基度調整剤を供給材料に混合するのがよい。   When a feed material containing a carbonaceous raw material is converted into fuel gas using an oxygen-containing gas, a gasification gas mainly composed of carbon monoxide, carbon dioxide, hydrogen, and water vapor is generated. The temperature of the gasification furnace is not lower than its melting point because it is necessary to melt and discharge ash contained in carbonaceous raw materials such as coal, biomass, and plastics to be gasified, and is generally about 1300 to 1600 ° C. When the melting point of ash contained in the carbonaceous raw material is higher than the above temperature range, a basicity adjusting agent composed of a lime-based component containing Ca such as limestone is preferably mixed with the feed material in order to lower the melting point. .

以下に、詳細に本発明を説明する。
図1において本発明に使用するガス化炉の概略図を示す。本発明に係るガス化炉1は、少なくとも燃料ガスや溶融スラグが接触する内壁面が耐火物からなる炉壁6によって形成され、この炉壁6は多孔を有して外部から冷却媒体11を投入するための炉壁多孔部5を備えている。炉壁6については、例えば水冷ジャケットやボイラ管等の表面をアルミナ、シリカ、マグネシア等の耐火物で被覆して形成してもよく、あるいは、これらの耐火物のみから炉壁6を形成し、必要に応じて炉壁の外側外周面を水冷ジャケット等で冷却するようにしてもよい。また、炉壁多孔部5については、例えば特許文献1に記載されているように、炉壁6の一部を耐火物からなる多孔レンガで形成するようにしてもよく、耐火物中に配管を埋め込むようにして形成してもよい。
The present invention will be described in detail below.
FIG. 1 shows a schematic view of a gasification furnace used in the present invention. In the gasification furnace 1 according to the present invention, at least the inner wall surface with which fuel gas and molten slag come into contact is formed by a furnace wall 6 made of a refractory material. A furnace wall porous portion 5 is provided. The furnace wall 6 may be formed by coating the surface of a water-cooled jacket or boiler tube with a refractory such as alumina, silica, magnesia, or the like, or the furnace wall 6 is formed only from these refractories, You may make it cool the outer peripheral surface of a furnace wall with a water cooling jacket etc. as needed. Moreover, about the furnace wall porous part 5, you may make it form a part of furnace wall 6 with the porous brick which consists of refractories, for example as described in patent document 1, and piping is provided in a refractory. It may be formed so as to be embedded.

ガス化炉1の底面部には、スラグタップ7が設けられており、このスラグタップ7の下方にはスラグ水砕用水槽8が設置されている。また、炉壁多孔部5の外側には、冷却媒体11を投入するための冷却媒体投入口3および冷却媒体流路4を設け、冷却媒体投入口3より投入された冷却媒体11が炉壁多孔部5の孔を通りガス化炉1内に投入される(図中の矢印12)。更に、ガス化炉1には、炉壁6を貫通するようにガス化バーナー2が取り付けられており、外部から、このガス化バーナー2を通して、ガス化させる炭素質原料9、及び酸素や空気等の酸素含有ガス・蒸気10をガス化炉1に投入し、ガス化炉1内で炭素質原料中の炭素・水素分を部分燃焼させる。この際、燃料ガスの発熱量を向上させる面からは酸素濃度の高い酸素含有ガス・蒸気10を使用することが好ましく、更には、酸素のみを使用することがより好ましい。酸素はPSA法や深冷分離法等により、製造したものを用いることができる。   A slag tap 7 is provided on the bottom surface of the gasification furnace 1, and a slag granulating water tank 8 is installed below the slag tap 7. Further, a cooling medium charging port 3 and a cooling medium flow path 4 for charging the cooling medium 11 are provided outside the furnace wall porous portion 5, and the cooling medium 11 charged from the cooling medium charging port 3 is porous to the furnace wall. The gas is passed through the hole of the portion 5 and is introduced into the gasification furnace 1 (arrow 12 in the figure). Further, a gasification burner 2 is attached to the gasification furnace 1 so as to pass through the furnace wall 6, and a carbonaceous raw material 9 to be gasified through the gasification burner 2 from outside, oxygen, air, etc. The oxygen-containing gas / steam 10 is introduced into the gasification furnace 1, and the carbon / hydrogen content in the carbonaceous raw material is partially combusted in the gasification furnace 1. At this time, from the viewpoint of improving the calorific value of the fuel gas, it is preferable to use the oxygen-containing gas / steam 10 having a high oxygen concentration, and it is more preferable to use only oxygen. Oxygen produced by the PSA method, the cryogenic separation method, or the like can be used.

上記ガス化炉1内で部分燃焼して生成した生成ガス(燃料ガス)15は、ガス化炉1の上部より炉外に排出される。一方、炭素質原料9中の灰分は溶融してその大部分は炉壁6の内壁面に付着する。炭素質原料9や必要に応じて投入される塩基度調整剤の灰分その他の残留物は、上記のように溶融スラグとして炉壁に付着し、この溶融スラグは重力によって壁面を流れ落ち、さらにスラグタップ7からスラグ水砕用水槽8に落下し(図中の矢印13)、水砕スラグ14として排出される。ガス化炉1の壁面に付着した溶融スラグはガス化炉1の壁面をつたって降りる際に炉壁6を構成する耐火物と反応し耐火物の溶損を起こす。このことは、温度の高いガス化バーナー2近傍で特に顕著なものとなる。   A product gas (fuel gas) 15 generated by partial combustion in the gasification furnace 1 is discharged from the upper part of the gasification furnace 1 to the outside of the furnace. On the other hand, the ash content in the carbonaceous raw material 9 is melted and most of the ash content adheres to the inner wall surface of the furnace wall 6. The carbonaceous raw material 9 and the ash and other residues of the basicity adjusting agent that are added as necessary adhere to the furnace wall as molten slag as described above, and this molten slag flows down the wall surface by gravity, and further slag taps 7 falls into the water tank 8 for slag granulation (arrow 13 in the figure) and is discharged as granulated slag 14. The molten slag adhering to the wall of the gasification furnace 1 reacts with the refractory constituting the furnace wall 6 when it descends through the wall of the gasification furnace 1, causing melting of the refractory. This becomes particularly remarkable in the vicinity of the gasification burner 2 having a high temperature.

本発明方法では、ガス化炉1に投入された冷却媒体11により炉壁多孔部5の表面が冷却され、炉壁多孔部5の溶損を防ぐことが可能となる。ガス化炉1の炉壁6を構成する耐火物は耐熱温度の高いものが使用され、炭素質原料9中の灰分組成とは大きく異なるものである。溶融スラグと反応して炉壁6の耐火物が溶出すると溶融スラグ13の灰分組成が変化する。そのため、例えば排出されて後処理として水冷されて生じた水砕スラグ14の灰分組成を測定することで炉壁6の溶損状況を検知することが可能になる。水砕スラグ14の灰分組成の測定方法は蛍光X線分析法が通常用いられる。分析後の灰分濃度より炉壁を溶かし出していることが判明すれば冷却媒体11の量を増やすことでそれ以上の耐火物を有する炉壁6の溶損を防ぐことが可能になり、炉壁6上に溶融スラグを付着させることが可能となるため炉壁厚みを保つことが可能となる。本方法により最少の冷却媒体量で炉壁6を形成する耐火物を保護することが可能となる。   In the method of the present invention, the surface of the furnace wall porous part 5 is cooled by the cooling medium 11 put into the gasification furnace 1, and it becomes possible to prevent the furnace wall porous part 5 from being melted. As the refractory constituting the furnace wall 6 of the gasification furnace 1, a refractory having a high heat resistance temperature is used, which is greatly different from the ash content composition in the carbonaceous raw material 9. When the refractory on the furnace wall 6 is eluted by reacting with the molten slag, the ash composition of the molten slag 13 changes. Therefore, for example, by measuring the ash composition of the granulated slag 14 that has been discharged and cooled by water as a post-treatment, it is possible to detect the state of melting of the furnace wall 6. As a method for measuring the ash composition of the granulated slag 14, a fluorescent X-ray analysis method is usually used. If it becomes clear that the furnace wall is melted from the ash concentration after the analysis, it becomes possible to prevent the furnace wall 6 having the refractory from being melted by increasing the amount of the cooling medium 11, and the furnace wall. Since it becomes possible to adhere molten slag on 6, the furnace wall thickness can be maintained. With this method, it becomes possible to protect the refractory forming the furnace wall 6 with a minimum amount of cooling medium.

一般に、水砕スラグ14の灰分組成は蛍光X線分析法で測定すると試料調整・分析に約1時間程度を要する。炉壁6の溶損は通常の操業では1時間あたり1mm以下程度の進行速度であり、分析に1時間程度を要しても炉壁6の損耗量は小さく、冷却媒体11を増加させることで炉壁厚みを回復させることが可能である。   Generally, when the ash composition of the granulated slag 14 is measured by fluorescent X-ray analysis, about 1 hour is required for sample preparation and analysis. The melting loss of the furnace wall 6 is a traveling speed of about 1 mm or less per hour in a normal operation, and even if the analysis takes about 1 hour, the amount of wear of the furnace wall 6 is small, and the cooling medium 11 is increased. It is possible to recover the furnace wall thickness.

溶融スラグの灰分組成のうち、例えばアルミナ系耐火物であればアルミナ成分が炭素質原料中の灰分のアルミナ成分より高ければ炉壁6が溶損していることになり、そのまま放置すれば炉壁6の減少につながる。この際、スラグ中のアルミナが25質量%を超えるとスラグ融点が上昇し、スラグの排出性が悪化することから、例えば溶融スラグの灰分組成のうちアルミナが、25質量%以下となるように、冷却媒体の投入量を制御するのが好ましい。   Of the ash content composition of the molten slag, for example, in the case of an alumina refractory, if the alumina component is higher than the alumina component of the ash content in the carbonaceous raw material, the furnace wall 6 is melted. Leads to a decrease. At this time, if the alumina in the slag exceeds 25% by mass, the melting point of the slag rises and the slag discharge performance deteriorates. For example, the alumina in the ash composition of the molten slag is 25% by mass or less. It is preferable to control the charging amount of the cooling medium.

炭素質原料9に含まれる灰分の融点が1500℃より高くなる場合には、石灰石などの石灰系成分からなる塩基度調整剤を事前に投入して炭素質原料とともに供給材料とするのがよい。この際、炭素質原料9に含まれる灰分との合計(すなわち供給材料の灰分)の塩基度(CaO/SiO2)を0.1以上、1.5以下となるように調整を行ったものを使用することが好ましい。上記の塩基度が0.1より低いとスラグの溶融温度が上昇し、1.5以上ではスラグ粘度が上昇しスラグの排出性が悪化するため、上記の範囲とすることが好ましい。尚、塩基度調整剤を投入する場合には、排出された水砕スラグ14の灰分組成を塩基度調整後の供給材料の灰分組成と比較して耐火物の溶損状況を推定し、冷却媒体11の量を調整することになる。 When the melting point of the ash contained in the carbonaceous raw material 9 is higher than 1500 ° C., a basicity adjusting agent composed of a lime-based component such as limestone is preferably added in advance and used as a feed material together with the carbonaceous raw material. In this case, the basicity of the total of the ash contained in the carbonaceous material 9 (i.e. ash feed) (CaO / SiO 2) of 0.1 or more, those were adjusted to be 1.5 or less It is preferable to use it. If the basicity is lower than 0.1, the melting temperature of the slag rises, and if it is 1.5 or more, the slag viscosity rises and the slag discharge property deteriorates. When the basicity adjusting agent is introduced, the ash composition of the discharged granulated slag 14 is compared with the ash composition of the feed material after the basicity adjustment to estimate the refractory melt condition, The amount of 11 will be adjusted.

炉壁6を形成する耐火物については耐熱温度を高めるため一般にアルミナ含有率が50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上の耐火物を使用するのがよい。残部は、カーボン、シリカ、マグネシア、酸化鉄、ジルコニア、酸化カルシウム、酸化ナトリウムの1種又は2種以上を含有してもよい。   As for the refractory forming the furnace wall 6, it is generally preferable to use a refractory having an alumina content of 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more in order to increase the heat resistance temperature. The balance may contain one or more of carbon, silica, magnesia, iron oxide, zirconia, calcium oxide, and sodium oxide.

耐火物は一般的にアルミナを50質量%以上含有するが、この際、水砕スラグ14中の灰分に含まれるアルミナが25質量%を超えると急激に溶融スラグ13の流動性が悪くなり流れにくいスラグとなる。よって、水砕スラグ14に含まれる灰分中のアルミナ濃度を測定し、アルミナ濃度が25質量%を超える場合には冷却媒体11の量を増加することによって、耐火物の溶損を防ぐとともに溶融スラグ13の流動性を確保することが可能となる。下限は特に規定しないが、耐火物の溶損量をできるだけ小さくするという意味では好ましくは炭素質原料9に含まれる灰分中アルミナ濃度が下限となる。   The refractory generally contains 50% by mass or more of alumina. At this time, if the alumina contained in the ash content in the granulated slag 14 exceeds 25% by mass, the fluidity of the molten slag 13 is suddenly deteriorated and hardly flows. It becomes slag. Therefore, the alumina concentration in the ash contained in the granulated slag 14 is measured, and when the alumina concentration exceeds 25% by mass, the amount of the cooling medium 11 is increased to prevent the refractory from being melted and the molten slag. 13 fluidity can be ensured. Although the lower limit is not particularly defined, the concentration of alumina in ash contained in the carbonaceous raw material 9 is preferably the lower limit in the sense of minimizing the amount of refractory melt loss.

冷却媒体11としては、水、水蒸気、加圧水蒸気、気体等を用いることができるが、冷却効率や安定性を考慮すると気体を用いることが好ましい。冷却媒体とする気体について、上記以外に、例えば窒素やアルゴン等の不活性ガスを挙げることができるが、特に、窒素等の不活性ガス以外にもガス化炉1内の熱を受けて分解し、分解熱も冷却効果のある炭化水素を含んだガスも使用可能である。生成ガス15の濃度低下を防ぐ意味では生成ガス15を冷却・精製後に冷却ガス(冷却媒体)11として使用することも可能である。   As the cooling medium 11, water, water vapor, pressurized water vapor, gas, or the like can be used, but it is preferable to use gas in consideration of cooling efficiency and stability. As the cooling medium, other than the above, for example, an inert gas such as nitrogen or argon can be cited. In particular, in addition to the inert gas such as nitrogen, the gas in the gasifier 1 is decomposed by receiving heat. In addition, a gas containing hydrocarbons having a cooling effect and a cooling effect can also be used. In order to prevent the concentration of the product gas 15 from decreasing, the product gas 15 can be used as the cooling gas (cooling medium) 11 after cooling and purification.

炉壁6における炉壁多孔部5については、ガス化バーナー近傍など特に熱負荷の高い部分について使用すればよく、炉壁のその他の部分についてはその外側を水冷ジャケットなどで冷却した耐火物構造で問題ない。   The furnace wall porous part 5 in the furnace wall 6 may be used in a particularly high heat load part such as the vicinity of a gasification burner, and the other part of the furnace wall has a refractory structure whose outside is cooled by a water cooling jacket or the like. no problem.

(実施例1)
図1に記載の装置を用い、ガス化炉1での炭素質原料9として石炭を用い、冷却媒体11として窒素(炉壁冷却ガス)を使用した実施例を以下に示す。
ガス化炉内径0.9m、高さ1.1mの円筒形であって、炉底には内径0.15mのスラグタップ7を有し、炉底より0.3mの高さの位置に円周方向等間隔に4本のガス化バーナー2を備えている。炉壁6はガス化バーナー2の上下各0.25mの範囲で多孔を有する耐火物からなる炉壁多孔部5を有している。この炉壁多孔部5は、アルミナ含有率94wt%、酸化ナトリウム:6wt%の耐火物を用い、孔は内径1mmの孔が15mm間隔とした。また、炉壁多孔部5以外の部分についても、上記耐火物と同じ組成で炉壁6を構成した。
Example 1
An embodiment in which coal is used as the carbonaceous raw material 9 in the gasification furnace 1 and nitrogen (furnace wall cooling gas) is used as the cooling medium 11 will be described below using the apparatus shown in FIG.
The gasification furnace has a cylindrical shape with an inner diameter of 0.9 m and a height of 1.1 m. The bottom of the furnace has a slag tap 7 with an inner diameter of 0.15 m, and the circumference is 0.3 m above the furnace bottom. Four gasification burners 2 are provided at equal intervals in the direction. The furnace wall 6 has a furnace wall porous portion 5 made of a refractory having a porosity within a range of 0.25 m above and below the gasification burner 2. The furnace wall porous portion 5 was made of a refractory having an alumina content of 94 wt% and sodium oxide: 6 wt%, and the holes had an inner diameter of 1 mm and intervals of 15 mm. Moreover, the furnace wall 6 was comprised also about parts other than the furnace wall porous part 5 with the same composition as the said refractory.

ガス化炉1では、ガス化石炭量は1250kg/h、酸素量820Nm3/h、ガス化炉内圧力2.0MPaで操業した結果、ガス化炉内天井部に設置した熱電対(図示外)で測定した温度は約1500℃となった。 In the gasification furnace 1, the gasification coal amount is 1250kg / h, the oxygen amount is 820Nm 3 / h, and the gasification furnace pressure is 2.0MPa. As a result, the thermocouple installed on the gasification furnace ceiling (not shown) The temperature measured at was about 1500 ° C.

石炭中灰分に含まれるアルミナは18wt%であったが、排出された水砕スラグ14灰分に含まれるアルミナが27wt%であり、スラグタップ7の周辺にスラグの付着が発生していることがスラグタップ7を観察するカメラ(図示外)で確認された。その後、炉壁冷却ガス(窒素)を初期状態の250Nm3/hから310Nm3/hに増加して操業したところ水砕スラグ灰分に含まれるアルミナ分はほぼ原料石炭中と同濃度まで低下し、溶融スラグが順調に排出されていることが確認できた。200時間の操業を行った後に炉体開放を行い、炉壁多孔部5の厚みを測定したところ、耐火物表面に付着したスラグ層と合わせて施工時とほぼ同じ60mmが保持できていた。 The alumina contained in the ash in the coal was 18 wt%, but the alumina contained in the discharged granulated slag 14 ash was 27 wt%, indicating that slag was adhered around the slag tap 7. It was confirmed by a camera (not shown) that observes the tap 7. Thereafter, the furnace wall cooling gas (nitrogen) was reduced from 250 Nm 3 / h of the initial state to the same concentration and almost raw coal in the alumina component contained in granulated slag ash was operated to increase to 310 nm 3 / h, It was confirmed that the molten slag was discharged smoothly. After 200 hours of operation, the furnace body was opened and the thickness of the furnace wall porous part 5 was measured. As a result, 60 mm, which was the same as that during construction, could be held together with the slag layer adhering to the refractory surface.

(比較例1)
実施例1と同条件で炉壁6には炉壁多孔部5を設けず、水冷壁に60mmの耐火物を施工した炉でガス化を行った。実施例と同じく200時間の操業を行った結果、ガス化バーナー周辺高さでの耐火物および表面に付着したスラグ層の厚さは合わせて約6mmであり、操業中の炉壁の溶損が認められた。
(Comparative Example 1)
Under the same conditions as in Example 1, the furnace wall 6 was not provided with the furnace wall porous portion 5, and gasification was performed in a furnace in which a water-cooled wall was constructed with a refractory of 60 mm. As a result of the operation for 200 hours as in the example, the thickness of the refractory at the height around the gasification burner and the slag layer adhering to the surface was about 6 mm in total, and the melting damage of the furnace wall during the operation was Admitted.

(比較例2)
実施例1と同条件で炉壁多孔部5に炉壁冷却ガス(窒素)を250Nm3/h流し、一定条件で操業を行なった。実施例1と同じく200時間の操業を行なった後に操業を停止し、炉体開放後にガス化バーナー周辺高さでの耐火物および表面に付着したスラグ層の厚さは合わせて約20mmであり、操業中の炉壁多孔部5の溶損が認められた。
(Comparative Example 2)
Under the same conditions as in Example 1, 250 Nm 3 / h of the furnace wall cooling gas (nitrogen) was passed through the furnace wall porous part 5 and the operation was performed under constant conditions. After the operation for 200 hours as in Example 1, the operation was stopped, and the thickness of the refractory at the gasification burner peripheral height and the slag layer adhering to the surface after opening the furnace was about 20 mm in total, Melting of the furnace wall porous part 5 during operation was observed.

(実施例2)
実施例1と同様のガス化炉を用いてガス化炉操業を行い、炉壁冷却ガス(窒素)量を初期状態の250Nm3/hから260Nm3/hとしたところ、排出された水砕スラグ灰分中のアルミナ濃度は25wt%まで低下し、スラグタップ周辺のスラグ付着発生の無い状態での操業を行うことができた。200時間の操業を行った後に炉体開放を行い、炉壁多孔部5の厚みを測定したところ、ガス化バーナー周辺高さでの耐火物および表面に付着したスラグ層の厚さは合わせて施工時60mmであったものが約55mmの状態で保持されていた。
(Example 2)
Gasification furnace operation was performed using the same gasification furnace as in Example 1, and when the amount of furnace wall cooling gas (nitrogen) was changed from 250 Nm 3 / h in the initial state to 260 Nm 3 / h, discharged granulated slag The alumina concentration in the ash decreased to 25 wt%, and operation was possible without slag adhesion around the slag tap. The furnace body was opened after 200 hours of operation, and the thickness of the furnace wall porous part 5 was measured. The thickness of the refractory and the slag layer adhering to the surface at the height around the gasification burner were combined. What was 60 mm at the time was held in a state of about 55 mm.

本発明に係る、ガス化装置の断面図である。It is sectional drawing of the gasification apparatus based on this invention.

符号の説明Explanation of symbols

1 ガス化炉
2 ガス化バーナー
3 冷却ガス投入口
4 冷却ガス流路
5 炉壁多孔部
6 炉壁
7 スラグタップ
8 スラグ水砕用水槽
9 炭素質原料
10 酸素含有ガス・蒸気
11 冷却媒体
12 冷却媒体
13 溶融スラグ
14 水砕スラグ
15 生成ガス
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Gasification burner 3 Cooling gas inlet 4 Cooling gas flow path 5 Furnace wall porous part 6 Furnace wall 7 Slag tap 8 Water tank for slag granulation 9 Carbonaceous raw material 10 Oxygen-containing gas and steam 11 Cooling medium 12 Cooling Medium 13 Molten slag 14 Granulated slag 15 Generated gas

Claims (3)

少なくとも炉壁の内壁面が耐火物で形成されていると共に、外部から冷却媒体を投入するための炉壁多孔部を備えたガス化炉を用いて、冷却媒体を投入しながら、酸素含有ガスを用いて炭素質原料を含む供給材料を燃料ガス化し、灰分を含むその残留物を溶融スラグとして排出する炭素質原料のガス化方法において、燃料ガス化前の供給材料の灰分組成と排出された溶融スラグの灰分組成とを比較して、耐火物を構成する成分のうち少なくとも1つの含有率が、溶融スラグの方が高い場合に冷却媒体の投入量を増加させることを特徴とする炭素質原料のガス化方法。   At least the inner wall surface of the furnace wall is formed of a refractory, and a gasification furnace equipped with a furnace wall porous part for introducing the cooling medium from the outside is used, and the oxygen-containing gas is introduced while the cooling medium is being charged. In the gasification method of carbonaceous raw material, where the feed material containing carbonaceous raw material is converted into fuel gas and the residue containing ash is discharged as molten slag, the ash content composition of the feed material before fuel gasification and the discharged melt Compared with the ash composition of slag, the content of at least one of the components constituting the refractory is increased in the amount of the cooling medium when the molten slag is higher. Gasification method. 更に、ガス化炉に供給材料として石灰系成分からなる塩基度調整剤を投入し、燃料ガス化前の供給材料の灰分の塩基度を0.1以上1.5以下に調整することを特徴とする請求項1記載の炭素質原料のガス化方法。   Furthermore, a basicity adjusting agent composed of a lime component is supplied as a feed material to the gasification furnace, and the basicity of the ash content of the feed material before fuel gasification is adjusted to 0.1 or more and 1.5 or less. The method for gasifying a carbonaceous raw material according to claim 1. 耐火物が、質量%でアルミナを50%以上含有し、前記溶融スラグ灰分中のアルミナ濃度が25質量%以下となるように前記炉壁多孔部から投入する冷却媒体の投入量を制御することを特徴とする請求項1又は2記載の炭素質原料のガス化方法。   The amount of the cooling medium charged from the furnace wall porous portion is controlled so that the refractory contains 50% or more of alumina by mass% and the alumina concentration in the molten slag ash is 25% by mass or less. The method for gasifying a carbonaceous raw material according to claim 1 or 2, characterized in that:
JP2006056850A 2006-03-02 2006-03-02 Method for gasifying carbonaceous raw material Withdrawn JP2007231203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056850A JP2007231203A (en) 2006-03-02 2006-03-02 Method for gasifying carbonaceous raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056850A JP2007231203A (en) 2006-03-02 2006-03-02 Method for gasifying carbonaceous raw material

Publications (1)

Publication Number Publication Date
JP2007231203A true JP2007231203A (en) 2007-09-13

Family

ID=38552118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056850A Withdrawn JP2007231203A (en) 2006-03-02 2006-03-02 Method for gasifying carbonaceous raw material

Country Status (1)

Country Link
JP (1) JP2007231203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254727A (en) * 2009-04-21 2010-11-11 Electric Power Dev Co Ltd Airflow layer gasification furnace and method for operating the same
WO2012124604A1 (en) * 2011-03-15 2012-09-20 新日鉄エンジニアリング株式会社 Slag form adjustment method
CN115261080A (en) * 2022-09-01 2022-11-01 西安热工研究院有限公司 Three-section type solid waste municipal domestic garbage gasification furnace and use method
CN118328713A (en) * 2024-05-13 2024-07-12 山东省冶金设计院股份有限公司 Industrial furnace wall cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254727A (en) * 2009-04-21 2010-11-11 Electric Power Dev Co Ltd Airflow layer gasification furnace and method for operating the same
WO2012124604A1 (en) * 2011-03-15 2012-09-20 新日鉄エンジニアリング株式会社 Slag form adjustment method
CN115261080A (en) * 2022-09-01 2022-11-01 西安热工研究院有限公司 Three-section type solid waste municipal domestic garbage gasification furnace and use method
CN115261080B (en) * 2022-09-01 2023-10-20 西安热工研究院有限公司 Three-section type solid waste city household garbage gasifier and use method thereof
CN118328713A (en) * 2024-05-13 2024-07-12 山东省冶金设计院股份有限公司 Industrial furnace wall cooling device

Similar Documents

Publication Publication Date Title
EP1148295B1 (en) Gasification melting furnace for wastes and gasification melting method
US9528766B2 (en) Top submerged injecting lances
AU629681B2 (en) Method of operating in-bath smelting reduction furnace
US9771627B2 (en) Lances for top submerged injection
CN115516113A (en) Blast furnace operation method
JP2007231203A (en) Method for gasifying carbonaceous raw material
JP2008231294A (en) Two-stage gasification furnace
EP0796305B1 (en) Method for deslagging a partial oxidation reactor
WO2020110061A1 (en) Reactor and process for gasifying and/or melting of feed materials
JP2007248007A (en) Waste melting treatment device
JP5745288B2 (en) Coal gasification method in coal gasifier
JP2010101620A (en) Refractory material structure of waste melting furnace
TW397867B (en) Method for controlling a smelting reduction process
JP2001240906A (en) Method for injecting reducing gas into blast furnace
JPS6154354B2 (en)
KR20140056528A (en) Burner system for gasification equipment using slag tap
JP3734177B2 (en) Waste melting method
JPH11257628A (en) Furnace for gasification-melting of waste and method therefor
CN106350629B (en) A kind of guard method of HIsmelt techniques melting and reducing inner lining of furnace
US9702628B2 (en) Refractory walls, and gasification devices and methods
JP3339419B2 (en) Gasification and melting furnace for waste and gasification and melting method
JPH11241108A (en) Method for injecting pulverized fine coal into blast furnace
JP2002303412A (en) Method for gasifying and melting waste
JP2006112715A (en) Operation method of waste melting gasifying furnace
RU2796917C1 (en) Method for producing molten iron in electric arc furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512