JP2005090774A - Device for estimating supply amount of garbage for garbage incinerator - Google Patents

Device for estimating supply amount of garbage for garbage incinerator Download PDF

Info

Publication number
JP2005090774A
JP2005090774A JP2003320980A JP2003320980A JP2005090774A JP 2005090774 A JP2005090774 A JP 2005090774A JP 2003320980 A JP2003320980 A JP 2003320980A JP 2003320980 A JP2003320980 A JP 2003320980A JP 2005090774 A JP2005090774 A JP 2005090774A
Authority
JP
Japan
Prior art keywords
dust
hopper
weight
garbage
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003320980A
Other languages
Japanese (ja)
Inventor
Nobuo Takeda
信生 武田
Masateru Takaoka
昌輝 高岡
Daisuke Ito
大輔 伊藤
Yoshitada Tsunoda
芳忠 角田
Daisuke Nakatsuka
大輔 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2003320980A priority Critical patent/JP2005090774A/en
Publication of JP2005090774A publication Critical patent/JP2005090774A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for estimating a supply amount of garbage, capable of properly controlling the combustion of garbage by grasping a weight of garbage supplied into the incinerator and the kind of garbage in advance. <P>SOLUTION: This device comprises a plurality of photographing means 6 for color-photographing the whole upper face of a surface layer part of the garbage in a hopper of the garbage incinerator, a garbage volume estimating means 31 for deriving a three-dimensional coordinates of the upper face of the surface layer part from a plurality of images taken by the photographing means 6 and estimating the volume of garbage in the hopper, a weight measuring means 7 for measuring a weight of the garbage charged into the hopper, a garbage supply weight estimating means 32 for estimating the weight of garbage supplied into the incinerator from the hopper on the basis of the estimated volume of garbage and the measured charging weight, and a heat generation estimating means 33 for estimating the kind of garbage on the basis of the shape and color of the garbage of the surface layer part from the color images taken by the photographing means 6, and estimating the heat generation of the garbage supplied into the incinerator from the hopper on the basis of the estimated kind and the weight of the garbage supplied of the surface layer garbage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ゴミ焼却炉の制御に関し、更に詳しくは、ゴミ焼却炉のホッパからゴミ焼却炉内に供給されるゴミの供給重量、供給発熱量を推定するゴミ供給量推定装置に関する。   The present invention relates to control of a waste incinerator, and more particularly, to a waste supply amount estimation device that estimates the supply weight and supply heat value of dust supplied from a hopper of a waste incinerator into the waste incinerator.

ゴミ焼却炉に供給されるゴミの供給量や発熱量が不安定に、或いは、急激に変動すると、ゴミ焼却炉内でのゴミ燃焼が不安定になり、これが、炉内温度の変動や局所的な高温領域の発生、CO(一酸化炭素)、HC(炭化水素)、NOx(窒素酸化物)、ダイオキシン類等の発生または増加、更には、未燃ゴミの発生等を誘引する原因となる。   If the amount of waste supplied to the waste incinerator or the amount of heat generated is unstable or suddenly fluctuates, the waste combustion in the waste incinerator becomes unstable, which may cause fluctuations in the furnace temperature or local fluctuations. Generation of a high temperature region, generation (or increase) of CO (carbon monoxide), HC (hydrocarbon), NOx (nitrogen oxide), dioxins, etc., and further generation of unburned dust.

都市ゴミや産業廃棄物等を焼却処理する焼却炉、例えばストーカ式ゴミ焼却炉には、ゴミを炉内に搬入するための受け口としてホッパが敷設され、焼却処理されるゴミは、クレーン等によって一旦ホッパ内に上部から投入され、ホッパ内に投入され堆積したゴミが、プッシャ式或いはスクリューコンベア式の供給手段によって、ホッパ下部からゴミ焼却炉内に供給される。ストーカ式ゴミ焼却炉では、炉内底部に敷設されたゴミ搬送手段であるストーカの上流側にホッパからのゴミが供給され、ストーカ上流部で乾燥処理され、次いで中流部で燃焼処理され、下流部で後処理された焼却灰が、ストーカ下流側より排出口を経て炉外に排出される。ここで、炉内におけるゴミ燃焼を安定化するためには、安定した燃焼制御を可能とするために、炉内へのゴミ供給量やゴミの発熱量を適切に制御する必要が生じる。   Incinerators that incinerate municipal waste, industrial waste, etc., such as stoker-type waste incinerators, have a hopper laid as a receiving port for carrying waste into the furnace. Garbage thrown into the hopper from above and fed into and accumulated in the hopper is fed into the garbage incinerator from the lower part of the hopper by a pusher type or screw conveyor type feeding means. In a stalker-type waste incinerator, waste from the hopper is supplied to the upstream side of the stalker, which is the garbage transporting means laid at the bottom of the furnace, dried at the upstream part of the stalker, and then burned at the midstream part. The incinerated ash after-treated in is discharged to the outside of the furnace through the outlet from the downstream side of the stoker. Here, in order to stabilize the combustion of dust in the furnace, it is necessary to appropriately control the amount of dust supplied to the furnace and the amount of heat generated by the dust in order to enable stable combustion control.

ホッパ内に投入されたゴミは自重により圧密化して底部に堆積しているゴミの比重が大きくなり、また、ゴミの種類やホッパ内のゴミ重量によって比重が変動するため、供給手段によってホッパ内から炉内へ一定容積ずつゴミを供給しても供給重量に変動を来たす虞があり、炉内へのゴミ供給重量を適切に制御する必要がある。かかる問題点を解決すべく、例えば、下記の特許文献1には、ホッパ内のゴミの上面の画像をテレビカメラで撮像し、撮像された画像からホッパ内のゴミ容積を演算し、演算された容積と、ホッパ内に投入されるゴミの重量に基づいて、供給手段によって炉内に供給される単位時間当たりのゴミの供給重量を演算し、この演算結果に基づき供給手段を制御する技術が開示されている。   Garbage thrown into the hopper is compacted by its own weight, and the specific gravity of the garbage deposited on the bottom increases, and the specific gravity fluctuates depending on the type of garbage and the weight of garbage in the hopper. Even if dust is supplied into the furnace in a certain volume, there is a risk that the supplied weight may fluctuate, and it is necessary to appropriately control the weight of dust supplied into the furnace. In order to solve such problems, for example, in Patent Document 1 below, an image of the upper surface of dust in the hopper is captured by a television camera, and the dust volume in the hopper is calculated from the captured image. Disclosed is a technique for calculating the supply weight of dust per unit time supplied into the furnace by the supply means based on the volume and the weight of the waste put into the hopper, and controlling the supply means based on the calculation result. Has been.

更に、炉内に供給されるゴミの発熱量を事前に検知して燃焼制御に反映させる技術として、例えば、下記の特許文献2に開示されているものがある。特許文献2では、ストーカ上流部のゴミの着火開始領域におけるゴミの放射温度を検出する赤外線検知手段を炉内に設け、その検出温度の平均値に基づいてゴミの低位発熱量を推定するゴミ質判定方法が提案されている。
特開2001−355819号公報 特開平10−185157号公報 伊藤、他、「ステレオ画像を用いたホッパ内ごみの表面形状の計測に関する研究」、環境計測システム制御学会誌「EICA」、第6巻、第1号、37〜43頁、2001年 伊藤、他、「ステレオ画像を用いた都市ごみ焼却炉におけるごみ供給量の予測」、廃棄物学会研究発表会講演論文集、567〜569頁、2001年
Furthermore, as a technique for detecting in advance the amount of heat generated by the dust supplied into the furnace and reflecting it in combustion control, for example, there is one disclosed in Patent Document 2 below. In Patent Document 2, an infrared detector for detecting the emission temperature of dust in the dust ignition start region in the upstream portion of the stoker is provided in the furnace, and the dust quality for estimating the lower heating value of the dust based on the average value of the detected temperatures. A determination method has been proposed.
JP 2001-355819 A Japanese Patent Laid-Open No. 10-185157 Ito et al., “Study on surface shape measurement of waste in hopper using stereo images”, Environmental Measurement System Control Society Journal “EICA”, Vol. 6, No. 1, pp. 37-43, 2001 Ito et al., “Prediction of Waste Supply in Municipal Waste Incinerators Using Stereo Images”, Proceedings of the Japan Society of Waste Science Research Presentation, pp. 567-569, 2001

上記特許文献1には、ホッパ内のゴミの上面の画像を用いてホッパ内のゴミ容積を演算し、ホッパ内に投入されるゴミの重量とともに炉内に供給される単位時間当たりのゴミの供給重量を演算し、この演算結果に基づき供給手段を制御する技術が開示されているが、制御精度を向上させるためには、ホッパ内のゴミ容積を所定の確度で演算する必要が生じる。そこで、使用するテレビカメラを2台以上設けてゴミの上面の形状を3次元解析して容積を算出できる報告もあるが、実用化に向けた更なる改善も指摘されている(例えば、上記非特許文献1、2を参照)。   In the above-mentioned patent document 1, the volume of dust in the hopper is calculated using an image of the upper surface of the dust in the hopper, and the supply of dust per unit time supplied into the furnace together with the weight of the dust thrown into the hopper. Although a technique for calculating the weight and controlling the supply unit based on the calculation result is disclosed, it is necessary to calculate the dust volume in the hopper with a predetermined accuracy in order to improve the control accuracy. Therefore, although there are reports that two or more TV cameras to be used can be provided and the volume can be calculated by three-dimensional analysis of the shape of the upper surface of the dust, further improvements for practical use have also been pointed out (for example, the above non-disclosures). (See Patent Documents 1 and 2).

また、上記特許文献2には、既に炉内に投入され燃焼を開始したゴミのゴミ質を推定する方法が開示されており、急激なゴミ質変動に適切に対処するためには、炉内に投入される前に、事前にゴミ質を判定するのが望ましい。   Patent Document 2 discloses a method for estimating the quality of garbage that has already been put into the furnace and started to burn, and in order to appropriately deal with sudden fluctuations in garbage quality, It is desirable to determine the garbage quality in advance before being thrown in.

本発明は、上述の問題点に鑑みてなされたものであり、その目的は、ホッパ内のゴミ容積を正確に算定することで、炉内へのゴミ供給重量を的確に把握し、ゴミ燃焼制御を容易確実にできるゴミ供給量推定装置を提供することにある。更に、炉内へ供給されるゴミ質を事前に把握して、ゴミ燃焼制御をより的確に実行可能にするゴミ供給量推定装置を提供することを目的とする。そして、これらのゴミ供給量推定装置を備えたゴミ焼却炉を提供することにより、安定したゴミ燃焼を可能とし、CO、HC、NOx、ダイオキシン類等の発生を抑制する。   The present invention has been made in view of the above-described problems, and its purpose is to accurately calculate the volume of dust in the hopper so as to accurately grasp the weight of dust supplied into the furnace, and to control dust combustion. It is an object of the present invention to provide a dust supply amount estimation device that can easily and reliably achieve the above. It is another object of the present invention to provide a waste supply amount estimation device that grasps in advance the quality of waste to be supplied into a furnace and that can perform waste combustion control more accurately. Then, by providing a waste incinerator equipped with these waste supply amount estimation devices, stable waste combustion is possible, and the generation of CO, HC, NOx, dioxins and the like is suppressed.

この目的を達成するための本発明に係るゴミ供給量推定装置の第一の特徴構成は、ゴミ焼却炉のホッパ内に供給され堆積したゴミの表層部の上面全体を撮像可能な3以上の撮像手段と、前記3以上の撮像手段が撮像した3以上の画像から前記表層部上面の複数位置における3次元座標を導出して、前記3次元座標に基づいて前記ホッパ内のゴミの容積を推定するゴミ容積推定手段と、前記ホッパ内に投入されるゴミの投入重量を測定する重量測定手段と、前記ゴミ容積推定手段が推定したゴミの容積と、前記重量測定手段の測定した投入重量に基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給重量を推定するゴミ供給重量推定手段と、を備えてなり、前記ゴミ容積推定手段が、前記3以上の撮像手段が撮像した3以上の画像の中から選択される任意の2以上の複数画像の複数組に対して、前記表層部上面の同じ位置を撮像した共通撮像点を複数抽出する共通撮像点抽出手段と、前記共通撮像点抽出手段が抽出した複数組の前記複数画像に対する前記複数の共通撮像点の3次元座標を算出する3次元座標算出手段と、前記複数組の前記複数画像間で、算出された前記3次元座標の調整を行う3次元座標調整手段と、前記調整された前記3次元座標を前記表層部上面の複数位置における3次元座標として、前記ホッパの壁面形状に基づいて前記ゴミの容積を算出する容積算出手段とを備えている点にある。   In order to achieve this object, the first characteristic configuration of the dust supply amount estimation apparatus according to the present invention is a three or more imaging capable of imaging the entire upper surface of the surface layer portion of the dust supplied and deposited in the hopper of the garbage incinerator. And three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion are derived from three or more images picked up by the three or more image pickup means, and the volume of dust in the hopper is estimated based on the three-dimensional coordinates. Based on the waste volume estimating means, the weight measuring means for measuring the input weight of the dust to be put into the hopper, the dust volume estimated by the dust volume estimating means, and the input weight measured by the weight measuring means Garbage supply weight estimation means for estimating the supply weight of garbage supplied from the hopper into the garbage incinerator, wherein the waste volume estimation means is 3 or more captured by the three or more imaging means. Painting Common imaging point extraction means for extracting a plurality of common imaging points obtained by imaging the same position on the upper surface of the surface layer portion for a plurality of sets of two or more arbitrary images selected from the above, and the common imaging point extraction means The three-dimensional coordinate calculation means for calculating the three-dimensional coordinates of the plurality of common imaging points with respect to the plurality of sets of the plurality of images extracted, and adjustment of the calculated three-dimensional coordinates between the plurality of sets of the plurality of images. Three-dimensional coordinate adjusting means for performing, and volume calculating means for calculating the volume of the dust based on the wall surface shape of the hopper, using the adjusted three-dimensional coordinates as three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion. It is in the point to have.

上記第一の特徴構成によれば、3以上の撮像手段を用いてゴミの表層部上面の画像を3以上撮像可能となり、3以上の画像の中から選択される任意の2以上の複数画像の複数組を抽出可能となる。具体的には、例えば、2つの画像の組み合わせを3組以上抽出できる。一般に、2つの異なる位置に配置された撮像手段で同じ被写体を撮影した場合に、2つの画面上に撮像された共通の位置(共通撮像点)が画面上では異なる位置に撮像されるため、かかる情報に基づいて個々の共通撮像点の3次元的な位置が特定できる。従って、本特徴構成のゴミ容積推定手段によれば、ゴミの表層部上面の3以上の画面の任意の2画面に対して、共通撮像点抽出手段が共通撮像点を複数抽出し、3次元座標算出手段がその複数の共通撮像点の3次元座標を算出することで、ゴミの表層部上面の立体形状をおおよそ把握することができる。更に、3次元座標調整手段によって、各組の画像によって得られたゴミの表層部上面の立体形状情報に、共通撮像点抽出時のエラーによる3次元座標算出エラーを修正でき、また、ある画像の組み合わせでは抽出できなかった共通撮像点が別の組み合わせでは抽出可能となる場合があることから、複数組の画像により、共通撮像点を相互に補完でき、より正確で精緻な立体形状の把握が可能となる。この結果、容積算出手段は、2つの画像に基づいて算出できる容積より高精度に容積の算出ができる。従って、かかる高精度に算出されたゴミ容積を用いることにより、ゴミ供給重量推定手段が、ゴミがホッパ内に投入される毎のゴミ容量の増加、及び、ホッパ内から炉内にゴミが搬出される毎のゴミ容量の減少を正確に把握でき、また、重量測定手段が測定した投入重量から、投入直後のゴミの比重が推定でき、且つ、ゴミの自重により圧密化されたホッパ内底部のゴミの比重も推定できるので、ホッパから炉内に供給されるゴミ容積に当該比重を乗算することで、ホッパから炉内に供給されるにゴミの供給重量が高精度に推定できる。   According to the first characteristic configuration, it is possible to capture three or more images of the upper surface portion of the dust using three or more imaging units, and two or more arbitrary images selected from the three or more images can be captured. Multiple sets can be extracted. Specifically, for example, three or more combinations of two images can be extracted. In general, when the same subject is photographed by imaging means arranged at two different positions, a common position (common imaging point) imaged on the two screens is imaged at different positions on the screen. Based on the information, the three-dimensional position of each common imaging point can be specified. Therefore, according to the dust volume estimation means of this feature configuration, the common imaging point extraction means extracts a plurality of common imaging points for any two screens of three or more screens on the upper surface of the dust, and the three-dimensional coordinates. By calculating the three-dimensional coordinates of the plurality of common imaging points by the calculating means, it is possible to roughly grasp the three-dimensional shape of the upper surface portion of the dust. Further, the three-dimensional coordinate adjustment means can correct the three-dimensional coordinate calculation error due to the error at the time of extracting the common imaging point to the three-dimensional shape information on the upper surface of the dust obtained from each set of images. Since common imaging points that could not be extracted by combination may be extracted by another combination, common imaging points can be mutually complemented by multiple sets of images, and more accurate and precise three-dimensional shape can be grasped It becomes. As a result, the volume calculation means can calculate the volume with higher accuracy than the volume that can be calculated based on the two images. Therefore, by using the highly accurate calculated garbage volume, the garbage supply weight estimation means increases the garbage capacity every time the garbage is put into the hopper, and the garbage is carried out from the hopper into the furnace. It is possible to accurately grasp the decrease in the volume of each trash, and from the input weight measured by the weight measuring means, the specific gravity of the trash immediately after the input can be estimated, and the trash in the bottom of the hopper consolidated by the self-weight of the trash Therefore, by multiplying the volume of dust supplied from the hopper into the furnace by the specific gravity, it is possible to estimate the supply weight of the dust supplied from the hopper into the furnace with high accuracy.

このように本特徴構成によれば、炉内に供給されるゴミの供給重量を一定値に保つ制御が容易に実行でき、この結果として安定したゴミの燃焼制御が可能となる。   As described above, according to this characteristic configuration, it is possible to easily execute control for keeping the supply weight of the dust supplied into the furnace at a constant value, and as a result, stable combustion control of the dust can be performed.

同第二の特徴構成は、上記第一の特徴構成に加えて、前記3以上の撮像手段が、3つの撮像部の相対的な位置関係が固定された3眼視カメラであり、前記共通撮像点抽出手段が、前記3眼視カメラが撮像した3つの画像の中から選択される3組の2つの画像、または、前記3組の2つの画像と1組の前記3つの画像に対して各別に、前記表層部上面の同じ位置を撮像した共通撮像点を複数抽出する点にある。   In the second feature configuration, in addition to the first feature configuration, the three or more imaging units are trinocular cameras in which relative positional relationships of three imaging units are fixed, and the common imaging A point extraction unit is provided for each of three sets of two images selected from the three images captured by the trinocular camera, or each of the three sets of two images and one set of the three images. Another point is that a plurality of common imaging points obtained by imaging the same position on the upper surface of the surface layer are extracted.

上記第二の特徴構成によれば、3以上の撮像手段に代えて3眼視カメラを用いることで、第一の特徴構成と同じ作用効果を奏することができる。また、3眼視カメラでは、3つの撮像部の相対的な位置関係が固定されているため、ホッパ上部での設置場所に拘わらず、2つの画像から表層部上面の3次元座標を導出するまでに必要な調整作業を予め準備しておくことができ、また、同じ調整結果を複数の焼却炉間で共通に使用することができ、焼却炉毎に、複数の撮像手段の夫々について設置場所の細かな調整作業を省略できる。   According to said 2nd characteristic structure, it can replace with a 3 or more image pickup means, and can show | play the same effect as a 1st characteristic structure by using a trinocular camera. In the trinocular camera, since the relative positional relationship between the three imaging units is fixed, the three-dimensional coordinates of the upper surface of the surface layer unit are derived from the two images regardless of the installation location on the hopper. The necessary adjustment work can be prepared in advance, and the same adjustment results can be used in common among a plurality of incinerators. Detailed adjustment work can be omitted.

同第三の特徴構成は、ゴミ焼却炉のホッパ内に供給され堆積したゴミの表層部の上面全体をカラー撮像可能な複数の撮像手段と、前記複数の撮像手段が撮像した複数の画像から前記表層部上面の複数位置における3次元座標を導出して、前記3次元座標に基づいて前記ホッパ内のゴミの容積を推定するゴミ容積推定手段と、前記ホッパ内に投入されるゴミの投入重量を測定する重量測定手段と、前記ゴミ容積推定手段が推定したゴミの容積と、前記重量測定手段の測定した投入重量に基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給重量を推定するゴミ供給重量推定手段と、前記撮像手段が撮像したカラー画像から前記表層部に存在する表層ゴミの形状と色からゴミ質を推定し、少なくとも前記推定された前記表層ゴミのゴミ質と、前記ゴミ供給重量推定手段が推定した前記供給重量とに基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給発熱量を推定する発熱量推定手段と、を備えてなる点にある。   The third characteristic configuration includes a plurality of imaging means capable of color imaging the entire upper surface of the surface layer portion of the dust supplied and deposited in the hopper of the garbage incinerator, and a plurality of images captured by the plurality of imaging means. Deriving three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion to estimate the volume of the dust in the hopper based on the three-dimensional coordinates, and the input weight of the dust input into the hopper Based on the weight measuring means to measure, the volume of the dust estimated by the dust volume estimating means, and the input weight measured by the weight measuring means, the supply weight of the dust supplied from the hopper into the garbage incinerator is calculated. Estimating dust supply weight, and estimating the dust quality from the shape and color of the surface dust existing in the surface layer from the color image captured by the imaging means, and at least the estimated surface dust A calorific value estimating means for estimating a supply calorific value of dust supplied from the hopper into the garbage incinerator based on the supply quality estimated by the dust quality and the dust supply weight estimating means; It is in the point.

上記第三の特徴構成によれば、ゴミ容積推定手段が、ゴミの表層部の上面の複数の画像からその3次元座標を導出し、既知のホッパ内壁面の3次元座標とからホッパ内のゴミの容積を推定し、推定されたゴミの容積に基づき、ゴミ供給重量推定手段が、ゴミがホッパ内に投入される毎のゴミ容量の増加、及び、ホッパ内から炉内にゴミが搬出される毎のゴミ容量の減少を正確に把握でき、また、重量測定手段が測定した投入重量から、投入直後のゴミの比重が推定でき、且つ、ゴミの自重により圧密化されたホッパ内底部のゴミの比重も推定できるので、ホッパから炉内に供給されるゴミ容積に当該比重を乗算することで、ホッパから炉内に供給されるにゴミの供給重量が推定できる。更に、発熱量推定手段が、表層ゴミの形状と色からゴミ質を推定することで、表層ゴミのゴミ質の分布が直接把握でき、更に、投入ゴミが順次堆積圧密化してホッパ底部へ順次移動して行くモデルを想定すれば、ホッパ内のゴミのゴミ質の分布が把握でき、ホッパ底部に存在するゴミのゴミ質より、ホッパから炉内に供給されるゴミの単位重量当りの発熱量を判定し、ゴミ供給重量推定手段が推定した前記供給重量よりホッパ底部より炉内に供給されるゴミの供給発熱量を推定することができる。   According to the third characteristic configuration, the dust volume estimating means derives the three-dimensional coordinates from a plurality of images on the upper surface of the dust surface layer, and the dust in the hopper is obtained from the known three-dimensional coordinates of the inner wall surface of the hopper. The waste supply weight estimation means increases the garbage capacity every time the garbage is put into the hopper, and the garbage is carried out from the hopper into the furnace based on the estimated garbage volume. It is possible to accurately grasp the decrease in the volume of each trash, and from the input weight measured by the weight measuring means, it is possible to estimate the specific gravity of the trash immediately after the input, and the trash inside the hopper that has been consolidated by the trash's own weight. Since the specific gravity can also be estimated, by multiplying the volume of dust supplied from the hopper into the furnace by the specific gravity, the supply weight of the dust supplied from the hopper into the furnace can be estimated. Furthermore, the calorific value estimation means estimates the dust quality from the shape and color of the surface dust, so that the distribution of the dust quality of the surface dust can be directly grasped. Assuming this model, the distribution of the garbage quality in the hopper can be grasped, and the amount of heat generated per unit weight of the garbage supplied from the hopper to the furnace can be calculated from the quality of the garbage present at the bottom of the hopper. The supply calorific value of the dust supplied into the furnace from the hopper bottom can be estimated from the supply weight estimated by the dust supply weight estimation means.

このように本特徴構成によれば、炉内に供給されるゴミの供給重量と供給発熱量を事前に推定できるため、炉内のゴミ燃焼制御をゴミ質の急激な変化が発生する前に予め適正な制御に変更することができ、この結果として安定したゴミの燃焼制御が可能となる。   As described above, according to this feature configuration, since the supply weight and supply heat generation amount of the waste to be supplied into the furnace can be estimated in advance, the waste combustion control in the furnace is performed in advance before the sudden change in the waste quality occurs. The control can be changed to appropriate control, and as a result, stable dust combustion control is possible.

同第四の特徴構成は、上記第三の特徴構成に加えて、前記撮像手段が3以上設けられ、前記ゴミ容積推定手段が、前記3以上の撮像手段が撮像した3以上の画像の中から選択される任意の2以上の複数画像の複数組に対して、前記表層部上面の同じ位置を撮像した共通撮像点を複数抽出する共通撮像点抽出手段と、前記共通撮像点抽出手段が抽出した複数組の前記複数画像に対する前記複数の共通撮像点の3次元座標を算出する3次元座標算出手段と、前記複数組の前記複数画像間で、算出された前記3次元座標の調整を行う3次元座標調整手段と、前記調整された前記3次元座標を前記表層部上面の複数位置における3次元座標として、前記ホッパの壁面形状に基づいて前記ゴミの容積を算出する容積算出手段とを備えている点にある。   In the fourth feature configuration, in addition to the third feature configuration, three or more imaging units are provided, and the dust volume estimation unit is configured to select from among three or more images captured by the three or more imaging units. Common imaging point extraction means for extracting a plurality of common imaging points obtained by imaging the same position on the upper surface of the surface layer portion and a plurality of sets of arbitrary two or more selected images are extracted by the common imaging point extraction means. Three-dimensional coordinate calculation means for calculating three-dimensional coordinates of the plurality of common imaging points for the plurality of sets of the plurality of images, and three-dimensional adjustment for adjusting the calculated three-dimensional coordinates between the plurality of sets of the plurality of images. Coordinate adjustment means; and volume calculation means for calculating the volume of the dust based on the shape of the wall surface of the hopper, using the adjusted three-dimensional coordinates as three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion. In the point.

上記第四の特徴構成によれば、3以上の撮像手段を用いてゴミの表層部上面の画像を3以上撮像可能となり、3以上の画像の中から選択される任意の2以上の複数画像の複数組を抽出可能となる。具体的には、例えば、2つの画像の組み合わせを3組以上抽出できる。一般に、2つの異なる位置に配置された撮像手段で同じ被写体を撮影した場合に、2つの画面上に撮像された共通の位置(共通撮像点)が画面上では異なる位置に撮像されるため、かかる情報に基づいて個々の共通撮像点の3次元的な位置が特定できる。従って、本特徴構成のゴミ容積推定手段によれば、ゴミの表層部上面の3以上の画面の任意の2画面に対して、共通撮像点抽出手段が共通撮像点を複数抽出し、3次元座標算出手段がその複数の共通撮像点の3次元座標を算出することで、ゴミの表層部上面の立体形状をおおよそ把握することができる。更に、3次元座標調整手段によって、各組の画像によって得られたゴミの表層部上面の立体形状情報に、共通撮像点抽出時のエラーによる3次元座標算出エラーを修正でき、また、ある画像の組み合わせでは抽出できなかった共通撮像点が別の組み合わせでは抽出可能となる場合があることから、複数組の画像により、共通撮像点を相互に補完でき、より正確で精緻な立体形状の把握が可能となる。この結果、容積算出手段は、2つの画像に基づいて算出できる容積より高精度に容積の算出ができる。従って、かかる高精度に算出されたゴミ容積を用いることにより、ホッパ内から炉内に供給されるゴミの供給重量と供給発熱量をより高精度に推定することができる。   According to the fourth characteristic configuration, it is possible to capture three or more images of the upper surface portion of the dust using three or more imaging units, and two or more arbitrary images selected from the three or more images can be captured. Multiple sets can be extracted. Specifically, for example, three or more combinations of two images can be extracted. In general, when the same subject is photographed by imaging means arranged at two different positions, a common position (common imaging point) imaged on the two screens is imaged at different positions on the screen. Based on the information, the three-dimensional position of each common imaging point can be specified. Therefore, according to the dust volume estimation means of this feature configuration, the common imaging point extraction means extracts a plurality of common imaging points for any two screens of three or more screens on the upper surface of the dust, and the three-dimensional coordinates. By calculating the three-dimensional coordinates of the plurality of common imaging points by the calculating means, it is possible to roughly grasp the three-dimensional shape of the upper surface portion of the dust. Further, the three-dimensional coordinate adjustment means can correct the three-dimensional coordinate calculation error due to the error at the time of extracting the common imaging point to the three-dimensional shape information on the upper surface of the dust obtained from each set of images. Since common imaging points that could not be extracted by combination may be extracted by another combination, common imaging points can be complemented by multiple sets of images, and more accurate and precise three-dimensional shape can be grasped It becomes. As a result, the volume calculation means can calculate the volume with higher accuracy than the volume that can be calculated based on the two images. Therefore, by using the dust volume calculated with high accuracy, it is possible to estimate the supply weight and supply heat amount of the dust supplied from the hopper into the furnace with higher accuracy.

同第五の特徴構成は、ゴミ焼却炉のホッパ内に供給され堆積したゴミの表層部の上面全体をカラー撮像可能で、撮像した画像の各画素の距離情報を出力可能で、3つの撮像部の相対的な位置関係が固定された3眼視カメラと、前記3眼視カメラの出力する各画素の距離情報に基づいて、前記ホッパ内のゴミの容積を推定するゴミ容積推定手段と、前記ホッパ内に投入されるゴミの投入重量を測定する重量測定手段と、前記ゴミ容積推定手段が推定したゴミの容積と、前記重量測定手段の測定した投入重量に基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給重量を推定するゴミ供給重量推定手段と、前記3眼視カメラが撮像したカラー画像から前記表層部に存在する表層ゴミの形状と色からゴミ質を推定し、前記推定された前記表層ゴミのゴミ質と、前記ゴミ供給重量推定手段が推定した前記供給重量とに基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給発熱量を推定する発熱量推定手段と、を備えてなる点にある。   In the fifth feature configuration, the entire upper surface of the surface portion of the dust that is supplied and deposited in the hopper of the waste incinerator can be imaged in color, and distance information of each pixel of the captured image can be output, and three imaging units A trinocular camera whose relative positional relationship is fixed, a dust volume estimating means for estimating the volume of dust in the hopper based on distance information of each pixel output from the trinocular camera, Based on the weight measuring means for measuring the input weight of the dust put into the hopper, the volume of the dust estimated by the dust volume estimating means, and the input weight measured by the weight measuring means, the waste incineration from the hopper Garbage supply weight estimation means for estimating the supply weight of garbage supplied into the furnace, and estimating the quality of dust from the shape and color of the surface layer garbage present in the surface layer part from the color image captured by the trinocular camera, The estimated A calorific value estimating means for estimating the supply calorific value of the dust supplied from the hopper into the garbage incinerator based on the quality of the garbage on the surface layer and the supply weight estimated by the dust supply weight estimating means; In the point which comprises.

上記第五の特徴構成によれば、ゴミ容積推定手段が、3眼視カメラの出力するゴミの表層部の上面の各画素の距離情報から、例えば、その3次元座標を導出し、既知のホッパ内壁面の3次元座標とからホッパ内のゴミの容積を推定することができ、推定されたゴミの容積に基づき、ゴミ供給重量推定手段が、ゴミがホッパ内に投入される毎のゴミ容量の増加、及び、ホッパ内から炉内にゴミが搬出される毎のゴミ容量の減少を正確に把握でき、また、重量測定手段が測定した投入重量から、投入直後のゴミの比重が推定でき、且つ、ゴミの自重により圧密化されたホッパ内底部のゴミの比重も推定できるので、ホッパから炉内に供給されるゴミ容積に当該比重を乗算することで、ホッパから炉内に供給されるにゴミの供給重量が推定できる。更に、発熱量推定手段が、3眼視カメラの撮像したカラー画像中の表層ゴミの形状と色からゴミ質を推定することで、表層ゴミのゴミ質の分布が直接把握でき、更に、投入ゴミが順次堆積圧密化してホッパ底部へ順次移動して行くモデルを想定すれば、ホッパ内のゴミのゴミ質の分布が把握でき、ホッパ底部に存在するゴミのゴミ質より、ホッパから炉内に供給されるゴミの単位重量当りの発熱量を判定し、ゴミ供給重量推定手段が推定した前記供給重量よりホッパ底部より炉内に供給されるゴミの供給発熱量を推定することができる。   According to the fifth characteristic configuration, the dust volume estimation means derives, for example, the three-dimensional coordinates from the distance information of each pixel on the upper surface of the dust surface layer output from the trinocular camera, and the known hopper The volume of trash in the hopper can be estimated from the three-dimensional coordinates of the inner wall surface. Based on the estimated volume of trash, the trash supply weight estimation means determines the trash volume for each trash thrown into the hopper. It is possible to accurately grasp the increase and the decrease in the garbage capacity every time the garbage is carried out from the hopper into the furnace, and the specific gravity of the garbage immediately after the introduction can be estimated from the input weight measured by the weight measuring means, and Since the specific gravity of the dust at the bottom of the hopper consolidated by the dead weight of the trash can also be estimated, the waste volume supplied from the hopper to the furnace is multiplied by the specific gravity, so that Supply weight can be estimated. Further, the calorific value estimation means estimates the dust quality from the shape and color of the surface dust in the color image captured by the trinocular camera, so that the distribution of the dust quality of the surface dust can be directly grasped. Assuming a model that gradually accumulates and compacts and moves to the bottom of the hopper, it is possible to grasp the distribution of garbage quality in the hopper, and supply the waste from the hopper to the furnace from the quality of garbage present in the hopper bottom. It is possible to determine the amount of heat generated per unit weight of the waste, and to estimate the amount of heat supplied to the furnace from the bottom of the hopper from the supply weight estimated by the dust supply weight estimation means.

このように本特徴構成によれば、炉内に供給されるゴミの供給重量と供給発熱量を事前に推定できるため、炉内のゴミ燃焼制御をゴミ質の急激な変化が発生する前に予め適正な制御に変更することができ、この結果として安定したゴミの燃焼制御が可能となる。また、3眼視カメラの3つの撮像部の相対的な位置関係が固定されているため、ホッパ上部での設置場所に拘わらず、2つの画像から表層部上面の3次元座標を導出するまでに必要な調整作業を予め準備しておくことができ、また、同じ調整結果を複数の焼却炉間で共通に使用することができ、焼却炉毎に、複数の撮像手段の夫々について設置場所の細かな調整作業を省略できるという利点がある。   As described above, according to this feature configuration, since the supply weight and supply heat generation amount of the waste to be supplied into the furnace can be estimated in advance, the waste combustion control in the furnace is performed in advance before the sudden change in the waste quality occurs. The control can be changed to appropriate control, and as a result, stable dust combustion control is possible. In addition, since the relative positional relationship of the three imaging units of the trinocular camera is fixed, the three-dimensional coordinates of the upper surface of the surface layer unit are derived from the two images regardless of the installation location on the upper part of the hopper. Necessary adjustment work can be prepared in advance, and the same adjustment result can be used in common among multiple incinerators. There is an advantage that a simple adjustment work can be omitted.

同第六の特徴構成は、上記第三乃至第五の何れかの特徴構成に加えて、前記発熱量推定手段が、ゴミの形状と色を予め複数のゴミ種別に分類し、前記ゴミ種別毎の単位重量当りの発熱量との関係をデータベース化したゴミ種別データベースを用いて、前記ゴミ供給重量推定手段が推定した前記供給重量に基づいて、前記供給発熱量を推定する点にある。   In the sixth feature configuration, in addition to any one of the third to fifth feature configurations, the heat generation amount estimation means classifies the shape and color of dust in advance into a plurality of dust types, and sets each dust type. The supply heat generation amount is estimated based on the supply weight estimated by the dust supply weight estimation means, using a dust type database in which the relationship between the heat generation amount per unit weight and the database is made into a database.

上記第六の特徴構成によれば、発熱量推定手段は、ゴミの表層部の上面の画像からゴミの形状と色を抽出して、ゴミ種別データベースと照合することで、当該抽出部位のゴミ質、つまり、単位重量当りの発熱量を容易に判定でき、ゴミの表層部全体のゴミ質の分布を把握できる。   According to the sixth feature configuration, the calorific value estimation means extracts the shape and color of dust from the image of the upper surface of the dust surface layer, and collates it with the dust type database, so that the dust quality of the extracted part That is, the calorific value per unit weight can be easily determined, and the distribution of the dust quality of the entire surface layer of the dust can be grasped.

同第七の特徴構成は、上記何れかの特徴構成に加えて、前記ゴミ供給重量推定手段は、前記ホッパ内に堆積したゴミの自重による圧縮状態をモデル化したゴミ圧縮モデルを用いて、前記ホッパの底部にあるゴミの比重を求め、前記比重と前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給容積から、前記供給重量を推定する点にある。   In the seventh feature configuration, in addition to any one of the feature configurations described above, the dust supply weight estimation means uses a dust compression model that models a compression state due to the weight of dust accumulated in the hopper, and The specific gravity of the trash at the bottom of the hopper is obtained, and the supply weight is estimated from the specific gravity and the supply volume of the trash supplied from the hopper into the trash incinerator.

上記第七の特徴構成によれば、ゴミ供給重量推定手段が、ゴミの自重により圧密化されたホッパ内底部のゴミの比重を推定するのに、ゴミ圧縮モデルを用いることで、投入ゴミが順次堆積圧密化してホッパ底部へ順次移動して行くモデルを適切に考慮した、しかも簡単な計算でホッパ内底部のゴミの比重を推定でき、結果として、ホッパから炉内に供給されるゴミの供給重量を高精度に推定することができる。   According to the seventh characteristic configuration, the garbage supply weight estimation means uses the garbage compression model to estimate the specific gravity of the garbage in the bottom portion of the hopper consolidated by the dead weight of the garbage. The specific gravity of the waste at the bottom of the hopper can be estimated by a simple calculation that properly considers the model that gradually accumulates and moves to the bottom of the hopper, and as a result, the weight of the waste that is fed from the hopper into the furnace. Can be estimated with high accuracy.

本発明に係るゴミ焼却炉のゴミ供給量推定装置(以下、適宜「本発明装置」という。)の実施の形態につき、図面に基づいて説明する。   An embodiment of a dust supply amount estimation apparatus (hereinafter referred to as “the present invention apparatus”) of a garbage incinerator according to the present invention will be described with reference to the drawings.

〈第1実施形態〉
先ず、本発明装置1の適用対象であるゴミ焼却炉20は、図1に模式的に示すように、被焼却物であるゴミを受け入れるホッパ2と、ホッパ2の上部に設けられたホッパ2内にゴミを投入するクレーン3と、ホッパ2内に投入されたゴミをホッパ2の底部から炉内21に押し入れるプッシャ4(供給手段の一例)と、プッシャ4により炉内21に投入されたゴミを攪拌搬送しながらその上で焼却処理するストーカ式搬送手段5を備えて構成されるストーカ式ゴミ焼却炉である。また、ホッパ2の上部には、ホッパ内に供給され堆積したゴミの表層部の上面全体をカラー撮像可能な3眼視カメラ6(複数の撮像手段が一体化されたものの一例)が設けられている。更に、クレーン3には、投入するゴミの投入重量を測定する重量計測手段である重量計7が設けられている。
<First Embodiment>
First, as shown schematically in FIG. 1, a refuse incinerator 20 to which the apparatus 1 of the present invention is applied includes a hopper 2 that receives refuse that is an incineration object, and a hopper 2 that is provided above the hopper 2. A crane 3 for throwing trash into the hopper, a pusher 4 for pushing the trash thrown into the hopper 2 into the furnace 21 from the bottom of the hopper 2, and trash thrown into the furnace 21 by the pusher 4. This is a stoker-type garbage incinerator configured to include a stoker-type transport means 5 that incinerates and transports the food while stirring. Further, on the upper part of the hopper 2, a trinocular camera 6 (an example in which a plurality of imaging means is integrated) capable of color imaging of the entire upper surface of the surface layer portion of dust supplied and accumulated in the hopper is provided. Yes. Further, the crane 3 is provided with a weigh scale 7 which is a weight measuring means for measuring the input weight of the input garbage.

ストーカ式搬送手段5は、図示しない固定火格子と可動火格子(以下、両火格子を単に「ストーカ」という。)を階段上に組み合わせて構成され、可動火格子の往復運動によってその上に載せたゴミを順次下流側へ搬送可能に構成されている。また、ストーカ式搬送手段5は、ゴミの焼却過程(またはゴミ燃焼過程)における、ゴミを乾燥させて着火点近傍まで加熱する乾燥処理と、ゴミを燃焼させる燃焼処理と、燃焼処理後のゴミを灰化させ、また、その焼却灰中の未燃焼成分を完全に燃焼させる後燃焼処理の3つの処理を夫々分担する乾燥段5aと燃焼段5bと後燃焼段5cを備え、ゴミ搬送方向の上流側から下流側に沿って順番に分割配置される。更に、乾燥段5aと燃焼段5bと後燃焼段5cは、夫々1つまたは複数のコンパートメント8に区分される。   The stoker-type transport means 5 is configured by combining a fixed grate and a movable grate (not shown) on the staircase (hereinafter, both grates are simply referred to as “stalker”), and is placed on the reciprocating motion of the movable grate. It is configured to be able to transport the waste to the downstream side sequentially. In addition, the stoker-type transport means 5 is configured to dry the trash and heat it up to the vicinity of the ignition point in the incineration process (or trash combustion process), the combustion process to burn the trash, and the trash after the combustion process. And a drying stage 5a, a combustion stage 5b, and a post-combustion stage 5c that share the three processes of the post-combustion process for completely combusting the unburned components in the incinerated ash, respectively, upstream of the dust conveyance direction Are divided and arranged in order along the downstream side. Further, the drying stage 5a, the combustion stage 5b, and the post-combustion stage 5c are each divided into one or a plurality of compartments 8.

各コンパートメント8は、ストーカ上のゴミ層9に対して下方から1次燃焼空気を独立して供給可能な風箱10を備え、各風箱10には、送風ファン11で供給される1次燃焼空気の供給量(以下、「1次空気量」という。)を調整可能なダンパ機構12が各別に設けられている。更に、ストーカ式搬送手段5は、コンパートメント8毎に、ストーカの搬送速度(ストーカ速度)を独立して制御可能に構成されている。   Each compartment 8 includes a wind box 10 capable of independently supplying primary combustion air from below to the dust layer 9 on the stoker, and each wind box 10 is supplied with a primary combustion supplied by a blower fan 11. Damper mechanisms 12 that can adjust the air supply amount (hereinafter referred to as “primary air amount”) are provided separately. Further, the stoker type conveying means 5 is configured to be able to independently control the stoker conveying speed (stoker speed) for each compartment 8.

上記構成により、ホッパ2から炉内21に投入されたゴミは、ストーカ式搬送手段5上を、乾燥段5a、燃焼段5b、後燃焼段5cと順次搬送され、各コンパートメント8のストーカ下部の風箱10から供給される1次燃焼空気により焼却された後、焼却灰は、焼却灰排出口13から炉外へ排出される。   With the above configuration, the dust introduced from the hopper 2 into the furnace 21 is sequentially conveyed on the stoker-type conveying means 5 to the drying stage 5a, the combustion stage 5b, and the post-combustion stage 5c. After being incinerated by the primary combustion air supplied from the box 10, the incineration ash is discharged out of the furnace through the incineration ash discharge port 13.

更に、図1に示すように、ゴミ焼却炉20は、炉内21での安定したゴミ燃焼制御のために、本発明装置(ゴミ供給量推定装置)1と自動燃焼制御装置40を備えている。また、図2に示すように、本発明装置1は、ホッパ2内に供給され堆積したゴミの表層部の上面全体を撮像可能な3つの撮像手段を一体化した3眼視カメラ6と、ホッパ2内に堆積したゴミの容積を推定するゴミ容積推定手段31と、ホッパ2内に投入されるゴミの投入重量を測定する重量測定手段である重量計7と、ホッパ2から炉内21に供給されるゴミの供給重量を推定するゴミ供給重量推定手段32と、ホッパ2から炉内21に供給されるゴミの供給発熱量を推定する発熱量推定手段33とを備えて構成される。3眼視カメラ6の撮像した3つの画像データは、ゴミ容積推定手段31と発熱量推定手段33に入力され、重量計7の測定した投入重量はゴミ供給重量推定手段32に入力される。   Further, as shown in FIG. 1, the refuse incinerator 20 includes the present invention device (garbage supply amount estimation device) 1 and an automatic combustion control device 40 for stable dust combustion control in the furnace 21. . As shown in FIG. 2, the device 1 of the present invention includes a trinocular camera 6 in which three imaging means capable of imaging the entire upper surface of the surface layer portion of dust supplied and deposited in the hopper 2 and a hopper. The waste volume estimating means 31 for estimating the volume of the dust accumulated in the hopper 2, the weight meter 7 which is a weight measuring means for measuring the input weight of the trash put into the hopper 2, and the hopper 2 is supplied to the furnace 21. The waste supply weight estimation means 32 for estimating the supplied weight of the waste to be generated and the heat generation amount estimation means 33 for estimating the supply heat generation amount of the dust supplied from the hopper 2 to the furnace 21 are configured. Three image data captured by the trinocular camera 6 are input to the dust volume estimation means 31 and the heat generation amount estimation means 33, and the input weight measured by the weigh scale 7 is input to the dust supply weight estimation means 32.

更に、図2に示すように、ゴミ容積推定手段31は、共通撮像点抽出手段34と、3次元座標算出手段35と、3次元座標調整手段36と、容積算出手段37とを備えて構成される。また、発熱量推定手段33は、ゴミの形状と色を予め複数のゴミ種別に分類し、前記ゴミ種別毎の単位重量当りの発熱量との関係をデータベース化したゴミ種別データベース38に接続し、ゴミ種別データベース38を検索可能に構成されている。ここで、本発明装置1の内のゴミ容積推定手段31、ゴミ供給重量推定手段32、及び、発熱量推定手段33は、コンピュータハードウェアをベースに後述する種々の演算処理をソフトウェア処理により実行可能な構成となっている。また、自動燃焼制御装置40は、PIDフィードバック制御を基本とした自動燃焼制御(ACC制御)を実行可能なコンピュータハードウェアをベースに種々の制御パターンをソフトウェア処理により実行可能な構成となっている。   Further, as shown in FIG. 2, the dust volume estimation unit 31 includes a common imaging point extraction unit 34, a three-dimensional coordinate calculation unit 35, a three-dimensional coordinate adjustment unit 36, and a volume calculation unit 37. The Further, the heat generation amount estimation means 33 classifies the shape and color of dust into a plurality of dust types in advance, and connects the relationship with the heat generation amount per unit weight for each dust type to a dust type database 38 which is a database. The garbage type database 38 is configured to be searchable. Here, the waste volume estimation means 31, the waste supply weight estimation means 32, and the calorific value estimation means 33 in the apparatus 1 of the present invention can execute various arithmetic processes described later by software processing based on computer hardware. It has become a structure. The automatic combustion control device 40 is configured to be able to execute various control patterns by software processing based on computer hardware capable of executing automatic combustion control (ACC control) based on PID feedback control.

次に、本発明装置1による、ホッパ2から炉内21に供給されるゴミの供給重量と供給発熱量の推定処理について、夫々説明する。図3に供給重量の推定処理手順を示すフローチャートを、図4に供給発熱量の推定処理手順を示すフローチャートを夫々示す。先ず、ゴミの供給重量の推定処理手順を説明する。   Next, estimation processing of the supply weight of the dust supplied to the furnace 21 from the hopper 2 and the supply heat generation amount by the apparatus 1 of the present invention will be described. FIG. 3 shows a flowchart showing the supply weight estimation processing procedure, and FIG. 4 shows a flowchart showing the supply heat generation amount estimation processing procedure. First, a procedure for estimating the supply weight of dust will be described.

先ず、ステップS1において、クレーン3によって新たにゴミがホッパ2内に投入されると、重量計7が投入されたゴミの投入重量ΔWを測定してゴミ供給重量推定手段32に出力する。ステップS2において、ゴミ容積推定手段31がホッパ内のゴミの全容積Vを、3眼視カメラ6の撮像した3つの画像データP1〜P3に基づいて算出する。算出したホッパ2内のゴミ容積Vは、ゴミ供給重量推定手段32に出力される。尚、詳細な容積算出処理については後述する。ここで、投入されたゴミの重さΔWによって既にホッパ2内に堆積しているゴミが圧縮され容積が減少するので、ホッパ2のゴミの堆積状態が安定した後に撮像した画像を用いる。 First, in step S 1, when new garbage is introduced into the hopper 2 by the crane 3, the input weight ΔW n of the introduced garbage is measured and output to the garbage supply weight estimation means 32. In step S2, the dust volume estimation means 31 calculates the total dust volume V n in the hopper based on the three image data P1 to P3 captured by the trinocular camera 6. The calculated dust volume V n in the hopper 2 is output to the dust supply weight estimation means 32. Detailed volume calculation processing will be described later. Here, since the dust already accumulated in the hopper 2 is compressed and the volume is reduced by the weight ΔW n of the introduced dust, an image captured after the dust accumulation state of the hopper 2 is stabilized is used.

次に、ステップS3で、スッテプS1、S2で得たゴミの投入重量ΔWとゴミ投入後のゴミ容積Vに基づいて、ホッパ2の底部のゴミの比重RBを算出する。具体的には、ホッパ2内に堆積しているゴミは、所定高さhにある微小厚みΔdのゴミ層が、それより上部にあるゴミの重さP(h)によって圧密化し、その高さ以上にあるゴミの重さに依存する圧縮率ε=f(P)で圧縮され、ε×Δdになるというゴミ圧密モデルを想定する。ゴミ投入前のゴミの全容積Vn−1は、1回前の処理時に算出済みのものを利用し、投入重量ΔWによって圧縮して減少した容積を、該ゴミ圧密モデルを用いて算出する。ここで、ゴミ投入前のゴミの全容積Vn−1を微小厚みΔdに分解し、圧縮率ε=f(P)を乗じたものを高さhで積分することで、減少後の投入前のゴミ容積をV’n−1が算出できる。算出した減少後の投入前のゴミ容積をV’n−1とすると、新たに投入したゴミの容積は、ΔV=V−V’n−1として与えられ、新たに投入された表層部のゴミの比重RTを、RT=ΔW/ΔVとして算出できる。このRTを所定のメモリ領域に保存してゴミの投入履歴として記憶する。ここで、過去に投入された表層部のゴミは、プッシャ4によってホッパ2の底部のゴミが炉内21に供給される毎に、順次下層に移動して最終的にホッパ2の底部に移動する。従って、プッシャ4によってホッパ2の底部から炉内21に供給されるゴミ容積の履歴を記憶することで、ホッパ2の底部にあるゴミ層は、何回前に投入されたゴミであるかが推定できる。ここで、底部にあるゴミ層がk回前に投入されたゴミとすれば、その比重は、その間のk回のゴミ投入より圧密化して表層部に存在していた時の比重RTn−kより大きくなっているので、上記のゴミ圧密モデルを用いて、現時点でのホッパ2の底部にあるゴミ層の比重RBを算出する。尚、ステップS3で用いる圧縮率ε=f(P)として、予め実験等により導出したモデルを用いる。 Next, in step S3, based on the waste volume V n of Suttepu S1, the waste obtained in step S2 is turned by weight [Delta] W n and after dust is turned to calculate the specific gravity RB n of dust at the bottom of the hopper 2. Specifically, the dust accumulated in the hopper 2 is compacted by a dust layer having a minute thickness Δd at a predetermined height h by the weight P (h) of the dust above it. A dust compaction model is assumed in which compression is performed at a compression ratio ε = f (P) that depends on the weight of dust, and becomes ε × Δd. The total volume V n−1 of the dust before throwing in the waste is calculated using the previous processing, and the volume reduced by compression with the throwing weight ΔW n is calculated using the dust compaction model. . Here, by dividing the total volume V n−1 of the dust before throwing it into a minute thickness Δd and multiplying the product by the compression ratio ε = f (P) at the height h, V ′ n−1 can be calculated. Assuming that the calculated volume of waste before injection after decrease is V ′ n−1 , the volume of newly input dust is given as ΔV n = V n −V ′ n−1 , and the newly input surface layer portion the specific gravity RT n the dust can be calculated as RT n = ΔW n / ΔV n . Save this RT n in a predetermined memory area for storing as input history of dust. Here, the dust in the surface layer portion introduced in the past is moved to the lower layer sequentially and finally moved to the bottom portion of the hopper 2 every time the dust at the bottom portion of the hopper 2 is supplied into the furnace 21 by the pusher 4. . Therefore, by storing the history of the volume of dust supplied to the furnace 21 from the bottom of the hopper 2 by the pusher 4, it is estimated how many times the dust layer at the bottom of the hopper 2 is waste that has been thrown in before. it can. Here, if the dust layer at the bottom is the waste thrown k times before, the specific gravity RT n-k when the specific gravity is more compact than the dust thrown k times in the meantime and exists in the surface layer portion. Since it is larger, the specific gravity RB n of the dust layer at the bottom of the hopper 2 at the present time is calculated using the dust compaction model. Note that a model derived beforehand through experiments or the like is used as the compression ratio ε = f (P) used in step S3.

次に、ステップS4において、プッシャ4によってホッパ2の底部から炉内21に供給されるゴミ供給容積を算出する。ゴミ容積推定手段31が、ステップS2と同じ要領で算出したその供給前後のホッパ2内のゴミの全容積の差分によって、ゴミ供給容積ΔVfが計算される。   Next, in step S4, the dust supply volume supplied to the furnace 21 from the bottom of the hopper 2 by the pusher 4 is calculated. The dust supply volume ΔVf is calculated by the difference between the total volumes of dust in the hopper 2 before and after the supply, which is calculated by the dust volume estimation means 31 in the same manner as in step S2.

次に、ステップS5において、ステップS3で算出されたホッパ2の底部にあるゴミ層の比重RBと、ステップS4で算出されたゴミ供給容積ΔVfより、ホッパ2の底部から炉内21に供給されるゴミ供給重量ΔWfを、ΔWf=ΔVf×RBとして算出する。算出されたゴミ供給重量ΔWfは、自動燃焼制御装置40に出力され、自動燃焼制御装置40内にあるプッシャ4の制御部がプッシャ4の駆動制御を行い、例えば、炉内21へのゴミの単位時間当りの供給重量が一定となるような制御を行う。 Next, in step S5, the specific gravity RB n of the dust layer at the bottom of the hopper 2 calculated in step S3 and the dust supply volume ΔVf calculated in step S4 are supplied to the furnace 21 from the bottom of the hopper 2. that the waste feed weight DerutaWf, calculated as ΔWf = ΔVf × RB n. The calculated dust supply weight ΔWf is output to the automatic combustion control device 40, and the control unit of the pusher 4 in the automatic combustion control device 40 controls the driving of the pusher 4, for example, a unit of dust into the furnace 21. Control is performed so that the supply weight per hour is constant.

次に、ゴミ容積推定手段31によるゴミ容積の推定処理について説明する。先ず、2以上の2次元画像データから2次元画像に撮像された物体表面の3次元座標を導出する原理について簡単に説明する。   Next, dust volume estimation processing by the dust volume estimation means 31 will be described. First, the principle of deriving the three-dimensional coordinates of the object surface captured in a two-dimensional image from two or more two-dimensional image data will be briefly described.

図5に示すように、物体座標系(x,y,z)と画像座標系(X,Y)を定めると、対象物体(本実施形態では、ホッパ2内のゴミ)の座標(x,y,z)とカメラ(3眼視カメラ6の1つの撮像部)の仮想結像上の点、即ち画像座標系の対応点(Xc,Yc)の関係は、下記の数1の行列式で表される。尚、物体座標系(x,y,z)の原点は、特に限定されないが、ホッパ2内、或いは、3眼視カメラの設置位置等に設定すると、ゴミ容積の計算上便利である。   As shown in FIG. 5, when the object coordinate system (x, y, z) and the image coordinate system (X, Y) are defined, the coordinates (x, y) of the target object (in this embodiment, dust in the hopper 2). , Z) and the point on the virtual image formation of the camera (one imaging unit of the trinocular camera 6), that is, the corresponding point (Xc, Yc) in the image coordinate system is expressed by the following determinant of Formula 1. Is done. The origin of the object coordinate system (x, y, z) is not particularly limited, but it is convenient in calculating the dust volume if it is set in the hopper 2 or at the installation position of the trinocular camera.

Figure 2005090774
Figure 2005090774

ここで、Hcはカメラ(各撮像部)の焦点距離等から求まる定数、12個のCパラメータは、物体とカメラの2つの座標系の相対位置、方向関係、及び、カメラの焦点距離で定まる量であり、数1のC行列をカメラパラメータと呼ぶ。カメラパラメータは、カメラの位置、方向等を計測して算出することもできるが、現実には焦点距離等を正確に与えることは困難なため、通常は、3次元形状が既知の基準物体を用意して、それを撮像して得られた画像から、数1を解いてCパラメータを導出するのが簡単で実用的である。   Here, Hc is a constant obtained from the focal length of the camera (each imaging unit), and the 12 C parameters are amounts determined by the relative position of the two coordinate systems of the object and the camera, the directional relationship, and the focal length of the camera. The C matrix of Equation 1 is called a camera parameter. Camera parameters can be calculated by measuring the position and direction of the camera, but in reality it is difficult to accurately give the focal length and so on, so usually a reference object with a known three-dimensional shape is prepared. Then, it is simple and practical to derive the C parameter by solving Equation 1 from the image obtained by imaging it.

つまり、物体表面の点p(x,y,z)と、その画像上の対応点P(Xc,Yc)からCパラメータを導出できる。今、1つの点pについて、その物体座標
,y,zと、その画像上の対応点の座標Xc,Ycが既知であると、数1より、数2、数3に示す2つの式が得られる。
That is, the C parameter can be derived from the point p (x, y, z) on the object surface and the corresponding point P (Xc, Yc) on the image. If the object coordinates x 1 , y 1 , z 1 and the coordinates Xc 1 , Yc 1 of the corresponding points on the image are already known for one point p 1 , Equations 2 and 3 The following two equations are obtained.

Figure 2005090774
Figure 2005090774

Figure 2005090774
Figure 2005090774

従って、12個のCパラメータを求めるには、12個の連立方程式が必要となることから、3次元座標の既知の同一平面上にない6つの基準点につき、数2と数3を生成して連立に解くか、6つ以上の基準点を利用して最小二乗法を用いて解けば、12個のCパラメータが得られる。従って、カメラパラメータの分かっている2つ以上のカメラを用いて同一点を撮像した2つ以上の各画像の同じ物体上の点(共通撮像点)の座標(Xc,Yc)から、夫々の画像につき当該共通撮像点の物体座標系での3次元座標(x,y,z)との関係を表す式が、数2と数3に示すように2つずつ得られる。このように2つ以上のカメラを用いれば、x,y,zの3つの未知数に対し4つ以上の関係式が得られるので、これを最小二乗法を用いて解けば、その共通撮像点の物体座標系での3次元座標(x,y,z)を算出することができる。   Therefore, to obtain 12 C parameters, 12 simultaneous equations are required. Therefore, Equations 2 and 3 are generated for 6 reference points that are not on the same plane where the three-dimensional coordinates are known. Twelve C parameters can be obtained by solving simultaneously or by using the least square method using six or more reference points. Accordingly, each image is obtained from the coordinates (Xc, Yc) of a point (common imaging point) on the same object in two or more images obtained by imaging the same point using two or more cameras whose camera parameters are known. As shown in the equations (2) and (3), two equations representing the relationship between the common imaging point and the three-dimensional coordinates (x, y, z) in the object coordinate system are obtained. If two or more cameras are used in this way, four or more relational expressions can be obtained for the three unknowns x, y, and z. If this is solved using the least square method, the common imaging point Three-dimensional coordinates (x, y, z) in the object coordinate system can be calculated.

従って、ホッパ2の上部のゴミの表層部の3次元座標を算出するには、2つ以上の画像に撮像された点が、ゴミの表層部における同じ点(共通撮像点)であると認識する必要がある。つまり、画像間で同じ点(共通撮像点)を指している画素の対応付けを行う必要がある。共通撮像点抽出手段34は、3眼視カメラ6の撮像した3つの画像P1〜P3の任意の2つの画像の中の共通撮像点となる候補点を、先ず、以下の2つの特徴点抽出方法により複数、抽出する。   Therefore, in order to calculate the three-dimensional coordinates of the surface layer of the dust on the hopper 2, the points captured in two or more images are recognized as the same point (common imaging point) in the surface layer of the dust. There is a need. That is, it is necessary to associate pixels pointing to the same point (common imaging point) between images. The common imaging point extraction means 34 first selects candidate points that are common imaging points in any two images of the three images P1 to P3 captured by the trinocular camera 6, first by the following two feature point extraction methods. A plurality are extracted by

1)濃度変化の大きい点の抽出:
物体の頂点等全ての方向で濃淡レベルの大きな変化が見られる点であって、且つ、その付近で最も大きな変化を示す点を特徴点として抽出する。ここで、濃淡レベルの変化を、対象画素に対して左右に隣接する画素との差分の和の2乗、上下に隣接する画素との差分の和の2乗、右上と左下に隣接する画素との差分の和の2乗、右下と左上に隣接する画素との差分の和の2乗の4方向での変化を求め、その最小値をその対象画素の濃度変化と定義し、当該濃度変化が所定の閾値以上の点を特徴点として抽出する。
1) Extraction of points with large density changes:
A point at which a large change in the shading level is observed in all directions such as the vertex of the object, and a point exhibiting the largest change in the vicinity thereof is extracted as a feature point. Here, the change in the shading level is determined by taking the square of the sum of the differences from the pixels adjacent to the left and right of the target pixel, the square of the sum of the differences from the pixels adjacent to the upper and lower sides, and the pixels adjacent to the upper right and lower left. Change in the four directions of the square of the sum of the differences and the square of the sum of the differences between the pixels adjacent to the lower right and upper left, and the minimum value is defined as the density change of the target pixel. Are extracted as feature points.

2)線成分の交点の抽出:
画像中の線成分を抽出し、2つ以上の線が交差する点を特徴点として抽出する。線成分の交点は以下のA〜Eの5つの処理により求める。
2) Extracting intersections of line components:
A line component in the image is extracted, and a point where two or more lines intersect is extracted as a feature point. The intersection of the line components is obtained by the following five processes A to E.

A)ソーベルフィルタによるエッジ強調:
図6に示す各画素を中心とした画素数を3×3の矩形領域の画素濃度を参照し、以下の数4に示す処理を実行する。ここで、図6中、eが処理対象の画素濃度、その周囲のa〜hはeを中心とする8つの近傍画素の濃度である。
A) Edge enhancement by Sobel filter:
With reference to the pixel density of the 3 × 3 rectangular area with the number of pixels centered on each pixel shown in FIG. Here, in FIG. 6, e is the pixel density to be processed, and a to h around it are the densities of eight neighboring pixels centered on e.

Figure 2005090774
Figure 2005090774

B)2値化処理:
各画素の濃度を閾値によって0または1に変換する。
B) Binarization processing:
The density of each pixel is converted to 0 or 1 depending on the threshold value.

C)膨張処理による近接線の結合処理:
上記2値化処理後の2値化画像の当該画素が1か、その4近傍の画素が1ならば、その画素も1とする。この処理により、近接する線が膨張して結合する。
C) Proximity line connection processing by expansion processing:
If the pixel of the binarized image after the binarization process is 1 or the pixels in the vicinity of 4 are 1, the pixel is also 1. This process causes adjacent lines to expand and join.

D)細線化処理:
膨張した線を線幅1に細める。
D) Thinning process:
The expanded line is narrowed to a line width of 1.

E)フィルタによる交点抽出処理:
A〜Dの各処理により線成分の抽出された2値画像において、線(値が1)上の各点について、その点を中心とした画素数を3×3の矩形領域を調べ、その領域に1の画素が4つ以上ある点を交点として抽出する。
E) Intersection extraction process by filter:
In a binary image from which line components have been extracted by each of the processes A to D, for each point on the line (value is 1), a 3 × 3 rectangular area centered on that point is examined, and the area A point having four or more pixels of 1 is extracted as an intersection.

次に、共通撮像点抽出手段34は、各画像において上記2つの特徴点抽出方法により抽出された複数の共通撮像点となる候補点(特徴点)の中から、同一点を示す特徴点を対応付け、共通撮像点として抽出するマッチング処理を行う。本実施形態では、各画像Pi(i=1〜3)の各画素の濃淡情報を用いて、数5で定義される非類似度Sを算出して行う。画像Pi(i=1〜3)の2つの画像、例えばP1とP2につき、画像P1の特徴点a(x,y)と特徴点aに対する画像P2の対応点候補b(x’,y’)の非類似度Sを、夫々の特徴点を中心とした1辺(2r+1)ピクセルの矩形領域における濃度情報を用いて、数5のように定義する。   Next, the common imaging point extraction unit 34 corresponds to a feature point indicating the same point from among a plurality of candidate points (feature points) to be common imaging points extracted by the two feature point extraction methods in each image. In addition, a matching process for extracting as a common imaging point is performed. In the present embodiment, the dissimilarity S defined by Equation 5 is calculated using the shading information of each pixel of each image Pi (i = 1 to 3). For two images of the image Pi (i = 1 to 3), for example, P1 and P2, the feature point a (x, y) of the image P1 and the corresponding point candidate b (x ′, y ′) of the image P2 with respect to the feature point a The dissimilarity S is defined as shown in Equation 5 using density information in a rectangular area of one side (2r + 1) pixels centered on each feature point.

Figure 2005090774
Figure 2005090774

但し、f1(x、y)、f2(x、y)は、夫々画像P1、P2の座標(x、y)における画素の濃度を示す関数である。特徴点aに対する対応点候補bの中で、非類似度Sが設定した閾値より小さく、且つ、対応点候補中の最小の点を対応点として抽出し、両画像P1、P2間の共通撮像点として特定する。当該処理を全ての抽出された特徴点と3つの画像について実行する。   However, f1 (x, y) and f2 (x, y) are functions indicating the density of the pixel at the coordinates (x, y) of the images P1 and P2, respectively. Among the corresponding point candidates b for the feature point a, the smallest point in the corresponding point candidates that is smaller than the threshold value set by the dissimilarity S is extracted as a corresponding point, and a common imaging point between the images P1 and P2 is extracted. As specified. This process is executed for all extracted feature points and three images.

ところで、画像P1、P2間において、画像P1の特徴点aと画像P2の特徴点bが共通撮像点として対応付けられ、画像P1、P3間において、画像P1の特徴点aと画像P3の特徴点cが共通撮像点として対応付けられたにも拘わらず、画像P2、P3間において、画像P2の特徴点bと画像P3の特徴点cが共通撮像点として対応付けられなかった場合は、画像P1、P2間の対応付けか、画像P1、P3間の対応付けか、画像P2、P3間の対応付けが間違っていることになるので、何れかの対応付けを別の候補点を用いて行い、3画像間で齟齬が発生しないかの確認を行う。つまり、1組の画像P1、P2間で全ての特徴点の対応付けを行わずに、1つの特徴点につき、全ての画像の組み合わせにつき対応付けを行うのが効果的である。また、3画像間で齟齬の発生が解消しない場合は、3画像の全てに共通の共通撮像点でないとして、2画像間での共通撮像点として処理する必要が生じる。   By the way, between the images P1 and P2, the feature point a of the image P1 and the feature point b of the image P2 are associated as a common imaging point, and between the images P1 and P3, the feature point a of the image P1 and the feature point of the image P3. When the feature point b of the image P2 and the feature point c of the image P3 are not associated as the common imaging point between the images P2 and P3 even though c is associated as the common imaging point, the image P1 , The association between P2, the association between the images P1 and P3, or the association between the images P2 and P3 is wrong, so any one of the associations is performed using another candidate point, Check if wrinkles occur between the three images. In other words, it is effective to associate all the combinations of images with respect to one feature point without associating all the feature points between the pair of images P1 and P2. In addition, when the occurrence of wrinkles between the three images is not eliminated, it is necessary to process them as common imaging points between the two images, assuming that they are not common imaging points common to all three images.

次に、3次元座標算出手段35が、画像P1、P2間、画像P1、P3間、画像P2、P3間の夫々について、各2画像間で特定された共通撮像点について、2画像から得られる数2と数3の2式の関係式が4つ得られるので、これを、最小二乗法を用いて解いて、各共通撮像点の3次元座標(x,y,z)を算出する。   Next, the three-dimensional coordinate calculation means 35 is obtained from the two images for the common imaging point specified between the two images for each of the images P1 and P2, between the images P1 and P3, and between the images P2 and P3. Since four relational expressions of Formula 2 and Formula 3 are obtained, these are solved using the least square method to calculate the three-dimensional coordinates (x, y, z) of each common imaging point.

次に、3次元座標調整手段36が、3次元座標算出手段35が各2画像間で算出した共通撮像点座標について調整を行う。つまり、3つの画像に共通する共通撮像点の場合は、画像P1、P2間、画像P1、P3間、画像P2、P3間の夫々について、3通りの3次元座標(x,y,z)が得られるが、その結果が必ずしも相互に一致するとは限らない。そこで、以下の3つの処理の何れかの調整処理を行う。   Next, the three-dimensional coordinate adjusting unit 36 adjusts the common imaging point coordinates calculated by the three-dimensional coordinate calculating unit 35 between the two images. That is, in the case of a common imaging point common to the three images, there are three types of three-dimensional coordinates (x, y, z) between the images P1 and P2, between the images P1 and P3, and between the images P2 and P3. Although obtained, the results are not necessarily consistent with each other. Therefore, any one of the following three processes is performed.

1)3つの3次元座標の1つが他に比べて所定距離以上離れていて、他の2つが所定距離以内で近接している場合は、相互に近い2つの座標を採用してその平均をその共通撮像点の3次元座標とする。   1) When one of the three three-dimensional coordinates is more than a predetermined distance away from the other, and the other two are within a predetermined distance, the two coordinates close to each other are adopted and the average is calculated The three-dimensional coordinates of the common imaging point are used.

2)3つの3次元座標が夫々所定距離以内で近接している場合は、3つの座標の平均をその共通撮像点の3次元座標とする。   2) When the three three-dimensional coordinates are close to each other within a predetermined distance, the average of the three coordinates is set as the three-dimensional coordinates of the common imaging point.

3)3つの3次元座標が夫々所定距離以上離れている場合は、より近接している2点につき上記1)の処理を行うか、または、上記2)の処理を行うか、或いは、3つの画像について、数2と数3の2式の関係式を6つ導出して、これを、最小二乗法を用いて解いて、当該共通撮像点の3次元座標(x,y,z)とする処理を行うかの何れかを行う。或いは、共通撮像点の特定において問題があるとして、マッチング処理をやり直しても構わない。   3) If the three three-dimensional coordinates are separated by a predetermined distance or more, perform the process 1) above for the two points closer to each other, perform the process 2) above, or For the image, six relational expressions of the two formulas (2) and (3) are derived and solved using the least square method to obtain the three-dimensional coordinates (x, y, z) of the common imaging point. Do any of the processing. Alternatively, assuming that there is a problem in specifying the common imaging point, the matching process may be performed again.

かかる調整処理を実行することで、マッチングエラーに起因する3次元座標算出エラーを軽減することができ高精度処理が実現できる。   By executing such adjustment processing, three-dimensional coordinate calculation errors due to matching errors can be reduced, and high-precision processing can be realized.

このように、各画像間で対応付けのできた共通撮像点について3次元座標が求まると、ホッパ3のゴミ上層部の3次元形状が特定される。そして、容積算出手段37が、同じ物体座標系(x,y,z)で特定されるホッパ3の内壁面とゴミ上層部の3次元形状で囲まれる領域を積分処理によりホッパ3内のゴミの全容量を算出することができる。xy面を水平面とすると、各xy座標の微小面積についてホッパ3の内壁面のz座標からゴミ上層部のz座標の差を乗じて全面積について累積すればよい。以上の処理により、ゴミ容積推定手段31によるゴミ容積の推定処理が完了する。   As described above, when the three-dimensional coordinates are obtained for the common imaging points that can be associated with each other, the three-dimensional shape of the upper layer portion of the dust of the hopper 3 is specified. Then, the volume calculation means 37 integrates a region surrounded by the three-dimensional shape of the inner wall surface of the hopper 3 and the upper layer portion of the dust specified by the same object coordinate system (x, y, z) by the integration process. The total capacity can be calculated. If the xy plane is a horizontal plane, the total area may be accumulated by multiplying the small area of each xy coordinate by the difference between the z coordinate of the inner wall surface of the hopper 3 and the z coordinate of the dust upper layer. By the above processing, the dust volume estimation processing by the dust volume estimation means 31 is completed.

次に、本発明装置1による、ゴミの供給発熱量の推定処理手順を、図4のフローチャートを参照して説明する。図4中、ステップS1〜S5は、図3の対応するステップS1〜S5と同じであるので、重複する説明は省略する。   Next, an estimation processing procedure of the supply heat generation amount of dust by the device 1 of the present invention will be described with reference to the flowchart of FIG. In FIG. 4, steps S1 to S5 are the same as the corresponding steps S1 to S5 of FIG.

スッテプS6がステップS2と並行して処理される。スッテプS6において、ステップS2で3眼視カメラ6からゴミ容積推定手段31に入力する3つの画像データP1〜P3が、発熱量推定手段33にも入力する。発熱量推定手段33は、画像データP1〜P3の1つを用いて、そのRGB出力値から同色範囲と認められる領域を抽出して、ゴミ表層部を色で複数に区分する。また、抽出された各区分の2次元画像領域に対応する3次元座標を、ステップS2の処理の中間データとして得られたゴミ表層部の3次元座標から抽出して、各区分につき、色データと3次元座標を割り当てる。   Step S6 is processed in parallel with step S2. In step S6, the three image data P1 to P3 input from the trinocular camera 6 to the dust volume estimation unit 31 in step S2 are also input to the heat generation amount estimation unit 33. The calorific value estimation means 33 uses one of the image data P1 to P3 to extract a region recognized as the same color range from the RGB output values, and divides the dust surface layer portion into a plurality of colors. Further, the three-dimensional coordinates corresponding to the extracted two-dimensional image area of each section are extracted from the three-dimensional coordinates of the dust surface layer portion obtained as intermediate data in the process of step S2, and for each section, color data and Assign 3D coordinates.

次に、ステップS7で、ゴミ種別データベース38にアクセスして、ステップS6で抽出した各区分について、同じ或いは類似する色データのゴミ種別を先ず検索によりゴミ種別候補として抽出し、各ゴミ種別候補に登録されている3次元形状パターンと各区分の3次元座標の間で相関処理を行い、3次元形状の一致度を算出する。ここでは、公知の3次元形状のパターンマッチング処理を用いる。そして、最も一致度の大きいゴミ種別候補を当該区分のゴミ種別として特定するとともに、各区分につき、ゴミ種別データベース38に登録されている単位重量当りの発熱量及び圧縮前の比重の標準値を抽出する。   Next, in step S7, the dust type database 38 is accessed, and for each category extracted in step S6, dust types having the same or similar color data are first extracted as dust type candidates by searching, and each dust type candidate is selected. Correlation processing is performed between the registered three-dimensional shape pattern and the three-dimensional coordinates of each section, and the degree of coincidence of the three-dimensional shapes is calculated. Here, a known three-dimensional pattern matching process is used. Then, the dust type candidate having the highest degree of coincidence is specified as the dust type of the corresponding category, and the standard value of the calorific value per unit weight and the specific gravity before compression registered in the dust type database 38 is extracted for each category. To do.

次に、ステップS8で、各区分の3次元座標と、ステップS3で算出した新たに投入したゴミの容積ΔVを用いて、各区分の容積を求め、ゴミ種別データベース38から抽出した圧縮前の比重から、新たに投入したゴミの各区分の重量比率を算出し、投入したゴミの履歴として登録しておく。ここで、スッテプS3で用いたゴミ圧密モデルをゴミ質に拘わらず等しく想定し、k回前に投入された表層部のゴミがホッパ2の底部に存在しているというモデルを用い、更に、各区分の配分率が維持されて表層部のゴミがホッパ2の底部に移動したと仮定して、スッテプS5で得られた供給重量ΔWfに、k回前の投入時のステップS7とS8で得られた各区分の単位重量当りの発熱量と重量比率を用いて、ホッパ2の底部から炉内21に供給されるゴミの供給発熱量を推定することができる。 Next, in step S8, the volume of each section is obtained using the three-dimensional coordinates of each section and the newly introduced dust volume ΔV n calculated in step S3, and the pre-compression extracted from the dust type database 38 is obtained. From the specific gravity, the weight ratio of each category of newly introduced garbage is calculated and registered as a history of the introduced garbage. Here, the dust compaction model used in Step S3 is assumed to be the same regardless of the quality of the waste, and a model is used in which the dust in the surface layer that has been thrown k times before exists at the bottom of the hopper 2, Assuming that the distribution ratio of the sections is maintained and the dust on the surface layer has moved to the bottom of the hopper 2, the supply weight ΔWf obtained in step S5 is obtained in steps S7 and S8 at the time k times before charging. Further, using the heat generation amount per unit weight and the weight ratio of each section, it is possible to estimate the supply heat generation amount of the dust supplied to the furnace 21 from the bottom of the hopper 2.

推定されたゴミの供給発熱量は、自動燃焼制御装置40に出力され、自動燃焼制御装置40が、入力された供給発熱量に基づき、炉内温度、ストーカ速度、1次空気量、プッシャ4による単位時間当りのゴミ供給重量等の制御値の設定を変更し、炉内温度測定値、ストーカ速度測定値、1次空気量測定値等の測定データに基づいてゴミ燃焼制御を所定の制御パターンに基づいて実行する。或いは、単に、単位時間当りの供給発熱量を一定に維持するよう、自動燃焼制御装置40内にあるプッシャ4の制御部がプッシャ4の駆動制御を行うようにしても構わない。尚、自動燃焼制御装置40の制御は本発明の本旨ではないので、詳細な説明は省略する。また、図1中、各測定値の測定手段の図示は省略している。   The estimated supply calorific value of dust is output to the automatic combustion control device 40, and the automatic combustion control device 40 determines the furnace temperature, the stoker speed, the primary air amount, and the pusher 4 based on the input supply calorific value. Change the setting of control values such as dust supply weight per unit time, and set the dust combustion control to a predetermined control pattern based on measurement data such as furnace temperature measurement value, stoker speed measurement value, primary air volume measurement value, etc. Run based on. Or you may make it the control part of the pusher 4 in the automatic combustion control apparatus 40 perform drive control of the pusher 4 so that the supply calorific value per unit time may be maintained constant. Note that the control of the automatic combustion control device 40 is not the gist of the present invention, and thus detailed description thereof is omitted. Further, in FIG. 1, the measurement means for each measurement value is not shown.

〈第2実施形態〉
次に、本発明装置1の第2実施形態について、図7を参照して説明する。第1実施形態との相違点は、3眼視カメラ6から出力されるデータの内容と、当該データを用いてホッパ2内に堆積したゴミの容積を推定するゴミ容積推定手段31の構成である。その他の構成要素は、第1実施形態と同じであるので、重複する説明は割愛する。
Second Embodiment
Next, 2nd Embodiment of this invention apparatus 1 is described with reference to FIG. The difference from the first embodiment is the configuration of the dust volume estimation means 31 that estimates the content of data output from the trinocular camera 6 and the volume of dust accumulated in the hopper 2 using the data. . Since other components are the same as those in the first embodiment, a duplicate description is omitted.

第2実施形態では、3眼視カメラ6として、第1実施形態におけるゴミ容積推定手段31の共通撮像点抽出手段34と3次元座標算出手段35と3次元座標調整手段36の機能を取り込んだ製品の使用を想定する。つまり、3眼視カメラ6が、撮像した画像中の各画素につき、3眼視カメラ6から撮像方向に沿った距離を計算して、各画素につき、RGBデータと距離データを出力し、ゴミ容積推定手段31は距離データを、発熱量推定手段33はRGBデータを利用する。   In the second embodiment, a product incorporating the functions of the common imaging point extraction unit 34, the three-dimensional coordinate calculation unit 35, and the three-dimensional coordinate adjustment unit 36 of the dust volume estimation unit 31 in the first embodiment as the trinocular camera 6. Is assumed. That is, the trinocular camera 6 calculates the distance along the imaging direction from the trinocular camera 6 for each pixel in the captured image, and outputs RGB data and distance data for each pixel, and the dust volume The estimation unit 31 uses distance data, and the heat generation amount estimation unit 33 uses RGB data.

ゴミ容積推定手段31は、3次元座標算出手段35’と容積算出手段37のみで構成され、3次元座標算出手段35’は、3眼視カメラ6が出力する距離データを3次元座標に変換する処理を行う。容積算出手段37は、ゴミ表層部の3次元座標とホッパ2の内壁面の3次元座標に基づいて、第1実施形態と同じ要領で、ホッパ2内のゴミの全容積を算出する。   The dust volume estimating means 31 is composed of only the three-dimensional coordinate calculating means 35 ′ and the volume calculating means 37, and the three-dimensional coordinate calculating means 35 ′ converts the distance data output from the trinocular camera 6 into three-dimensional coordinates. Process. The volume calculation means 37 calculates the total volume of dust in the hopper 2 in the same manner as in the first embodiment, based on the three-dimensional coordinates of the dust surface layer and the three-dimensional coordinates of the inner wall surface of the hopper 2.

以下に、別の実施形態につき説明する。   Hereinafter, another embodiment will be described.

〈1〉上記第1実施形態では、3眼視カメラ6を用いたが、これに代えて、複数の単眼カメラを用いても構わない。   <1> Although the trinocular camera 6 is used in the first embodiment, a plurality of monocular cameras may be used instead.

〈2〉上記各実施形態では、本発明装置1は、発熱量推定手段33を備えているが、投入されるゴミ質に大きな変動がないような焼却炉の利用形態では、必ずしも、発熱量推定手段33により供給発熱量を推定しなくても構わない。従って、本発明装置1が発熱量推定手段33を備えていなくても構わない。   <2> In each of the above-described embodiments, the device 1 of the present invention includes the calorific value estimation means 33. However, in the usage form of the incinerator in which there is no great variation in the quality of the input waste, the calorific value is not necessarily estimated The supply heat generation amount may not be estimated by the means 33. Therefore, the device 1 of the present invention may not include the calorific value estimation means 33.

〈3〉上記各実施形態では、発熱量推定手段33は、図4に示すステップS6で、ゴミ表層部の各区分の3次元形状を3次元座標により抽出したが、各区分の形状を2次元形状としても構わない。この場合、ゴミ種別データベース38に登録されている形状パターンも2次元データとする。   <3> In each of the above embodiments, the calorific value estimation means 33 extracts the three-dimensional shape of each section of the dust surface layer portion using three-dimensional coordinates in step S6 shown in FIG. It does not matter as a shape. In this case, the shape pattern registered in the dust type database 38 is also two-dimensional data.

〈4〉上記各実施形態では、ホッパ2から炉内21へのゴミの供給手段としてプッシャ3を用いたが、これに代えて、スクリューコンベア等の他の供給手段を用いても構わない。また、ホッパ2の形状も、図1に示す形状に限定されるものではない。また、3眼視カメラ6の設置位置も、図1に示す位置に限定されるものではない。   <4> In each of the above embodiments, the pusher 3 is used as a means for supplying dust from the hopper 2 to the furnace 21. However, instead of this, other supply means such as a screw conveyor may be used. Further, the shape of the hopper 2 is not limited to the shape shown in FIG. Further, the installation position of the trinocular camera 6 is not limited to the position shown in FIG.

〈5〉上記各実施形態では、本発明装置1の制御対象であるゴミ焼却炉20として、ストーカ式ゴミ焼却炉を例示したが、ゴミ焼却炉20はストーカ式以外でのものであっても構わない。   <5> In each of the above embodiments, a stalker-type trash incinerator is exemplified as the trash incinerator 20 to be controlled by the apparatus 1 of the present invention. However, the trash incinerator 20 may be other than the stalker type. Absent.

本発明に係るゴミ焼却炉のゴミ供給量推定装置とゴミ焼却炉の関連部分の構成を説明する構成図The block diagram explaining the structure of the related part of the garbage supply amount estimation apparatus of a garbage incinerator and a garbage incinerator concerning the present invention 本発明に係るゴミ焼却炉のゴミ供給量推定装置の一実施形態の構成を模式的に示す構成図The block diagram which shows typically the structure of one Embodiment of the waste supply amount estimation apparatus of the waste incinerator which concerns on this invention 本発明に係るゴミ焼却炉のゴミ供給量推定装置によるゴミの供給重量の推定処理手順を示すフローチャートThe flowchart which shows the estimation processing procedure of the supply weight of refuse by the refuse supply amount estimation apparatus of the refuse incinerator which concerns on this invention 本発明に係るゴミ焼却炉のゴミ供給量推定装置によるゴミの供給発熱量の推定処理手順を示すフローチャートThe flowchart which shows the estimation process sequence of the waste heat generation amount of the waste by the waste supply amount estimation apparatus of the waste incinerator according to the present invention ゴミ容積推定手段の3次元座標算出手段が3次元座標算出に用いる物体座標系(x,y,z)と画像座標系(X,Y)の関係を示す説明図Explanatory drawing which shows the relationship between the object coordinate system (x, y, z) and image coordinate system (X, Y) which the three-dimensional coordinate calculation means of a garbage volume estimation means uses for three-dimensional coordinate calculation. ゴミ容積推定手段の共通撮像点抽出手段によるソーベルフィルタによるエッジ強調処理を説明するための3×3の矩形領域の画素濃度を示す図The figure which shows the pixel density of the 3 * 3 rectangular area for demonstrating the edge emphasis process by a Sobel filter by the common imaging point extraction means of a dust volume estimation means 本発明に係るゴミ焼却炉のゴミ供給量推定装置の別実施形態の構成を模式的に示す構成図The block diagram which shows typically the structure of another embodiment of the refuse supply amount estimation apparatus of the refuse incinerator which concerns on this invention.

符号の説明Explanation of symbols

1: 本発明に係るゴミ焼却炉のゴミ供給量推定装置
2: ホッパ
3: クレーン
4: プッシャ(供給手段)
5: ストーカ式搬送手段
6: 3眼視カメラ(複数の撮像手段)
7: 重量計(重量計測手段)
8: コンパートメント
9: ゴミ層
10: 風箱
11: 送風ファン
12: ダンパ機構
13: 焼却灰排出口
20: ゴミ焼却炉
21: 炉内
31: ゴミ容積推定手段
32: ゴミ供給重量推定手段
33: 発熱量推定手段
34: 共通撮像点抽出手段
35: 3次元座標算出手段
35’: 3次元座標算出手段
36: 3次元座標調整手段
37: 容積算出手段
38: ゴミ種別データベース
40: 自動燃焼制御装置
1: Waste supply amount estimation device for waste incinerator according to the present invention 2: Hopper 3: Crane 4: Pusher (supply means)
5: Storker type conveying means 6: Trinocular camera (multiple imaging means)
7: Weigh scale (weight measuring means)
8: Compartment 9: Waste layer 10: Wind box 11: Blower fan 12: Damper mechanism 13: Incineration ash discharge port 20: Waste incinerator 21: In-furnace 31: Waste volume estimation means 32: Waste supply weight estimation means 33: Heat generation Quantity estimation means 34: Common imaging point extraction means 35: Three-dimensional coordinate calculation means 35 ': Three-dimensional coordinate calculation means 36: Three-dimensional coordinate adjustment means 37: Volume calculation means 38: Dust type database 40: Automatic combustion control device

Claims (7)

ゴミ焼却炉のホッパ内に供給され堆積したゴミの表層部の上面全体を撮像可能な3以上の撮像手段と、
前記3以上の撮像手段が撮像した3以上の画像から前記表層部上面の複数位置における3次元座標を導出して、前記3次元座標に基づいて前記ホッパ内のゴミの容積を推定するゴミ容積推定手段と、
前記ホッパ内に投入されるゴミの投入重量を測定する重量測定手段と、
前記ゴミ容積推定手段が推定したゴミの容積と、前記重量測定手段の測定した投入重量に基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給重量を推定するゴミ供給重量推定手段と、を備えてなり、
前記ゴミ容積推定手段は、前記3以上の撮像手段が撮像した3以上の画像の中から選択される任意の2以上の複数画像の複数組に対して、前記表層部上面の同じ位置を撮像した共通撮像点を複数抽出する共通撮像点抽出手段と、
前記共通撮像点抽出手段が抽出した複数組の前記複数画像に対する前記複数の共通撮像点の3次元座標を算出する3次元座標算出手段と、
前記複数組の前記複数画像間で、算出された前記3次元座標の調整を行う3次元座標調整手段と、
前記調整された前記3次元座標を前記表層部上面の複数位置における3次元座標として、前記ホッパの壁面形状に基づいて前記ゴミの容積を算出する容積算出手段とを備えていることを特徴とするゴミ焼却炉のゴミ供給量推定装置。
Three or more imaging means capable of imaging the entire top surface of the surface portion of the dust supplied and deposited in the hopper of the garbage incinerator;
Dust volume estimation for deriving three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion from three or more images picked up by the three or more image pickup means and estimating the volume of dust in the hopper based on the three-dimensional coordinates. Means,
A weight measuring means for measuring an input weight of dust to be put into the hopper;
Dust supply weight estimation means for estimating the supply weight of garbage supplied from the hopper into the garbage incinerator based on the waste volume estimated by the waste volume estimation means and the input weight measured by the weight measurement means. And comprising
The dust volume estimating means picks up the same position on the upper surface of the surface layer portion for a plurality of sets of arbitrary two or more images selected from three or more images picked up by the three or more image pickup means. Common imaging point extraction means for extracting a plurality of common imaging points;
Three-dimensional coordinate calculation means for calculating three-dimensional coordinates of the plurality of common imaging points for the plurality of sets of images extracted by the common imaging point extraction means;
3D coordinate adjustment means for adjusting the calculated 3D coordinates between the plurality of sets of the plurality of images;
Volume adjustment means for calculating the volume of the dust based on the wall shape of the hopper, using the adjusted three-dimensional coordinates as three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion. Waste supply estimation device for garbage incinerators.
前記3以上の撮像手段は、3つの撮像部の相対的な位置関係が固定された3眼視カメラであり、
前記共通撮像点抽出手段は、前記3眼視カメラが撮像した3つの画像の中から選択される3組の2つの画像、または、前記3組の2つの画像と1組の前記3つの画像に対して各別に、前記表層部上面の同じ位置を撮像した共通撮像点を複数抽出することを特徴とする請求項1に記載のゴミ焼却炉のゴミ供給量推定装置。
The three or more imaging units are trinocular cameras in which the relative positional relationship between the three imaging units is fixed,
The common imaging point extraction unit may include three sets of two images selected from three images captured by the trinocular camera, or the three sets of two images and one set of the three images. 2. The apparatus according to claim 1, wherein a plurality of common imaging points are picked up for imaging the same position on the upper surface of the surface layer part.
ゴミ焼却炉のホッパ内に供給され堆積したゴミの表層部の上面全体をカラー撮像可能な複数の撮像手段と、
前記複数の撮像手段が撮像した複数の画像から前記表層部上面の複数位置における3次元座標を導出して、前記3次元座標に基づいて前記ホッパ内のゴミの容積を推定するゴミ容積推定手段と、
前記ホッパ内に投入されるゴミの投入重量を測定する重量測定手段と、
前記ゴミ容積推定手段が推定したゴミの容積と、前記重量測定手段の測定した投入重量に基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給重量を推定するゴミ供給重量推定手段と、
前記撮像手段が撮像したカラー画像から前記表層部に存在する表層ゴミの形状と色からゴミ質を推定し、少なくとも前記推定された前記表層ゴミのゴミ質と、前記ゴミ供給重量推定手段が推定した前記供給重量とに基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給発熱量を推定する発熱量推定手段と、を備えてなることを特徴とするゴミ焼却炉のゴミ供給量推定装置。
A plurality of imaging means capable of color imaging the entire upper surface of the surface layer portion of the dust supplied and deposited in the hopper of the garbage incinerator;
Dust volume estimation means for deriving three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion from a plurality of images captured by the plurality of imaging means, and estimating a volume of dust in the hopper based on the three-dimensional coordinates; ,
A weight measuring means for measuring an input weight of dust to be put into the hopper;
Dust supply weight estimation means for estimating the supply weight of garbage supplied from the hopper into the garbage incinerator based on the waste volume estimated by the waste volume estimation means and the input weight measured by the weight measurement means. When,
The waste quality is estimated from the shape and color of the surface dust existing on the surface layer portion from the color image captured by the imaging means, and at least the estimated dust quality of the surface dust and the dust supply weight estimation means are estimated. And a heat generation amount estimation means for estimating a supply heat generation amount of the dust supplied from the hopper into the waste incinerator based on the supply weight. Estimating device.
前記撮像手段は3以上設けられ、
前記ゴミ容積推定手段は、前記3以上の撮像手段が撮像した3以上の画像の中から選択される任意の2以上の複数画像の複数組に対して、前記表層部上面の同じ位置を撮像した共通撮像点を複数抽出する共通撮像点抽出手段と、
前記共通撮像点抽出手段が抽出した複数組の前記複数画像に対する前記複数の共通撮像点の3次元座標を算出する3次元座標算出手段と、
前記複数組の前記複数画像間で、算出された前記3次元座標の調整を行う3次元座標調整手段と、
前記調整された前記3次元座標を前記表層部上面の複数位置における3次元座標として、前記ホッパの壁面形状に基づいて前記ゴミの容積を算出する容積算出手段とを備えていることを特徴とする請求項3に記載のゴミ焼却炉のゴミ供給量推定装置。
Three or more imaging means are provided,
The dust volume estimating means picks up the same position on the upper surface of the surface layer portion for a plurality of sets of arbitrary two or more images selected from three or more images picked up by the three or more image pickup means. Common imaging point extraction means for extracting a plurality of common imaging points;
Three-dimensional coordinate calculation means for calculating three-dimensional coordinates of the plurality of common imaging points for the plurality of sets of images extracted by the common imaging point extraction means;
Three-dimensional coordinate adjustment means for adjusting the calculated three-dimensional coordinates between the plurality of sets of the plurality of images;
Volume adjustment means for calculating the volume of the dust based on the wall shape of the hopper, using the adjusted three-dimensional coordinates as three-dimensional coordinates at a plurality of positions on the upper surface of the surface layer portion. The apparatus for estimating a dust supply amount of a refuse incinerator according to claim 3.
ゴミ焼却炉のホッパ内に供給され堆積したゴミの表層部の上面全体をカラー撮像可能で、撮像した画像の各画素の距離情報を出力可能で、3つの撮像部の相対的な位置関係が固定された3眼視カメラと、
前記3眼視カメラの出力する各画素の距離情報に基づいて、前記ホッパ内のゴミの容積を推定するゴミ容積推定手段と、
前記ホッパ内に投入されるゴミの投入重量を測定する重量測定手段と、
前記ゴミ容積推定手段が推定したゴミの容積と、前記重量測定手段の測定した投入重量に基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給重量を推定するゴミ供給重量推定手段と、
前記3眼視カメラが撮像したカラー画像から前記表層部に存在する表層ゴミの形状と色からゴミ質を推定し、前記推定された前記表層ゴミのゴミ質と、前記ゴミ供給重量推定手段が推定した前記供給重量とに基づいて、前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給発熱量を推定する発熱量推定手段と、を備えてなることを特徴とするゴミ焼却炉のゴミ供給量推定装置。
Color imaging can be performed on the entire top surface of the surface layer of dust that has been supplied and deposited in the hopper of a garbage incinerator, and the distance information of each pixel in the captured image can be output. The relative positional relationship between the three imaging units is fixed. A trinocular camera,
Waste volume estimation means for estimating the volume of dust in the hopper based on distance information of each pixel output from the trinocular camera;
A weight measuring means for measuring an input weight of dust to be put into the hopper;
Dust supply weight estimation means for estimating the supply weight of garbage supplied from the hopper into the garbage incinerator based on the waste volume estimated by the waste volume estimation means and the input weight measured by the weight measurement means. When,
The quality of dust is estimated from the shape and color of surface dust existing on the surface layer portion from the color image captured by the trinocular camera, and the estimated dust quality of the surface dust and the dust supply weight estimation means estimate And a heat generation amount estimating means for estimating a supply heat generation amount of the dust supplied from the hopper into the waste incinerator based on the supplied weight. Quantity estimation device.
前記発熱量推定手段は、ゴミの形状と色を予め複数のゴミ種別に分類し、前記ゴミ種別毎の単位重量当りの発熱量との関係をデータベース化したゴミ種別データベースを用いて、前記ゴミ供給重量推定手段が推定した前記供給重量に基づいて、前記供給発熱量を推定することを特徴とする請求項3〜5の何れか1項に記載のゴミ焼却炉のゴミ供給量推定装置。   The calorific value estimation means classifies the shape and color of garbage into a plurality of garbage types in advance, and uses the garbage type database in which the relationship between the calorific value per unit weight for each of the garbage types is made into a database. 6. The waste supply amount estimation apparatus for a waste incinerator according to claim 3, wherein the supply heat generation amount is estimated based on the supply weight estimated by a weight estimation unit. 前記ゴミ供給重量推定手段は、前記ホッパ内に堆積したゴミの自重による圧縮状態をモデル化したゴミ圧縮モデルを用いて、前記ホッパの底部にあるゴミの比重を求め、前記比重と前記ホッパから前記ゴミ焼却炉内に供給されるゴミの供給容積から、前記供給重量を推定することを特徴とする請求項1〜6の何れか1項に記載のゴミ焼却炉のゴミ供給量推定装置。   The dust supply weight estimation means obtains the specific gravity of the dust at the bottom of the hopper using a dust compression model that models the compression state due to the weight of the dust accumulated in the hopper, and determines the specific gravity and the hopper from the specific gravity and the hopper. The waste supply amount estimation apparatus for a waste incinerator according to any one of claims 1 to 6, wherein the supply weight is estimated from a supply volume of waste supplied into the waste incinerator.
JP2003320980A 2003-09-12 2003-09-12 Device for estimating supply amount of garbage for garbage incinerator Pending JP2005090774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320980A JP2005090774A (en) 2003-09-12 2003-09-12 Device for estimating supply amount of garbage for garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320980A JP2005090774A (en) 2003-09-12 2003-09-12 Device for estimating supply amount of garbage for garbage incinerator

Publications (1)

Publication Number Publication Date
JP2005090774A true JP2005090774A (en) 2005-04-07

Family

ID=34452792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320980A Pending JP2005090774A (en) 2003-09-12 2003-09-12 Device for estimating supply amount of garbage for garbage incinerator

Country Status (1)

Country Link
JP (1) JP2005090774A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788357A (en) * 2011-05-20 2012-11-21 林荣郎 Cleaning scheduling method of combustor and system thereof
WO2014209070A1 (en) * 2013-06-28 2014-12-31 (주)태종 엔이씨 System and method for diagnosing and controlling incineration facility and solid fuel boiler and managing life cycle of facility through heat exchange and design program and operation mode analysis of operator
JP2018040533A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
KR101852348B1 (en) * 2018-01-12 2018-06-04 유길문 Analysis system for selection of combustible waste by calorific value and solid fuel production method using it
JP2019074239A (en) * 2017-10-13 2019-05-16 株式会社中部プラントサービス Monitor of biomass generator equipment
CN113804838A (en) * 2021-09-28 2021-12-17 浙江富春江环保科技研究有限公司 Boundary alarm method for dioxin online detection
JP7064643B1 (en) 2021-09-10 2022-05-10 三菱重工環境・化学エンジニアリング株式会社 Incinerator equipment control device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788357A (en) * 2011-05-20 2012-11-21 林荣郎 Cleaning scheduling method of combustor and system thereof
CN102788357B (en) * 2011-05-20 2015-03-11 林荣郎 Cleaning scheduling method of combustor and system thereof
WO2014209070A1 (en) * 2013-06-28 2014-12-31 (주)태종 엔이씨 System and method for diagnosing and controlling incineration facility and solid fuel boiler and managing life cycle of facility through heat exchange and design program and operation mode analysis of operator
KR101480130B1 (en) * 2013-06-28 2015-01-07 (주) 태종 엔이씨 Incineration facility for heat calculate, design program and operator(Operater) analysis of the operation of the form and diagnosis and control of solid fuel boilers and equipment life-cycle management system and method
CN105493089A (en) * 2013-06-28 2016-04-13 尼克帕沃有限公司 System and method for diagnosing and controlling incineration facility and solid fuel boiler and managing life cycle of facility through heat exchange and design program and operation mode analysis of operator
JP2016528462A (en) * 2013-06-28 2016-09-15 エヌイーシー・パワー・カンパニー・リミテッド Diagnosis and control of incineration facilities and solid fuel boilers through thermal settlement and design program and driver's operation form analysis and equipment life cycle management system and method
US10920977B2 (en) 2013-06-28 2021-02-16 Nec Power Co., Ltd. System and method for diagnosing and controlling incineration facility and solid fuel boiler and managing life cycle of facility through heat exchange and design program and operation mode analysis of operator
JP2018040533A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
JP2019074239A (en) * 2017-10-13 2019-05-16 株式会社中部プラントサービス Monitor of biomass generator equipment
KR101852348B1 (en) * 2018-01-12 2018-06-04 유길문 Analysis system for selection of combustible waste by calorific value and solid fuel production method using it
JP7064643B1 (en) 2021-09-10 2022-05-10 三菱重工環境・化学エンジニアリング株式会社 Incinerator equipment control device
WO2023037742A1 (en) * 2021-09-10 2023-03-16 三菱重工環境・化学エンジニアリング株式会社 Control device for incinerator equipment
JP2023040645A (en) * 2021-09-10 2023-03-23 三菱重工環境・化学エンジニアリング株式会社 Device for controlling incinerator facility
TWI819707B (en) * 2021-09-10 2023-10-21 日商三菱重工環境 化學工程股份有限公司 Control device for incinerator equipment
CN113804838A (en) * 2021-09-28 2021-12-17 浙江富春江环保科技研究有限公司 Boundary alarm method for dioxin online detection
CN113804838B (en) * 2021-09-28 2022-07-26 浙江富春江环保科技研究有限公司 Boundary alarm method for dioxin online detection

Similar Documents

Publication Publication Date Title
CN105588439A (en) Detection method of sintering machine trolley grate bars
JP2005090774A (en) Device for estimating supply amount of garbage for garbage incinerator
JP6977119B1 (en) Estimate system and control system
JP2018155411A (en) Stoker type incinerator
KR20050050081A (en) Method for monitoring a thermodynamic process
JP2019160153A (en) Refuse property estimation system, and crane operation control system using refuse property estimation system
TW202323728A (en) Control apparatus
KR20210038403A (en) Calorific value estimation method, calorific value estimation device and garbage storage facility
JP2020119407A (en) Estimating model generation device, estimating model generation method by estimating model generation device, and estimating device
JP2002130640A (en) Refuse measuring apparatus
JPH07119946A (en) Waste incinerator
CN103717763A (en) Method and regulator for adjusting the burn-through point in a sintering machine
JP2021103063A (en) Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator
KR101852348B1 (en) Analysis system for selection of combustible waste by calorific value and solid fuel production method using it
WO2022230356A1 (en) Prediction device, prediction method, prediction program, facility control device, facility control method, and control program
JP2963009B2 (en) Combustion determination / control method and determination / control device using color image
WO2023037742A1 (en) Control device for incinerator equipment
WO2023136240A1 (en) Information processing method, information processing device, information processing system, information processing program, and sintered ore production method
JP2689551B2 (en) Burnout point detection method for garbage incinerator
JP2024021223A (en) Garbage agitation method and garbage agitation system
TW202336705A (en) Image inspection device, machine learning device, image inspection method, and image inspection program
JP2689552B2 (en) Burnout point detection method for garbage incinerator
WO2023199928A1 (en) Determination device, selection device, and determination method
JP7009114B2 (en) Garbage incinerator
Wang et al. Online burning material pile detection on color clustering and quaternion based edge detection in boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527