JP2021067433A - Method for grasping interior condition of self-weight sedimentation-type vertical reaction furnace and method for controlling automatic operation of self-weight sedimentation-type vertical reaction furnace - Google Patents

Method for grasping interior condition of self-weight sedimentation-type vertical reaction furnace and method for controlling automatic operation of self-weight sedimentation-type vertical reaction furnace Download PDF

Info

Publication number
JP2021067433A
JP2021067433A JP2019195083A JP2019195083A JP2021067433A JP 2021067433 A JP2021067433 A JP 2021067433A JP 2019195083 A JP2019195083 A JP 2019195083A JP 2019195083 A JP2019195083 A JP 2019195083A JP 2021067433 A JP2021067433 A JP 2021067433A
Authority
JP
Japan
Prior art keywords
furnace
self
division unit
thermal image
grasping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019195083A
Other languages
Japanese (ja)
Other versions
JP6893231B2 (en
Inventor
達之 下川
Tatsuyuki Shimokawa
達之 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2019195083A priority Critical patent/JP6893231B2/en
Publication of JP2021067433A publication Critical patent/JP2021067433A/en
Application granted granted Critical
Publication of JP6893231B2 publication Critical patent/JP6893231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

To early and accurately detect occurrence of "bridging" in a self-weight sedimentation-type vertical reaction furnace.SOLUTION: A method for grasping an interior condition of a self-weight sedimentation-type vertical reaction furnace is used in a self-weight sedimentation-type vertical reaction furnace for drying, thermally decompressing, burning, and melting a processing object by entering and depositing the processing object into the furnace from an upper part of the furnace and supplying a compressed oxygen-containing gas to a bottom part of the furnace and a lower sidewall part of the furnace, and includes a three-dimensional thermal image creating step and a furnace interior condition grasping step. In the three-dimensional thermal image creating step, a control device creates a three-dimensional thermal image of a sedimentary layer interface, which is the uppermost side interface of the sedimentary layer formed from the deposited processing object, on the basis of a thermal image acquired by photographing the thermal image of the sedimentary layer interface, by a plurality of infrared cameras installed on an upper side of the processing object deposited in the furnace and having different view points. In the furnace interior condition grasping step, the control device grasps the furnace interior condition on the basis of the three-dimensional thermal image created by the three-dimensional thermal image creating step.SELECTED DRAWING: Figure 2

Description

本発明は、処理対象物を乾燥・熱分解・燃焼・溶融させる自重沈降式竪型反応炉の炉内状態を把握し、適正な運転状態を維持するための方法に関する。 The present invention relates to a method for grasping the state inside a self-weight settling vertical reactor that dries, thermally decomposes, burns, and melts an object to be treated, and maintains an appropriate operating state.

廃棄物等の処理対象物を乾燥・熱分解・燃焼・溶融させる自重沈降式竪型反応炉では、鉛直筒状の竪型反応炉の上部から処理対象物を炉内に投入して、炉内下部に堆積させながら、炉底部から高温の酸素含有気体を加圧状態で炉内に供給する。処理対象物の堆積によって、炉内下部に堆積層が形成される。炉内下部に堆積された処理対象物が、自重によって炉底に向かって沈降し、その沈降順に、乾燥、熱分解、燃焼又は/及び溶融が行われる。 In a self-weight settling vertical reactor that dries, pyrolyzes, burns, and melts waste and other objects to be treated, the objects to be treated are put into the furnace from the top of the vertical tubular reactor and inside the furnace. A high-temperature oxygen-containing gas is supplied into the furnace in a pressurized state from the bottom of the furnace while being deposited at the bottom. By depositing the object to be treated, a sedimentary layer is formed in the lower part of the furnace. The object to be treated deposited in the lower part of the furnace is settled toward the bottom of the furnace by its own weight, and drying, thermal decomposition, combustion and / and melting are performed in the order of settling.

炉内下部に堆積された処理対象物が乾燥、熱分解、燃焼又は/及び溶融されることで、含まれる水分の蒸発等によってかさ比重(即ち密度)が増大するとともに、質量及び体積が減少する。処理中の処理対象物は、かさ比重の増大に伴って、自重(及びその上に堆積された他の処理対象物からの圧力)により炉底へ沈降していく。最終的に、処理対象物は、燃焼又は/及び溶融されて焼却灰又は溶融スラグとなり、炉底から炉外へ排出される。 When the object to be treated deposited in the lower part of the furnace is dried, thermally decomposed, burned and / or melted, the bulk specific gravity (that is, density) increases and the mass and volume decrease due to evaporation of the contained water and the like. .. The object to be processed during the process is settled to the bottom of the furnace due to its own weight (and the pressure from other objects to be processed deposited on it) as the bulk specific gravity increases. Finally, the object to be treated is burned and / and melted into incineration ash or molten slag, which is discharged from the bottom of the furnace to the outside of the furnace.

一方、炉底から炉内に供給される酸素含有気体は、処理対象物との熱交換及び熱反応を進行させながら、乾燥・熱分解・燃焼・溶融等の熱反応で生成されたガス成分を伴って、堆積層を上方に抜ける。堆積層を通過した酸素含有気体は、堆積層より上側の炉内空間からなるフリーボードに到達した後、炉上部から炉外へ排出される。 On the other hand, the oxygen-containing gas supplied from the bottom of the furnace to the inside of the furnace produces gas components generated by thermal reactions such as drying, thermal decomposition, combustion, and melting while proceeding with heat exchange and thermal reaction with the object to be treated. Along with this, it escapes upward through the sedimentary layer. The oxygen-containing gas that has passed through the sedimentary layer reaches the freeboard consisting of the space inside the furnace above the sedimentary layer, and then is discharged from the upper part of the furnace to the outside of the furnace.

このような竪型反応炉では、堆積された処理対象物の沈降は、機械的な送り機構によるものではなく、原則としてその自重によってなされる。そのため、処理対象物内の成分に不均一性がある場合、竪型反応炉内の自重沈降の進行にアンバランスが発生する。このアンバランスが過大になると、処理対象物の一部が、炉内空間を構成する側壁に引っ掛かるように固着して、棚のようなものを形成する「棚吊り」と呼ばれる現象が発生することがある。「棚吊り」が発生すると、炉内に投入された他の処理対象物が、側壁に固着した処理対象物に支えられ、炉底への落下又は沈降をしなくなる。これにより、側壁に固着した処理対象物の直ぐ下方において、処理対象物が存在しない空洞が形成される。 In such a vertical reactor, the sedimentation of the deposited object to be processed is not caused by a mechanical feeding mechanism, but by its own weight in principle. Therefore, if there is non-uniformity in the components in the object to be treated, an imbalance will occur in the progress of self-weight sedimentation in the vertical reactor. When this imbalance becomes excessive, a phenomenon called "shelf suspension" occurs in which a part of the object to be processed sticks to the side wall constituting the furnace space so as to be caught and forms something like a shelf. There is. When "shelf suspension" occurs, other objects to be processed that have been put into the furnace are supported by the objects to be processed that are stuck to the side wall, and do not fall or settle to the bottom of the furnace. As a result, a cavity in which the object to be processed does not exist is formed immediately below the object to be processed fixed to the side wall.

竪型反応炉で生じた「棚吊り」が何らかの理由によって解消されると、「棚吊り」状態となった多量の処理対象物が一気に炉底に向かって崩落する「棚落ち」という現象が起きる。崩落する処理対象物の量が多い場合、その衝撃で炉底構造が破壊されるおそれがある。また、「棚落ち」に伴って大量の処理対象物の熱反応が一気に進行して、ガス成分(水蒸気等)が大量に発生して、崩落後の炉内各所の圧力、温度等に深刻な変化を引き起こし、竪型反応炉の本体、及び本体に接続された設備に損傷を与えるおそれがある。 If the "shelf suspension" that occurs in the vertical reactor is resolved for some reason, a phenomenon called "shelf drop" occurs in which a large number of objects to be processed in the "shelf suspension" state collapse toward the bottom of the furnace at once. .. If the amount of objects to be processed that collapses is large, the impact may destroy the bottom structure. In addition, a large amount of thermal reaction of the object to be treated progresses at once due to "shelf drop", and a large amount of gas components (steam, etc.) are generated, which is serious about the pressure, temperature, etc. in various parts of the furnace after the collapse. It may cause changes and damage the main body of the vertical reactor and the equipment connected to the main body.

そのため、自重沈降式竪型反応炉では、「棚吊り」の発生の早期検出、及び検出後の早期解消方法(機構)が望まれていた。 Therefore, in the self-weight settling vertical reactor, an early detection of the occurrence of "shelf suspension" and an early elimination method (mechanism) after the detection have been desired.

従来から、自重沈降式竪型反応炉内の処理対象物が堆積された部分からなる堆積層の高さを、一定時間毎に、先端に錘を付けたチェーンを介して、炉内の堆積層の上部を接触することで計測し、その計測値に基づいて「棚吊り」が発生しているか否かを推定する方法が知られている。しかしながら、この方法では、チェーンが炉内の高温部を通過する際にチェーンの熱損傷が生じる問題や、チェーンが接触しない箇所で発生する「棚吊り」を検出できないという問題等があった。 Conventionally, the height of the sedimentary layer consisting of the part where the object to be treated in the self-weight settling vertical reactor is deposited is set at regular intervals via a chain with a weight at the tip, and the sedimentary layer in the furnace. There is known a method of measuring by touching the upper part of the firepan and estimating whether or not "hanging on the shelf" has occurred based on the measured value. However, this method has a problem that thermal damage of the chain occurs when the chain passes through a high temperature part in the furnace, and a problem that "shelf suspension" that occurs at a place where the chain does not contact cannot be detected.

これに対して、特許文献1及び2は、「棚吊り」の発生を検出するための方法をそれぞれ提案している。 On the other hand, Patent Documents 1 and 2 propose methods for detecting the occurrence of "shelf suspension", respectively.

特許文献1の方法では、炉底部や炉側壁部に配置された酸素含有気体投入口に対応した位置に温度センサを設け、当該温度センサの検出値が所定の温度を超えた場合、温度センサが設けられた部分が「棚吊り」の下の空洞に入ったと判断し、当該部分の直上部に「棚吊り」が発生していると判定する。 In the method of Patent Document 1, a temperature sensor is provided at a position corresponding to an oxygen-containing gas inlet arranged at the bottom of the furnace or the side wall of the furnace, and when the detected value of the temperature sensor exceeds a predetermined temperature, the temperature sensor is installed. It is determined that the provided portion has entered the cavity under the "shelf suspension", and it is determined that the "shelf suspension" has occurred immediately above the portion.

特許文献2の方法では、反応炉からフリーボードに到達し、炉外へ排出される排ガス量を計測し、当該排ガス量の減少が所定時間以上継続した場合に、「棚吊り」となった処理対象物が堆積層下部に落下しなくなるので、その分の燃焼又は/及び溶融が発生しなくなり、排ガスの量が減少したとみなし、炉内で「棚吊り」が発生していると判定する。 In the method of Patent Document 2, the amount of exhaust gas that reaches the free board from the reactor and is discharged to the outside of the furnace is measured, and when the decrease in the amount of exhaust gas continues for a predetermined time or longer, the process becomes "suspended". Since the object does not fall to the lower part of the sedimentary layer, combustion and / or melting does not occur by that amount, and it is considered that the amount of exhaust gas has decreased, and it is determined that "hanging" has occurred in the furnace.

特開2017−122558号公報Japanese Unexamined Patent Publication No. 2017-122558 特開2009−019787号公報Japanese Unexamined Patent Publication No. 2009-019787

しかしながら、上記特許文献1の方法では、温度センサが設けられた箇所から離れた部分に発生する「棚吊り」の検出ができない。また、特許文献1の方法では、温度センサが設けられた箇所に対応する部分に「棚吊り」が発生した場合でも、「棚吊り」の下部に形成された空洞が、温度センサが設けられた箇所まで広がっていないときは、「棚吊り」の検出ができない。従って、発生した「棚吊り」を早期に検出することができず、状況の拡大を適切に防止することができなかった。 However, the method of Patent Document 1 cannot detect "shelf suspension" that occurs in a portion away from the location where the temperature sensor is provided. Further, in the method of Patent Document 1, even when "shelf suspension" occurs in the portion corresponding to the portion where the temperature sensor is provided, the temperature sensor is provided in the cavity formed in the lower part of the "shelf suspension". If it does not extend to the location, "hanging on the shelf" cannot be detected. Therefore, the occurrence of "shelf suspension" could not be detected at an early stage, and the expansion of the situation could not be appropriately prevented.

一方、特許文献2の方法が用いる排ガスの「継続的な減少」という現象は、「棚吊り」が発生している場合以外にも、例えば処理対象物中に含まれた反応性物質の割合が少なくなった等の場合でも発生する。従って、特許文献2の方法では、「棚吊り」の発生を正確に検出することができない。 On the other hand, in the phenomenon of "continuous reduction" of exhaust gas used by the method of Patent Document 2, for example, the ratio of reactive substances contained in the object to be treated is not limited to the case where "shelf suspension" occurs. It occurs even when the number has decreased. Therefore, the method of Patent Document 2 cannot accurately detect the occurrence of "shelf suspension".

本発明は以上の事情に鑑みてされたものであり、その目的は、自重沈降式竪型反応炉において、「棚吊り」の発生を早期かつ正確に検出できる自重沈降式竪型反応炉内状態把握方法と、「棚吊り」による想定外炉停止を防止でき、反応炉の運転を適切に維持できる自動運転制御方法と、を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a state in a self-weight settling vertical reactor capable of detecting the occurrence of "shelf suspension" early and accurately in a self-weight settling vertical reactor. It is an object of the present invention to provide a grasping method and an automatic operation control method that can prevent an unexpected furnace stop due to "hanging on a shelf" and can maintain an appropriate operation of the reactor.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problem to be solved by the present invention is as described above, and next, the means for solving this problem and its effect will be described.

本発明の観点によれば、以下の自重沈降式竪型反応炉内状態把握方法が提供される。即ち、この自重沈降式竪型反応炉内状態把握方法は、炉上部より処理対象物を炉内に投入し堆積させ、炉底部及び炉下方側壁部に、加圧された酸素含有気体を供給することで、処理対象物を乾燥・熱分解・燃焼・溶融させる自重沈降式竪型反応炉で用いられる。この自重沈降式竪型反応炉内状態把握方法は、3次元熱画像作成工程と、炉内状況把握工程と、を含む。前記3次元熱画像作成工程では、前記自重沈降式竪型反応炉の運転を制御する制御装置が、炉内に堆積された処理対象物より上側に設置され、視点が異なる複数の赤外線カメラによって、堆積された処理対象物から形成された堆積層の最上側界面である堆積層界面の熱画像を撮影することで取得された熱画像に基づいて、前記堆積層界面の3次元熱画像を作成する。前記炉内状況把握工程では、前記制御装置が、前記3次元熱画像作成工程で作成された前記3次元熱画像に基づいて、炉内の状況を把握する。 From the viewpoint of the present invention, the following method for grasping the state of the self-weight sedimentation type vertical reactor is provided. That is, in this method of grasping the state of the self-weight sedimentation type vertical reaction furnace, the object to be treated is charged into the furnace from the upper part of the furnace and deposited, and the pressurized oxygen-containing gas is supplied to the bottom of the furnace and the lower side wall of the furnace. Therefore, it is used in a self-weight settling vertical reactor that dries, thermally decomposes, burns, and melts the object to be treated. This self-weight settling vertical reaction furnace internal state grasping method includes a three-dimensional thermal image creating step and a furnace internal condition grasping step. In the three-dimensional thermal image creation step, a control device for controlling the operation of the self-weight settling vertical reactor is installed above the object to be processed deposited in the reactor, and a plurality of infrared cameras having different viewpoints are used. A three-dimensional thermal image of the sedimentary layer interface is created based on the thermal image obtained by taking a thermal image of the sedimentary layer interface, which is the uppermost interface of the sedimentary layer formed from the deposited object to be processed. .. In the in-core situation grasping step, the control device grasps the inside of the furnace based on the three-dimensional thermal image created in the three-dimensional thermal image creating step.

これにより、3次元熱画像を用いることで、目視で観測できない炉内の全面の様子及び変化を正確かつ容易に把握することができるので、「棚吊り」等の異常の発生位置にかかわらず、異常を早期かつ正確に検出することができる。この結果、異常に対する早期対策を行うことができるので、想定外の炉停止を防止でき、反応炉の運転を適切に維持することができる。 As a result, by using a three-dimensional thermal image, it is possible to accurately and easily grasp the state and changes of the entire surface of the furnace, which cannot be visually observed, regardless of the position where an abnormality such as "hanging on a shelf" occurs. Abnormalities can be detected early and accurately. As a result, since early countermeasures against abnormalities can be taken, unexpected furnace shutdown can be prevented, and the operation of the reactor can be maintained appropriately.

本発明によれば、自重沈降式竪型反応炉において、「棚吊り」の発生を早期かつ正確に検出することができる。 According to the present invention, in a self-weight settling vertical reactor, the occurrence of "shelf suspension" can be detected early and accurately.

本発明の一実施形態に係る自重沈降式竪型反応炉の概略な構成を示す模式図。The schematic diagram which shows the schematic structure of the self-weight settling type vertical reactor which concerns on one Embodiment of this invention. 「棚吊り」の早期発見及び解消のために制御装置が行う制御を示すフローチャート。The flowchart which shows the control performed by the control device for early detection and elimination of "shelf suspension".

<自重沈降式竪型反応炉の概略な構成>初めに、図1を参照して、本実施形態の自重沈降式竪型反応炉1の構成について説明する。図1は、本発明の一実施形態に係る自重沈降式竪型反応炉1の概略な構成を示す模式図である。なお、以下の説明において「上流」及び「下流」とは、酸素含有気体、処理後ガス、排ガス等が流れる方向の上流及び下流を意味する。 <Rough Configuration of Self-Weight Sedimentation Vertical Reactor> First, the configuration of the self-weight sedimentation vertical reactor 1 of the present embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a schematic configuration of a self-weight settling vertical reactor 1 according to an embodiment of the present invention. In the following description, "upstream" and "downstream" mean upstream and downstream in the direction in which oxygen-containing gas, treated gas, exhaust gas, etc. flow.

自重沈降式竪型反応炉1は、廃棄物等の処理対象物に対して、乾燥、熱分解、燃焼、溶融等の熱処理を行い、処理対象物を溶融させることで減容化させる等の目的で用いられる。自重沈降式竪型反応炉1では、炉体の上方から炉内に投入された処理対象物を炉内空間の下方に堆積させることで、堆積層を形成する。この状態で、加圧された高温の酸素含有気体を炉底部及び炉下方側壁部に供給することで、処理対象物を乾燥、熱分解、燃焼、溶融させる。 The purpose of the self-weight settling vertical reactor 1 is to reduce the volume of a waste or other object to be treated by performing heat treatment such as drying, thermal decomposition, combustion, and melting to melt the object to be treated. Used in. In the self-weight settling type vertical reactor 1, a sedimentary layer is formed by depositing a processing object charged into the furnace from above the furnace body below the space inside the furnace. In this state, the pressurized high-temperature oxygen-containing gas is supplied to the bottom of the furnace and the lower side wall of the furnace to dry, thermally decompose, burn, and melt the object to be treated.

図1に示すように、自重沈降式竪型反応炉1は、炉本体部2と、燃焼ガス供給部3と、赤外線カメラ4と、制御装置9と、を備える。 As shown in FIG. 1, the self-weight settling vertical reactor 1 includes a furnace main body 2, a combustion gas supply 3, an infrared camera 4, and a control device 9.

炉本体部2は、中空の鉛直筒状に形成されている。炉本体部2は、鉛直筒状に限定されず、例えば、炉側面が多少傾斜して形成されても良いし、炉の断面が円形以外の他の形状を有するように形成されても良い。炉本体部2の下部に堆積層22が形成されている。これにより、炉内空間が、図1に示すように、フリーボード21と、堆積層22と、に分けられる。 The furnace body 2 is formed in a hollow vertical tubular shape. The furnace main body 2 is not limited to the vertical tubular shape, and may be formed so that the side surface of the furnace is slightly inclined or the cross section of the furnace has a shape other than a circular shape. A sedimentary layer 22 is formed in the lower part of the furnace main body 2. As a result, the space inside the furnace is divided into a freeboard 21 and a sedimentary layer 22 as shown in FIG.

フリーボード21は、処理対象物の堆積層22より上側の炉内空間である。フリーボード21の上部には、処理対象物の熱処理過程で生成された処理後ガスを炉外へ排出するための処理後ガス排出口21aが形成されている。堆積層22からフリーボード21内に上昇してきた処理後ガスは、この処理後ガス排出口21aを介して炉外へ排出される。フリーボード21内において、処理後ガスの二次燃焼を行っても良い。 The freeboard 21 is a space inside the furnace above the sedimentary layer 22 of the object to be treated. A post-treatment gas discharge port 21a for discharging the post-treatment gas generated in the heat treatment process of the object to be treated to the outside of the furnace is formed on the upper part of the freeboard 21. The treated gas that has risen from the sedimentary layer 22 into the freeboard 21 is discharged to the outside of the furnace through the treated gas discharge port 21a. Secondary combustion of the treated gas may be performed in the freeboard 21.

自重沈降式竪型反応炉1から排出された処理後ガスは、例えば、図1に示すように、処理後ガス処理装置5内に供給される。処理後ガス処理装置5においては、処理後ガスに対して、脱臭、再燃焼、冷却等の処理を行う。 The treated gas discharged from the self-weight settling vertical reactor 1 is supplied into the treated gas treatment apparatus 5 as shown in FIG. 1, for example. In the post-treatment gas treatment apparatus 5, the treated gas is subjected to treatments such as deodorization, reburning, and cooling.

処理後ガス処理装置5によって処理された処理後ガスは、排ガスとして、下流に設けられた図略の排ガス処理装置に供給される。処理後ガスは、排ガス処理装置において排熱回収、冷却、除塵、有害成分低減等の処理が適宜行われた後、煙突等により大気へ排出される。なお、フリーボード21内で二次燃焼を行っている場合、処理後ガス処理装置5における再燃焼処理を省略しても良い。 The treated gas treated by the post-treated gas treatment device 5 is supplied as exhaust gas to the exhaust gas treatment device (not shown) provided downstream. The treated gas is appropriately treated such as exhaust heat recovery, cooling, dust removal, and reduction of harmful components in the exhaust gas treatment device, and then discharged to the atmosphere by a chimney or the like. When secondary combustion is performed in the freeboard 21, the recombustion process in the post-treatment gas treatment device 5 may be omitted.

堆積層22は、図1に示す処理対象物供給装置6によって外部から炉内に投入された処理対象物が炉本体部2の下部に堆積されることで形成されている。処理対象物供給装置6は、例えば供給コンベア等を備える。炉本体部2の上部には、対象物投入口2aが形成される。処理対象物供給装置6は、対象物投入口2aを介して処理対象物を炉内に投入することができる。 The sedimentary layer 22 is formed by depositing the processing object introduced into the furnace from the outside by the processing object supply device 6 shown in FIG. 1 in the lower part of the furnace main body 2. The processing object supply device 6 includes, for example, a supply conveyor or the like. An object input port 2a is formed in the upper part of the furnace main body 2. The processing object supply device 6 can charge the processing object into the furnace through the object charging port 2a.

なお、処理対象物が処理対象物供給装置6へ供給される前に、適宜の処理装置によって粉砕等の処理が行われても良い。また、処理対象物とは別途に、副資材としての、燃焼を促進するためのコークス等の資材、生成される溶融スラグの物性調整を目的とした石灰石や、ドロマイト等の資材等を炉内に投入しても良い。この場合、堆積層22は、炉内下部に堆積された処理対象物及び副資材から構成される。 Before the object to be processed is supplied to the object to be processed 6, a process such as pulverization may be performed by an appropriate processing device. In addition to the object to be treated, materials such as coke for promoting combustion, limestone for adjusting the physical properties of the generated molten slag, materials such as dolomite, etc. as auxiliary materials are placed in the furnace. You may put it in. In this case, the sedimentary layer 22 is composed of a processing object and auxiliary materials deposited in the lower part of the furnace.

堆積層22の上方に投入された処理対象物は、堆積層22において上から下へ沈降していくにつれて、乾燥、熱分解、燃焼又は/及び溶融が順に行われる。この結果、堆積層22では、酸素の濃度及び温度に応じて、自重沈降式竪型反応炉1の高さ方向において、上から順に、乾燥層、熱分解層、燃焼溶融層、溶融層等が形成される。堆積層22の上に落下した処理対象物は、熱処理されながら、含まれる水分の蒸発、熱分解等によって、その質量及び体積が減少され、かさ比重(密度)が増大し、自重(及びその上に堆積された他の処理対象物からの圧力)によって、堆積層22内を沈降していく。最終的に、処理対象物が燃焼又は/及び溶融されて、焼却灰又は溶融スラグとして、炉底から燃焼ガス供給部3を経由して炉外へ排出される。 The object to be treated, which is charged above the sedimentary layer 22, is dried, thermally decomposed, burned, and / or melted in this order as it settles from top to bottom in the sedimentary layer 22. As a result, in the sedimentary layer 22, the dry layer, the pyrolysis layer, the combustion melt layer, the melt layer, and the like are formed in order from the top in the height direction of the self-weight settling vertical reaction furnace 1 according to the oxygen concentration and temperature. It is formed. While being heat-treated, the object to be treated that has fallen onto the sedimentary layer 22 is reduced in mass and volume due to evaporation of water contained in it, thermal decomposition, etc., and its bulk specific gravity (density) is increased, and its own weight (and above it) is increased. The pressure from other objects to be treated) deposited on the sedimentary layer 22 causes sedimentation in the sedimentary layer 22. Finally, the object to be treated is burned and / and melted, and discharged as incineration ash or molten slag from the bottom of the furnace to the outside of the furnace via the combustion gas supply unit 3.

上述のように、堆積層22内において、処理対象物の成分の不均一性等によって、処理対象物が炉の内壁に引っ掛かるように固着する「棚吊り」と呼ばれる現象が発生する可能性がある。この「棚吊り」は堆積層22の上下方向中途部で発生するため、目視で観測することが困難である。なお、本実施形態の自重沈降式竪型反応炉1における「棚吊り」の検出の詳細は後述する。 As described above, in the sedimentary layer 22, a phenomenon called "shelf suspension" may occur in which the object to be treated is stuck so as to be caught on the inner wall of the furnace due to the non-uniformity of the components of the object to be treated. .. Since this "shelf suspension" occurs in the middle part of the sedimentary layer 22 in the vertical direction, it is difficult to visually observe it. The details of the detection of "shelf suspension" in the self-weight settling vertical reactor 1 of the present embodiment will be described later.

燃焼ガス供給部3は、炉本体部2の下端に接続され、炉本体部2と一体に形成されている。燃焼ガス供給部3内には、例えば、図略の複数の燃焼バーナーが設けられている。各燃焼バーナーは、加圧された高温の酸素含有気体と、LPG(Liquefied Petroleum Gas)や重油等の燃料と、の混合体を、上側に向かって、炉本体部2(堆積層22)の底部から炉内に吹き出す。 The combustion gas supply unit 3 is connected to the lower end of the furnace body 2 and is integrally formed with the furnace body 2. In the combustion gas supply unit 3, for example, a plurality of combustion burners (not shown) are provided. Each combustion burner puts a mixture of a pressurized high-temperature oxygen-containing gas and a fuel such as LPG (Liquefied Petroleum Gas) or heavy oil upward toward the bottom of the furnace body 2 (deposited layer 22). Blow into the furnace.

図1に示すように、燃焼ガス供給部3の底部の一側には、焼却灰及び/又は溶融スラグ等を取り出すための焼却灰又はスラグ排出口3aが形成されている。炉本体部2内で燃焼又は/及び溶融され生成された焼却灰又は溶融スラグは、当該焼却灰又はスラグ排出口3aを介して炉内へ排出される。 As shown in FIG. 1, an incineration ash or slag discharge port 3a for taking out incineration ash and / or molten slag is formed on one side of the bottom of the combustion gas supply unit 3. The incineration ash or molten slag produced by burning and / and melting in the furnace main body 2 is discharged into the furnace through the incineration ash or slag discharge port 3a.

赤外線カメラ4は、物体から放射される赤外線を可視化するためのカメラから構成される。赤外線カメラ4は、静止画を撮像することを主目的とする機器であっても良いし、動画を撮像することを主目的とする機器であっても良い。動画は連続する複数の静止画であるため、何れの機器であっても、熱画像を取得するという機能は同じである。 The infrared camera 4 is composed of a camera for visualizing infrared rays emitted from an object. The infrared camera 4 may be a device whose main purpose is to capture a still image, or a device whose main purpose is to capture a moving image. Since a moving image is a plurality of continuous still images, the function of acquiring a thermal image is the same regardless of the device.

赤外線カメラ4は、主として堆積層22の上側界面である堆積層界面の熱画像を取得することを目的としている。そのため、赤外線カメラ4は、堆積層界面の全面を見下ろす位置に設置することが望ましい。赤外線カメラ4は、例えば、自重沈降式竪型反応炉1の天井面、フリーボード21の側壁面等の位置に設置することができる。堆積層界面の全面が、赤外線カメラ4の取得画像範囲に含まれることが好ましい。ただし、赤外線カメラ4の設置上の制約等によって、取得画像範囲内に堆積層界面の全面を含むことが困難な場合は、その限りではない。 The purpose of the infrared camera 4 is mainly to acquire a thermal image of the sedimentary layer interface, which is the upper interface of the sedimentary layer 22. Therefore, it is desirable to install the infrared camera 4 at a position overlooking the entire surface of the sedimentary layer interface. The infrared camera 4 can be installed at a position such as a ceiling surface of a self-weight settling vertical reactor 1 or a side wall surface of a freeboard 21. It is preferable that the entire surface of the deposition layer interface is included in the acquired image range of the infrared camera 4. However, this does not apply when it is difficult to include the entire surface of the sedimentary layer interface within the acquired image range due to restrictions on the installation of the infrared camera 4.

赤外線カメラ4は、選択透過フィルタ4aを介して、自重沈降式竪型反応炉1の炉内における堆積層界面の熱画像を撮影している。選択透過フィルタ4aは、火炎が放射しない波長(例えば3.9μm帯)の光を選択的に透過させるフィルタである。 The infrared camera 4 captures a thermal image of the sedimentary layer interface in the self-weight settling vertical reactor 1 via the selective transmission filter 4a. The selective transmission filter 4a is a filter that selectively transmits light having a wavelength (for example, 3.9 μm band) that the flame does not emit.

ここで、「火炎が放射しない」とは、火炎が放射する他の波長の光と比較して大幅に光度が低い(殆ど照射しない)という意味であり、当該波長の光を火炎が全く放射しないことを示すものではない。 Here, "the flame does not radiate" means that the luminous intensity is significantly lower (almost no irradiation) than the light of other wavelengths emitted by the flame, and the flame does not radiate the light of the wavelength at all. It does not indicate that.

選択透過フィルタ4aを介して、火炎の向こう側にある物体の熱画像を透視的に取得できる。なお、本実施形態において、選択透過フィルタ4aは、赤外線カメラ4と一体的に構成されているが、別体であっても良い。つまり、炉内の光が通る経路上に選択透過フィルタ4aを配置し、この選択透過フィルタ4aを透過した透過光を通常の赤外線カメラで処理しても良い。 A thermal image of an object on the other side of the flame can be seen through the selective transmission filter 4a. In the present embodiment, the selective transmission filter 4a is integrally configured with the infrared camera 4, but may be a separate body. That is, the selective transmission filter 4a may be arranged on the path through which the light in the furnace passes, and the transmitted light transmitted through the selective transmission filter 4a may be processed by a normal infrared camera.

上記のように、赤外線カメラ4及び選択透過フィルタ4aを介して炉内の温度分布を示す熱画像を取得することで、発光する火炎を伴わない反応である場合、また、炉内が真っ暗で有用な可視光学画像を取得できない熱処理を行う各種の反応炉の場合においても、暗闇の奥にある物体の熱画像を取得することができる。なお、上記の構成に限定されず、例えば堆積層界面及びフリーボード21において火炎が存在しない場合、選択透過フィルタ4aを省略しても良い。 As described above, by acquiring a thermal image showing the temperature distribution in the furnace through the infrared camera 4 and the selective transmission filter 4a, it is useful when the reaction is not accompanied by a luminescent flame and the inside of the furnace is pitch black. Even in the case of various reactors that perform heat treatment, which cannot acquire a clear visible optical image, it is possible to acquire a thermal image of an object in the depths of darkness. The configuration is not limited to the above, and the selective transmission filter 4a may be omitted when, for example, there is no flame at the sedimentary layer interface and the freeboard 21.

本実施形態の自重沈降式竪型反応炉1において、赤外線カメラ4は、3次元熱画像(温度分布を3次元的に示す画像)を作成することを目的として、複数(例えば2つ以上)設けられている。当該複数の赤外線カメラ4の相対位置は、制御装置9により予め記憶されている。 In the self-weight settling vertical reactor 1 of the present embodiment, a plurality (for example, two or more) infrared cameras 4 are provided for the purpose of creating a three-dimensional thermal image (an image showing the temperature distribution in three dimensions). Has been done. The relative positions of the plurality of infrared cameras 4 are stored in advance by the control device 9.

制御装置9は、例えば公知のコンピュータとして構成される。制御装置9は、図示しないCPU、RAM、ROM、HDD等を備え、種々の演算を行うとともに、自重沈降式竪型反応炉1の運転を制御する。制御装置9が備える記憶部は、自重沈降式竪型反応炉1を制御するための様々なデータを記憶する。この記憶部は、上記のROM及びHDD等から構成されている。 The control device 9 is configured as, for example, a known computer. The control device 9 includes a CPU, RAM, ROM, HDD, etc. (not shown), performs various calculations, and controls the operation of the self-weight settling vertical reactor 1. The storage unit included in the control device 9 stores various data for controlling the self-weight settling vertical reactor 1. This storage unit is composed of the above ROM, HDD, and the like.

<制御装置が行う制御>制御装置9は、本発明の自重沈降式竪型反応炉内状態把握方法を実行することで、炉内の状態を正確に把握し、発生した「棚吊り」を早期かつ正確に検出する。また、制御装置9は、自重沈降式竪型反応炉1の運転を制御するための自動運転制御方法を実行することで、自重沈降式竪型反応炉内状態把握方法を用いて検出された「棚吊り」に対して、自重沈降式竪型反応炉1に対する操作変数(制御変量)等を変更することで、「棚吊り」の早期解消を実現する。 <Control performed by the control device> The control device 9 accurately grasps the state inside the furnace by executing the self-weight settling vertical reaction furnace state grasping method of the present invention, and promptly grasps the generated "shelf suspension". And accurately detect. Further, the control device 9 is detected by using the self-weight settling vertical reactor internal state grasping method by executing the automatic operation control method for controlling the operation of the self-weight settling vertical reactor 1. By changing the operating variables (control variables) for the self-weight settling vertical reactor 1 with respect to "shelf suspension", early elimination of "shelf suspension" is realized.

以下、制御装置9が行う制御について、図2のフローチャートに沿って具体的に説明する。図2は、「棚吊り」の早期発見及び解消するために制御装置9が行う制御を示すフローチャートである。 Hereinafter, the control performed by the control device 9 will be specifically described with reference to the flowchart of FIG. FIG. 2 is a flowchart showing the control performed by the control device 9 in order to detect and eliminate the “shelf suspension” at an early stage.

初めに、制御装置9は、3次元熱画像作成工程において、赤外線カメラ4が取得した堆積層界面の熱画像に基づいて3次元熱画像を作成して記憶する(ステップS101)。制御装置9は、作成された3次元熱画像を、当該3次元熱画像に対応する熱画像を撮影する時点における自重沈降式竪型反応炉1の操作変数と関連付けた状態で記憶する。制御装置9は、異なる時点で撮影した熱画像に基づいて作成された複数の3次元熱画像を時系列で記憶する。 First, in the three-dimensional thermal image creation step, the control device 9 creates and stores a three-dimensional thermal image based on the thermal image of the deposited layer interface acquired by the infrared camera 4 (step S101). The control device 9 stores the created three-dimensional thermal image in a state associated with the operating variable of the self-weight settling vertical reactor 1 at the time when the thermal image corresponding to the three-dimensional thermal image is taken. The control device 9 stores a plurality of three-dimensional thermal images created based on thermal images taken at different time points in time series.

自重沈降式竪型反応炉1の操作変数としては、例えば、炉底部から炉内に供給される酸素含有気体の温度、圧力、酸素含有量、供給量等の供給条件、炉下方側壁部から炉内に供給される酸素含有気体の上記供給条件、処理対象物等の炉内投入方法(単位時間投入量、処理対象物の粉砕程度等)、処理対象物の種類等から、1又は複数を選択することができる。 The operating variables of the self-weight settling vertical reactor 1 include, for example, supply conditions such as temperature, pressure, oxygen content, and supply amount of the oxygen-containing gas supplied from the bottom of the furnace into the furnace, and the furnace from the lower side wall of the furnace. Select one or more from the above supply conditions of the oxygen-containing gas supplied to the inside, the method of charging the object to be processed into the furnace (unit time input amount, degree of crushing of the object to be processed, etc.), the type of object to be processed, etc. can do.

複数の熱画像から3次元熱画像を作成する処理は公知であり、以下、簡単に説明する。制御装置9は、例えば、堆積層界面のある特定箇所が、少なくとも2つの赤外線カメラ4が同時点で取得した2つの熱画像のそれぞれにおいて表示された位置を特定する。そして、予め記憶されている2つの赤外線カメラ4のそれぞれの配置位置及び視点を用いて、三角法等に基づいて、それぞれの赤外線カメラ4から、堆積層界面の特定箇所までの距離を算出する。各赤外線カメラ4から特定箇所までの距離のそれぞれに基づいて、特定箇所の3次元座標を得ることができる。このように処理することで、制御装置9は、堆積層界面の各部分の3次元座標をそれぞれ特定しながら、3次元熱画像を作成する。 A process for creating a three-dimensional thermal image from a plurality of thermal images is known, and will be briefly described below. The control device 9 identifies, for example, the position where a specific location at the sedimentary layer interface is displayed in each of the two thermal images acquired by at least two infrared cameras 4 at the same time. Then, using the respective arrangement positions and viewpoints of the two infrared cameras 4 stored in advance, the distance from each infrared camera 4 to the specific location of the deposition layer interface is calculated based on the trigonometry or the like. Based on each of the distances from each infrared camera 4 to the specific location, the three-dimensional coordinates of the specific location can be obtained. By processing in this way, the control device 9 creates a three-dimensional thermal image while specifying the three-dimensional coordinates of each part of the sedimentary layer interface.

次に、制御装置9は、炉内状況把握工程において、作成された3次元熱画像を分析する(ステップS102)。この分析は、制御装置9は、炉内の堆積層界面を平面視でメッシュ状となるように分割することで複数の分割単位を予め定義し、この分割単位毎に行われる。それぞれの分割単位の形状は任意である。分割単位同士の形状及びサイズが、同じであっても良いし、互いに異なっても良い。 Next, the control device 9 analyzes the created three-dimensional thermal image in the furnace situation grasping step (step S102). In this analysis, the control device 9 defines a plurality of division units in advance by dividing the sedimentary layer interface in the furnace so as to form a mesh in a plan view, and is performed for each division unit. The shape of each division unit is arbitrary. The shapes and sizes of the division units may be the same or different from each other.

制御装置9は、3次元熱画像及びその履歴に基づいて、各分割単位に対応する堆積層界面の外観動態変化を算出して、操作変数と関連付けて、かつ時系列で記憶する。なお、この外観動態変化は、上下方向における処理対象物の動態変化も含んでいるので、処理対象物の沈降についてもある程度反映している。言い換えれば、外観動態変化には、処理対象物の沈降速度変化が含まれている。 The control device 9 calculates the appearance dynamic change of the sedimentary layer interface corresponding to each division unit based on the three-dimensional thermal image and its history, associates it with the manipulated variable, and stores it in time series. Since this change in appearance includes the change in the dynamics of the object to be treated in the vertical direction, it also reflects the sedimentation of the object to be treated to some extent. In other words, the change in appearance dynamics includes the change in the sedimentation rate of the object to be treated.

そして、制御装置9は、分割単位毎における外観動態変化の乖離を算出する。詳細には、制御装置9は、対象の分割単位に対して、当該分割単位の外観動態変化と、その周辺に位置する他の分割単位である周辺分割単位の同時点の外観動態変化と、を比較することによって、その乖離を位置基準外観動態乖離として算出する。 Then, the control device 9 calculates the deviation of the appearance dynamic change for each division unit. Specifically, the control device 9 determines the appearance dynamic change of the division unit and the appearance dynamic change of the simultaneous point of the peripheral division unit which is another division unit located in the vicinity thereof with respect to the target division unit. By comparing, the deviation is calculated as a position-based appearance dynamic deviation.

ところで、上述のように「棚吊り」が発生すると、棚となった処理対象物の上に堆積された処理対象物が沈降しなくなる。従って、堆積層界面において、「棚吊り」の発生部分の外観動態変化と、「棚吊り」が発生していない他の部分の外観動態変化と、の間で差異が生じる。即ち、この位置基準外観動態乖離は、対応する分割単位の直下方において、自重沈降について、他の分割単位と比較して何らかの特異的な状況が起きているか否かを示している。 By the way, when "shelf suspension" occurs as described above, the processing object deposited on the processing object that has become a shelf does not settle. Therefore, at the interface of the sedimentary layer, there is a difference between the appearance dynamic change of the portion where "shelf suspension" occurs and the appearance dynamic change of the other portion where "shelf suspension" does not occur. That is, this position-based appearance dynamic divergence indicates whether or not some specific situation has occurred in the self-weight settling directly below the corresponding division unit as compared with other division units.

また、制御装置9は、対象の分割単位に対して、算出された最新の外観動態変化と、当該分割単位自体の過去の外観動態変化と、を比較することによって、その乖離を時間基準外観動態乖離として算出する。 Further, the control device 9 compares the calculated latest appearance dynamic change with the past appearance dynamic change of the division unit itself with respect to the target division unit, and determines the difference between the time-based appearance dynamics. Calculated as divergence.

上述のように、「棚吊り」の発生箇所では処理対象物が沈降しなくなる。従って、「棚吊り」が発生している部分では、現在の堆積層界面の外観動態変化と、「棚吊り」が発生していなかった過去の外観動態変化と、の間で差異が生じる。即ち、この時間基準動態乖離は、対応する分割単位の直下方において、自重沈降について、以前とは異なる何らかの特異的な状況が起きているか否かを示している。 As described above, the object to be treated does not settle at the place where "shelf suspension" occurs. Therefore, in the portion where "shelf suspension" occurs, there is a difference between the current appearance dynamic change of the sedimentary layer interface and the past appearance dynamic change in which "shelf suspension" did not occur. That is, this time-based dynamic divergence indicates whether or not some specific situation different from the previous one occurs with respect to the self-weight sedimentation immediately below the corresponding division unit.

上記堆積層界面の外観動態変化に関する算出に伴って、制御装置9は、各分割単位に対して、当該分割単位(具体的に言えば、分割単位に対応する堆積層界面)の平均温度を算出して、操作変数と関連付けた状態かつ時系列で記憶する。ここでの平均温度とは、1つの分割単位に注目したときに、堆積層界面の温度に関する、当該分割単位における場所的な平均値を意味する。そして、制御装置9は、分割単位毎における平均温度の乖離を算出する。 Along with the calculation regarding the change in the appearance dynamics of the sedimentary layer interface, the control device 9 calculates the average temperature of the divided unit (specifically, the deposited layer interface corresponding to the divided unit) for each divided unit. Then, it is stored in the state associated with the manipulated variable and in chronological order. The average temperature here means a local average value in the division unit with respect to the temperature of the sedimentary layer interface when paying attention to one division unit. Then, the control device 9 calculates the deviation of the average temperature for each division unit.

詳細には、制御装置9は、対象の分割単位に対して、当該分割単位の平均温度と、その周辺に位置する他の分割単位である周辺分割単位の同時点の平均温度と、を比較することによって、その乖離を位置基準平均温度乖離として算出する。 Specifically, the control device 9 compares the average temperature of the division unit with respect to the target division unit and the average temperature of the simultaneous points of the peripheral division units, which are other division units located in the vicinity thereof. Therefore, the deviation is calculated as the position-based average temperature deviation.

ところで、「棚吊り」が発生すると、堆積層22内を上昇してくる高温の酸素含有気体は、棚となった処理対象物によって、その流動(上昇)が阻害され、棚となった部分を避けた形で堆積層22内を上昇して堆積層界面を通過することになる。これにより、「棚吊り」が発生する部分の直上に堆積された処理対象物に対して、高温の酸素含有気体による加温、熱反応が弱まる。この結果、堆積層界面において、「棚吊り」が発生している部分の温度と、「棚吊り」が発生していない他の部分の温度と、の間で差異が生じる。即ち、この位置基準平均温度乖離は、対応する堆積層界面の直下方において、酸素含有気体の流動について、他の分割単位と比較して何らかの特異的な状況が起きているか否かを示している。 By the way, when "shelf suspension" occurs, the flow (rise) of the high-temperature oxygen-containing gas rising in the sedimentary layer 22 is hindered by the processing object that has become a shelf, and the portion that has become a shelf is removed. In an avoided form, it rises in the sedimentary layer 22 and passes through the sedimentary layer interface. As a result, the heating and thermal reaction by the high-temperature oxygen-containing gas with respect to the object to be treated deposited directly above the portion where "shelf suspension" occurs is weakened. As a result, at the interface of the sedimentary layer, there is a difference between the temperature of the portion where "shelf suspension" occurs and the temperature of the other portion where "shelf suspension" does not occur. That is, this position-based average temperature divergence indicates whether or not some specific situation has occurred in the flow of the oxygen-containing gas just below the corresponding sedimentary layer interface as compared with other division units. ..

また、制御装置9は、対象の分割単位に対して、算出された最新の平均温度と、当該分割単位自体の過去の平均温度と、を比較することによって、その乖離を時間基準平均温度乖離として算出する。 Further, the control device 9 compares the latest average temperature calculated for the target division unit with the past average temperature of the division unit itself, and sets the deviation as the time-based average temperature deviation. calculate.

上述のように、「棚吊り」が発生すると、「棚吊り」が発生する部分の直上に堆積された処理対象物に対して、高温の酸素含有気体による加温、熱反応が弱まる。この結果、「棚吊り」が発生している部分では、現在の堆積層界面の温度と、「棚吊り」が発生していなかった過去の温度と、の間で差異が生じる。即ち、この時間基準平均温度乖離は、対応する堆積層界面部分の直下方において、酸素含有気体の流動について、以前とは異なる何らかの特異的な状況が起きているか否かを示している。 As described above, when "shelf suspension" occurs, the heating and thermal reaction by the high-temperature oxygen-containing gas weakens with respect to the object to be treated deposited directly above the portion where "shelf suspension" occurs. As a result, in the portion where "shelf suspension" occurs, there is a difference between the current temperature at the sedimentary layer interface and the past temperature at which "shelf suspension" did not occur. That is, this time-based average temperature divergence indicates whether or not some specific situation different from the previous one occurs in the flow of the oxygen-containing gas immediately below the corresponding sedimentary layer interface portion.

本実施形態の制御装置9は、分割単位毎に堆積層界面を分析している。従って、「棚吊り」等の異常が局所的かつ小規模で発生する段階においても、当該異常を的確に検出することができる。 The control device 9 of the present embodiment analyzes the sedimentary layer interface for each division unit. Therefore, even at the stage where an abnormality such as "hanging on a shelf" occurs locally and on a small scale, the abnormality can be accurately detected.

次に、制御装置9は、炉内状況把握工程において、上記のように算出された外観動態乖離(位置基準外観動態乖離及び時間基準外観動態乖離)、及び平均温度乖離(位置基準平均温度乖離及び時間基準平均温度乖離)のうち少なくとも何れかに基づいて、何らかの異常が発生している分割単位を異常分割単位として特定する(ステップS103)。例えば、制御装置9は、外観動態乖離又は/及び平均温度乖離がそれぞれの所定閾値範囲を外れていた場合、判定対象の分割単位に対応する堆積層22の部分(界面及びその直下部分)に何らかの異常が発生していると判定する。 Next, the control device 9 has the appearance dynamic deviation (position-based appearance dynamic deviation and time-based appearance dynamic deviation) and the average temperature deviation (position-based average temperature deviation and the position-based average temperature deviation) calculated as described above in the process of grasping the in-core condition. Based on at least one of the time-based average temperature deviations), the division unit in which some abnormality has occurred is specified as the abnormality division unit (step S103). For example, when the appearance dynamic divergence and / or the average temperature divergence is out of the respective predetermined threshold range, the control device 9 has something in the portion of the sedimentary layer 22 (the interface and the portion immediately below it) corresponding to the division unit to be determined. Judge that an abnormality has occurred.

制御装置9は、異常分割単位を特定するとともに、現在炉内に「棚吊り」が発生しているか否かを判定する。例えば、制御装置9は、上記外観動態乖離及び平均温度乖離を総合的に評価した評価値を求め、この総合的な評価値が所定の閾値よりも大きな乖離を示している場合、判定対象の分割単位に対応する堆積層界面の直下部分内に「棚吊り」が発生していると判定する。 The control device 9 identifies the abnormal division unit and determines whether or not "shelf suspension" is currently occurring in the furnace. For example, the control device 9 obtains an evaluation value that comprehensively evaluates the appearance dynamic deviation and the average temperature deviation, and when the comprehensive evaluation value shows a deviation larger than a predetermined threshold value, the determination target is divided. It is determined that "shelf suspension" has occurred in the portion directly below the sedimentary layer interface corresponding to the unit.

上記の所定閾値範囲、及び評価値の閾値は、シミュレーション、試運転、実際の運転データ等に基づいて、操作変数に関連付けて適宜定めることができる。 The above-mentioned predetermined threshold range and the threshold value of the evaluation value can be appropriately determined in association with the operation variables based on simulation, test run, actual operation data, and the like.

次に、制御装置9は、対策方法決定工程において、判定された異常分割単位に対して、発生している異常を解消させるための対策方法を決定する(ステップS104)。なお、ステップS103で制御装置9が「棚吊り」が発生していると判定した場合、ステップS104において、制御装置9は、「棚吊り」を解消させるための対策方法も決定する。 Next, in the countermeasure method determination step, the control device 9 determines a countermeasure method for eliminating the generated abnormality for the determined abnormality division unit (step S104). When the control device 9 determines in step S103 that "shelf suspension" has occurred, the control device 9 also determines a countermeasure method for eliminating the "shelf suspension" in step S104.

この対策方法としては、(1)炉底部からの酸素含有気体の供給条件を変更すること、(2)炉下方側壁部からの酸素含有気体の供給条件を変更すること、(3)処理対象物等の炉内投入方法を変更すること等を例として挙げることができる。 Countermeasures for this include (1) changing the supply conditions of the oxygen-containing gas from the bottom of the furnace, (2) changing the supply conditions of the oxygen-containing gas from the lower side wall of the furnace, and (3) the object to be treated. As an example, it is possible to change the method of charging the gas into the furnace.

制御装置9は、自重沈降式竪型反応炉1の特性、処理対象物の種類、異常分割単位の分布及び数量、外観動態乖離の大きさ、平均温度乖離の大きさ等を総合的に分析することで、上記のような対策方法のうち少なくとも何れかの対策方法を決定する。 The control device 9 comprehensively analyzes the characteristics of the self-weight settling vertical reactor 1, the type of the object to be treated, the distribution and quantity of the abnormal division unit, the magnitude of the appearance dynamic deviation, the magnitude of the average temperature deviation, and the like. Therefore, at least one of the above-mentioned countermeasures is determined.

これにより、自重沈降式竪型反応炉1の特性、及び炉内の状態に合致した対策方法を決定することができ、対策方法の有効性を向上でき、異常又は/及び「棚吊り」の早期解消を実現することができる。 As a result, it is possible to determine the countermeasure method that matches the characteristics of the self-weight settling vertical reactor 1 and the condition inside the reactor, improve the effectiveness of the countermeasure method, and perform abnormalities and / or early "hanging on the shelf". The solution can be realized.

その後、制御装置9は、対策実行工程において、決定した対策方法に基づいて、自重沈降式竪型反応炉1の運転に影響する操作変数を調整する。この結果、異常分割単位で発生する異常を解消させることで「棚吊り」の発生を防止し、また、「棚吊り」が発生している場合には、その「棚吊り」を早期解消させる(ステップS105)。 After that, the control device 9 adjusts the instrumental variables that affect the operation of the self-weight settling vertical reactor 1 based on the determined countermeasure method in the countermeasure execution step. As a result, the occurrence of "shelf suspension" is prevented by eliminating the abnormality that occurs in the abnormal division unit, and if "shelf suspension" occurs, the "shelf suspension" is eliminated at an early stage ( Step S105).

以上に説明したように、本実施形態の自重沈降式竪型反応炉内状態把握方法は、炉上部より処理対象物を炉内に投入し堆積させ、炉底部及び炉下方側壁部に、加圧された酸素含有気体を供給することで、処理対象物を乾燥・熱分解・燃焼・溶融させる自重沈降式竪型反応炉1で用いられる。この自重沈降式竪型反応炉内状態把握方法は、3次元熱画像作成工程と、炉内状況把握工程と、を含む。3次元熱画像作成工程では、自重沈降式竪型反応炉1の運転を制御する制御装置9が、炉内に堆積された処理対象物より上側に設置され、視点が異なる複数の赤外線カメラ4によって、堆積された処理対象物から形成された堆積層の最上側界面である堆積層界面の熱画像を撮影することで取得された熱画像に基づいて、堆積層界面の3次元熱画像を作成する。炉内状況把握工程では、制御装置9が、3次元熱画像作成工程で作成された3次元熱画像に基づいて、炉内の状況を把握する。 As described above, in the method for grasping the state of the self-weight settling vertical reaction furnace of the present embodiment, the object to be treated is charged into the furnace from the upper part of the furnace and deposited, and the bottom of the furnace and the lower side wall of the furnace are pressurized. It is used in the self-weight settling vertical reactor 1 that dries, thermally decomposes, burns, and melts the object to be treated by supplying the oxygen-containing gas. This self-weight settling vertical reaction furnace internal state grasping method includes a three-dimensional thermal image creating step and a furnace internal condition grasping step. In the three-dimensional thermal image creation step, a control device 9 for controlling the operation of the self-weight settling vertical reactor 1 is installed above the object to be processed deposited in the furnace, and is provided by a plurality of infrared cameras 4 having different viewpoints. Create a three-dimensional thermal image of the sedimentary layer interface based on the thermal image obtained by taking a thermal image of the sedimentary layer interface, which is the uppermost interface of the sedimentary layer formed from the deposited object to be processed. .. In the furnace situation grasping step, the control device 9 grasps the furnace situation based on the three-dimensional thermal image created in the three-dimensional thermal image creating step.

これにより、3次元熱画像を用いることで、目視で観測できない炉内の全面の様子及び変化を正確かつ容易に把握することができるので、「棚吊り」等の異常の発生位置にかかわらず、異常を早期かつ正確に検出することができる。この結果、異常に対する早期対策を行うことができるので、想定外の炉停止を防止でき、反応炉の運転を適切に維持することができる。 As a result, by using a three-dimensional thermal image, it is possible to accurately and easily grasp the state and changes of the entire surface of the furnace, which cannot be visually observed, regardless of the position where an abnormality such as "hanging on a shelf" occurs. Abnormalities can be detected early and accurately. As a result, since early countermeasures against abnormalities can be taken, unexpected furnace shutdown can be prevented, and the operation of the reactor can be maintained appropriately.

また、本実施形態の自重沈降式竪型反応炉内状態把握方法において、炉内状況把握工程では、制御装置9が以下の処理を行う。即ち、制御装置9は、3次元熱画像作成工程で作成された3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の外観動態変化を算出する。また、制御装置9は、各分割単位に対して、算出した外観動態変化と、周辺に位置する他の分割単位である周辺分割単位の外観動態変化との乖離である位置基準外観動態乖離、及び、同一の分割単位自体の外観動態変化の履歴との乖離である時間基準外観動態乖離を算出する。また、制御装置9は、算出された位置基準外観動態乖離、及び時間基準外観動態乖離を含む外観動態乖離に基づいて、判定対象の分割単位に対応する堆積層22に異常が発生しているか否かを判定する。制御装置9は、異常が発生していると判定した場合、判定対象の当該分割単位を異常分割単位として特定する。 Further, in the method for grasping the state in the self-weight settling vertical reaction furnace of the present embodiment, the control device 9 performs the following processing in the step of grasping the state in the furnace. That is, the control device 9 is formed by dividing the deposited layer interface into a mesh shape in advance based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image. For each division unit, the change in appearance dynamics of the sedimentary layer interface in the division unit is calculated. Further, the control device 9 has a position-based appearance dynamic deviation, which is a deviation between the calculated appearance dynamic change and the appearance dynamic change of the peripheral division unit, which is another division unit located in the periphery, for each division unit. , Calculate the time-based appearance dynamic deviation, which is the deviation from the history of the appearance dynamic change of the same division unit itself. Further, the control device 9 determines whether or not an abnormality has occurred in the deposited layer 22 corresponding to the division unit to be determined based on the calculated position-based appearance dynamic deviation and the appearance dynamic deviation including the time-based appearance dynamic deviation. Is determined. When the control device 9 determines that an abnormality has occurred, the control device 9 specifies the division unit to be determined as the abnormality division unit.

これにより、炉内の堆積層22の外観動態に関する情報を用いることで、堆積層22内で発生している異常を正確に判定することができる。また、動態に関する判定が分割単位毎に行われるので、局所的かつ小規模な異常に対しても正確に判定することができる。 Thereby, by using the information on the appearance dynamics of the sedimentary layer 22 in the furnace, it is possible to accurately determine the abnormality occurring in the sedimentary layer 22. In addition, since the determination regarding the dynamics is performed for each division unit, it is possible to accurately determine even a local and small-scale abnormality.

また、本実施形態の自重沈降式竪型反応炉内状態把握方法において、炉内状況把握工程では、制御装置9が以下の処理を行う。即ち、制御装置9は、3次元熱画像作成工程で作成された3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の平均温度を算出する。また、制御装置9は、各分割単位に対して、算出した平均温度と、周辺に位置する他の分割単位である周辺分割単位の平均温度との乖離である位置基準平均温度乖離、及び、同一の分割単位自体の平均温度の履歴との乖離である時間基準平均温度乖離を算出する。また、制御装置9は、算出された位置基準平均温度乖離、及び時間基準平均温度乖離を含む平均温度乖離に基づいて、判定対象の分割単位に対応する堆積層22内に異常が発生しているか否かを判定する。制御装置9は、異常が発生していると判定した場合、判定対象の当該分割単位を異常分割単位として特定する。 Further, in the method for grasping the state in the self-weight settling vertical reaction furnace of the present embodiment, the control device 9 performs the following processing in the step of grasping the state in the furnace. That is, the control device 9 is formed by dividing the deposited layer interface into a mesh shape in advance based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image. For each division unit, the average temperature of the sedimentary layer interface in the division unit is calculated. Further, the control device 9 has a position-based average temperature deviation, which is a deviation between the calculated average temperature and the average temperature of the peripheral division unit, which is another division unit located in the vicinity, and the same for each division unit. Calculate the time-based average temperature deviation, which is the deviation from the history of the average temperature of the division unit itself. Further, in the control device 9, whether an abnormality has occurred in the sedimentary layer 22 corresponding to the division unit to be determined based on the calculated position-based average temperature deviation and the average temperature deviation including the time-based average temperature deviation. Judge whether or not. When the control device 9 determines that an abnormality has occurred, the control device 9 specifies the division unit to be determined as the abnormality division unit.

これにより、炉内の堆積層22の温度に関する情報を用いることで、堆積層22内で発生している異常を正確に判定することができる。また、温度に関する判定が分割単位毎に行われるので、局所的かつ小規模な異常に対しても正確に判定することができる。 Thereby, by using the information on the temperature of the sedimentary layer 22 in the furnace, it is possible to accurately determine the abnormality occurring in the sedimentary layer 22. Further, since the determination regarding the temperature is performed for each division unit, it is possible to accurately determine even a local and small-scale abnormality.

また、本実施形態の自重沈降式竪型反応炉内状態把握方法において、炉内状況把握工程では、制御装置9が以下の処理を行う。即ち、制御装置9は、3次元熱画像作成工程で作成された3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の外観動態変化を算出する。また、制御装置9は、各分割単位に対して、算出した外観動態変化と、周辺に位置する他の分割単位である周辺分割単位の外観動態変化との乖離である位置基準外観動態乖離、及び、同一の分割単位自体の外観動態変化の履歴との乖離である時間基準外観動態乖離を算出する。また、制御装置9は、算出された位置基準外観動態乖離、及び時間基準外観動態乖離を含む外観動態乖離及び平均温度乖離に基づいて、判定対象の異常分割単位に対応する堆積層界面の下の部分に処理対象物が炉内側壁に固着する「棚吊り」が発生しているか否かを判定する。 Further, in the method for grasping the state in the self-weight settling vertical reaction furnace of the present embodiment, the control device 9 performs the following processing in the step of grasping the state in the furnace. That is, the control device 9 is formed by dividing the deposited layer interface into a mesh shape in advance based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image. For each division unit, the change in appearance dynamics of the sedimentary layer interface in the division unit is calculated. Further, the control device 9 has a position-based appearance dynamic deviation, which is a deviation between the calculated appearance dynamic change and the appearance dynamic change of the peripheral division unit, which is another division unit located in the periphery, for each division unit. , Calculate the time-based appearance dynamic deviation, which is the deviation from the history of the appearance dynamic change of the same division unit itself. Further, the control device 9 is under the sedimentary layer interface corresponding to the abnormal division unit to be determined based on the calculated position-based appearance dynamics deviation, appearance dynamics deviation including time-based appearance dynamics deviation, and average temperature deviation. It is determined whether or not "shelf suspension" in which the object to be treated sticks to the inner wall wall of the furnace occurs in the portion.

これにより、外観動態乖離及び平均温度乖離を総合的に判定することで、「棚吊り」の発生に関する判定精度を向上させることができる。 As a result, it is possible to improve the determination accuracy regarding the occurrence of "shelf suspension" by comprehensively determining the appearance dynamic deviation and the average temperature deviation.

また、本実施形態の自動運転制御方法は、対策方法決定工程と、対策実行工程と、を含む。対策方法決定工程では、制御装置9が、自重沈降式竪型反応炉内状態把握方法によって算出された外観動態乖離及び/又は平均温度乖離に基づいて、異常分割単位に対応する堆積層界面の外観動態変化及び/又は平均温度の乖離を小さくするための対策方法を決定する。対策実行工程では、制御装置9が、対策方法決定工程で決定された対策方法に基づいて、自重沈降式竪型反応炉1の運転に関する操作変数を調整する。 Further, the automatic operation control method of the present embodiment includes a countermeasure method determination step and a countermeasure execution step. In the countermeasure method determination step, the control device 9 determines the appearance of the sedimentary layer interface corresponding to the anomalous division unit based on the appearance dynamic deviation and / or the average temperature deviation calculated by the self-weight settling vertical reaction furnace state grasping method. Determine measures to reduce dynamic changes and / or mean temperature divergence. In the countermeasure execution step, the control device 9 adjusts the instrumental variables related to the operation of the self-weight settling vertical reactor 1 based on the countermeasure method determined in the countermeasure method determination step.

これにより、炉内に発生している異常の状況に応じて対策を行うことができる。この結果、「棚吊り」の防止を実現でき、自重沈降式竪型反応炉1の運転の安定性を向上することができる。 As a result, countermeasures can be taken according to the abnormal situation occurring in the furnace. As a result, it is possible to prevent "hanging on the shelf" and improve the operational stability of the self-weight settling vertical reactor 1.

また、本実施形態の自動運転制御方法において、対策方法決定工程では、制御装置9が、自重沈降式竪型反応炉内状態把握方法によって、「棚吊り」が発生していると特定された異常分割単位に対して、特定された異常分割単位の外観動態乖離及び平均温度乖離に基づいて、当該異常分割単位に対応する堆積層22内で発生している「棚吊り」を解消する対策方法を決定する。対策実行工程では、制御装置9が、対策方法決定工程で決定された対策方法に基づいて、自重沈降式竪型反応炉1の運転に関する操作変数を調整する。 Further, in the automatic operation control method of the present embodiment, in the countermeasure method determination step, the control device 9 is identified as having "held suspension" by the self-weight settling vertical reaction furnace state grasping method. For the division unit, based on the appearance dynamic deviation and the average temperature deviation of the specified abnormal division unit, a countermeasure method for eliminating the "shelf suspension" occurring in the sedimentary layer 22 corresponding to the abnormal division unit is provided. decide. In the countermeasure execution step, the control device 9 adjusts the instrumental variables related to the operation of the self-weight settling vertical reactor 1 based on the countermeasure method determined in the countermeasure method determination step.

これにより、炉内に「棚吊り」が発生している場合に、外観動態乖離及び平均温度乖離を総合的に考慮することで、「棚吊り」の状況に応じた対策を行うことができる。この結果、「棚吊り」の早期解消を図ることができる。 As a result, when "shelf suspension" occurs in the furnace, measures can be taken according to the "shelf suspension" situation by comprehensively considering the appearance dynamic deviation and the average temperature deviation. As a result, "hanging on the shelf" can be eliminated at an early stage.

以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。 Although the preferred embodiment of the present invention has been described above, the above configuration can be changed as follows, for example.

3次元熱画像は、制御装置9とは別途に設けられた図略の画像処理装置により作成されても良い。この場合、図2に示すステップS101において、制御装置9は、画像処理装置から3次元熱画像を取得して記憶する。 The three-dimensional thermal image may be created by an image processing device (not shown) provided separately from the control device 9. In this case, in step S101 shown in FIG. 2, the control device 9 acquires and stores a three-dimensional thermal image from the image processing device.

赤外線カメラ4が動画を撮影する場合、撮影した動画から堆積層界面の外観動態変化を取得しても良い。 When the infrared camera 4 shoots a moving image, the appearance dynamic change of the deposition layer interface may be acquired from the captured moving image.

自重沈降式竪型反応炉1の特性に応じて、堆積層は、炉本体部2の上部まで形成されても良い。 Depending on the characteristics of the self-weight settling vertical reactor 1, the sedimentary layer may be formed up to the upper part of the furnace body 2.

対象物投入口2aは、自重沈降式竪型反応炉1の頂部に設けられも良い。 The object input port 2a may be provided at the top of the self-weight settling vertical reactor 1.

赤外線カメラ4は、堆積層22に対応する炉本体部2の側方に別途に設けても良い。この場合、堆積層22内の異常の発生位置を補助的に検出することが可能である。 The infrared camera 4 may be separately provided on the side of the furnace body 2 corresponding to the deposition layer 22. In this case, it is possible to auxiliaryly detect the position where the abnormality occurs in the sedimentary layer 22.

1 自重沈降式竪型反応炉
2 炉本体部
2a 対象物投入口
21 フリーボード
21a 処理後ガス排出口
22 堆積層
3 燃焼ガス供給部
3a 焼却灰又はスラグ排出口
4 赤外線カメラ
4a 選択透過フィルタ
5 処理後ガス処理装置
6 処理対象物供給装置
9 制御装置
1 Self-weight settling vertical reactor 2 Reactor body 2a Object input port 21 Free board 21a Processed gas discharge port 22 Sedimentary layer 3 Combustion gas supply part 3a Incineration ash or slag discharge port 4 Infrared camera 4a Selective transmission filter 5 Processing Post-gas treatment device 6 Processing object supply device 9 Control device

そのため、自重沈降式竪型反応炉では、「棚吊り」等の異常の発生の早期検出、及び検出後の早期解消方法(機構)が望まれていた。 Therefore, in the self-weight settling vertical reactor, an early detection of the occurrence of an abnormality such as "hanging on a shelf" and an early elimination method (mechanism) after the detection have been desired.

本発明は以上の事情に鑑みてされたものであり、その目的は、自重沈降式竪型反応炉において、「棚吊り」等の異常の発生を早期かつ正確に検出できる自重沈降式竪型反応炉内状態把握方法と、「棚吊り」等の異常による想定外炉停止を防止でき、反応炉の運転を適切に維持できる自動運転制御方法と、を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a self-weight settling vertical type reaction capable of quickly and accurately detecting the occurrence of an abnormality such as "hanging on a shelf" in a self-weight settling vertical type reactor. It is an object of the present invention to provide a method for grasping the state inside the furnace and an automatic operation control method capable of preventing an unexpected shutdown of the furnace due to an abnormality such as "hanging on a shelf" and maintaining the operation of the reactor appropriately.

本発明の第1の観点によれば、以下の自重沈降式竪型反応炉内状態把握方法が提供される。即ち、この自重沈降式竪型反応炉内状態把握方法は、炉上部より処理対象物を炉内に投入し堆積させ、炉底部及び炉下方側壁部に、加圧された酸素含有気体を供給することで、処理対象物に対して乾燥、熱分解、燃焼、溶融のうち少なくとも1つを行う自重沈降式竪型反応炉で用いられる。この自重沈降式竪型反応炉内状態把握方法は、3次元熱画像作成工程と、炉内状況把握工程と、を含む。前記3次元熱画像作成工程では、前記自重沈降式竪型反応炉の運転を制御する制御装置が、炉内に堆積された処理対象物より上側に設置され、視点が異なる複数の赤外線カメラによって、堆積された処理対象物から形成された堆積層の最上側界面である堆積層界面の熱画像を撮影することで取得された熱画像に基づいて、前記堆積層界面の3次元熱画像を作成する。前記炉内状況把握工程では、前記制御装置が、前記3次元熱画像作成工程で作成された前記3次元熱画像に基づいて、炉内の状況を把握する。前記炉内状況把握工程では、前記制御装置が、前記3次元熱画像作成工程で作成された前記3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の外観動態変化を算出する。前記炉内状況把握工程では、前記制御装置が、各分割単位に対して、算出した前記外観動態変化と、周辺に位置する他の分割単位である周辺分割単位の前記外観動態変化との乖離である位置基準外観動態乖離、及び、同一の前記分割単位自体の前記外観動態変化の履歴との乖離である時間基準外観動態乖離を算出する。前記炉内状況把握工程では、前記制御装置が、算出された前記位置基準外観動態乖離、及び前記時間基準外観動態乖離を含む外観動態乖離に基づいて、判定対象の分割単位に対応する前記堆積層に異常が発生しているか否かを判定し、異常が発生していると判定した場合、判定対象の当該分割単位を異常分割単位として特定する。
本発明の第2の観点によれば、以下の自重沈降式竪型反応炉内状態把握方法が提供される。即ち、この自重沈降式竪型反応炉内状態把握方法は、炉上部より処理対象物を炉内に投入し堆積させ、炉底部及び炉下方側壁部に、加圧された酸素含有気体を供給することで、処理対象物に対して乾燥、熱分解、燃焼、溶融のうち少なくとも1つを行う自重沈降式竪型反応炉で用いられる。この自重沈降式竪型反応炉内状態把握方法は、3次元熱画像作成工程と、炉内状況把握工程と、を含む。前記3次元熱画像作成工程では、前記自重沈降式竪型反応炉の運転を制御する制御装置が、炉内に堆積された処理対象物より上側に設置され、視点が異なる複数の赤外線カメラによって、堆積された処理対象物から形成された堆積層の最上側界面である堆積層界面の熱画像を撮影することで取得された熱画像に基づいて、前記堆積層界面の3次元熱画像を作成する。前記炉内状況把握工程では、前記制御装置が、前記3次元熱画像作成工程で作成された前記3次元熱画像に基づいて、炉内の状況を把握する。前記炉内状況把握工程では、前記制御装置が、前記3次元熱画像作成工程で作成された前記3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の平均温度を算出する。前記炉内状況把握工程では、前記制御装置が、各分割単位に対して、算出した前記平均温度と、周辺に位置する他の分割単位である周辺分割単位の前記平均温度との乖離である位置基準平均温度乖離、及び、同一の前記分割単位自体の前記平均温度の履歴との乖離である時間基準平均温度乖離を算出する。前記炉内状況把握工程では、前記制御装置が、算出された前記位置基準平均温度乖離、及び前記時間基準平均温度乖離を含む平均温度乖離に基づいて、判定対象の分割単位に対応する前記堆積層に異常が発生しているか否かを判定し、異常が発生していると判定した場合、判定対象の当該分割単位を異常分割単位として特定する。
According to the first aspect of the present invention, the following method for grasping the state of the self-weight sedimentation type vertical reactor is provided. That is, in this method of grasping the state of the self-weight sedimentation type vertical reaction furnace, the object to be treated is charged into the furnace from the upper part of the furnace and deposited, and the pressurized oxygen-containing gas is supplied to the bottom of the furnace and the lower side wall of the furnace. Therefore, it is used in a self-weight settling vertical reactor that performs at least one of drying, thermal decomposition, combustion, and melting of the object to be treated. This self-weight settling vertical reaction furnace state grasping method includes a three-dimensional thermal image creating step and a furnace situation grasping step. In the three-dimensional thermal image creation step, a control device for controlling the operation of the self-weight settling vertical reactor is installed above the object to be processed deposited in the reactor, and a plurality of infrared cameras having different viewpoints are used. A three-dimensional thermal image of the sedimentary layer interface is created based on the thermal image obtained by taking a thermal image of the sedimentary layer interface, which is the uppermost interface of the sedimentary layer formed from the deposited object to be processed. .. In the in-core situation grasping step, the control device grasps the inside of the furnace based on the three-dimensional thermal image created in the three-dimensional thermal image creating step. In the in-core situation grasping step, the control device divides the deposited layer interface into a mesh shape in advance based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image. For each of the plurality of division units formed by the above, the change in the appearance dynamics of the sedimentary layer interface in the division unit is calculated. In the in-core situation grasping step, the control device determines the difference between the calculated appearance dynamic change for each division unit and the appearance dynamic change of the peripheral division unit which is another division unit located in the periphery. A certain position-based appearance dynamic deviation and a time-based appearance dynamic deviation, which is a deviation from the history of the appearance dynamic change of the same division unit itself, are calculated. In the in-core condition grasping step, the control device performs the deposition layer corresponding to the division unit to be determined based on the calculated position-based appearance dynamic deviation and the appearance dynamic deviation including the time-based appearance dynamic deviation. If it is determined that an abnormality has occurred, the division unit to be determined is specified as the abnormality division unit.
According to the second aspect of the present invention, the following method for grasping the state of the self-weight sedimentation type vertical reactor is provided. That is, in this method of grasping the state of the self-weight sedimentation type vertical reaction furnace, the object to be treated is charged into the furnace from the upper part of the furnace and deposited, and the pressurized oxygen-containing gas is supplied to the bottom of the furnace and the lower side wall of the furnace. Therefore, it is used in a self-weight settling vertical reactor that performs at least one of drying, thermal decomposition, combustion, and melting of the object to be treated. This self-weight settling vertical reaction furnace state grasping method includes a three-dimensional thermal image creating step and a furnace situation grasping step. In the three-dimensional thermal image creation step, a control device for controlling the operation of the self-weight settling vertical reactor is installed above the object to be processed deposited in the reactor, and a plurality of infrared cameras having different viewpoints are used. A three-dimensional thermal image of the sedimentary layer interface is created based on the thermal image obtained by taking a thermal image of the sedimentary layer interface, which is the uppermost interface of the sedimentary layer formed from the deposited object to be processed. .. In the in-core situation grasping step, the control device grasps the inside of the furnace based on the three-dimensional thermal image created in the three-dimensional thermal image creating step. In the in-core situation grasping step, the control device previously divides the deposited layer interface into a mesh shape based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image. For each of the plurality of division units formed by the above, the average temperature of the sedimentary layer interface in the division unit is calculated. In the in-core situation grasping step, the position where the control device is the difference between the calculated average temperature for each division unit and the average temperature of the peripheral division unit which is another division unit located in the vicinity. The reference average temperature deviation and the time-based average temperature deviation, which is the deviation from the history of the average temperature of the same division unit itself, are calculated. In the in-core situation grasping step, the control device performs the deposition layer corresponding to the division unit to be determined based on the calculated position-based average temperature deviation and the average temperature deviation including the time-based average temperature deviation. If it is determined that an abnormality has occurred, the division unit to be determined is specified as the abnormality division unit.

本発明によれば、自重沈降式竪型反応炉において、「棚吊り」等の異常の発生を早期かつ正確に検出することができる。 According to the present invention, in a self-weight settling vertical reactor, the occurrence of abnormalities such as "hanging on a shelf" can be detected early and accurately.

図1に示すように、燃焼ガス供給部3の底部の一側には、焼却灰及び/又は溶融スラグ等を取り出すための焼却灰又はスラグ排出口3aが形成されている。炉本体部2内で燃焼又は/及び溶融され生成された焼却灰又は溶融スラグは、当該焼却灰又はスラグ排出口3aを介して炉外へ排出される。 As shown in FIG. 1, an incineration ash or slag discharge port 3a for taking out incineration ash and / or molten slag is formed on one side of the bottom of the combustion gas supply unit 3. The incineration ash or molten slag produced by burning and / and melting in the furnace main body 2 is discharged to the outside of the furnace through the incineration ash or slag discharge port 3a.

Claims (8)

炉上部より処理対象物を炉内に投入し堆積させ、炉底部及び炉下方側壁部に、加圧された酸素含有気体を供給することで、処理対象物を乾燥・熱分解・燃焼・溶融させる自重沈降式竪型反応炉で用いられる自重沈降式竪型反応炉内状態把握方法であって、
前記自重沈降式竪型反応炉の運転を制御する制御装置が、炉内に堆積された処理対象物より上側に設置され、視点が異なる複数の赤外線カメラによって、堆積された処理対象物から形成された堆積層の最上側界面である堆積層界面の熱画像を撮影することで取得された熱画像に基づいて、前記堆積層界面の3次元熱画像を作成する3次元熱画像作成工程と、
前記制御装置が、前記3次元熱画像作成工程で作成された前記3次元熱画像に基づいて、炉内の状況を把握する炉内状況把握工程と、
を含むことを特徴とする自重沈降式竪型反応炉内状態把握方法。
The object to be treated is put into the furnace from the upper part of the furnace and deposited, and the pressurized oxygen-containing gas is supplied to the bottom of the furnace and the lower side wall of the furnace to dry, thermally decompose, burn, and melt the object to be processed. It is a method for grasping the state inside the self-weight sedimentation vertical reactor used in the self-weight sedimentation vertical reactor.
A control device for controlling the operation of the self-weight settling vertical reactor is installed above the processing object deposited in the reactor, and is formed from the deposited processing object by a plurality of infrared cameras having different viewpoints. A three-dimensional thermal image creation step of creating a three-dimensional thermal image of the sedimentary layer interface based on the thermal image obtained by taking a thermal image of the sedimentary layer interface, which is the uppermost interface of the sedimentary layer.
Based on the three-dimensional thermal image created in the three-dimensional thermal image creation step, the control device grasps the situation inside the furnace,
A method for grasping the state of a self-weight settling vertical reactor in a vertical reactor, which comprises.
請求項1に記載の自重沈降式竪型反応炉内状態把握方法であって、
前記炉内状況把握工程では、前記制御装置が、
前記3次元熱画像作成工程で作成された前記3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の外観動態変化を算出し、
各分割単位に対して、算出した前記外観動態変化と、周辺に位置する他の分割単位である周辺分割単位の前記外観動態変化との乖離である位置基準外観動態乖離、及び、同一の前記分割単位自体の前記外観動態変化の履歴との乖離である時間基準外観動態乖離を算出し、
算出された前記位置基準外観動態乖離、及び前記時間基準外観動態乖離を含む外観動態乖離に基づいて、判定対象の分割単位に対応する前記堆積層に異常が発生しているか否かを判定し、異常が発生していると判定した場合、判定対象の当該分割単位を異常分割単位として特定することを特徴とする自重沈降式竪型反応炉内状態把握方法。
The method for grasping the state inside a self-weight sedimentation type vertical reactor according to claim 1.
In the process of grasping the situation inside the furnace, the control device
Based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image, for each of a plurality of division units formed by dividing the sedimentary layer interface into a mesh shape in advance. The change in the appearance dynamics of the sedimentary layer interface in the division unit is calculated.
For each division unit, the position-based appearance dynamic deviation, which is the deviation between the calculated appearance dynamic change and the appearance dynamic change of the peripheral division unit, which is another division unit located in the periphery, and the same division. Calculate the time-based appearance dynamic deviation, which is the deviation from the history of the appearance dynamic change of the unit itself.
Based on the calculated position-based appearance dynamic divergence and the appearance dynamic divergence including the time-based appearance dynamic divergence, it is determined whether or not an abnormality has occurred in the sedimentary layer corresponding to the division unit to be determined. A method for grasping the state of a self-weight settling vertical reactor in a vertical reactor, characterized in that when it is determined that an abnormality has occurred, the division unit to be determined is specified as an abnormality division unit.
請求項1又は2に記載の自重沈降式竪型反応炉内状態把握方法であって、
前記炉内状況把握工程では、前記制御装置が、
前記3次元熱画像作成工程で作成された前記3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の平均温度を算出し、
各分割単位に対して、算出した前記平均温度と、周辺に位置する他の分割単位である周辺分割単位の前記平均温度との乖離である位置基準平均温度乖離、及び、同一の前記分割単位自体の前記平均温度の履歴との乖離である時間基準平均温度乖離を算出し、
算出された前記位置基準平均温度乖離、及び前記時間基準平均温度乖離を含む平均温度乖離に基づいて、判定対象の分割単位に対応する前記堆積層に異常が発生しているか否かを判定し、異常が発生していると判定した場合、判定対象の当該分割単位を異常分割単位として特定することを特徴とする自重沈降式竪型反応炉内状態把握方法。
The method for grasping the state of a self-weight settling vertical reactor according to claim 1 or 2.
In the process of grasping the situation inside the furnace, the control device
Based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image, for each of a plurality of division units formed by dividing the sedimentary layer interface into a mesh shape in advance. The average temperature of the sedimentary layer interface in the division unit is calculated.
For each division unit, the position-based average temperature deviation, which is the deviation between the calculated average temperature and the average temperature of the peripheral division unit, which is another division unit located in the vicinity, and the same division unit itself. Calculate the time-based average temperature deviation, which is the deviation from the above average temperature history.
Based on the calculated position-based average temperature divergence and the average temperature divergence including the time-based average temperature divergence, it is determined whether or not an abnormality has occurred in the deposited layer corresponding to the division unit to be determined. A self-weight settling vertical reaction furnace state grasping method, characterized in that when it is determined that an abnormality has occurred, the division unit to be determined is specified as an abnormality division unit.
請求項3に記載の自重沈降式竪型反応炉内状態把握方法であって、
前記炉内状況把握工程では、前記制御装置が、
前記3次元熱画像作成工程で作成された前記3次元熱画像及びその履歴3次元熱画像に基づいて、予め前記堆積層界面をメッシュ状に分割することで形成された複数の分割単位毎に、当該分割単位における前記堆積層界面の外観動態変化を算出し、
各分割単位に対して、算出した前記外観動態変化と、周辺に位置する他の分割単位である周辺分割単位の前記外観動態変化との乖離である位置基準外観動態乖離、及び、同一の前記分割単位自体の前記外観動態変化の履歴との乖離である時間基準外観動態乖離を算出し、
算出された前記位置基準外観動態乖離、及び前記時間基準外観動態乖離を含む外観動態乖離及び前記平均温度乖離に基づいて、判定対象の前記異常分割単位に対応する前記堆積層界面の下の部分に前記処理対象物が炉内側壁に固着する「棚吊り」が発生しているか否かを判定することを特徴とする自重沈降式竪型反応炉内状態把握方法。
The method for grasping the state in a self-weight sedimentation type vertical reactor according to claim 3.
In the process of grasping the situation inside the furnace, the control device
Based on the three-dimensional thermal image created in the three-dimensional thermal image creation step and its history three-dimensional thermal image, for each of a plurality of division units formed by dividing the sedimentary layer interface into a mesh shape in advance. The change in the appearance dynamics of the sedimentary layer interface in the division unit is calculated.
For each division unit, the position-based appearance dynamic deviation, which is the deviation between the calculated appearance dynamic change and the appearance dynamic change of the peripheral division unit, which is another division unit located in the periphery, and the same division. Calculate the time-based appearance dynamic deviation, which is the deviation from the history of the appearance dynamic change of the unit itself.
Based on the calculated position-based appearance dynamics divergence, the appearance dynamics divergence including the time-based appearance dynamics divergence, and the average temperature divergence, in the portion below the sedimentary layer interface corresponding to the anomalous division unit to be determined. A method for grasping the state of a self-weight settling vertical reaction furnace, which comprises determining whether or not "shelf suspension" in which the object to be processed is stuck to the inner wall of the furnace is determined.
前記制御装置が、請求項2に記載の自重沈降式竪型反応炉内状態把握方法によって算出された前記外観動態乖離に基づいて、前記異常分割単位に対応する前記堆積層界面の前記外観動態変化の乖離を小さくするための対策方法を決定する対策方法決定工程と、
前記制御装置が、前記対策方法決定工程で決定された前記対策方法に基づいて、前記自重沈降式竪型反応炉の運転に関する操作変数を調整する対策実行工程と、
を含むことを特徴とする自動運転制御方法。
The control device changes the appearance dynamics of the sedimentary layer interface corresponding to the abnormal division unit based on the appearance dynamic deviation calculated by the self-weight settling vertical reaction furnace state grasping method according to claim 2. The process of determining the countermeasure method to determine the countermeasure method to reduce the divergence of
A countermeasure execution step in which the control device adjusts instrumental variables related to the operation of the self-weight settling vertical reactor based on the countermeasure method determined in the countermeasure method determination step.
An automatic driving control method characterized by including.
前記制御装置が、請求項3に記載の自重沈降式竪型反応炉内状態把握方法によって算出された前記平均温度乖離に基づいて、前記異常分割単位に対応する前記堆積層界面の前記平均温度の乖離を小さくするための対策方法を決定する対策方法決定工程と、
前記制御装置が、前記対策方法決定工程で決定された前記対策方法に基づいて、前記自重沈降式竪型反応炉の運転に関する操作変数を調整する対策実行工程と、
を含むことを特徴とする自動運転制御方法。
Based on the average temperature divergence calculated by the self-weight settling vertical reaction furnace state grasping method according to claim 3, the control device determines the average temperature of the sedimentary layer interface corresponding to the abnormal division unit. The process of determining the countermeasure method to determine the countermeasure method to reduce the divergence, and the process of determining the countermeasure method.
A countermeasure execution step in which the control device adjusts instrumental variables related to the operation of the self-weight settling vertical reactor based on the countermeasure method determined in the countermeasure method determination step.
An automatic driving control method characterized by including.
前記制御装置が、請求項4に記載の自重沈降式竪型反応炉内状態把握方法によって算出された前記外観動態乖離及び前記平均温度乖離に基づいて、前記異常分割単位に対応する前記堆積層界面の前記外観動態変化及び前記平均温度の乖離を小さくするための対策方法を決定する対策方法決定工程と、
前記制御装置が、前記対策方法決定工程で決定された前記対策方法に基づいて、前記自重沈降式竪型反応炉の運転に関する操作変数を調整する対策実行工程と、
を含むことを特徴とする自動運転制御方法。
The sedimentary layer interface corresponding to the anomalous division unit based on the appearance dynamic deviation and the average temperature deviation calculated by the self-weight settling vertical reaction furnace state grasping method according to claim 4. The step of determining the countermeasure method for determining the countermeasure method for reducing the difference in the appearance dynamics and the average temperature of the above, and the step of determining the countermeasure method.
A countermeasure execution step in which the control device adjusts instrumental variables related to the operation of the self-weight settling vertical reactor based on the countermeasure method determined in the countermeasure method determination step.
An automatic driving control method characterized by including.
請求項7に記載の自動運転制御方法であって、
前記対策方法決定工程では、前記制御装置が、請求項4に記載の自重沈降式竪型反応炉内状態把握方法によって、「棚吊り」が発生していると特定された前記異常分割単位に対して、特定された前記異常分割単位の前記外観動態乖離及び前記平均温度乖離に基づいて、当該異常分割単位に対応する前記堆積層内で発生している前記「棚吊り」を解消するための対策方法を決定し、
前記対策実行工程では、前記制御装置が、前記対策方法決定工程で決定された前記対策方法に基づいて、前記自重沈降式竪型反応炉の運転に関する操作変数を調整することを特徴とする自動運転制御方法。
The automatic operation control method according to claim 7.
In the countermeasure method determination step, the control device refers to the abnormal division unit in which "shelf suspension" is identified by the self-weight settling vertical reaction furnace state grasping method according to claim 4. Then, based on the appearance dynamic deviation and the average temperature deviation of the specified abnormal division unit, measures for eliminating the "shelf suspension" occurring in the sedimentary layer corresponding to the abnormal division unit. Decide how to do it
In the countermeasure execution step, the control device adjusts the instrumental variables related to the operation of the self-weight settling vertical reactor based on the countermeasure method determined in the countermeasure method determination step. Control method.
JP2019195083A 2019-10-28 2019-10-28 Self-weight settling vertical reactor internal state grasping method and self-weight settling vertical reactor automatic operation control method Active JP6893231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019195083A JP6893231B2 (en) 2019-10-28 2019-10-28 Self-weight settling vertical reactor internal state grasping method and self-weight settling vertical reactor automatic operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019195083A JP6893231B2 (en) 2019-10-28 2019-10-28 Self-weight settling vertical reactor internal state grasping method and self-weight settling vertical reactor automatic operation control method

Publications (2)

Publication Number Publication Date
JP2021067433A true JP2021067433A (en) 2021-04-30
JP6893231B2 JP6893231B2 (en) 2021-06-23

Family

ID=75637014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019195083A Active JP6893231B2 (en) 2019-10-28 2019-10-28 Self-weight settling vertical reactor internal state grasping method and self-weight settling vertical reactor automatic operation control method

Country Status (1)

Country Link
JP (1) JP6893231B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198635A (en) * 2006-01-24 2007-08-09 Kawasaki Heavy Ind Ltd Shaft type waste melting furnace and its operation method
JP2018040533A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
JP2018040534A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste gasification melting apparatus and waste gasification melting method
JP6596121B1 (en) * 2018-06-01 2019-10-23 川崎重工業株式会社 In-furnace situation determination method and combustion control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198635A (en) * 2006-01-24 2007-08-09 Kawasaki Heavy Ind Ltd Shaft type waste melting furnace and its operation method
JP2018040533A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
JP2018040534A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste gasification melting apparatus and waste gasification melting method
JP6596121B1 (en) * 2018-06-01 2019-10-23 川崎重工業株式会社 In-furnace situation determination method and combustion control method

Also Published As

Publication number Publication date
JP6893231B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP6429039B2 (en) Grate-type waste incinerator and waste incineration method using grate-type waste incinerator
JP2008057935A (en) Stoker type incinerator and its combustion control method
JPH11118146A (en) Method of controlling combustion process by measuring average radiation ray of combustion bed of combustion facility
WO2012066802A1 (en) Fluidized bed furnace and method for processing waste
JP5950299B2 (en) Stoker-type incinerator and combustion method thereof
JP2011158242A (en) Material burning device and material burning method
JP5283780B1 (en) Waste melting furnace
JP6893231B2 (en) Self-weight settling vertical reactor internal state grasping method and self-weight settling vertical reactor automatic operation control method
EP1304525A1 (en) Waste incinerator and method of operating the incinerator
JP2015045486A (en) Fluidized-bed boiler and fluidized-bed boiler operation method
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP2018040533A (en) Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
JP4446449B2 (en) Waste combustion control method and stoker furnace
JP6686633B2 (en) Waste treatment furnace device and method
JP5426119B2 (en) Combustion control method for gasification melting system and system
JP5054985B2 (en) Dust monitoring and removal method in equipment
JP6917435B2 (en) Fluidized bed bubbling state grasping method, fluidized bed bubbling state maintenance method, and fluidized bed bubbling state stabilization method
JP7384078B2 (en) Waste incineration equipment and waste incineration method
JP5179163B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
WO2021085208A1 (en) Bubbling fluidized bed reactor and fluidized bed bubbling state stabilization method
JP6643088B2 (en) Waste treatment method and waste treatment device
JP2018040534A (en) Waste gasification melting apparatus and waste gasification melting method
JP2003130321A (en) Method for operating waste gasifying melting furnace and waste gasifying melting furnace
JP2005233501A (en) Combustion control method and waste treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201014

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6893231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150