JP2018040533A - Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method - Google Patents

Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method Download PDF

Info

Publication number
JP2018040533A
JP2018040533A JP2016174412A JP2016174412A JP2018040533A JP 2018040533 A JP2018040533 A JP 2018040533A JP 2016174412 A JP2016174412 A JP 2016174412A JP 2016174412 A JP2016174412 A JP 2016174412A JP 2018040533 A JP2018040533 A JP 2018040533A
Authority
JP
Japan
Prior art keywords
waste
layer
positions
height
accumulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016174412A
Other languages
Japanese (ja)
Inventor
堀内 聡
Satoshi Horiuchi
聡 堀内
純也 渡辺
Junya Watanabe
純也 渡辺
雅弘 須藤
Masahiro Sudo
雅弘 須藤
内山 武
Takeshi Uchiyama
武 内山
奥山 契一
Keiichi Okuyama
契一 奥山
肇 秋山
Hajime Akiyama
肇 秋山
有佳子 橋本
Yukako Hashimoto
有佳子 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2016174412A priority Critical patent/JP2018040533A/en
Publication of JP2018040533A publication Critical patent/JP2018040533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and method for measuring the layer height of a furnace waste deposit layer without being affected by high-temperature corrosive gas or dust in the furnace, and also to provide a waste gasification melting apparatus capable of being operated according to the variation of the layer height and a method therefor.SOLUTION: Radiant infrared rays from a surface of a waste deposit layer are detected by an infrared detection device 11 at two positions separated from each other at the top of the furnace body to form a temperature distribution image including a plurality of sectioned images for an area corresponding to the surface of the waste deposit layer. An arithmetic device 12 performs, on the temperature distribution images formed by the infrared detection devices 11, specific-point selection to define sectioned images corresponding to specific points on the surface of the waste deposit, the arithmetic device performing this process for each of two temperature distribution images formed respectively at two positions. The arithmetic device calculates the layer height at the specific points by calculating the distance from the top of the furnace body to the specific points by a stereo imaging method, based on a positional relationship between the sectioned images corresponding to the specific points on each of the temperature distribution images and on a positional relationship between the two positions where the infrared detection device is mounted.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物ガス化溶融炉の廃棄物堆積層高測定装置及び方法、廃棄物ガス化溶融装置及び方法に関する。   The present invention relates to an apparatus and method for measuring the height of a waste layer in a waste gasification and melting furnace, and a waste gasification and melting apparatus and method.

廃棄物ガス化溶融炉は、炉本体内にコークス等の燃料と廃棄物の堆積層を形成するとともに、その廃棄物堆積層内に主羽口を経て酸素富化空気そして副羽口を経て空気を供給して、廃棄物を熱分解、ガス化、燃焼させ、熱分解残渣を溶融する。   The waste gasification melting furnace forms a fuel and waste accumulation layer such as coke in the furnace body, and oxygen enriched air through the main tuyere and air through the sub tuyere in the waste accumulation layer. The waste is pyrolyzed, gasified and burned to melt the pyrolysis residue.

上記炉本体での廃棄物堆積層の高さ(以下、「層高」という)が高すぎると、炉内の圧損が増加して酸素富化空気や空気の送風が困難になり、また、炉内で廃棄物が、融着して塊状になり炉壁に付着していわゆる「棚吊り」等を起こして炉の操業が不安定になる。層高が低すぎると廃棄物が炉内に投入されてから加熱され熱分解、ガス化、そして熱分解残渣を溶融するのに十分な滞留時間が取れずに、適正に処理が行われない。   If the height of the waste accumulation layer in the furnace body (hereinafter referred to as “layer height”) is too high, the pressure loss in the furnace increases, making it difficult to blow oxygen-enriched air or air. The waste melts into a lump and adheres to the furnace wall, causing so-called “shelf hanging” and the like, and the operation of the furnace becomes unstable. If the bed height is too low, the waste material is heated after being put into the furnace and is not heated properly after heat decomposition, gasification, and melting of the pyrolysis residue, and proper treatment cannot be performed.

そこで、廃棄物ガス化溶融炉の操業の際、上記廃棄物堆積層の層高が適正な所定の高さ範囲となるように、廃棄物の投入量等の操業条件を調整している。   Therefore, during the operation of the waste gasification and melting furnace, the operation conditions such as the input amount of waste are adjusted so that the height of the waste accumulation layer falls within an appropriate predetermined height range.

したがって、廃棄物ガス化溶融炉の操業中、適宜時期に、層高を測定する必要がある。層高を測定する方法として重錘を用いる方法がある。例えば、特許文献1では、層高は、チェーン等の吊体で吊下した重錘を炉内へ降下させ、重錘が廃棄物堆積層の表面に到達するまで降下したときの吊体の移動量にもとづき測定されている。   Therefore, it is necessary to measure the bed height at an appropriate time during the operation of the waste gasification melting furnace. As a method for measuring the layer height, there is a method using a weight. For example, in Patent Document 1, the layer height is the movement of the suspended body when the weight suspended by a suspended body such as a chain is lowered into the furnace and the weight is lowered until it reaches the surface of the waste accumulation layer. Measured based on quantity.

また、上記重錘を用いる以外で層高を測定する方法としては、マイクロ波を用いる方法がある。例えば、特許文献2では、炉頂部にマイクロ波送受信装置を設け、マイクロ波を送信し廃棄物層表面からのマイクロ波の反射を受けて層高を測定する。   As a method for measuring the layer height other than using the weight, there is a method using a microwave. For example, in Patent Document 2, a microwave transmission / reception device is provided at the top of the furnace, the microwave is transmitted, and the layer height is measured by receiving the reflection of the microwave from the waste layer surface.

特開2003−172509JP 2003-172509 A 特開2005−055008JP-A-2005-050008

しかしながら、特許文献1に開示されている重錘を用いる層高測定方法にあっては、炉内には廃棄物の熱分解により生じた腐食性を有する高温のガスが充満しており、重錘を吊下するチェーンが上記腐食性ガスによる高温腐食を受けて切断されるリスクがある。また、チェーンの高温腐食による切断のリスクを少しでも低くするように、重錘を常時引き上げておいて、適宜時期にのみ重錘を降下させて層高を測定するので、連続的に層高を測定できないという点で、改善が求められている。   However, in the layer height measuring method using the weight disclosed in Patent Document 1, the furnace is filled with a high-temperature gas having corrosive properties generated by the thermal decomposition of the waste. There is a risk that the chain that suspends the chain will be cut due to high temperature corrosion by the corrosive gas. In addition, the weight is constantly lifted so that the risk of cutting due to high-temperature corrosion of the chain is reduced as much as possible, and the weight is lowered only at an appropriate time to measure the bed height. Improvement is required in that it cannot be measured.

次に、特許文献2に開示されているマイクロ波を用いる層高測定方法にあっては、炉内空間に飛散しているダストによりマイクロ波が廃棄物堆積層の表面まで到達できないことや、干渉波の影響により、層高を正確に測定できないことがある。   Next, in the layer height measurement method using the microwave disclosed in Patent Document 2, the microwave cannot reach the surface of the waste accumulation layer due to dust scattered in the furnace space, and interference. The layer height may not be measured accurately due to wave effects.

このように、特許文献1では、連続的に層高を測定することができないため、また、特許文献2では、廃棄物ガス化溶融炉における廃棄物堆積層の層高をダストの影響を受けずに正確に測定することができないために、層高の変動に対応してガス化溶融炉を適切に操業することが困難であった。   Thus, in Patent Document 1, since the layer height cannot be measured continuously, in Patent Document 2, the layer height of the waste accumulation layer in the waste gasification melting furnace is not affected by dust. Therefore, it was difficult to properly operate the gasification and melting furnace in response to the fluctuation of the bed height.

本発明は、このような事情に鑑み、廃棄物ガス化溶融炉において、炉内の高温腐食性ガスやダストの影響を受けることなく、炉内廃棄物堆積層の層高を測定することができる廃棄物堆積層高測定装置及び方法を提供することを課題とする。また、層高の変動に対応して適切に操業することができる廃棄物ガス化溶融装置及びガス化溶融方法を提供することを課題とする。   In view of such circumstances, the present invention can measure the height of a waste deposition layer in a furnace without being affected by high-temperature corrosive gas or dust in the furnace in a waste gasification and melting furnace. It is an object of the present invention to provide an apparatus and method for measuring the height of a waste layer. It is another object of the present invention to provide a waste gasification and melting apparatus and a gasification and melting method that can be appropriately operated in response to fluctuations in bed height.

本発明によれば、上記課題は、廃棄物堆積層高測定装置に関しては次の第一発明、廃棄物堆積層高測定方法に関しては第二発明、廃棄物ガス化溶融装置に関しては第三発明そして廃棄物ガス化溶融方法に関しては第四発明により解決される。   According to the present invention, the above-mentioned problems are the following first invention with respect to the waste layer height measuring device, the second invention with respect to the waste layer height measuring method, the third invention with respect to the waste gasification melting device, and The waste gasification melting method is solved by the fourth invention.

<第一発明>(廃棄物堆積層高測定装置)
縦型筒状の廃棄物ガス化溶融炉の炉本体内に形成される廃棄物堆積層の層高を測定する廃棄物堆積層高測定装置において、
炉本体の上部にて離間した二位置で廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成する赤外線検出装置と、
赤外線検出装置からの温度分布画像情報にもとづき層高を算出する演算装置とを有し、
演算装置は、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する演算部を有している、
ことを特徴とする廃棄物堆積層高測定装置。
<First invention> (Waste accumulation layer height measuring device)
In the waste accumulation layer height measuring device for measuring the height of the waste accumulation layer formed in the furnace body of the vertical cylindrical waste gasification melting furnace,
An infrared detector that detects radiant infrared radiation from the surface of the waste accumulation layer at two positions spaced apart from each other at the top of the furnace body, and forms a temperature distribution image composed of a plurality of compartment images for a region corresponding to the surface of the waste accumulation layer; ,
An arithmetic unit that calculates the layer height based on the temperature distribution image information from the infrared detector;
The arithmetic unit selects a specific point for defining a partition image corresponding to a specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device, with respect to the two temperature distribution images formed at the two positions. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device And calculating a layer height at the specific point, obtaining a layer height at a plurality of different specific points, and calculating a layer height distribution on the waste accumulation layer surface. Yes,
A waste accumulation layer height measuring apparatus characterized by the above.

本発明において、赤外線検出装置は、二位置のそれぞれの位置に固定配置されているようにすることも、また、二位置を繰り返し往復動し該二位置のそれぞれに達したときに赤外線検出する一つの可動赤外線検出装置とすることもできる。   In the present invention, the infrared detection device may be fixedly arranged at each of the two positions. Alternatively, the infrared detection apparatus may detect the infrared rays when the two positions are repeatedly moved back and forth. One movable infrared detector can also be provided.

<第二発明>(廃棄物堆積層高測定方法)
縦型筒状の廃棄物ガス化溶融炉の炉本体内に形成される廃棄物堆積層の層高を測定する廃棄物堆積層高測定方法において、
炉本体の上部にて離間した二位置で赤外線検出装置により廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成し、
演算装置で、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する、
ことを特徴とする廃棄物堆積層高測定方法。
<Second invention> (Waste accumulation layer height measuring method)
In the method for measuring the height of the waste accumulation layer for measuring the height of the waste accumulation layer formed in the furnace body of the vertical cylindrical waste gasification melting furnace,
The infrared radiation from the surface of the waste accumulation layer is detected by two infrared detectors at two positions separated from the top of the furnace body, and a temperature distribution image consisting of a plurality of compartment images is formed for the area corresponding to the surface of the waste accumulation layer. ,
With respect to the two temperature distribution images formed at the above-mentioned two positions, the calculation device selects a specific point that defines a partition image corresponding to the specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device Calculating the layer height at the specific point, calculating the layer height for a plurality of different specific points, and calculating the layer height distribution for the waste accumulation layer surface,
A method for measuring a height of a waste accumulation layer.

本発明において、赤外線検出は、二位置のそれぞれの位置に固定配置された赤外線検出装置で行うことも、また、二位置を繰り返し往復動する一つの可動赤外線検出装置が該二位置のそれぞれに達したときに行うこともできる。   In the present invention, the infrared detection is performed by an infrared detection device fixedly arranged at each of the two positions, or a single movable infrared detection device that reciprocates between the two positions reaches each of the two positions. You can also do it when you do.

<第三発明>(廃棄物ガス化溶融装置)
縦型筒状の廃棄物ガス化溶融炉の炉本体の頂部に廃棄物の投入口、下部に主羽口そして該主羽口の上方位置に副羽口が設けられた廃棄物ガス化溶融装置において、
該炉本体内に形成される廃棄物堆積層の層高を測定する廃棄物堆積層高測定装置と、廃棄物堆積層高測定装置からの情報を受けて、廃棄物ガス化溶融装置の操業条件を制御する制御装置とを備え、
廃棄物堆積層高測定装置は、炉本体の上部にて離間した二位置で廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成する赤外線検出装置と、
赤外線検出装置からの温度分布画像情報にもとづき層高を算出する演算装置とを有し、
演算装置は、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する演算部を有し、
制御装置は、演算装置から廃棄物堆積層の層高分布情報を受けて、投入口からの廃棄物の供給量及び主羽口からの酸素富化空気の供給量のうち少なくとも一つを制御することを特徴とする廃棄物ガス化溶融装置。
<Third invention> (Waste gasification and melting device)
Waste gasification and melting apparatus provided with a waste inlet at the top of a furnace body of a vertical cylindrical waste gasification and melting furnace, a main tuyere at the bottom, and a sub tuyere above the main tuyere In
An operation condition of the waste gasification and melting apparatus in response to information from the waste deposition layer height measuring device for measuring the height of the waste deposition layer formed in the furnace body and the waste deposition layer height measuring device And a control device for controlling
The waste deposition layer height measuring device detects the infrared radiation from the surface of the waste deposition layer at two positions separated from each other at the upper part of the furnace body, and detects the temperature composed of a plurality of compartment images for the region corresponding to the waste deposition layer surface. An infrared detector for forming a distribution image;
An arithmetic unit that calculates the layer height based on the temperature distribution image information from the infrared detector;
The arithmetic unit selects a specific point for defining a partition image corresponding to a specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device, with respect to the two temperature distribution images formed at the two positions. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device Calculating a layer height at the specific point, calculating a layer height for a plurality of different specific points, and calculating a layer height distribution for the waste accumulation layer surface,
The control device receives the layer height distribution information of the waste accumulation layer from the arithmetic device and controls at least one of the supply amount of waste from the inlet and the supply amount of oxygen-enriched air from the main tuyere. A waste gasification and melting apparatus characterized by that.

本発明において、赤外線検出装置は、二位置のそれぞれの位置に固定配置されているようにすることも、また、二位置を繰り返し往復動し該二位置のそれぞれに達したときに赤外線検出する一つの可動赤外線検出装置とすることもできる。   In the present invention, the infrared detection device may be fixedly arranged at each of the two positions. Alternatively, the infrared detection apparatus may detect the infrared rays when the two positions are repeatedly moved back and forth. One movable infrared detector can also be provided.

<第四発明>(廃棄物ガス化溶融方法)
縦型筒状の廃棄物ガス化溶融炉の炉本体の頂部に廃棄物の投入口、下部に主羽口そして該主羽口の上方位置に副羽口が設けられた廃棄物ガス化溶融装置による廃棄物ガス化溶融方法において、
該炉本体内に形成される廃棄物堆積層の層高分布を測定し、層高分布情報を受けて、廃棄物ガス化溶融装置の操業条件を制御し、
炉本体の上部にて離間した二位置で赤外線検出装置により廃棄物堆積層面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成し、
演算装置で、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出し、
演算装置からの廃棄物堆積層の層高分布情報にもとづき、投入口からの廃棄物の供給量及び主羽口からの酸素富化空気の供給量のうち少なくとも一つを制御装置により制御することを特徴とする廃棄物ガス化溶融方法。
<Fourth Invention> (Waste Gasification Melting Method)
Waste gasification and melting apparatus provided with a waste inlet at the top of a furnace body of a vertical cylindrical waste gasification and melting furnace, a main tuyere at the bottom, and a sub tuyere above the main tuyere In the waste gasification melting method by
Measure the layer height distribution of the waste accumulation layer formed in the furnace body, receive the layer height distribution information, control the operating conditions of the waste gasification and melting device,
Infrared detectors detect infrared radiation from the surface of the waste accumulation layer at two positions separated from each other at the top of the furnace body, and form a temperature distribution image consisting of a plurality of compartment images for the area corresponding to the surface of the waste accumulation layer.
With respect to the two temperature distribution images formed at the above-mentioned two positions, the calculation device selects a specific point that defines a partition image corresponding to the specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device By calculating the layer height at the specific point, calculating the layer height for a plurality of different specific points, calculating the layer height distribution on the waste accumulation layer surface,
Control at least one of the supply amount of waste from the inlet and the supply amount of oxygen-enriched air from the main tuyere based on the layer height distribution information of the waste accumulation layer from the arithmetic unit. A waste gasification melting method characterized by the above.

本発明において、赤外線検出は、二位置のそれぞれの位置に固定配置された赤外線検出装置により行うことも、また、二位置を繰り返し往復動する一つの可動赤外線検出装置が該二位置のそれぞれに達したときに行うようにすることもできる。   In the present invention, infrared detection is performed by an infrared detection device fixedly arranged at each of two positions, or a single movable infrared detection device that reciprocates between two positions reaches each of the two positions. You can also do it when you do.

<発明の原理>
本発明では、炉本体内でガス化溶融される廃棄物堆積層の層高分布を求めるために、廃棄物堆積層表面からの放射赤外線を赤外線検出装置で直接検出し、この赤外線検出を炉本体上部の二位置で行い、温度分布画像を形成し、演算装置でステレオ画像法により、層高分布を算出することとしている。
<Principle of the invention>
In the present invention, in order to obtain the layer height distribution of the waste deposition layer that is gasified and melted in the furnace body, the infrared radiation from the waste deposition layer surface is directly detected by an infrared detector, and this infrared detection is performed on the furnace body. The temperature distribution image is formed at the upper two positions, and the layer height distribution is calculated by a stereo image method using an arithmetic unit.

本発明で層高測定のために廃棄物堆積層表面から放射赤外線を検出することとした理由は次のとおりである。   The reason why the infrared radiation is detected from the surface of the waste accumulation layer for measuring the layer height in the present invention is as follows.

発明者は、高温の廃棄物堆積層表面から赤外線が放射していることに着目した。赤外線はマイクロ波に比し波長が短く直進性が強いので、炉内空間に存在する多くのガス、火炎やダストによる反射や吸収による減衰がないこと、また廃棄物堆積層表面そのものからの放射赤外線を受けることから、廃棄物堆積層表面の層高測定のための温度分布検出には好適であることを見出した。特定の波長範囲、具体的には2〜10μmの波長範囲、特に3.9μm前後の波長範囲の赤外線は、上記ガスからの放射率が低く、ガス、火炎やダストの影響を受けず、廃棄物堆積層表面からの放射赤外線はガス、火炎を透過して検出装置に到達し精度よく検出できることを確かめ、上記波長範囲の赤外線を検出することにすれば、廃棄物堆積層表面の温度分布測定に好適であることを見出した。   The inventor has paid attention to the fact that infrared rays are emitted from the surface of the high-temperature waste accumulation layer. Infrared radiation has a shorter wavelength than microwaves and is highly straight, so there is no attenuation due to reflection and absorption by many gases, flames and dust in the furnace space, and radiation infrared radiation from the surface of the waste layer Therefore, the present inventors have found that it is suitable for temperature distribution detection for measuring the layer height on the surface of the waste accumulation layer. Infrared rays with a specific wavelength range, specifically a wavelength range of 2 to 10 μm, particularly a wavelength range of around 3.9 μm, have low emissivity from the above gas, are not affected by gas, flame or dust, and are waste It is confirmed that the infrared radiation from the surface of the sedimentary layer can be detected with high accuracy through the gas and flame and reaches the detection device. It was found to be suitable.

このような検討の結果、本発明では、縦型筒状の廃棄物ガス化溶融炉の炉本体内に形成される廃棄物堆積層の層高を測定する層高測定方法において、炉本体の上部にて離間した二位置で赤外線検出装置により廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成し、演算装置で、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する。また、連続的に層高を測定することができる。   As a result of such examination, in the present invention, in the layer height measuring method for measuring the layer height of the waste accumulation layer formed in the furnace body of the vertical cylindrical waste gasification and melting furnace, Infrared radiation from the surface of the waste accumulation layer is detected by two infrared detectors at two positions separated from each other, and a temperature distribution image consisting of a plurality of section images is formed for the area corresponding to the surface of the waste accumulation layer. The specific point selection for defining the section image corresponding to the specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detector is performed for each of the two temperature distribution images formed at the two positions. Based on the positional relationship between the section images corresponding to the specific points in each temperature distribution image and the positional relationship between the two positions provided with the infrared detection device, the above-mentioned special feature is applied from the upper part of the furnace body by stereo imaging. By calculating the distance to the point, calculating a bed height of at 該特 fixed point, seeking bed height for a plurality of different specific points and calculates the bed height distribution for the waste deposit layer surface. In addition, the layer height can be measured continuously.

また、本発明では、廃棄物ガス化溶融装置の操業の制御に関しては、上記算出された層高分布のもとで、層高分布を適正に保つように、主羽口からの酸素富化空気及び投入口からの廃棄物のそれぞれの供給量のうち少なくとも一つを制御する。かくして、適正な層高分布のもとで、廃棄物のガス化溶融処理が望ましい状況で行われる。   Further, in the present invention, with respect to the operation of the waste gasification and melting apparatus, the oxygen-enriched air from the main tuyere is properly maintained based on the calculated layer height distribution. And at least one of the respective amounts of waste supplied from the inlet is controlled. Thus, the gasification and melting treatment of waste is performed in a desirable situation under an appropriate layer height distribution.

本発明は、以上のように、炉本体内でガス化溶融される廃棄物堆積層の層高を、廃棄物堆積層表面からの放射赤外線を赤外線検出装置で直接検出し、この赤外線検出を炉本体上部の二位置で行い、演算装置でステレオ画像法にもとづき、上記層高分布を算出することで測定するので、容易かつ確実に廃棄物堆積層の層高分布を測定でき、その測定結果にもとづき廃棄物ガス化溶融炉の操業条件を制御することで、安定的な操業を行うことができる。   As described above, the present invention directly detects the height of the waste accumulation layer gasified and melted in the furnace body, and the infrared radiation from the surface of the waste deposition layer is directly detected by the infrared detection device. Since the measurement is performed by calculating the above-mentioned layer height distribution based on the stereo image method using an arithmetic unit, the layer height distribution of the waste accumulation layer can be measured easily and reliably. Basically, by controlling the operating conditions of the waste gasification and melting furnace, stable operation can be performed.

本発明の一実施形態としての廃棄物ガス化溶融装置の概要構成図である。1 is a schematic configuration diagram of a waste gasification and melting apparatus as one embodiment of the present invention.

以下、添付図面にもとづき、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1に示される、本発明の実施形態の廃棄物ガス化溶融装置は、コークスを燃料として供給し、主羽口から炉下部内へ酸素富化空気そして副羽口から空気を吹き込むコークス床式ガス化溶融炉と、その周辺装置とを備えている。   The waste gasification and melting apparatus of the embodiment of the present invention shown in FIG. 1 supplies coke as fuel, and coke bed type in which oxygen-enriched air is blown from the main tuyere into the lower part of the furnace and air is blown from the sub tuyere. A gasification melting furnace and its peripheral devices are provided.

図1に示される本実施形態のコークス床式ガス化溶融炉1(以下、単に「ガス化溶融炉1」という)には、該ガス化溶融炉(炉本体)1の炉上部に、処理対象物としての廃棄物、燃料としてのコークス、生成されるスラグの成分調整材としての石灰石を炉内へ投入するための投入口2が設けられ、また、ガス化溶融炉1の上部側方には炉内のガスを炉外へ排出するためのガス排出口3が設けられている。また、ガス化溶融炉1の炉底部には溶融スラグと溶融金属を排出するための出滓口4が設けられている。   The coke bed type gasification melting furnace 1 (hereinafter simply referred to as “gasification melting furnace 1”) of the present embodiment shown in FIG. A waste inlet as a waste, coke as a fuel, and limestone as a component adjusting material for slag to be generated are provided in the furnace, and an inlet 2 is provided on the upper side of the gasification melting furnace 1. A gas discharge port 3 for discharging the gas in the furnace to the outside of the furnace is provided. In addition, an outlet 4 for discharging molten slag and molten metal is provided at the bottom of the gasification melting furnace 1.

ガス化溶融炉1の上方には、周辺装置として、廃棄物、コークス、石灰石をそれぞれ供給する廃棄物供給装置21、コークス供給装置22、石灰石供給装置23が配設されており、それぞれの供給装置22,23から供給されたコークス、石灰石は搬送コンベア(図示せず)により上記投入口まで搬送され、廃棄物供給装置21からの廃棄物とともに炉上部の上記投入口2から炉内に投入される。さらに、本実施形態では、後に詳述する、ガス化溶融炉1内の廃棄物堆積層の層高を測定する層高測定装置も設けられている。以下、ガス化溶融炉1そして層高測定装置について説明する。   Above the gasification melting furnace 1, a waste supply device 21, a coke supply device 22, and a limestone supply device 23 for supplying waste, coke, and limestone, respectively, are disposed as peripheral devices. The coke and limestone supplied from 22 and 23 are conveyed to the charging port by a transfer conveyor (not shown), and are put into the furnace from the charging port 2 at the top of the furnace together with the waste from the waste supply device 21. . Further, in the present embodiment, a layer height measuring device for measuring the layer height of the waste deposition layer in the gasification melting furnace 1, which will be described in detail later, is also provided. Hereinafter, the gasification melting furnace 1 and the bed height measuring device will be described.

ガス化溶融炉1のガス排出口3には炉外に設けられた二次燃焼室(図示せず)が接続して設けられており、廃棄物を熱分解して生成した可燃性ガスを燃焼する。該二次燃焼室は、二次燃焼のための空気を吹き込む空気送風口(図示せず)が設けられている。また、この二次燃焼室には、該二次燃焼室で可燃性ガスを燃焼した燃焼ガスから熱回収するボイラ(図示せず)が隣接して設けられている。   A secondary combustion chamber (not shown) provided outside the furnace is connected to the gas outlet 3 of the gasification melting furnace 1 to burn the combustible gas generated by pyrolyzing the waste. To do. The secondary combustion chamber is provided with an air blowing port (not shown) through which air for secondary combustion is blown. Further, a boiler (not shown) for recovering heat from the combustion gas obtained by burning the combustible gas in the secondary combustion chamber is provided adjacent to the secondary combustion chamber.

このようなコークス床式のガス化溶融炉1では、炉内の内部空間が縦方向で四つの領域に区分されていて、下方から、コークス充填層A、移動層B、廃棄物堆積層・ガス化層C(廃棄物堆積層ということもある)、フリーボード部Dが形成される。   In such a coke bed type gasification and melting furnace 1, the internal space in the furnace is divided into four regions in the vertical direction, and from the lower side, the coke packed bed A, the moving bed B, the waste deposit layer / gas Formation layer C (sometimes referred to as a waste accumulation layer) and free board portion D are formed.

炉下部におけるコークス充填層Aには主羽口5が設けられていて、酸素富化空気が吹き込まれ、酸素富化空気供給量を調整するバルブ5Aが設けられている。廃棄物堆積層Cには副羽口6が設けられ、空気が吹き込まれ、空気供給量を調整するバルブ6Aが設けられている。フリーボード部Dには三段羽口7が設けられ、空気が吹き込まれる。フリーボード部Dに三段羽口を設けない形態もある。   The coke packed bed A at the lower part of the furnace is provided with a main tuyere 5 and is provided with a valve 5A for blowing oxygen-enriched air and adjusting the supply amount of oxygen-enriched air. The waste accumulation layer C is provided with a sub tuyere 6 and is provided with a valve 6A for blowing air and adjusting the air supply amount. A three-stage tuyere 7 is provided in the free board part D, and air is blown in. There is also a form in which the freeboard portion D is not provided with a three-stage tuyere.

このような各羽口を有するガス化溶融炉1内にコークスが投入されると、このコークスが炉下部に下降し、主羽口5から吹き込まれる酸素富化空気によりコークスが燃焼し、これが燃焼し発生する高温の燃焼ガスが廃棄物の熱分解の熱源となり、さらに、灰分を溶融する熱源となる。   When coke is introduced into the gasification and melting furnace 1 having each tuyere, the coke descends to the lower part of the furnace, and the coke is combusted by the oxygen-enriched air blown from the main tuyere 5, which burns. The generated high-temperature combustion gas serves as a heat source for the thermal decomposition of waste, and further serves as a heat source for melting ash.

廃棄物堆積層Cには、副羽口6から空気が吹き込まれ、下方から上昇する高温の燃焼ガスにより廃棄物が乾燥され、次いで熱分解及び部分酸化され可燃分がガス化される。また、フリーボード部Dでは、廃棄物が熱分解されて生成した熱分解ガス(可燃性ガス)の一部を部分燃焼させて炉内上部を所定温度に維持し、生成したタール、有害ガス成分を熱分解する。   Air is blown into the waste accumulation layer C from the sub tuyere 6, the waste is dried by the high-temperature combustion gas rising from below, and then pyrolyzed and partially oxidized to combust the combustible component. In the free board part D, part of the pyrolysis gas (combustible gas) generated by pyrolyzing waste is partially burned to maintain the upper part of the furnace at a predetermined temperature, and the generated tar and harmful gas components Is pyrolyzed.

炉外に酸素富化空気供給装置(図示せず)が設けられていて、該酸素富化空気供給装置が、空気に酸素を混入して得られた酸素富化空気を上記主羽口5の送気管に供給する。   An oxygen-enriched air supply device (not shown) is provided outside the furnace, and the oxygen-enriched air supply device supplies oxygen-enriched air obtained by mixing oxygen into the air to the main tuyere 5. Supply to the air pipe.

本実施形態における廃棄物ガス化溶融装置は、上述した構成のガス化溶融炉1に、炉本体内の廃棄物堆積層の層高分布を測定する層高測定装置が設けられているとともに、測定された層高にもとづき層高を所定範囲にするようにガス化溶融炉1の操業条件を制御する制御装置13も設けられている。   The waste gasification and melting apparatus according to the present embodiment is provided with a layer height measuring device for measuring the layer height distribution of the waste deposition layer in the furnace body in the gasification and melting furnace 1 having the above-described configuration, and the measurement. A control device 13 is also provided for controlling the operating conditions of the gasification melting furnace 1 so that the layer height is within a predetermined range based on the layer height.

層高測定装置は、赤外線検出装置11と、その検出情報にもとづき廃棄物堆積層の層高分布を算出する演算装置12とを有している。   The layer height measuring device includes an infrared detecting device 11 and an arithmetic device 12 that calculates the layer height distribution of the waste accumulation layer based on the detection information.

赤外線検出装置11は、炉上部(図では炉頂部)の離間した二位置に設けられた赤外線検出装置11A,11Bで構成されている。   The infrared detection device 11 is composed of infrared detection devices 11A and 11B provided at two spaced apart positions on the top of the furnace (the top of the furnace in the figure).

炉本体の上部にて離間した二位置に配された赤外線検出装置11A,11Bのそれぞれは廃棄物堆積層表面の全領域をカバーする視野を有していて、該廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成する。   Each of the infrared detectors 11A and 11B arranged at two positions separated from each other at the upper part of the furnace body has a field of view covering the entire area of the waste deposition layer surface, and radiation from the waste deposition layer surface. Infrared rays are detected, and a temperature distribution image composed of a plurality of section images is formed in a region corresponding to the waste accumulation layer surface.

上記二つの赤外線検出装置11A,11Bは、その温度分布画像に関する検出情報を演算装置12へもたらすように該演算装置12に接続されている。該演算装置12は、赤外線検出装置11A,11Bからの温度分布画像情報にもとづき、廃棄物堆積層の層高分布を算出する演算部を有しており、該演算部で、赤外線検出装置11A,11Bにより形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置11A,11Bを設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する。ステレオ画像法は文献(日本写真学会誌2004年67巻5号:448-456頁)に記載されているように周知の技術である。層高分布を算出する具体的な方法については後述する。   The two infrared detection devices 11A and 11B are connected to the calculation device 12 so as to provide detection information regarding the temperature distribution image to the calculation device 12. The calculation device 12 has a calculation unit for calculating the layer height distribution of the waste accumulation layer based on the temperature distribution image information from the infrared detection devices 11A and 11B. In the calculation unit, the infrared detection device 11A, The specific point selection which determines the division image corresponding to the specific point on the surface of the waste accumulation layer on the temperature distribution image formed by 11B is performed for each of the two temperature distribution images formed at the two positions. The distance from the upper part of the furnace body to the specific point is determined by stereo imaging based on the positional relationship of the section image corresponding to the specific point in the distribution image and the positional relationship between the two positions where the infrared detection devices 11A and 11B are provided. By calculating, the layer height at the specific point is calculated, the layer height is obtained for a plurality of different specific points, and the layer height distribution on the waste accumulation layer surface is calculated. Stereo imaging is a well-known technique as described in the literature (Journal of Photographic Society of Japan, 2004, Vol. 67, No. 5, 448-456). A specific method for calculating the layer height distribution will be described later.

上記演算装置12は、制御装置13に接続されていて、該制御装置13の指令信号が廃棄物供給装置21による供給量を制御し、主羽口5のバルブ5Aの開度を制御している。演算装置12から層高分布の情報を受けた制御装置13は、適正な層高分布となるように、上記廃棄物供給装置21による廃棄物の供給量及び上記主羽口5からの酸素富化空気の供給量のうちの少なくとも一つを制御するように設定されている。制御方法については後述する。   The arithmetic device 12 is connected to the control device 13, and the command signal of the control device 13 controls the supply amount by the waste supply device 21 and controls the opening of the valve 5 </ b> A of the main tuyere 5. . The control device 13 that has received information on the layer height distribution from the arithmetic unit 12 enriches the amount of waste supplied by the waste supply device 21 and the oxygen from the main tuyere 5 so as to obtain an appropriate layer height distribution. It is set to control at least one of the air supply amounts. The control method will be described later.

このように構成される廃棄物ガス化溶融炉装置では、廃棄物のガス化溶融処理は次の要領で行われる。   In the waste gasification and melting furnace apparatus configured as described above, the waste gasification and melting treatment is performed in the following manner.

廃棄物供給装置21からの廃棄物、コークス供給装置22からのコークスと石灰石供給装置23からの石灰石がガス化溶融炉1の上部に設けられた投入口2を経て、それぞれ所定量ずつ炉内へ投入され、主羽口5から酸素富化空気が、副羽口6から空気が炉内へ吹き込まれる。   Waste from the waste supply device 21, coke from the coke supply device 22 and limestone from the limestone supply device 23 pass through the inlet 2 provided in the upper part of the gasification melting furnace 1, respectively, and enter the furnace in predetermined amounts. Then, oxygen-enriched air is injected from the main tuyere 5 and air is blown from the sub tuyere 6 into the furnace.

炉内に投入されたコークスは炉下部に下降し、このコークスが主羽口5から吹き込まれる酸素富化空気によって燃焼し、廃棄物の灰分を溶融する熱源を提供するとともに、発生した高温の燃焼ガスを上昇させ廃棄物の熱分解のために加熱する熱源を提供する。   The coke put into the furnace descends to the lower part of the furnace, and the coke is burned by the oxygen-enriched air blown from the main tuyere 5 to provide a heat source for melting waste ash, and the generated high-temperature combustion Provide a heat source that raises the gas and heats it for pyrolysis of the waste.

上記投入口2から投入された廃棄物は、炉内に堆積して廃棄物堆積層を形成しそこで廃棄物のガス化が行われる。廃棄物は廃棄物堆積層(ガス化層)Cを形成し、上方から下降するにつれて、乾燥、熱分解、ガス化される。廃棄物は炉下部のコークス充填層Aから移動層Bを通過し上昇してくる高温の燃焼ガス及び副羽口6から吹き込まれる空気によって加熱され、乾燥され、次いで熱分解される。熱分解により生成した可燃性ガスを含む燃焼ガスは上昇し、可燃性ガスの一部がフリーボード部Dにて三段羽口7からの空気供給を受け、燃焼され、炉内部を所定温度に維持し、廃棄物の熱分解により発生した有害物とタール分を分解させる処理が施されるように加熱熱源として用いられる。フリーボード部Dを通過したガスは炉上部に設けられたガス排出口3より、炉外の二次燃焼室(図示せず)へ排出される。ガスは可燃性ガスを多量に含んでいて二次燃焼室で燃焼され、ボイラ(図示せず)で熱回収され蒸気を発生させその蒸気が発電等に用いられる。ボイラから排出されたガスは、サイクロン(図示せず)で比較的粗いダストが除去され、さらに、減温装置(図示せず)で冷却され、有害物質除去剤との反応により有害ガスが除去され、集塵機(図示せず)で除塵処理されるなど排ガス処理された後、煙突(図示せず)から大気に放散される。   Waste introduced from the inlet 2 is deposited in the furnace to form a waste accumulation layer, where the waste is gasified. The waste forms a waste accumulation layer (gasification layer) C, and is dried, pyrolyzed and gasified as it descends from above. The waste is heated by the hot combustion gas rising from the coke packed bed A in the lower part of the furnace through the moving bed B and the air blown from the sub tuyere 6, dried, and then pyrolyzed. Combustion gas containing combustible gas generated by pyrolysis rises, and a part of the combustible gas is supplied with air from the three-stage tuyere 7 at the free board part D and burned, and the inside of the furnace is brought to a predetermined temperature. It is used as a heating heat source so that it can be treated to decompose harmful substances and tars generated by thermal decomposition of waste. The gas that has passed through the free board part D is discharged from a gas discharge port 3 provided in the upper part of the furnace to a secondary combustion chamber (not shown) outside the furnace. The gas contains a large amount of combustible gas, is combusted in the secondary combustion chamber, recovers heat by a boiler (not shown), generates steam, and the steam is used for power generation and the like. The gas discharged from the boiler is removed with relatively coarse dust by a cyclone (not shown), further cooled by a temperature reducing device (not shown), and the harmful gas is removed by reaction with a harmful substance removing agent. After exhaust gas treatment such as dust removal with a dust collector (not shown), it is emitted from the chimney (not shown) to the atmosphere.

廃棄物堆積層Cの下部となる廃棄物熱分解部で廃棄物は熱分解されてガスが生成され、さらに、熱分解により生じた固定炭素や灰分は、コークス及び石灰石とともに下降し移動層Bを形成する。移動層Bでは、コークス充填層Aから上昇してくる高温のガスにより下降する固体の昇温が行われると同時に、高温のCOガスにより廃棄物の熱分解により生じた固定炭素がガス化される。コークス充填層Aでは主羽口5から送風される酸素富化空気によりコークスとガス化されずに残った廃棄物の固定炭素が燃焼され、この燃焼熱により廃棄物の灰分が溶融され溶融スラグと溶融メタルが生成され出滓口4から排出される。石灰石は灰分が溶融されたスラグの性状を好ましいものとする調整材として働く。さらに、発生した高温の燃焼ガスが上昇し廃棄物の熱分解のために加熱する熱源となる。 The waste is thermally decomposed in the waste pyrolysis section at the bottom of the waste accumulation layer C to generate gas, and the fixed carbon and ash generated by the pyrolysis descend with the coke and limestone to move through the moving layer B. Form. In the moving bed B, the temperature of the solid descending is increased by the high temperature gas rising from the coke packed bed A, and at the same time, the fixed carbon generated by the thermal decomposition of the waste is gasified by the high temperature CO 2 gas. The In the coke packed bed A, the oxygen-enriched air blown from the main tuyere 5 burns the coke and the fixed carbon of the waste that remains without being gasified, and the heat of combustion melts the ash content of the waste, Molten metal is generated and discharged from the tap 4. Limestone works as a conditioner that makes the slag melted with ash preferable. Further, the generated high-temperature combustion gas rises and becomes a heat source for heating for thermal decomposition of the waste.

主羽口5から下方の炉下部では、高温になりながらも燃え尽きていないコークスがコークス塊同士の間隙を保持して充填された状態でコークス充填層Aを形成しており、溶融スラグと溶融メタルはコークス塊同士の間隙を滴下し炉底に達する。溶融スラグと溶融メタルは炉底に達するまでに均質化され性状が安定化され、炉底に設けられた出滓口4から排出され、炉外に設けられた水砕装置(図示せず)に供給され冷却固化され、冷却固化された水砕スラグと水砕金属が回収される。主羽口5から送風される酸素富化空気と、コークスと固定炭素の燃焼により発生した高温の燃焼ガスとは、コークス充填層Aから移動層Bを通過し廃棄物堆積層Cへ上昇して廃棄物堆積層で廃棄物を加熱し、廃棄物熱分解部の廃棄物が副羽口6からの空気により部分酸化、熱分解される。コークス充填層Aでは、コークスが燃焼して灰分溶融と熱分解の熱源となるとともに、コークスが崩壊、解砕されずに塊同士の間隙を保持して酸素富化空気と高温の燃焼ガスとを通気させ、溶融スラグと溶融メタルとを通液させる高温火格子の機能を有するようになる。   In the lower part of the furnace below the main tuyere 5, coke packed bed A is formed in a state in which coke which is high in temperature but not burned out is filled while maintaining a gap between the coke lumps. Molten slag and molten metal Drops the gap between coke lumps and reaches the bottom of the furnace. The molten slag and molten metal are homogenized by the time they reach the bottom of the furnace, their properties are stabilized, discharged from the tap 4 provided at the bottom of the furnace, and supplied to a water granulator (not shown) provided outside the furnace. The supplied granulated slag and granulated metal are recovered by cooling and solidifying. Oxygen-enriched air blown from the main tuyere 5 and high-temperature combustion gas generated by the combustion of coke and fixed carbon rise from the coke packed bed A through the moving bed B to the waste deposit bed C. The waste is heated in the waste accumulation layer, and the waste in the waste pyrolysis section is partially oxidized and pyrolyzed by the air from the sub tuyere. In the coke packed bed A, the coke burns to become a heat source for ash melting and thermal decomposition, and the coke is not collapsed and crushed, maintaining the gap between the lumps, and oxygen-enriched air and high-temperature combustion gas It has the function of a high-temperature grate that ventilates and passes molten slag and molten metal.

本実施形態では、このように廃棄物がガス化溶融処理される際、ガス化溶融炉内の廃棄物堆積層の層高分布を赤外線検出装置と演算装置とで測定し、層高分布を適正に保つよう、制御装置により操業条件を制御する。   In the present embodiment, when the waste is gasified and melted in this way, the layer height distribution of the waste accumulation layer in the gasification melting furnace is measured by the infrared detector and the arithmetic device, and the layer height distribution is determined appropriately. The operating conditions are controlled by the control device so as to keep the temperature constant.

まず、廃棄物堆積層表面についての層高分布を算出する。縦型筒状の廃棄物ガス化溶融炉の炉本体内に形成される廃棄物堆積層の層高を測定する層高測定方法において、炉本体の上部にて離間した二位置で赤外線検出装置により廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成し、演算装置で、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する。また、連続的に層高を測定することができる。具体的には、次の要領で、廃棄物堆積層表面上の特定点の位置そして層高が得られる。   First, the layer height distribution on the waste accumulation layer surface is calculated. In a layer height measuring method for measuring the height of a waste accumulation layer formed in a furnace body of a vertical cylindrical waste gasification melting furnace, an infrared detector is used at two positions spaced apart at the top of the furnace body. Radiation infrared rays from the surface of the waste accumulation layer are detected, a temperature distribution image consisting of a plurality of division images is formed for the region corresponding to the surface of the waste accumulation layer, and the temperature distribution image formed by the infrared detection device in the arithmetic unit The specific point selection for determining the section image corresponding to the specific point on the surface of the waste accumulation layer is performed for each of the two temperature distribution images formed at the two positions, and corresponds to the specific point in each temperature distribution image. By calculating the distance from the upper part of the furnace body to the specific point by a stereo image method based on the positional relationship between the compartment images and the positional relationship between the two positions provided with the infrared detection device, Calculating a layer height at a fixed point, seeking bed height for a plurality of different specific points and calculates the bed height distribution for the waste deposit layer surface. In addition, the layer height can be measured continuously. Specifically, the position and the height of a specific point on the surface of the waste accumulation layer are obtained in the following manner.

(1)炉上部に設置した二つの赤外線検出装置のそれぞれに座標を設定する。
(2)二つの赤外線検出装置により廃棄物堆積層表面からの放射赤外線を検出し、それぞれ廃棄物堆積層の温度分布画像を形成する。
(3)廃棄物堆積層上の特定点を温度分布画像上で設定する。
(4)赤外線検出装置に設定した座標と、温度分布画像上の廃棄物堆積層の特定点の位置関係から、ステレオ画像法により、赤外線検出装置から特定点までの距離を算出し、特定点の炉内における高さ位置すなわち層高を算出する。
(5)同様の要領で特定点の位置を順次移動して廃棄物堆積層の表面全域について(1)〜(4)を繰り返して行い、廃棄物堆積層表面全域についての層高分布を得る。
(1) Coordinates are set for each of the two infrared detectors installed in the upper part of the furnace.
(2) Radiation infrared rays from the surface of the waste accumulation layer are detected by two infrared detection devices, and a temperature distribution image of the waste accumulation layer is formed respectively.
(3) A specific point on the waste accumulation layer is set on the temperature distribution image.
(4) The distance from the infrared detection device to the specific point is calculated by stereo imaging from the coordinates set in the infrared detection device and the positional relationship between the specific points of the waste accumulation layer on the temperature distribution image. The height position in the furnace, that is, the bed height is calculated.
(5) The position of the specific point is sequentially moved in the same manner, and (1) to (4) are repeated for the entire surface area of the waste accumulation layer to obtain a layer height distribution for the entire surface area of the waste accumulation layer.

また、炉内に飛散しているダストにより、赤外線検出装置が廃棄物堆積層からの放射赤外線を検出することに影響を受ける場合に、赤外線検出装置の前方に対して高圧のガスを噴射し、一時的にダストの影響を少なくして良好に検出可能とすることができる。ガスとしては、空気、排ガス、窒素など、放射赤外線検出に影響のないガスを用いる。   In addition, when the infrared detector is affected by the detection of radiant infrared radiation from the waste accumulation layer due to dust scattered in the furnace, high-pressure gas is jetted to the front of the infrared detector, The influence of dust can be temporarily reduced to enable good detection. As the gas, a gas that does not affect the detection of radiant infrared rays, such as air, exhaust gas, and nitrogen, is used.

このようにして、炉内の廃棄物堆積層の層高分布を得て、層高分布を適正な範囲に保つように主羽口からの送風量、廃棄物投入量などの操業条件を制御する。その要領は次のごとくである。   In this way, the layer height distribution of the waste accumulation layer in the furnace is obtained, and the operating conditions such as the amount of air blown from the main tuyere and the amount of waste input are controlled so as to keep the layer height distribution within an appropriate range. . The procedure is as follows.

A.廃棄物堆積層の層高分布に不均一が発生している場合
層高分布に所定範囲より高くなっている個所が発生し不均一になっているということは、クリンカ(廃棄物、熱分解途中の廃棄物、熱分解残渣が炉壁に付着して滞留している状態)が発生し廃棄物が下降しにくい状況であると判断できる。そこで、所定範囲より高くなっている個所に対応する周方向位置の主羽口5からの酸素富化空気供給量を増加するようにバルブ5Aを操作し、コークス燃焼を促進させ炉下部の温度を上昇させ、滞留しているクリンカを溶融して除去し廃棄物の下降を促す。これにより、層高が所定範囲より高くなっている個所の発生を解消する。さらには主羽口5での操作とともに廃棄物供給装置21による廃棄物供給量を減少させ、廃棄物の温度上昇を促し、廃棄物層での熱分解、部分酸化を促進して滞留しているクリンカを溶融して除去し廃棄物の下降を促すこととしてもよい。
A. When the layer height distribution of the waste accumulation layer is uneven The location where the layer height distribution is higher than the specified range is generated and is uneven. This means that the clinker (waste, during pyrolysis) It is possible to determine that the waste and the pyrolysis residue are stuck to the furnace wall and are not easily lowered. Therefore, the valve 5A is operated so as to increase the supply amount of oxygen-enriched air from the main tuyere 5 at the circumferential position corresponding to the part that is higher than the predetermined range, and the coke combustion is promoted to reduce the temperature of the lower part of the furnace. The clinker staying is melted and removed to promote the lowering of the waste. Thereby, generation | occurrence | production of the location where the layer height is higher than the predetermined range is eliminated. Furthermore, with the operation at the main tuyere 5, the amount of waste supplied by the waste supply device 21 is decreased, the temperature of the waste is increased, and thermal decomposition and partial oxidation in the waste layer are promoted and stayed. The clinker may be melted and removed to promote the lowering of the waste.

B.廃棄物堆積層の層高分布が所定範囲外に逸脱している場合
(i)廃棄物堆積層の層高分布が所定範囲より高くなっている場合には、廃棄物層での熱分解、部分酸化が滞り廃棄物の下降が滞っているため、主羽口5からの酸素富化空気供給量を増加するようにバルブ5Aを操作し、コークス燃焼を促進させ炉下部の温度を上昇させ、廃棄物層での熱分解、部分酸化を促進し廃棄物の下降を促す。これにより、層高分布を所定範囲内にすることができる。さらには主羽口5での操作とともに廃棄物供給装置21による廃棄物供給量を減少させ、廃棄物の温度上昇を促し、廃棄物層での熱分解、部分酸化を促進して廃棄物の下降を促すこととしてもよい。
B. When the layer height distribution of the waste accumulation layer deviates outside the predetermined range (i) When the layer height distribution of the waste deposition layer is higher than the predetermined range, thermal decomposition in the waste layer, part Since the oxidation is delayed and the waste is falling, the valve 5A is operated so as to increase the supply amount of oxygen-enriched air from the main tuyere 5 to promote coke combustion and raise the temperature at the bottom of the furnace for disposal. It promotes thermal decomposition and partial oxidation in the material layer and promotes the fall of waste. Thereby, the layer height distribution can be within a predetermined range. Furthermore, along with the operation at the main tuyere 5, the amount of waste supplied by the waste supply device 21 is reduced, the temperature of the waste is increased, the thermal decomposition and partial oxidation in the waste layer are promoted, and the waste is lowered. It is good also as prompting.

(ii)廃棄物堆積層の層高分布が所定範囲より低くなっている場合には、廃棄物層の層厚が薄く、廃棄物が十分に熱分解、部分酸化されないまま下降してしまい、炉下部に滞留する不具合が生じる。そのため、主羽口5からの酸素富化空気供給量を減少するようにバルブ5Aを操作し、廃棄物の熱分解、部分酸化を適正に行い、廃棄物堆積層の層高分布を所定範囲内にする。あるいは、廃棄物供給装置21による廃棄物供給量を増加して、廃棄物層の層厚を厚くし、廃棄物堆積層の層高分布を所定範囲内にする。   (Ii) When the layer height distribution of the waste accumulation layer is lower than the predetermined range, the thickness of the waste layer is thin, and the waste falls down without being sufficiently thermally decomposed and partially oxidized. The trouble which stays in the lower part arises. Therefore, the valve 5A is operated so as to reduce the supply amount of oxygen-enriched air from the main tuyere 5, and the thermal decomposition and partial oxidation of waste are appropriately performed, and the layer height distribution of the waste accumulation layer is within a predetermined range. To. Alternatively, the amount of waste supplied by the waste supply device 21 is increased, the thickness of the waste layer is increased, and the layer height distribution of the waste accumulation layer is set within a predetermined range.

本実施形態では、赤外線検出装置を離間した二位置のそれぞれに固定配置した二つの赤外線検出装置を用いることとしたが、本発明はこれに限定されず、赤外線検出装置は一つでも可能である。その場合、一つの赤外線検出装置は、上記二位置の間を移動し、各位置に達したときに、それぞれ廃棄物堆積層表面からの放射赤外線を検出するように設定する。   In the present embodiment, two infrared detection devices are used in which the infrared detection device is fixedly arranged at two positions separated from each other. However, the present invention is not limited to this, and one infrared detection device is possible. . In that case, one infrared detector moves between the two positions, and is set so as to detect infrared radiation from the surface of the waste accumulation layer when reaching each position.

また、本発明では、二以上の固定配置された赤外線検出装置あるいは二位置以上を移動する赤外線検出装置を用いて、二位置を適宜選択して温度分布画像を得ることをしてもよい。   In the present invention, two or more fixedly arranged infrared detectors or an infrared detector that moves between two or more positions may be used to appropriately select two positions to obtain a temperature distribution image.

また、本実施形態では、炉内の廃棄物堆積層の層高分布を得て、層高分布を適正な範囲に保つように主羽口からの送風量及び廃棄物投入量のうち少なくとも一つを制御することとしたが、副羽口からの送風量やコークス供給量など他の操業条件をも制御するようにしてもよい。   Further, in the present embodiment, at least one of the amount of air blown from the main tuyere and the amount of waste input so as to obtain the layer height distribution of the waste accumulation layer in the furnace and keep the layer height distribution in an appropriate range. However, other operating conditions such as the amount of air blown from the sub tuyere and the amount of coke supplied may also be controlled.

1 廃棄物ガス化溶融炉
2 投入口
5 主羽口
6 副羽口
11 赤外線検出装置
11A,11B 赤外線検出装置
12 演算装置
13 制御装置
DESCRIPTION OF SYMBOLS 1 Waste gasification melting furnace 2 Input port 5 Main tuyere 6 Sub tuyere 11 Infrared detector 11A, 11B Infrared detector 12 Arithmetic device 13 Control device

Claims (12)

縦型筒状の廃棄物ガス化溶融炉の炉本体内に形成される廃棄物堆積層の層高を測定する廃棄物堆積層高測定装置において、
炉本体の上部にて離間した二位置で廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成する赤外線検出装置と、
赤外線検出装置からの温度分布画像情報にもとづき層高を算出する演算装置とを有し、
演算装置は、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する演算部を有している、
ことを特徴とする廃棄物堆積層高測定装置。
In the waste accumulation layer height measuring device for measuring the height of the waste accumulation layer formed in the furnace body of the vertical cylindrical waste gasification melting furnace,
An infrared detector that detects radiant infrared radiation from the surface of the waste accumulation layer at two positions spaced apart from each other at the top of the furnace body, and forms a temperature distribution image composed of a plurality of compartment images for a region corresponding to the surface of the waste accumulation layer; ,
An arithmetic unit that calculates the layer height based on the temperature distribution image information from the infrared detector;
The arithmetic unit selects a specific point for defining a partition image corresponding to a specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device, with respect to the two temperature distribution images formed at the two positions. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device And calculating a layer height at the specific point, obtaining a layer height at a plurality of different specific points, and calculating a layer height distribution on the waste accumulation layer surface. Yes,
A waste accumulation layer height measuring apparatus characterized by the above.
赤外線検出装置は、二位置のそれぞれの位置に固定配置されていることとする請求項1に記載の廃棄物堆積層高測定装置。   The waste deposition layer height measuring device according to claim 1, wherein the infrared detecting device is fixedly arranged at each of two positions. 赤外線検出装置は、二位置を繰り返し往復動し該二位置のそれぞれに達したときに赤外線検出する一つの可動赤外線検出装置であることとする請求項1に記載の廃棄物堆積層高測定装置。   The waste deposition layer height measuring device according to claim 1, wherein the infrared detecting device is one movable infrared detecting device that repeatedly detects reciprocating motion at two positions and detects infrared rays when reaching each of the two positions. 縦型筒状の廃棄物ガス化溶融炉の炉本体内に形成される廃棄物堆積層の層高を測定する廃棄物堆積層高測定方法において、
炉本体の上部にて離間した二位置で赤外線検出装置により廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成し、
演算装置で、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する、
ことを特徴とする廃棄物堆積層高測定方法。
In the method for measuring the height of the waste accumulation layer for measuring the height of the waste accumulation layer formed in the furnace body of the vertical cylindrical waste gasification melting furnace,
The infrared radiation from the surface of the waste accumulation layer is detected by two infrared detectors at two positions separated from the top of the furnace body, and a temperature distribution image consisting of a plurality of compartment images is formed for the area corresponding to the surface of the waste accumulation layer. ,
With respect to the two temperature distribution images formed at the above-mentioned two positions, the calculation device selects a specific point that defines a partition image corresponding to the specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device Calculating the layer height at the specific point, calculating the layer height for a plurality of different specific points, and calculating the layer height distribution for the waste accumulation layer surface,
A method for measuring a height of a waste accumulation layer.
赤外線検出は、二位置のそれぞれの位置に固定配置された赤外線検出装置で行うこととする請求項4に記載の廃棄物堆積層高測定方法。   The method for measuring the height of a waste accumulation layer according to claim 4, wherein the infrared detection is performed by an infrared detector fixedly disposed at each of two positions. 赤外線検出は、二位置を繰り返し往復動する一つの可動赤外線検出装置が該二位置のそれぞれに達したときに行うこととする請求項4に記載の廃棄物堆積層高測定方法。   The method for measuring a height of a waste accumulation layer according to claim 4, wherein the infrared detection is performed when one movable infrared detection device that reciprocally moves in two positions reaches each of the two positions. 縦型筒状の廃棄物ガス化溶融炉の炉本体の頂部に廃棄物の投入口、下部に主羽口そして該主羽口の上方位置に副羽口が設けられた廃棄物ガス化溶融装置において、
該炉本体内に形成される廃棄物堆積層の層高を測定する廃棄物堆積層高測定装置と、廃棄物堆積層高測定装置からの情報を受けて、廃棄物ガス化溶融装置の操業条件を制御する制御装置とを備え、
廃棄物堆積層高測定装置は、炉本体の上部にて離間した二位置で廃棄物堆積層表面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成する赤外線検出装置と、
赤外線検出装置からの温度分布画像情報にもとづき層高を算出する演算装置とを有し、
演算装置は、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出する演算部を有し、
制御装置は、演算装置から廃棄物堆積層の層高分布情報を受けて、投入口からの廃棄物の供給量及び主羽口からの酸素富化空気の供給量のうち少なくとも一つを制御することを特徴とする廃棄物ガス化溶融装置。
Waste gasification and melting apparatus provided with a waste inlet at the top of a furnace body of a vertical cylindrical waste gasification and melting furnace, a main tuyere at the bottom, and a sub tuyere above the main tuyere In
An operation condition of the waste gasification and melting apparatus in response to information from the waste deposition layer height measuring device for measuring the height of the waste deposition layer formed in the furnace body and the waste deposition layer height measuring device And a control device for controlling
The waste deposition layer height measuring device detects the infrared radiation from the surface of the waste deposition layer at two positions separated from each other at the upper part of the furnace body, and detects the temperature composed of a plurality of compartment images for the region corresponding to the waste deposition layer surface. An infrared detector for forming a distribution image;
An arithmetic unit that calculates the layer height based on the temperature distribution image information from the infrared detector;
The arithmetic unit selects a specific point for defining a partition image corresponding to a specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device, with respect to the two temperature distribution images formed at the two positions. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device Calculating a layer height at the specific point, calculating a layer height for a plurality of different specific points, and calculating a layer height distribution for the waste accumulation layer surface,
The control device receives the layer height distribution information of the waste accumulation layer from the arithmetic device and controls at least one of the supply amount of waste from the inlet and the supply amount of oxygen-enriched air from the main tuyere. A waste gasification and melting apparatus characterized by that.
赤外線検出装置は、二位置のそれぞれの位置に固定配置されていることとする請求項7に記載の廃棄物ガス化溶融装置。   The waste gasification and melting device according to claim 7, wherein the infrared detection device is fixedly arranged at each of two positions. 赤外線検出装置は、二位置を繰り返し往復動し該二位置のそれぞれに達したときに赤外線検出する一つの可動赤外線検出装置であることとする請求項7に廃棄物ガス化溶融装置。   8. The waste gasification and melting apparatus according to claim 7, wherein the infrared detection device is one movable infrared detection device that repeatedly detects reciprocating motion at two positions and detects infrared rays when reaching each of the two positions. 縦型筒状の廃棄物ガス化溶融炉の炉本体の頂部に廃棄物の投入口、下部に主羽口そして該主羽口の上方位置に副羽口が設けられた廃棄物ガス化溶融装置による廃棄物ガス化溶融方法において、
該炉本体内に形成される廃棄物堆積層の層高分布を測定し、層高分布情報を受けて、廃棄物ガス化溶融装置の操業条件を制御し、
炉本体の上部にて離間した二位置で赤外線検出装置により廃棄物堆積層面からの放射赤外線を検出し、廃棄物堆積層表面に対応する領域について複数の区画画像から成る温度分布画像を形成し、
演算装置で、赤外線検出装置により形成された温度分布画像上において廃棄物堆積層表面上の特定点に対応する区画画像を定める特定点選定を、上記二位置で形成された二つの温度分布画像についてそれぞれ行い、それぞれの温度分布画像における特定点に対応する区画画像の位置関係と、赤外線検出装置を設けた二位置の位置関係とに基づきステレオ画像法により、上記炉本体の上部から上記特定点までの距離を算出することで、該特定点での層高を算出し、複数の異なる特定点に関して層高を求めて上記廃棄物堆積層表面についての層高分布を算出し、
演算装置からの廃棄物堆積層の層高分布情報にもとづき、投入口からの廃棄物の供給量及び主羽口からの酸素富化空気の供給量のうち少なくとも一つを制御装置により制御することを特徴とする廃棄物ガス化溶融方法。
Waste gasification and melting apparatus provided with a waste inlet at the top of a furnace body of a vertical cylindrical waste gasification and melting furnace, a main tuyere at the bottom, and a sub tuyere above the main tuyere In the waste gasification melting method by
Measure the layer height distribution of the waste accumulation layer formed in the furnace body, receive the layer height distribution information, control the operating conditions of the waste gasification and melting device,
Infrared detectors detect infrared radiation from the surface of the waste accumulation layer at two positions separated from each other at the top of the furnace body, and form a temperature distribution image consisting of a plurality of compartment images for the area corresponding to the surface of the waste accumulation layer.
With respect to the two temperature distribution images formed at the above-mentioned two positions, the calculation device selects a specific point that defines a partition image corresponding to the specific point on the surface of the waste accumulation layer on the temperature distribution image formed by the infrared detection device. From the upper part of the furnace body to the specific point by stereo image method based on the positional relationship of the section image corresponding to the specific point in each temperature distribution image and the positional relationship of the two positions provided with the infrared detection device By calculating the layer height at the specific point, calculating the layer height for a plurality of different specific points, calculating the layer height distribution on the waste accumulation layer surface,
Control at least one of the supply amount of waste from the inlet and the supply amount of oxygen-enriched air from the main tuyere based on the layer height distribution information of the waste accumulation layer from the arithmetic unit. A waste gasification melting method characterized by the above.
赤外線検出は、二位置のそれぞれの位置に固定配置された赤外線検出装置により行うこととする請求項10に記載の廃棄物ガス化溶融方法。   The waste gasification melting method according to claim 10, wherein the infrared detection is performed by an infrared detector fixedly disposed at each of two positions. 赤外線検出は、二位置を繰り返し往復動する一つの可動赤外線検出装置が該二位置のそれぞれに達したときに行うこととする請求項10に廃棄物ガス化溶融方法。   11. The waste gasification and melting method according to claim 10, wherein the infrared detection is performed when one movable infrared detection device that reciprocates at two positions reaches each of the two positions.
JP2016174412A 2016-09-07 2016-09-07 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method Pending JP2018040533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016174412A JP2018040533A (en) 2016-09-07 2016-09-07 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016174412A JP2018040533A (en) 2016-09-07 2016-09-07 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method

Publications (1)

Publication Number Publication Date
JP2018040533A true JP2018040533A (en) 2018-03-15

Family

ID=61625551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174412A Pending JP2018040533A (en) 2016-09-07 2016-09-07 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method

Country Status (1)

Country Link
JP (1) JP2018040533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827169A (en) * 2018-06-21 2018-11-16 宝武集团环境资源科技有限公司 A kind of rotary hearth furnace furnace high-temperature pelletizing feed layer thickness detection device
JP2021067433A (en) * 2019-10-28 2021-04-30 川崎重工業株式会社 Method for grasping interior condition of self-weight sedimentation-type vertical reaction furnace and method for controlling automatic operation of self-weight sedimentation-type vertical reaction furnace
CN114136458A (en) * 2021-11-09 2022-03-04 中南大学 Molten metal fluid temperature multi-state online detection method and system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379712A (en) * 1976-12-24 1978-07-14 Kawasaki Steel Co Method of operating blast furnace by quantitive detection of fluidized zone in furnace
JPH05123420A (en) * 1991-02-04 1993-05-21 Takuma Co Ltd Fire position detector and automatic
JPH11126287A (en) * 1997-10-24 1999-05-11 Fujitsu Ltd Automatic fire detecting method and automatic fire detecting device
JP2001042092A (en) * 1999-08-03 2001-02-16 Ngk Insulators Ltd Waste incineration melting furnace
JP2001099615A (en) * 1999-09-30 2001-04-13 Nippon Crucible Co Ltd Object distance measuring instrument and three- dimensional object shape measuring instrument
JP2002130640A (en) * 2000-10-31 2002-05-09 Hitachi Zosen Corp Refuse measuring apparatus
JP2002323212A (en) * 2001-04-24 2002-11-08 Amano Kenkyusho:Kk Monitoring apparatus combustion region
JP2003121243A (en) * 2001-10-15 2003-04-23 Nkk Corp Method for measuring layer height level inside waste pyrolysis furnace, waste pyrolysis furnace, and method of operating waste pyrolysis furnace
JP2005090774A (en) * 2003-09-12 2005-04-07 Takuma Co Ltd Device for estimating supply amount of garbage for garbage incinerator
JP2005321325A (en) * 2004-05-11 2005-11-17 Nippon Steel Corp Microwave type distance measuring instrument
JP2006044804A (en) * 2004-07-30 2006-02-16 Hitachi Kiden Kogyo Ltd Automatic crane for refuse disposal works
KR101031079B1 (en) * 2008-12-26 2011-04-25 주식회사 포스코 Apparatus for measuring level of blast furnace bucket material
KR101286298B1 (en) * 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
KR101286297B1 (en) * 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
JP2013170829A (en) * 2012-02-17 2013-09-02 Mitsubishi Heavy Ind Ltd Strain measuring device and strain measuring method
JP2014126321A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Estimation method for waste volume in waste treatment furnace hopper

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379712A (en) * 1976-12-24 1978-07-14 Kawasaki Steel Co Method of operating blast furnace by quantitive detection of fluidized zone in furnace
JPH05123420A (en) * 1991-02-04 1993-05-21 Takuma Co Ltd Fire position detector and automatic
JPH11126287A (en) * 1997-10-24 1999-05-11 Fujitsu Ltd Automatic fire detecting method and automatic fire detecting device
JP2001042092A (en) * 1999-08-03 2001-02-16 Ngk Insulators Ltd Waste incineration melting furnace
JP2001099615A (en) * 1999-09-30 2001-04-13 Nippon Crucible Co Ltd Object distance measuring instrument and three- dimensional object shape measuring instrument
JP2002130640A (en) * 2000-10-31 2002-05-09 Hitachi Zosen Corp Refuse measuring apparatus
JP2002323212A (en) * 2001-04-24 2002-11-08 Amano Kenkyusho:Kk Monitoring apparatus combustion region
JP2003121243A (en) * 2001-10-15 2003-04-23 Nkk Corp Method for measuring layer height level inside waste pyrolysis furnace, waste pyrolysis furnace, and method of operating waste pyrolysis furnace
JP2005090774A (en) * 2003-09-12 2005-04-07 Takuma Co Ltd Device for estimating supply amount of garbage for garbage incinerator
JP2005321325A (en) * 2004-05-11 2005-11-17 Nippon Steel Corp Microwave type distance measuring instrument
JP2006044804A (en) * 2004-07-30 2006-02-16 Hitachi Kiden Kogyo Ltd Automatic crane for refuse disposal works
KR101031079B1 (en) * 2008-12-26 2011-04-25 주식회사 포스코 Apparatus for measuring level of blast furnace bucket material
JP2013170829A (en) * 2012-02-17 2013-09-02 Mitsubishi Heavy Ind Ltd Strain measuring device and strain measuring method
KR101286298B1 (en) * 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
KR101286297B1 (en) * 2012-06-27 2013-07-19 안양대학교 산학협력단 Appartus and method for calculating volume of rubbish
JP2014126321A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Estimation method for waste volume in waste treatment furnace hopper

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827169A (en) * 2018-06-21 2018-11-16 宝武集团环境资源科技有限公司 A kind of rotary hearth furnace furnace high-temperature pelletizing feed layer thickness detection device
JP2021067433A (en) * 2019-10-28 2021-04-30 川崎重工業株式会社 Method for grasping interior condition of self-weight sedimentation-type vertical reaction furnace and method for controlling automatic operation of self-weight sedimentation-type vertical reaction furnace
CN114136458A (en) * 2021-11-09 2022-03-04 中南大学 Molten metal fluid temperature multi-state online detection method and system
CN114136458B (en) * 2021-11-09 2024-04-23 中南大学 Online detection method and system for temperature polymorphism of molten metal fluid

Similar Documents

Publication Publication Date Title
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
JP2018040533A (en) Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
JP5744904B2 (en) Fluidized bed furnace and waste treatment method
JP5255510B2 (en) Waste melting treatment method and waste melting treatment apparatus
KR101921225B1 (en) Waste material melting furnace
CN112240553B (en) Plasma gasification melting furnace system and control method thereof
JP2007163078A (en) Waste disposal method and device
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP5426119B2 (en) Combustion control method for gasification melting system and system
JP2018040534A (en) Waste gasification melting apparatus and waste gasification melting method
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2005321182A (en) Waste combustion control device and stoker furnace
JP4126317B2 (en) Operation control method of gasification and melting system and system
RU2452895C2 (en) Device to burn lump solid fuel in pulsating flow
JP2017180964A (en) Waste treatment furnace device
JP4285760B2 (en) Operation control method of gasification and melting system and system
JPS6131761B2 (en)
JP6643088B2 (en) Waste treatment method and waste treatment device
JP6700046B2 (en) Gasification furnace
JP2012163260A (en) Waste gasification melting device
JP6487347B2 (en) Operation method of gasifier
JP6487346B2 (en) Gasifier
JP2005282910A (en) Combustion control method of waste gasifying melting furnace
JP5783078B2 (en) Waste gasification melting furnace clinker destruction and suppression device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200616