JP2007263586A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector Download PDF

Info

Publication number
JP2007263586A
JP2007263586A JP2006085387A JP2006085387A JP2007263586A JP 2007263586 A JP2007263586 A JP 2007263586A JP 2006085387 A JP2006085387 A JP 2006085387A JP 2006085387 A JP2006085387 A JP 2006085387A JP 2007263586 A JP2007263586 A JP 2007263586A
Authority
JP
Japan
Prior art keywords
flaw detection
axis direction
detection material
axial
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085387A
Other languages
Japanese (ja)
Other versions
JP4560796B2 (en
Inventor
Masaki Tanaka
雅樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006085387A priority Critical patent/JP4560796B2/en
Publication of JP2007263586A publication Critical patent/JP2007263586A/en
Application granted granted Critical
Publication of JP4560796B2 publication Critical patent/JP4560796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detector capable of accurately flaw detection, even the tip part and the rear-end part of an axial-directionally curved tubular or rod-like flaw-detected material. <P>SOLUTION: This ultrasonic flaw detector 100 predicts decentering amounts BY'(x), BZ'(x) in an ultrasonic probe 1 installed position, as to a material S to be flaw-detected this time, using decentering amounts AY(x), AZ(x) in an axial center measuring means 6 installation position as to the material S to be flaw-detected the last time, decentering amounts BY(x), BZ(x) in the ultrasonic probe 1 installed position in the last time as thereto, and decentering amounts A'Y(x), A'Z(x) in the axial center measuring means 6 installed position as to the material S to be flaw-detected this time. Y-direction and Z-direction position of a cylindrical rotor 3 are corrected by the predicted decentering amounts BY'(x), BZ'(x), when the tip part and the rear-end part of the material to be flaw-detected this time reach the ultrasonic probe 1 installed position. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼管や棒鋼など管状又は棒状の被探傷材を超音波探傷する装置に関し、特に軸方向の曲がりを有する被探傷材の先端部及び後端部をも精度良く探傷可能な超音波探傷装置に関する。   The present invention relates to an ultrasonic flaw detection apparatus for a tubular or bar-shaped flaw detection material such as a steel pipe or a steel bar, and in particular, an ultrasonic flaw detection capable of accurately flaw-detecting a front end portion and a rear end portion of a flaw detection material having an axial bend. Relates to the device.

従来より、管状又は棒状の被探傷材に存在する欠陥を非破壊的に検出する装置として、超音波探傷装置が広く用いられている。斯かる超音波探傷装置は、垂直方向から又は斜め方向から超音波を被探傷材内部に入射し、被探傷材内部や表面に存在する欠陥からの反射エコーを検出してきずの存在を検知する装置である。   Conventionally, an ultrasonic flaw detector has been widely used as a device for nondestructively detecting a defect present in a tubular or rod-like flaw detection material. Such an ultrasonic flaw detection apparatus is an apparatus for detecting the presence of flaws by detecting ultrasonic echoes from defects in the flaw detection material or on the surface thereof by making ultrasonic waves enter the flaw detection material from a vertical direction or an oblique direction. It is.

より具体的に説明すれば、従来の超音波探傷装置としては、例えば、特許文献1の図8に示すような構成が知られている。すなわち、従来の超音波探傷装置としては、軸方向に沿って搬送される管状又は棒状の被探傷材(特許文献1の図8に示す「被試験体1」に相当)に対して超音波を送受信する超音波探触子(特許文献1の図8に示す「超音波探触子2」に相当)と、前記超音波探触子からの出力信号を受信して、被探傷材に存在する欠陥を検出する超音波探傷器(特許文献1の図8に示す「探傷装置8」に相当)と、前記超音波探触子が取り付けられ、被探傷材を挿通すると共に被探傷材の周方向に沿って回転する円筒状回転体(特許文献1の図8に示す「円筒回転体3」に相当)と、被探傷材の搬送方向に沿って前記円筒状回転体の上流側及び下流側にそれぞれ配置され、被探傷材を案内支持する上流側ロール及び下流側ロール(特許文献1の図8に示す「ピンチローラ10」及び「被試験体搬送ローラ12」に相当)と、前記円筒状回転体の上下左右方向の位置を制御する制御手段(特許文献1の図8に示す「機構装置4」、「制御装置9」、「機構装置昇降モータ13」、「機構装置移動モータ14」及び「機構装置移動機構15」に相当)とを備える構成が知られている。   If it demonstrates more concretely, as a conventional ultrasonic flaw detector, the structure as shown in FIG. 8 of patent document 1 is known, for example. That is, as a conventional ultrasonic flaw detector, an ultrasonic wave is applied to a tubular or rod-shaped flaw detection material (corresponding to “test object 1” shown in FIG. 8 of Patent Document 1) conveyed along the axial direction. An ultrasonic probe for transmission / reception (corresponding to “ultrasonic probe 2” shown in FIG. 8 of Patent Document 1) and an output signal from the ultrasonic probe are received and present in the material to be inspected. An ultrasonic flaw detector for detecting a defect (corresponding to “flaw detector 8” shown in FIG. 8 of Patent Document 1) and the ultrasonic probe are attached, inserted through the flaw detection material, and in the circumferential direction of the flaw detection material A cylindrical rotating body (corresponding to “cylindrical rotating body 3” shown in FIG. 8 of Patent Document 1), and upstream and downstream of the cylindrical rotating body along the conveyance direction of the flaw detection material. An upstream roll and a downstream roll that are arranged and guide and support the material to be inspected (shown in FIG. 8 of Patent Document 1) And the control means for controlling the vertical and horizontal positions of the cylindrical rotating body (“mechanism device 4”, “mechanism device 4” shown in FIG. A configuration including a control device 9 ”,“ mechanism device lifting motor 13 ”,“ mechanism device moving motor 14 ”and“ mechanism device moving mechanism 15 ”) is known.

上記構成の超音波探傷装置によって超音波探傷を実施する際には、まず最初に、制御手段が、予め設定された被探傷材の外径に基づいて、被探傷材と円筒状回転体との芯出しを行う。換言すれば、制御手段は、被探傷材の軸芯位置と円筒状回転体の軸芯位置とが一致するように、円筒状回転体の上下左右方向の位置を制御する。斯かる芯出し動作の後、制御手段によって円筒状回転体を回転させる(これにより超音波探触子も回転する)と共に、被探傷材を軸方向に搬送して円筒状回転体に挿通させることにより、被探傷材の外表面に沿って螺旋状に超音波探触子が走査されることになる。以上に説明した制御方法により、被探傷材の全長に亘る超音波探傷が実施される。上記制御方法によれば、被探傷材の外径に応じて芯出しされた円筒状回転体の軸芯位置は、超音波探傷が実施される間、被探傷材の全長に亘って一定のまま保持されることになる。換言すれば、上記制御方法は、被探傷材が全長に亘ってほぼ真直であることを前提とした制御方法であるといえる。   When performing ultrasonic flaw detection using the ultrasonic flaw detection apparatus having the above-described configuration, first, the control unit first determines whether the flaw detection material and the cylindrical rotating body are based on the preset outer diameter of the flaw detection material. Perform centering. In other words, the control means controls the position of the cylindrical rotating body in the vertical and horizontal directions so that the axial center position of the flaw detection material coincides with the axial core position of the cylindrical rotating body. After such a centering operation, the cylindrical rotating body is rotated by the control means (which also rotates the ultrasonic probe), and the flaw detection material is conveyed in the axial direction and inserted through the cylindrical rotating body. Thus, the ultrasonic probe is scanned spirally along the outer surface of the flaw detection material. By the control method described above, ultrasonic flaw detection is performed over the entire length of the flaw detection material. According to the above control method, the axial center position of the cylindrical rotating body centered according to the outer diameter of the flaw detection material remains constant over the entire length of the flaw detection material while ultrasonic flaw detection is performed. Will be retained. In other words, it can be said that the control method is a control method on the premise that the flaw detection material is substantially straight over the entire length.

しかしながら、実際には、鋼管等の被探傷材を焼入れする際の冷却むら等に起因して、被探傷材には軸方向の曲がり(被探傷材の軸方向についての湾曲)が生じる場合がある。被探傷材に曲がりが生じている場合、上記の制御方法では、被探傷材の全長に亘って被探傷材の軸芯位置と円筒状回転体の軸芯位置とを精度良く一致させることができないため、超音波探触子と被探傷材との離間距離が被探傷材の軸方向に沿って変動して探傷精度が低下する(欠陥の誤検出等が発生する)という問題がある。   However, in reality, due to cooling unevenness when quenching the material to be inspected such as a steel pipe, the material to be inspected may be bent in the axial direction (curvature in the axial direction of the material to be inspected). . When the flaw detection material is bent, the above control method cannot accurately match the axial center position of the flaw detection material and the axial center position of the cylindrical rotating body over the entire length of the flaw detection material. Therefore, there is a problem that the separation distance between the ultrasonic probe and the material to be inspected fluctuates along the axial direction of the material to be inspected and the accuracy of flaw detection decreases (error detection of a defect or the like occurs).

このような問題を解決するため、特許文献1では、該特許文献1の図1に示すように、前述した構成に加えて、被探傷材(特許文献1の図1に示す「被試験体1」に相当)を案内支持する上流側ロール(特許文献1の図1に示す「ピンチローラ10」及び「被試験体搬送ローラ12」に相当)と円筒状回転体(特許文献1の図1に示す「円筒回転体3」に相当)との間に空中超音波センサ(特許文献1の図1に示す空中超音波センサ16a、16b、16c)を配置し、この空中超音波センサで測定した被探傷材までの距離に基づいて、外径測定装置(特許文献1の図1に示す外径測定装置17)で被探傷材の芯ずれ量(被探傷材の軸芯位置と円筒状回転体の軸芯位置との差)を測定する構成を備えた超音波探傷装置が提案されている。   In order to solve such a problem, in Patent Document 1, as shown in FIG. 1 of Patent Document 1, in addition to the above-described configuration, a flaw detection material ("test object 1 shown in FIG. And the cylindrical rotating body (refer to FIG. 1 of Patent Document 1) and the upstream roll (corresponding to “pinch roller 10” and “test object transport roller 12” shown in FIG. 1 of Patent Document 1). The aerial ultrasonic sensor (aerial ultrasonic sensors 16a, 16b, 16c shown in FIG. 1 of Patent Document 1) is disposed between the sensor and the object measured by the aerial ultrasonic sensor. Based on the distance to the flaw detection material, the outer diameter measurement device (the outer diameter measurement device 17 shown in FIG. 1 of Patent Document 1) uses the amount of misalignment of the flaw detection material (the axial center position of the flaw detection material and the cylindrical rotating body). There has been proposed an ultrasonic flaw detector having a configuration for measuring a difference from the axial center position.

上記超音波探傷装置によれば、空中超音波センサ及び外径測定装置によって、円筒状回転体に被探傷材が挿通される前に、被探傷材の曲がりに起因した芯ずれ量が被探傷材の軸方向の各所定部位毎に測定される。そして、制御手段(特許文献1の図1に示す「機構装置4」、「制御装置9」、「機構装置昇降モータ13」、「機構装置移動モータ14」及び「機構装置移動機構15」に相当)は、前記各所定部位が超音波探触子(特許文献1の図1に示す「超音波探触子2」に相当)の直下に到達した際に、被探傷材の軸芯位置と円筒状回転体の軸芯位置とが一致するように、前記各所定部位毎に測定した芯ずれ量に応じて、円筒状回転体の上下左右方向の位置をリアルタイムに制御する。斯かる制御方法によれば、円筒状回転体の軸芯位置を被探傷材の全長に亘って一定のまま保持する場合に比べると、被探傷材の曲がりに起因した超音波探触子と被探傷材との離間距離の変動をある程度抑制することができ、ひいては探傷精度の低下をある程度抑制することが可能である。
特開平6−288991号公報
According to the ultrasonic flaw detection apparatus, the amount of misalignment due to the bending of the flaw detection material is detected before the flaw detection material is inserted into the cylindrical rotating body by the aerial ultrasonic sensor and the outer diameter measurement device. It is measured for each predetermined part in the axial direction. The control means (corresponding to “mechanism device 4”, “control device 9”, “mechanism device lifting / lowering motor 13”, “mechanism device moving motor 14” and “mechanism device moving mechanism 15” shown in FIG. ), When each of the predetermined parts reaches directly below the ultrasonic probe (corresponding to “ultrasonic probe 2” shown in FIG. 1 of Patent Document 1), the position of the axis of the flaw detection material and the cylinder The position of the cylindrical rotating body in the vertical and horizontal directions is controlled in real time according to the misalignment amount measured for each predetermined portion so that the axial center position of the cylindrical rotating body matches. According to such a control method, compared with a case where the axial center position of the cylindrical rotating body is kept constant over the entire length of the flaw detection material, the ultrasonic probe and the flaw detection object due to the bending of the flaw detection material are compared. Variations in the separation distance from the flaw detection material can be suppressed to a certain extent, and as a result, a decrease in flaw detection accuracy can be suppressed to some extent.
JP-A-6-288991

しかしながら、上記特許文献1で提案されている超音波探傷装置は、空中超音波センサの設置位置での芯ずれ量と超音波探触子の設置位置での芯ずれ量とが、被探傷材の同一部位については同一の値であることを前提としている。換言すれば、空中超音波センサ設置位置における各所定部位の芯ずれ量が、各所定部位が超音波探触子の直下に到達するまで維持されることを前提とし、各所定部位の前記芯ずれ量と同じ量だけ円筒状回転体の上下左右方向の位置を制御するように構成されている。このため、特に被探傷材の先端部及び後端部において、探傷精度が劣化する虞があるという問題がある。   However, in the ultrasonic flaw detector proposed in Patent Document 1, the amount of misalignment at the position where the aerial ultrasonic sensor is installed and the amount of misalignment at the position where the ultrasonic probe is installed are determined as follows. It is assumed that the same part has the same value. In other words, assuming that the amount of misalignment of each predetermined part at the position where the aerial ultrasonic sensor is installed is maintained until each predetermined part reaches just below the ultrasonic probe, the misalignment of each predetermined part The position of the cylindrical rotating body in the vertical and horizontal directions is controlled by the same amount as the amount. For this reason, there is a problem that the flaw detection accuracy may be deteriorated particularly at the front end portion and the rear end portion of the flaw detection material.

より具体的に説明すれば、上流側ロール及び下流側ロール(特許文献1の図1に示す「ピンチローラ10」及び「被試験体搬送ローラ12」に相当)の双方によって被探傷材が案内支持されている状態(上流側ロール及び下流側ロールの双方に噛み込んだ状態)では、被探傷材が軸方向に搬送されても軸芯位置が大きく変動せず、各所定部位の空中超音波センサ設置位置での芯ずれ量と超音波探触子設置位置での芯ずれ量とは略同等の値になると考えられる。換言すれば、空中超音波センサの設置位置で芯ずれ量を測定するタイミングと、超音波探触子の直下に到達するタイミングの双方において、上流側及び下流側ロールの双方によって被探傷材が案内支持された状態となる所定部位については、空中超音波センサ設置位置での芯ずれ量と超音波探触子設置位置での芯ずれ量とが略同等の値になると考えられる。従って、上記所定部位の空中超音波センサ設置位置で測定した芯ずれ量と同じ量だけ円筒状回転体の上下左右方向の位置を制御しても、探傷精度が劣化する虞は少ないと考えられる。   More specifically, the flaw detection material is guided and supported by both the upstream roll and the downstream roll (corresponding to the “pinch roller 10” and the “test object transport roller 12” shown in FIG. 1 of Patent Document 1). In the state in which the flaw detection material is bitten by both the upstream roll and the downstream roll, the axial center position does not fluctuate greatly even if the flaw detection material is conveyed in the axial direction, and the aerial ultrasonic sensor at each predetermined portion It is considered that the misalignment amount at the installation position and the misalignment amount at the ultrasonic probe installation position are substantially equal to each other. In other words, the material to be inspected is guided by both the upstream and downstream rolls at both the timing of measuring the amount of misalignment at the installation position of the aerial ultrasonic sensor and the timing of reaching the position directly below the ultrasonic probe. For a predetermined portion that is in a supported state, the misalignment amount at the aerial ultrasonic sensor installation position and the misalignment amount at the ultrasonic probe installation position are considered to be substantially the same value. Therefore, it is considered that the flaw detection accuracy is unlikely to deteriorate even if the vertical and horizontal positions of the cylindrical rotating body are controlled by the same amount as the misalignment measured at the position where the aerial ultrasonic sensor is installed at the predetermined site.

これに対して、被探傷材の最先端が超音波探触子の直下に到達してから下流側ロールに噛み込んで案内支持されるまでの間、被探傷材は一方のロール(上流側ロール)のみで案内支持されることになるため、被探傷材に曲がりが生じている場合には、被探傷材が軸方向に搬送されることにより、被探傷材の軸芯位置が曲がりの程度に応じて変動することになる。換言すれば、被探傷材の最先端から超音波探触子の設置位置と下流側ロールの設置位置との離間距離に相当する長さまでの部位(被探傷材の先端部)については、空中超音波センサの設置位置で芯ずれ量を測定するタイミング(図1(a)参照)と、超音波探触子の直下に到達するタイミング(図1(b)参照)の双方において、上流側ロールのみによって被探傷材が案内支持された状態となるため、空中超音波センサ設置位置での芯ずれ量と超音波探触子設置位置での芯ずれ量とが異なる値になると考えられる。すなわち、図1に示す例では、被探傷材の先端部が上向きに曲がっており、空中超音波センサと超音波探触子とが同一水平面上に配置されていると仮定すると、同一の部位であっても、空中超音波センサと被探傷材との離間距離(図1(a)の距離D1)と、超音波探触子と被探傷材との離間距離(図1(b)の距離D2)とは異なる値となる。   On the other hand, the material to be inspected is one roll (upstream roll until the leading edge of the material to be inspected is directly under the ultrasonic probe until it is bitten by the downstream roll and supported. ) Only when the flaw detection material is bent, the flaw detection material is transported in the axial direction, so that the axis position of the flaw detection material is adjusted to the degree of bending. It will fluctuate accordingly. In other words, the part from the forefront of the flaw detection material to the length corresponding to the separation distance between the ultrasonic probe installation position and the downstream roll installation position (tip of the flaw detection material) Only the upstream side roll at both the timing of measuring the misalignment amount at the position where the acoustic sensor is installed (see FIG. 1A) and the timing of reaching just below the ultrasonic probe (see FIG. 1B) Therefore, it is considered that the amount of misalignment at the position where the ultrasonic sensor is installed differs from the amount of misalignment at the position where the ultrasonic probe is installed. That is, in the example shown in FIG. 1, assuming that the tip of the flaw detection material is bent upward and the aerial ultrasonic sensor and the ultrasonic probe are arranged on the same horizontal plane, Even so, the separation distance between the aerial ultrasonic sensor and the flaw detection material (distance D1 in FIG. 1 (a)) and the separation distance between the ultrasonic probe and the flaw detection material (distance D2 in FIG. 1 (b)). ) Is a different value.

同様に、被探傷材の最後端が上流側ロールから抜け出て超音波探触子の直下に到達するまでの間にも、被探傷材は一方のロール(下流側ロール)のみで案内支持されることになるため、被探傷材に曲がりが生じている場合には、被探傷材が軸方向に搬送されることにより、被探傷材の軸芯位置が曲がりの程度に応じて変動することになる。換言すれば、被探傷材の最後端から超音波探触子の設置位置と上流側ロールの設置位置との離間距離に相当する長さまでの部位(被探傷材の後端部)については、空中超音波センサの設置位置で芯ずれ量を測定するタイミングと、超音波探触子の直下に到達するタイミングの双方において、下流側ロールのみによって被探傷材が案内支持された状態となるため、空中超音波センサ設置位置での芯ずれ量と超音波探触子設置位置での芯ずれ量とが異なる値になると考えられる。   Similarly, the flaw detection material is guided and supported by only one roll (downstream roll) until the last end of the flaw detection material comes out of the upstream roll and reaches just below the ultrasonic probe. Therefore, when the flaw detection material is bent, the flaw detection material is conveyed in the axial direction, so that the axial center position of the flaw detection material varies depending on the degree of the bending. . In other words, the part (the rear end portion of the flaw detection material) from the rearmost end of the flaw detection material to a length corresponding to the separation distance between the installation position of the ultrasonic probe and the installation position of the upstream roll is in the air. In both the timing to measure the misalignment amount at the position where the ultrasonic sensor is installed and the timing to reach directly below the ultrasonic probe, the flaw detection material is guided and supported only by the downstream roll. It is considered that the amount of misalignment at the position where the ultrasonic sensor is installed differs from the amount of misalignment at the position where the ultrasonic probe is installed.

以上に説明したように、被探傷材の先端部及び後端部については、空中超音波センサの設置位置での芯ずれ量と超音波探触子の設置位置での芯ずれ量とが異なる値になるため、被探傷材の全長に亘って空中超音波センサの設置位置での芯ずれ量と超音波探触子の設置位置での芯ずれ量とが一致することを前提とした特許文献1の超音波探傷装置では、特に被探傷材の先端部及び後端部において探傷精度が劣化する虞がある。   As described above, with respect to the front end portion and rear end portion of the flaw detection material, the misalignment amount at the installation position of the aerial ultrasonic sensor is different from the misalignment amount at the installation position of the ultrasonic probe. Therefore, Patent Document 1 on the premise that the misalignment amount at the installation position of the aerial ultrasonic sensor and the misalignment amount at the installation position of the ultrasonic probe coincide with each other over the entire length of the flaw detection material. In this ultrasonic flaw detection apparatus, the flaw detection accuracy may be deteriorated particularly at the front end portion and the rear end portion of the flaw detection material.

本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、軸方向の曲がりを有する管状又は棒状の被探傷材の先端部及び後端部をも精度良く探傷可能な超音波探傷装置を提供することを課題とする。   The present invention has been made to solve the problems of the prior art, and an ultrasonic wave capable of accurately detecting the front end and the rear end of a tubular or rod-like flawed material having an axial bend. It is an object to provide a flaw detection apparatus.

前記課題を解決するべく、本発明の発明者らは鋭意検討した結果、前述した空中超音波センサと被探傷材との離間距離(図1(a)の距離D1)と、超音波探触子と被探傷材との離間距離(図1(b)の距離D2)との比は、空中超音波センサと超音波探触子とが同一水平面上に配置されているとすると、空中超音波センサと上流側ロールとの被探傷材の軸方向に沿った離間距離と、超音波探触子と上流側ロールとの被探傷材の軸方向に沿った離間距離との比に略等しいことを見出した。換言すれば、空中超音波センサ等の軸芯測定手段と上流側ロールとの被探傷材の軸方向に沿った離間距離と、超音波探触子と上流側ロールとの被探傷材の軸方向に沿った離間距離とが一定でありさえすれば、被探傷材の先端部について、空中超音波センサ等の軸芯測定手段の設置位置に於ける芯ずれ量と、超音波探触子設置位置に於ける芯ずれ量との比は略一定であることを見出した。同様に、空中超音波センサ等の軸芯測定手段と下流側ロールとの被探傷材の軸方向に沿った離間距離と、超音波探触子と下流側ロールとの被探傷材の軸方向に沿った離間距離とが一定でありさえすれば、被探傷材の後端部について、空中超音波センサ等の軸芯測定手段の設置位置に於ける芯ずれ量と、超音波探触子設置位置に於ける芯ずれ量との比は略一定であることを見出した。従って、前回探傷を実施した被探傷材(前回被探傷材)について、軸芯測定手段設置位置に於ける芯ずれ量と超音波探触子設置位置に於ける芯ずれ量とを測定して両者の比を算出すると共に、今回探傷を実施する被探傷材(今回被探傷材)について、軸芯測定手段設置位置に於ける芯ずれ量を測定すれば、今回被探傷材についての超音波探触子設置位置に於ける芯ずれ量を予測することができ、この予測した超音波探触子設置位置に於ける芯ずれ量に基づいて円筒状回転体の位置を制御すれば、被探傷材の先端部及び後端部についても精度良く探傷可能となることが期待できる。本発明は、斯かる発明者らの知見に基づき完成されたものである。   In order to solve the above-mentioned problems, the inventors of the present invention have conducted intensive studies. As a result, the above-described distance between the aerial ultrasonic sensor and the material to be inspected (distance D1 in FIG. 1A), and the ultrasonic probe. The distance between the inspection object and the flaw detection material (distance D2 in FIG. 1B) is that the aerial ultrasonic sensor and the ultrasonic probe are arranged on the same horizontal plane. And the upstream roll and the upstream distance along the axial direction of the flaw detection material, and the distance between the ultrasonic probe and the upstream roll along the axial direction of the flaw detection material is found to be approximately equal to the ratio. It was. In other words, the distance along the axial direction of the material to be inspected between the axial core measuring means such as the aerial ultrasonic sensor and the upstream roll, and the axial direction of the material to be inspected between the ultrasonic probe and the upstream roll. As long as the separation distance along the line is constant, the amount of misalignment at the installation position of the axial core measuring means such as the aerial ultrasonic sensor and the ultrasonic probe installation position at the tip of the flaw detection material It has been found that the ratio of the misalignment to the center misalignment is substantially constant. Similarly, a separation distance along the axial direction of the flaw detection material between the axial core measuring means such as the aerial ultrasonic sensor and the downstream roll, and an axial direction of the flaw detection material between the ultrasonic probe and the downstream roll. As long as the separation distance along the line is constant, the amount of misalignment at the installation position of the axial core measuring means such as the aerial ultrasonic sensor and the installation position of the ultrasonic probe at the rear end of the flaw detection material It has been found that the ratio of the misalignment to the center misalignment is substantially constant. Therefore, for the flaw detection material (previous flaw detection material) for which the flaw detection was performed last time, the misalignment amount at the axial center measuring means installation position and the misalignment amount at the ultrasonic probe installation position were measured. If the amount of misalignment at the position where the axial center measuring means is installed is measured for the flaw detection material (current flaw detection material) to be subjected to the flaw detection this time, the ultrasonic inspection of the flaw detection material this time is calculated. If the position of the cylindrical rotating body is controlled based on the estimated amount of misalignment at the ultrasonic probe installation position, the amount of misalignment at the child installation position can be predicted. It can be expected that the front end portion and the rear end portion can be accurately detected. The present invention has been completed based on the knowledge of the inventors.

すなわち、本発明に係る超音波探傷装置は、軸方向に沿って搬送される管状又は棒状の被探傷材に対して超音波を送受信する超音波探触子と、前記超音波探触子からの出力信号を受信して、被探傷材に存在する欠陥を検出すると共に、前記超音波探触子から被探傷材までの距離を測定する超音波探傷器と、前記超音波探触子が取り付けられ、被探傷材を挿通すると共に被探傷材の周方向に沿って回転する円筒状回転体と、被探傷材の搬送方向に沿って前記円筒状回転体の上流側及び下流側にそれぞれ配置され、被探傷材を案内支持する上流側ロール及び下流側ロールと、前記上流側ロールと前記円筒状回転体との間に配置され、被探傷材の軸芯位置を測定する軸芯測定手段と、前記円筒状回転体の軸方向にそれぞれ直交し且つ互いに直交するY軸方向(例えば、円筒状回転体の軸方向から見て左右方向)及びZ軸方向(例えば、円筒状回転体の軸方向から見て上下方向)の位置を制御する制御手段とを備える。   That is, an ultrasonic flaw detector according to the present invention includes an ultrasonic probe that transmits and receives ultrasonic waves to a tubular or rod-shaped flaw detection material conveyed along the axial direction, and the ultrasonic probe. An ultrasonic flaw detector that receives an output signal and detects a defect existing in the flaw detection material and measures a distance from the ultrasonic probe to the flaw detection material, and the ultrasonic probe are attached. A cylindrical rotating body that passes through the flaw detection material and rotates along the circumferential direction of the flaw detection material, and is arranged on the upstream side and the downstream side of the cylindrical rotation body along the conveyance direction of the flaw detection material, An upstream roll and a downstream roll for guiding and supporting the material to be inspected, an axis measuring means for measuring the axis position of the material to be inspected, disposed between the upstream roll and the cylindrical rotating body, and Perpendicular to the axial direction of the cylindrical rotating body and perpendicular to each other Axial (e.g., left-right direction as viewed from the axial direction of the cylindrical rotary member) and the Z-axis direction (e.g., vertical direction as viewed in the axial direction of the cylindrical rotating member) and a control means for controlling the position of.

そして、前記制御手段は、前記軸芯測定手段で測定した被探傷材のY軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のY軸方向の軸芯位置との差を、前記軸芯測定手段設置位置に於ける被探傷材のY軸方向の芯ずれ量として算出すると共に、前記軸芯測定手段で測定した被探傷材のZ軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のZ軸方向の軸芯位置との差を、前記軸芯測定手段設置位置に於ける被探傷材のZ軸方向の芯ずれ量として算出する。   And the said control means is the difference of the axial center position of the Y-axis direction of the to-be-tested material measured by the said axial center measuring means, and the axial center position of the initial stage Y-axis direction of the said cylindrical rotary body, Calculated as the amount of misalignment in the Y-axis direction of the flaw detection material at the axial center measurement means installation position, and the Z axis position of the flaw detection material measured by the axial measurement means and the cylindrical rotation The difference from the initial Z axis direction axial position of the body is calculated as the amount of misalignment in the Z axis direction of the flaw detection material at the axial center measuring means installation position.

また、前記制御手段は、前記超音波探傷器で測定したY軸方向に沿った前記超音波探触子から被探傷材までの距離に基づいて、被探傷材のY軸方向の軸芯位置を演算し、該演算した被探傷材のY軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のY軸方向の軸芯位置との差を、前記超音波探触子設置位置に於ける被探傷材のY軸方向の芯ずれ量として算出すると共に、前記超音波探傷器で測定したZ軸方向に沿った前記超音波探触子から被探傷材までの距離に基づいて、被探傷材のZ軸方向の軸芯位置を演算し、該演算した被探傷材のZ軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のZ軸方向の軸芯位置との差を、前記超音波探触子設置位置に於ける被探傷材のZ軸方向の芯ずれ量として算出するように構成されている。   Further, the control means determines the axis position of the flaw detection material in the Y-axis direction based on the distance from the ultrasonic probe to the flaw detection material along the Y-axis direction measured by the ultrasonic flaw detector. The difference between the calculated axial center position of the flaw detection material in the Y-axis direction and the preset initial axial center position of the cylindrical rotating body in the Y-axis direction is set as the ultrasonic probe installation position. Is calculated as the amount of misalignment in the Y-axis direction of the flaw detection material at the same time, and based on the distance from the ultrasonic probe to the flaw detection material along the Z-axis direction measured by the ultrasonic flaw detector. The axis position of the flaw detection material in the Z-axis direction is calculated, and the difference between the calculated axis position in the Z-axis direction of the flaw detection material and the preset initial Z-axis direction axis position of the cylindrical rotating body Is calculated as the amount of misalignment in the Z-axis direction of the flaw detection material at the ultrasonic probe installation position.

さらに、前記制御手段は、今回探傷を実施する被探傷材の先端部及び後端部が前記超音波探触子設置位置に到達する際に、前記円筒状回転体のY軸方向の位置を下記の式(1)に示すBY’(x)だけ補正すると共に、前記円筒状回転体のZ軸方向の位置を下記の式(2)に示すBZ’(x)だけ補正することを特徴とする。
BY’(x)=AY’(x)×(BY(x)−CY(x))/AY(x)・・・(1)
BZ’(x)=AZ’(x)×(BZ(x)−CZ(x))/AZ(x)・・・(2)
ここで、上記式(1)及び(2)において、xは被探傷材の軸方向の位置を、AY’(x)及びAZ’(x)はそれぞれ今回探傷を実施する被探傷材(今回被探傷材)の先端部及び後端部についての軸芯測定手段設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、AY(x)及びAZ(x)はそれぞれ前回探傷を実施した被探傷材(前回被探傷材)の先端部及び後端部についての軸芯測定手段設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、BY(x)及びBZ(x)はそれぞれ前回被探傷材の先端部及び後端部についての超音波探触子設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、CY(x)及びCZ(x)はそれぞれ前回被探傷材の先端部及び後端部について補正した円筒状回転体のY軸方向及びZ軸方向の位置補正量を、BY’(x)及びBZ’(x)はそれぞれ今回被探傷材の先端部及び後端部について予測される超音波探触子設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を意味する。
Further, the control means determines the position of the cylindrical rotating body in the Y-axis direction when the front end portion and the rear end portion of the flaw detection material to be subjected to flaw detection reach the ultrasonic probe installation position as follows. And correcting the position of the cylindrical rotating body in the Z-axis direction by BZ ′ (x) shown in the following expression (2). .
BY ′ (x) = AY ′ (x) × (BY (x) −CY (x)) / AY (x) (1)
BZ ′ (x) = AZ ′ (x) × (BZ (x) −CZ (x)) / AZ (x) (2)
Here, in the above formulas (1) and (2), x is the position of the flaw detection material in the axial direction, and AY ′ (x) and AZ ′ (x) are flaw detection materials to be flawed this time (the flaw detection material to be flawed this time). AY (x) and AZ (x) each carried out the previous flaw detection for the amount of misalignment in the Y-axis direction and the Z-axis direction at the axial center measuring means installation position for the front end portion and rear end portion of the flaw detection material). BY (x) and BZ (x) are the amounts of misalignment in the Y-axis direction and the Z-axis direction at the position where the axial center measuring means is installed at the front end portion and the rear end portion of the flaw detection material (previous flaw detection material). CY (x) and CZ (x) are the amounts of misalignment in the Y-axis direction and the Z-axis direction at the ultrasonic probe installation position at the front end portion and the rear end portion of the previous flaw detection material, respectively. Position correction amount in the Y-axis direction and Z-axis direction of the cylindrical rotating body corrected for the front end portion and the rear end portion of the flaw detection material , BY ′ (x) and BZ ′ (x) are the amounts of misalignment in the Y-axis direction and Z-axis direction at the ultrasonic probe installation positions predicted for the front end portion and the rear end portion of the flaw detection material, respectively. Means.

斯かる発明によれば、前回被探傷材についての軸芯測定手段設置位置に於ける芯ずれ量AY(x)及びAZ(x)と、超音波探触子設置位置に於ける芯ずれ量BY(x)及びBZ(x)と、今回被探傷材についての軸芯測定手段設置位置に於ける芯ずれ量AY’(x)及びAZ’(x)とを用いて、式(1)及び(2)により今回被探傷材についての超音波探触子設置位置に於ける芯ずれ量BY’(x)及びBZ’(x)を予測する。そして、今回被探傷材の先端部及び後端部が超音波探触子設置位置に到達する際に、円筒状回転体のY軸方向及びZ軸方向の位置を、予測した芯ずれ量BY’(x)及びBZ’(x)だけ補正する(すなわち、前回被探傷材の先端部及び後端部が超音波探触子設置位置に到達した際に設定した円筒状回転体のY軸方向及びZ軸方向の位置を基準として、BY’(x)及びBZ’(x)だけ円筒状回転体のY軸方向及びZ軸方向の位置をそれぞれ変更する)ため、被探傷材の先端部及び後端部について軸芯位置と円筒状回転体の軸芯位置とを精度良く一致させることができ、ひいては被探傷材の先端部及び後端部についても精度良く探傷可能である。   According to such an invention, the misalignment amounts AY (x) and AZ (x) at the axial center measurement means installation position for the previous flaw detection material, and the misalignment amount BY at the ultrasonic probe installation position. Using (x) and BZ (x) and the misalignment amounts AY ′ (x) and AZ ′ (x) at the axial center measurement means installation position for the material to be detected this time, 2) Prediction of the amount of misalignment BY ′ (x) and BZ ′ (x) at the ultrasonic probe installation position for the material to be detected this time. And when the front-end | tip part and rear-end part of a to-be-examined material reach | attain an ultrasonic probe installation position this time, the position of the center axis | shaft of the cylindrical rotating body estimated in the Y-axis direction and the Z-axis direction BY ' (X) and BZ ′ (x) are corrected (that is, the Y axis direction of the cylindrical rotating body set when the front end portion and the rear end portion of the flaw detection material reached the ultrasonic probe installation position and The position of the cylindrical rotating body in the Y-axis direction and the Z-axis direction is changed by BY ′ (x) and BZ ′ (x) based on the position in the Z-axis direction, respectively. With respect to the end portion, the axial center position and the axial center position of the cylindrical rotating body can be made to coincide with each other with accuracy, and as a result, the front end portion and the rear end portion of the flaw detection material can be detected with high accuracy.

なお、本発明における「先端部」とは、被探傷材の最先端から、超音波探触子の設置位置と下流側ロールの設置位置との被探傷材の軸方向に沿った離間距離に相当する長さまでの部位を意味する。また、本発明における「後端部」とは、被探傷材の最後端から、超音波探触子の設置位置と上流側ロールの設置位置との被探傷材の軸方向に沿った離間距離に相当する長さまでの部位を意味する。   Note that the “tip portion” in the present invention corresponds to the distance along the axial direction of the flaw detection material between the ultrasonic probe installation position and the downstream roll installation position from the forefront of the flaw detection material. It means a part up to the length to be. Further, the “rear end” in the present invention is a distance along the axial direction of the flaw detection material from the rearmost end of the flaw detection material between the installation position of the ultrasonic probe and the installation position of the upstream roll. It means a part up to the corresponding length.

なお、被探傷材の先端部及び後端部を除く中央部については、特許文献1で提案されている制御方法と同様に、軸芯測定手段によって順次測定した各部位の軸芯位置に基づいて芯ずれ量を算出し、この算出した各部位の芯ずれ量と同じ量だけ、円筒状回転体の位置を順次補正することも考えられる。しかしながら、被探傷材の中央部については、超音波探傷が実施される際に上流側ロール及び下流側ロールの双方で案内支持されおり、曲がりの影響が比較的少ないと考えられるため、前回被探傷材の中央部について超音波探触子設置位置で測定した芯ずれ量の軸方向平均値に基づいて、今回被探傷材の中央部を探傷する際の円筒状回転体の位置を一定の値に制御しても(すなわち、被探傷材の中央部の各部位が軸方向に順次搬送されるに従って円筒状回転体の位置を順次変更する複雑な制御を施さなくても)、比較的精度良く探傷可能となることが期待できる。   In addition, about the center part except the front-end | tip part and rear-end part of a to-be-examined material, it is based on the axial center position of each site | part measured sequentially by the axial center measurement means similarly to the control method proposed by patent document 1. It is also conceivable to calculate the misalignment amount and sequentially correct the position of the cylindrical rotating body by the same amount as the calculated misalignment amount of each part. However, since the central portion of the flaw detection material is guided and supported by both the upstream roll and the downstream roll when ultrasonic flaw detection is performed, it is considered that the influence of bending is relatively small. Based on the axial average value of the amount of misalignment measured at the ultrasonic probe installation position for the center part of the material, the position of the cylindrical rotating body at the time of detecting the center part of the material to be detected this time is set to a constant value. Even if controlled (that is, without performing complicated control for sequentially changing the position of the cylindrical rotating body as each part of the center of the flaw detection material is sequentially conveyed in the axial direction), flaw detection is performed with relatively high accuracy. It can be expected to be possible.

従って、好ましくは、前記制御手段は、今回探傷を実施する被探傷材の先端部及び後端部を除く中央部が前記超音波探触子設置位置に到達する際に、前記円筒状回転体のY軸方向の位置を下記の式(3)に示すCY’だけ補正すると共に、前記円筒状回転体のZ軸方向の位置を下記の式(4)に示すCZ’だけ補正するように構成される。
CY’=Ave(BYc(x)−CY)・・・(3)
CZ’=Ave(BZc(x)−CZ)・・・(4)
ここで、上記式(3)及び(4)において、xは被探傷材の軸方向の位置を、BYc(x)及びBZc(x)はそれぞれ前回探傷を実施した被探傷材(前回被探傷材)の中央部についての超音波探触子設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、CY及びCZはそれぞれ前回被探傷材の中央部について補正した円筒状回転体のY軸方向及びZ軸方向の位置補正量を、Ave( )は、括弧内の平均値を意味する。
Therefore, it is preferable that the control means is configured so that when the central portion excluding the front end portion and the rear end portion of the flaw detection material to be subjected to the current flaw detection reaches the ultrasonic probe installation position, The position in the Y-axis direction is corrected by CY ′ shown in the following formula (3), and the position in the Z-axis direction of the cylindrical rotating body is corrected by CZ ′ shown in the following formula (4). The
CY ′ = Ave (BYc (x) −CY) (3)
CZ ′ = Ave (BZc (x) −CZ) (4)
Here, in the above formulas (3) and (4), x is the axial position of the flaw detection material, and BYc (x) and BZc (x) are flaw detection materials (previous flaw detection materials that were previously subjected to flaw detection). ) And CY and CZ are the Y values of the cylindrical rotating body obtained by correcting the center misalignment amounts in the Y-axis direction and Z-axis direction at the ultrasonic probe installation position at the center portion of The position correction amounts in the axial direction and the Z-axis direction, and Ave () means an average value in parentheses.

本発明に係る超音波探傷装置によれば、被探傷材の先端部及び後端部について軸芯位置と円筒状回転体の軸芯位置とを精度良く一致させることができ、ひいては被探傷材の先端部及び後端部についても精度良く探傷可能である。   According to the ultrasonic flaw detector according to the present invention, the axial center position and the axial center position of the cylindrical rotating body can be made to coincide with each other accurately with respect to the front end portion and the rear end portion of the flaw detection material. The front end and the rear end can also be detected with high accuracy.

以下、添付図面を適宜参照しつつ、本発明に係る超音波探傷装置の一実施形態について、被探傷材が鋼管である場合を例に挙げて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an ultrasonic flaw detection apparatus according to an embodiment of the invention will be described with reference to the accompanying drawings, taking as an example a case where a material to be detected is a steel pipe.

図2は、本発明の一実施形態に係る超音波探傷装置の概略構成を模式的に示すブロック図である。図2に示すように、本実施形態に係る超音波探傷装置100は、軸方向に沿って搬送される鋼管Sに対して超音波を送受信する超音波探触子1と、超音波探触子1からの出力信号(反射エコー信号)を受信して、鋼管Sに存在する欠陥を検出すると共に、超音波探触子1から鋼管までの距離を測定する超音波探傷器2と、超音波探触子1が取り付けられ、鋼管Sを挿通すると共に鋼管Sの周方向に沿って回転する円筒状回転体3と、鋼管Sの搬送方向に沿って円筒状回転体3の上流側(図2の左側)及び下流側(図2の右側)にそれぞれ配置され、鋼管Sを案内支持する上流側ロール4及び下流側ロール5と、上流側ロール4と円筒状回転体3との間に配置され、鋼管Sの軸芯位置を測定する軸芯測定手段6と、円筒状回転体3の軸方向(X軸方向)にそれぞれ直交し且つ互いに直交するY軸方向(図2の紙面に垂直な方向であり、円筒状回転体3の軸方向から見て左右方向)及びZ軸方向(図2の紙面の上下方向であり、円筒状回転体3の軸方向から見て上下方向)の位置を制御する制御手段7とを備えている。   FIG. 2 is a block diagram schematically showing a schematic configuration of the ultrasonic flaw detector according to one embodiment of the present invention. As shown in FIG. 2, the ultrasonic flaw detector 100 according to the present embodiment includes an ultrasonic probe 1 that transmits and receives ultrasonic waves to and from a steel pipe S that is conveyed along the axial direction, and an ultrasonic probe. 1 receives an output signal (reflected echo signal) from 1, detects a defect existing in the steel pipe S, and measures an ultrasonic flaw detector 2 that measures the distance from the ultrasonic probe 1 to the steel pipe; The contact 1 is attached, and the cylindrical rotating body 3 that passes through the steel pipe S and rotates along the circumferential direction of the steel pipe S, and the upstream side of the cylindrical rotating body 3 along the conveying direction of the steel pipe S (in FIG. 2). Left side) and downstream side (right side in FIG. 2), respectively, and arranged between the upstream roll 4 and the downstream roll 5 for guiding and supporting the steel pipe S, and between the upstream roll 4 and the cylindrical rotating body 3, The axial center measuring means 6 for measuring the axial center position of the steel pipe S and the axial direction (X Direction) and the Y-axis direction (perpendicular to the paper surface of FIG. 2 and the left-right direction when viewed from the axial direction of the cylindrical rotating body 3) and the Z-axis direction (up and down of the paper surface of FIG. 2). And a control means 7 for controlling the position in the vertical direction as viewed from the axial direction of the cylindrical rotating body 3.

超音波探触子1としては、超音波を鋼管Sの内部に入射し、鋼管Sの内部や表面に存在する欠陥からの反射エコーを受信できるものである限りにおいて、市販品など種々の公知の超音波探触子を用いることが可能である。   As long as the ultrasonic probe 1 is capable of receiving ultrasonic waves from inside the steel pipe S and receiving reflected echoes from defects present in the inside or the surface of the steel pipe S, various known products such as commercial products are available. An ultrasound probe can be used.

超音波探傷器2は、超音波探触子1から受信した反射エコー信号に対して所定の探傷ゲートを設定し、該探傷ゲート内の反射エコー信号の振幅の大小に基づいて鋼管Sに存在する欠陥を検出する。また、超音波探傷器2は、超音波探触子1から受信した反射エコー信号に基づいて、超音波探触子1が超音波を送信してから鋼管S表面での反射エコーを検出するまでの時間を検出し、この検出した時間と超音波の音速とにより超音波探触子1から鋼管Sまでの距離を測定する。斯かる機能を有する超音波探傷器2としては、市販品など種々の公知の超音波探傷器を用いることが可能である。   The ultrasonic flaw detector 2 sets a predetermined flaw detection gate for the reflected echo signal received from the ultrasonic probe 1 and exists in the steel pipe S based on the magnitude of the amplitude of the reflected echo signal in the flaw detection gate. Detect defects. Further, the ultrasonic flaw detector 2 is based on the reflected echo signal received from the ultrasonic probe 1 until the ultrasonic probe 1 detects the reflected echo on the surface of the steel pipe S after transmitting the ultrasonic wave. , And the distance from the ultrasonic probe 1 to the steel pipe S is measured based on the detected time and the sound velocity of the ultrasonic waves. As the ultrasonic flaw detector 2 having such a function, various known ultrasonic flaw detectors such as commercially available products can be used.

円筒状回転体3には、内部の中空部に向けて超音波が発信されるように超音波探触子1が取り付けられており、前記中空部すなわち超音波探触子1と鋼管Sとの間隙には、外部から供給された水Wが充填されるように構成されている。斯かる構成により、超音波探触子1から発信された超音波は、前記充填された水Wを接触媒質として鋼管Sに伝搬されることになる。そして、円筒状回転体3が鋼管Sの周方向に沿って回転することにより、超音波探触子1も円筒状回転体3の回転中心をその回転中心として、鋼管Sの周方向に沿って回転することになる。従って、鋼管Sが軸方向に搬送されることにより、鋼管Sの外表面に沿って螺旋状に超音波探触子1が走査されながら超音波探傷が実施されることになる。   An ultrasonic probe 1 is attached to the cylindrical rotating body 3 so that an ultrasonic wave is transmitted toward an internal hollow portion. The hollow portion, that is, the ultrasonic probe 1 and the steel pipe S are connected to each other. The gap is configured to be filled with water W supplied from the outside. With such a configuration, the ultrasonic wave transmitted from the ultrasonic probe 1 is propagated to the steel pipe S using the filled water W as a contact medium. Then, when the cylindrical rotating body 3 rotates along the circumferential direction of the steel pipe S, the ultrasonic probe 1 also uses the rotation center of the cylindrical rotating body 3 as the rotation center along the circumferential direction of the steel pipe S. Will rotate. Therefore, when the steel pipe S is conveyed in the axial direction, ultrasonic flaw detection is performed while the ultrasonic probe 1 is scanned spirally along the outer surface of the steel pipe S.

上流側ロール4及び下流側ロール5は、ピンチロールとされており、鋼管Sの外径に応じて上下に位置変動すると共に、搬送されてきた鋼管Sの外表面を所定の圧力で押圧して案内支持するように構成されている。   The upstream roll 4 and the downstream roll 5 are pinch rolls, and the position of the upstream roll 4 and the downstream roll 5 fluctuate depending on the outer diameter of the steel pipe S, and the outer surface of the steel pipe S that has been conveyed is pressed with a predetermined pressure. It is configured to guide and support.

軸芯測定手段6は、鋼管Sの軸芯位置を鋼管Sの軸方向の各所定部位毎に測定するように構成されている。より具体的には、予め設定されたタイミング毎に(鋼管Sの各所定部位が軸芯測定手段6の設置位置に到達する毎に)、各所定部位の軸芯位置を測定するように構成されている。軸芯測定手段6としては、例えば、図3に示すように、Y軸方向に沿って対向する一対の空中超音波センサ61a、61bと、Z軸方向に沿って対向する一対の空中超音波センサ61c、61dとを備えた構成とすることが可能である。斯かる構成の軸芯測定手段6を採用する場合、空中超音波センサ61aで測定した空中超音波センサ61aから鋼管Sの外表面までの距離Yaと、空中超音波センサ61bで測定した空中超音波センサ61bから鋼管Sの外表面までの距離Ybとに基づき、鋼管Sの軸芯S0のY軸方向の位置を測定可能である。より具体的に説明すれば、空中超音波センサ61a、61bの超音波送信方向と、空中超音波センサ61c、61dの超音波送信方向との交点Oを原点にしたとすると、鋼管Sの軸芯S0のY軸方向の位置(Y座標)は、(Ya−Yb)/2で算出されることになる。同様にして、鋼管Sの軸芯S0のZ軸方向の位置(Z座標)は、空中超音波センサ61cで測定した空中超音波センサ61cから鋼管Sの外表面までの距離Zaと、空中超音波センサ61dで測定した空中超音波センサ61dから鋼管Sの外表面までの距離Zbとに基づき、交点Oを原点として(Zb−Za)/2で算出されることになる。   The axial core measuring means 6 is configured to measure the axial center position of the steel pipe S for each predetermined portion in the axial direction of the steel pipe S. More specifically, it is configured to measure the axial center position of each predetermined portion at every preset timing (each time each predetermined portion of the steel pipe S reaches the installation position of the axial core measuring means 6). ing. As the axial center measuring means 6, for example, as shown in FIG. 3, a pair of aerial ultrasonic sensors 61a and 61b opposed along the Y-axis direction and a pair of aerial ultrasonic sensors opposed along the Z-axis direction. A configuration including 61c and 61d is possible. When the axial center measuring means 6 having such a configuration is employed, the distance Ya from the air ultrasonic sensor 61a measured by the air ultrasonic sensor 61a to the outer surface of the steel pipe S and the air ultrasonic wave measured by the air ultrasonic sensor 61b. Based on the distance Yb from the sensor 61b to the outer surface of the steel pipe S, the position of the axis S0 of the steel pipe S in the Y-axis direction can be measured. More specifically, assuming that the origin is an intersection O between the ultrasonic transmission direction of the aerial ultrasonic sensors 61a and 61b and the ultrasonic transmission direction of the aerial ultrasonic sensors 61c and 61d, the axis of the steel pipe S The position (Y coordinate) of S0 in the Y-axis direction is calculated by (Ya−Yb) / 2. Similarly, the position (Z coordinate) of the axis S0 of the steel pipe S in the Z-axis direction is the distance Za from the air ultrasonic sensor 61c measured by the air ultrasonic sensor 61c to the outer surface of the steel pipe S, and the air ultrasonic wave. Based on the distance Zb from the aerial ultrasonic sensor 61d measured by the sensor 61d to the outer surface of the steel pipe S, it is calculated as (Zb−Za) / 2 with the intersection O as the origin.

或いは、特許文献1に記載の構成と同様に、3つの空中超音波センサを超音波の送信方向が互いに90°で交差するように配置した軸芯測定手段6を採用し、各空中超音波センサから鋼管Sの外表面までの距離と、鋼管Sの断面が真円であると仮定した場合の幾何学的な関係とに基づいて、鋼管Sの軸芯S0の位置を算出することも可能である。何れにせよ、鋼管Sの軸芯位置を測定できるものである限りにおいて、軸芯測定手段6の構成は何ら限定されるものではなく、種々の構成を採用可能である。   Alternatively, in the same manner as in the configuration described in Patent Document 1, the aerial ultrasonic sensor using the axial center measuring means 6 in which three aerial ultrasonic sensors are arranged so that the transmission directions of the ultrasonic waves intersect each other at 90 ° is adopted. It is also possible to calculate the position of the axis S0 of the steel pipe S on the basis of the distance from the outer surface of the steel pipe S to the outer surface of the steel pipe S and the geometrical relationship when the cross section of the steel pipe S is assumed to be a perfect circle. is there. In any case, as long as the position of the axial center of the steel pipe S can be measured, the configuration of the axial center measuring means 6 is not limited at all, and various configurations can be adopted.

制御手段7は、円筒状回転体3をY軸方向及びZ軸方向に移動させる機構部(図示せず)と、該機構部を制御する制御部(図示せず)とを備えている。前記機構部としては、例えば、特許文献1に記載のような、機構装置、機構装置昇降モータ、機構装置移動モータ及び機構装置移動機構など、種々の公知の構成を採用可能である。前記制御部は、軸芯測定手段6で測定した鋼管Sの軸芯S0の位置と、超音波探傷器2で測定した超音波探触子1から鋼管Sの外表面までの距離とを受信し、これら受信した計測値に基づいて、鋼管Sの先端部及び後端部が超音波探触子1の設置位置に到達する際における円筒状回転体3の適切な位置(超音波探触子1の設置位置に於ける鋼管Sの軸芯位置と円筒状回転体3の軸芯位置とが一致する位置)を演算する。そして、円筒状回転体3が該演算した位置となるように前記機構部を制御する。以下、制御手段7(制御部)による演算及び制御動作について、より具体的に説明する。   The control means 7 includes a mechanism unit (not shown) that moves the cylindrical rotating body 3 in the Y-axis direction and the Z-axis direction, and a control unit (not shown) that controls the mechanism unit. As the mechanism unit, for example, various known configurations such as a mechanism device, a mechanism device lifting motor, a mechanism device moving motor, and a mechanism device moving mechanism as described in Patent Document 1 can be adopted. The control unit receives the position of the axis S0 of the steel pipe S measured by the axis measuring means 6, and the distance from the ultrasonic probe 1 measured by the ultrasonic flaw detector 2 to the outer surface of the steel pipe S. Based on these received measurement values, the appropriate position (ultrasonic probe 1) of the cylindrical rotating body 3 when the front end and the rear end of the steel pipe S reach the installation position of the ultrasonic probe 1. (The position where the axial center position of the steel pipe S and the axial center position of the cylindrical rotating body 3 coincide with each other) are calculated. And the said mechanism part is controlled so that the cylindrical rotary body 3 may become this calculated position. Hereinafter, the calculation and control operation by the control means 7 (control unit) will be described more specifically.

まず、制御手段7は、前述のようにして軸芯測定手段6で測定した鋼管Sの軸芯S0のY軸方向の位置と、円筒状回転体3の予め設定した初期(超音波探傷を実施する前)のY軸方向の軸芯位置との差を、軸芯測定手段6設置位置に於ける鋼管SのY軸方向の芯ずれ量として算出する。より具体的に説明すれば、例えば軸芯測定手段6として図3に示す構成を採用した場合には、交点OのY軸方向の位置と円筒状回転体3の予め設定した初期のY軸方向の軸芯位置との関係を予め記憶しておくことにより、交点Oを原点にして算出した鋼管Sの軸芯S0のY軸方向の位置と、円筒状回転体3の予め設定した初期のY軸方向の軸芯位置との差を算出することが可能である。同様にして、制御手段7は、軸芯測定手段6で測定した鋼管Sの軸芯S0のZ軸方向の位置と円筒状回転体3の予め設定した初期のZ軸方向の軸芯位置との差を、軸芯測定手段6設置位置に於ける鋼管SのZ軸方向の芯ずれ量として算出する。   First, the control means 7 carries out the position in the Y-axis direction of the axis S0 of the steel pipe S measured by the axis measurement means 6 as described above, and the preset initial (ultrasonic flaw detection) of the cylindrical rotating body 3. The difference from the axial center position in the Y-axis direction is calculated as a misalignment amount in the Y-axis direction of the steel pipe S at the installation position of the axial center measuring means 6. More specifically, for example, when the configuration shown in FIG. 3 is adopted as the axis measuring means 6, the position of the intersection O in the Y-axis direction and the preset initial Y-axis direction of the cylindrical rotating body 3 are described. Is stored in advance, the position in the Y-axis direction of the axis S0 of the steel pipe S calculated using the intersection point O as the origin, and the preset initial Y of the cylindrical rotating body 3 It is possible to calculate the difference from the axial center position in the axial direction. Similarly, the control means 7 determines the position of the axis S0 of the steel pipe S measured by the axis measurement means 6 in the Z-axis direction and the preset initial Z-axis position of the cylindrical rotating body 3. The difference is calculated as the amount of misalignment in the Z-axis direction of the steel pipe S at the position where the shaft core measuring means 6 is installed.

一方、制御手段7は、超音波探傷器2で測定したY軸方向に沿った超音波探触子1から鋼管Sの外表面までの距離に基づいて、鋼管SのY軸方向の軸芯位置を演算する。すなわち、図4に示すように、円筒状回転体3の回転に伴って超音波探触子1も回転するが、超音波探触子1がY軸方向に沿った位置(図4の(b)及び(d)の位置)に到達したタイミングで、超音波探傷器2が超音波探触子1から鋼管Sの外表面までの距離Ya’、Yb’を測定し、制御手段7が前記測定された距離Ya’、Yb’に基づいて、鋼管Sの軸芯S0’のY軸方向の位置を演算する。より具体的に説明すれば、Y軸方向に沿った位置に到達した超音波探触子1の超音波送信方向と、Z軸方向に沿った位置(図4の(a)及び(c)の位置)に到達した超音波探触子1の超音波送信方向との交点O’を原点にしたとすると、鋼管Sの軸芯S0’のY軸方向の位置(Y座標)は、(Ya’−Yb’)/2で算出されることになる。以上のようにして、制御手段7は、超音波探触子1がY軸方向に沿った位置に到達するタイミング毎に、鋼管SのY軸方向の軸芯位置を演算する。   On the other hand, based on the distance from the ultrasonic probe 1 along the Y-axis direction measured by the ultrasonic flaw detector 2 to the outer surface of the steel pipe S, the control means 7 is the axial position of the steel pipe S in the Y-axis direction. Is calculated. That is, as shown in FIG. 4, the ultrasonic probe 1 also rotates with the rotation of the cylindrical rotating body 3, but the ultrasonic probe 1 is positioned along the Y-axis direction ((b in FIG. 4). ) And (d), the ultrasonic flaw detector 2 measures the distances Ya ′ and Yb ′ from the ultrasonic probe 1 to the outer surface of the steel pipe S, and the control means 7 measures the measurement. Based on the distances Ya ′ and Yb ′, the position of the axis S0 ′ of the steel pipe S in the Y-axis direction is calculated. More specifically, the ultrasonic transmission direction of the ultrasonic probe 1 that has reached the position along the Y-axis direction and the position along the Z-axis direction (of (a) and (c) in FIG. 4). Assuming that the origin is the intersection O ′ with the ultrasonic transmission direction of the ultrasonic probe 1 that has reached (position), the position (Y coordinate) of the axis S0 ′ of the steel pipe S in the Y-axis direction is (Ya ′) -Yb ') / 2. As described above, the control means 7 calculates the axial center position of the steel pipe S in the Y-axis direction at every timing when the ultrasonic probe 1 reaches the position along the Y-axis direction.

そして、制御手段7は、前記演算した鋼管Sの軸芯S0’のY軸方向の位置と、円筒状回転体3の予め設定した初期のY軸方向の軸芯位置との差を、超音波探触子1設置位置に於ける鋼管SのY軸方向の芯ずれ量として算出する。より具体的に説明すれば、図4に示す交点O’のY軸方向の位置と円筒状回転体3の予め設定した初期のY軸方向の軸芯位置との関係を予め記憶しておくことにより、交点O’を原点にして算出した鋼管Sの軸芯S0’のY軸方向の位置と、円筒状回転体3の予め設定した初期のY軸方向の軸芯位置との差を算出することが可能である。   Then, the control means 7 calculates the difference between the calculated position of the axial center S0 ′ of the steel pipe S in the Y-axis direction and the initial axial position of the cylindrical rotating body 3 in the Y-axis direction by ultrasonic waves. The amount of misalignment in the Y-axis direction of the steel pipe S at the probe 1 installation position is calculated. More specifically, the relationship between the position in the Y-axis direction of the intersection O ′ shown in FIG. 4 and the preset initial Y-axis axis position of the cylindrical rotating body 3 is stored in advance. Thus, the difference between the position in the Y-axis direction of the axis S0 ′ of the steel pipe S calculated using the intersection O ′ as the origin and the initial Y-axis direction axis position of the cylindrical rotating body 3 is calculated. It is possible.

同様にして、制御手段7は、超音波探触子1がZ軸方向に沿った位置に到達するタイミング毎に、超音波探傷器2で測定したZ軸方向に沿った超音波探触子1から鋼管Sの外表面までの距離Za’、Zb’に基づいて、鋼管Sの軸芯S0’のZ軸方向の位置を演算する。鋼管Sの軸芯S0’のZ軸方向の位置(Z座標)は、交点O’を原点として(Zb’−Za’)/2で算出されることになる。そして、制御手段7は、前記演算した鋼管Sの軸芯S0’のZ軸方向の位置と、円筒状回転体3の予め設定した初期のZ軸方向の軸芯位置との差を、超音波探触子設置位置1に於ける鋼管SのZ軸方向の芯ずれ量として算出する。すなわち、図4に示す交点O’のZ軸方向の位置と円筒状回転体3の予め設定した初期のZ軸方向の軸芯位置との関係を予め記憶しておくことにより、交点O’を原点にして算出した鋼管Sの軸芯S0’のZ軸方向の位置と、円筒状回転体3の予め設定した初期のZ軸方向の軸芯位置との差を算出する。   Similarly, the control means 7 detects the ultrasonic probe 1 along the Z-axis direction measured by the ultrasonic flaw detector 2 at every timing when the ultrasonic probe 1 reaches a position along the Z-axis direction. From the distances Za ′ and Zb ′ from the outer surface of the steel pipe S to the Z axis direction position of the axis S0 ′ of the steel pipe S is calculated. The position (Z coordinate) of the axis S0 'of the steel pipe S in the Z-axis direction is calculated as (Zb'-Za') / 2 with the intersection point O 'as the origin. Then, the control means 7 calculates the difference between the calculated position of the axis S0 ′ of the steel pipe S in the Z-axis direction and the preset initial Z-axis position of the cylindrical rotating body 3 by ultrasonic waves. The amount of misalignment in the Z-axis direction of the steel pipe S at the probe installation position 1 is calculated. That is, by storing in advance the relationship between the position of the intersection point O ′ shown in FIG. 4 in the Z-axis direction and the preset initial axial center position of the cylindrical rotating body 3, the intersection point O ′ is determined. The difference between the position in the Z-axis direction of the axis S0 ′ of the steel pipe S calculated as the origin and the initial Z-axis direction position of the cylindrical rotating body 3 set in advance is calculated.

そして、制御手段7は、今回探傷を実施する鋼管Sの先端部(鋼管Sの最先端から超音波探触子1の設置位置と下流側ロール5の設置位置との離間距離(図2に示すLt)に相当する長さまでの部位)及び後端部(鋼管Sの最後端から超音波探触子1の設置位置と上流側ロール4の設置位置との離間距離(図2に示すLb)に相当する長さまでの部位)が超音波探触子1設置位置に到達する際に、円筒状回転体3のY軸方向の位置を下記の式(1)に示すBY’(x)だけ補正すると共に、円筒状回転体3のZ軸方向の位置を下記の式(2)に示すBZ’(x)だけ補正する。換言すれば、制御手段7は、前回探傷を実施した鋼管Sの先端部及び後端部が超音波探触子1設置位置に到達した際に設定した円筒状回転体3のY軸方向及びZ軸方向の位置を基準として、BY’(x)及びBZ’(x)だけ円筒状回転体3のY軸方向及びZ軸方向の位置をそれぞれ変更する。つまり、制御手段7の制御部は、BY’(x)及びBZ’(x)を演算し、円筒状回転体3のY軸方向及びZ軸方向の位置がそれぞれBY’(x)及びBZ’(x)だけ移動するように、制御手段7の機構部を制御する。
BY’(x)=AY’(x)×(BY(x)−CY(x))/AY(x)・・・(1)
BZ’(x)=AZ’(x)×(BZ(x)−CZ(x))/AZ(x)・・・(2)
And the control means 7 is the separation | spacing distance (as shown in FIG. 2 of the front-end | tip part of the steel pipe S which implements a flaw detection this time (the installation position of the ultrasonic probe 1 and the installation position of the downstream roll 5 from the forefront of the steel pipe S). Lt) and the rear end (the distance Lb shown in FIG. 2) from the rear end of the steel pipe S to the installation position of the ultrasonic probe 1 and the installation position of the upstream roll 4 When the portion up to the corresponding length) reaches the installation position of the ultrasonic probe 1, the position of the cylindrical rotating body 3 in the Y-axis direction is corrected by BY ′ (x) shown in the following equation (1). At the same time, the position of the cylindrical rotating body 3 in the Z-axis direction is corrected by BZ ′ (x) shown in the following equation (2). In other words, the control means 7 uses the Y-axis direction and the Z axis of the cylindrical rotating body 3 set when the front end portion and the rear end portion of the steel pipe S on which the flaw detection has been performed have reached the ultrasonic probe 1 installation position. Using the position in the axial direction as a reference, the positions of the cylindrical rotating body 3 in the Y-axis direction and Z-axis direction are changed by BY ′ (x) and BZ ′ (x), respectively. That is, the control unit of the control means 7 calculates BY ′ (x) and BZ ′ (x), and the positions of the cylindrical rotating body 3 in the Y-axis direction and the Z-axis direction are BY ′ (x) and BZ ′, respectively. The mechanism part of the control means 7 is controlled so as to move only by (x).
BY ′ (x) = AY ′ (x) × (BY (x) −CY (x)) / AY (x) (1)
BZ ′ (x) = AZ ′ (x) × (BZ (x) −CZ (x)) / AZ (x) (2)

ここで、上記式(1)及び(2)において、xは鋼管Sの軸方向の位置を、AY’(x)及びAZ’(x)はそれぞれ今回探傷を実施する鋼管S(今回被探傷材)の先端部及び後端部についての軸芯測定手段6設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、AY(x)及びAZ(x)はそれぞれ前回探傷を実施した鋼管S(前回被探傷材)の先端部及び後端部についての軸芯測定手段6設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、BY(x)及びBZ(x)はそれぞれ前回被探傷材の先端部及び後端部についての超音波探触子1設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、CY(x)及びCZ(x)はそれぞれ前回被探傷材の先端部及び後端部について補正した円筒状回転体3のY軸方向及びZ軸方向の位置補正量を、BY’(x)及びBZ’(x)はそれぞれ今回被探傷材の先端部及び後端部について予測される超音波探触子1設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を意味する。   Here, in the above formulas (1) and (2), x is the position in the axial direction of the steel pipe S, and AY ′ (x) and AZ ′ (x) are the steel pipe S (the material to be inspected this time) that performs the current flaw detection, respectively. ) AY (x) and AZ (x) are the steel pipes for which the previous flaw detection was performed, respectively, with respect to the misalignment amounts in the Y-axis direction and Z-axis direction at the position where the axial center measuring means 6 is installed at the front end portion and the rear end portion. BY (x) and BZ (x) are the amounts of misalignment in the Y-axis direction and the Z-axis direction at the position where the axial center measuring means 6 is installed at the front end portion and the rear end portion of S (previously detected material), respectively. CY (x) and CZ (x) represent the amounts of misalignment in the Y-axis direction and the Z-axis direction at the position where the ultrasonic probe 1 is installed at the front end portion and the rear end portion of the previous flaw detection material, respectively. Compensation of the position of the cylindrical rotating body 3 in the Y-axis direction and the Z-axis direction corrected for the front and rear ends of the flaw detection material BY ′ (x) and BZ ′ (x) are respectively the Y-axis direction and the Z-axis direction at the ultrasonic probe 1 installation position predicted for the front end portion and the rear end portion of the material to be detected this time. Means the amount of misalignment.

以上に説明した制御手段7の演算及び制御動作により、鋼管Sの先端部及び後端部について軸芯位置と円筒状回転体3の軸芯位置とを精度良く一致させることができ、ひいては鋼管Sの先端部及び後端部についても精度良く探傷可能である。   By the calculation and control operation of the control means 7 described above, the axial center position and the axial core position of the cylindrical rotating body 3 can be made to coincide with each other with high accuracy at the front end portion and the rear end portion of the steel pipe S. It is possible to detect flaws with high accuracy also at the front end and the rear end.

なお、上記制御手段7の演算及び制御動作は、前回被探傷材が存在する場合、すなわち、超音波探傷を開始してから2本目以降の鋼管Sに対して実施する動作である。1本目の鋼管Sについては、前回被探傷材についての軸芯測定手段6設置位置に於ける芯ずれ量であるAY(x)及びAZ(x)、前回被探傷材についての超音波探触子1設置位置に於ける芯ずれ量であるBY(x)及びBZ(x)、前回被探傷材についての円筒状回転体3の位置補正量CY(x)及びCZ(x)が存在しないため、式(1)及び(2)に基づいて、今回被探傷材についての超音波探触子1設置位置に於ける芯ずれ量であるBY’(x)及びBZ’(x)を予測することができないからである。   The calculation and control operation of the control means 7 is an operation to be performed on the second and subsequent steel pipes S when the material to be flawed previously exists, that is, after the ultrasonic flaw detection is started. For the first steel pipe S, AY (x) and AZ (x), which are misalignment amounts at the position where the axial center measuring means 6 is installed for the previous flaw detection material, and the ultrasonic probe for the previous flaw detection material. Since there are no BY (x) and BZ (x), which are misalignment amounts at one installation position, and position correction amounts CY (x) and CZ (x) of the cylindrical rotating body 3 for the previous flaw detection material, Based on the equations (1) and (2), it is possible to predict BY ′ (x) and BZ ′ (x), which are misalignment amounts at the position where the ultrasonic probe 1 is installed for the material to be detected this time. It is not possible.

従って、1本目の鋼管Sについては、例えば特許文献1で提案されている制御方法と同様に、軸芯測定手段6によって測定した鋼管Sの各部位の軸芯位置に基づいて芯ずれ量(式(1)及び(2)に示すAY’(x)及びAZ’(x)に相当する)を算出し、この算出した各部位の芯ずれ量と同じ量だけ、円筒状回転体3の位置を順次補正することが考えられる。ただし、斯かる制御動作は、軸芯測定手段6設置位置での芯ずれ量と超音波探触子1設置位置での芯ずれ量とが、鋼管Sの同一部位については同一の値であることを前提としているため、1本目の鋼管Sについては、先端部及び後端部の探傷精度が劣化する虞がある。   Therefore, for the first steel pipe S, for example, as in the control method proposed in Patent Document 1, the amount of misalignment (formula) is determined based on the axial center position of each part of the steel pipe S measured by the axial core measuring means 6. (Corresponding to AY ′ (x) and AZ ′ (x) shown in (1) and (2)), and the position of the cylindrical rotating body 3 is set by the same amount as the calculated misalignment amount of each part. It is conceivable to correct sequentially. However, the control operation is such that the misalignment amount at the axial center measuring means 6 installation position and the misalignment amount at the ultrasonic probe 1 installation position are the same value for the same part of the steel pipe S. Therefore, for the first steel pipe S, there is a possibility that the flaw detection accuracy at the front end and the rear end will deteriorate.

1本目の鋼管Sについても、探傷精度の劣化を低減するには、例えば、鋼管Sの外径や材質等の属性毎に、超音波探触子1設置位置に於ける芯ずれ量と軸芯測定手段6設置位置に於ける芯ずれ量との比(式(1)に示すBY(x)とAY(x)との比BY(x)/AY(x)、式(2)に示すBZ(x)とAZ(x)との比BZ(x)/AZ(x)に相当する)を予め実績値としてデータ採取し、制御手段7に記憶しておくことが考えられる。そして、制御手段7は、探傷を実施する1本目の鋼管Sの属性に応じて、前記記憶した比BY(x)/AY(x)、BZ(x)/AZ(x)を読み出し、鋼管Sの先端部及び後端部が超音波探触子1設置位置に到達する際に、円筒状回転体3のY軸方向の位置を下記の式(1−a)に示すBY”(x)だけ補正すると共に、円筒状回転体3のZ軸方向の位置を下記の式(2−a)に示すBZ”(x)だけ補正すればよい。
BY”(x)=AY’(x)×BY(x)/AY(x)・・・(1−a)
BZ”(x)=AZ’(x)×BZ(x)/AZ(x)・・・(2−a)
In order to reduce the deterioration of the flaw detection accuracy for the first steel pipe S, for example, for each attribute such as the outer diameter or material of the steel pipe S, the misalignment amount and the axial center at the position where the ultrasonic probe 1 is installed. Ratio of misalignment at the installation position of measuring means 6 (ratio BY (x) and AY (x) shown in equation (1) BY (x) / AY (x), BZ shown in equation (2) It is conceivable that data (a ratio BZ (x) / AZ (x) between (x) and AZ (x)) is previously collected as an actual value and stored in the control means 7. Then, the control means 7 reads out the stored ratios BY (x) / AY (x), BZ (x) / AZ (x) in accordance with the attributes of the first steel pipe S that carries out the flaw detection. When the front end portion and the rear end portion reach the ultrasonic probe 1 installation position, the position of the cylindrical rotating body 3 in the Y-axis direction is represented by BY ″ (x) represented by the following equation (1-a). It is only necessary to correct the position of the cylindrical rotating body 3 in the Z-axis direction by BZ ″ (x) shown in the following equation (2-a).
BY ″ (x) = AY ′ (x) × BY (x) / AY (x) (1-a)
BZ ″ (x) = AZ ′ (x) × BZ (x) / AZ (x) (2-a)

上記の制御方法は、同種の属性を有する鋼管Sの過去の実績値データを利用して、超音波探触子設置位置1に於ける芯ずれ量を予測する構成であるため、特許文献1に記載のように軸芯測定手段6設置位置での芯ずれ量と超音波探触子1設置位置での芯ずれ量とが鋼管Sの同一部位については同一の値であることを前提とした制御方法に比べれば、精度良く探傷し得ることが期待できる。   The above control method is configured to predict the misalignment amount at the ultrasonic probe installation position 1 using the past actual value data of the steel pipe S having the same kind of attribute. As described, the control is based on the premise that the misalignment amount at the axial center measuring means 6 installation position and the misalignment amount at the ultrasonic probe 1 installation position are the same value for the same part of the steel pipe S. Compared to the method, it can be expected that flaws can be detected with high accuracy.

なお、本実施形態に係る制御手段7は、今回探傷を実施する鋼管Sの先端部及び後端部を除く中央部が超音波探触子1設置位置に到達する際には、円筒状回転体3のY軸方向の位置を下記の式(3)に示すCY’だけ補正すると共に、円筒状回転体3のZ軸方向の位置を下記の式(4)に示すCZ’だけ補正する。換言すれば、制御手段7は、前回探傷を実施した鋼管Sの中央部が超音波探触子1設置位置に到達した際に設定した円筒状回転体3のY軸方向及びZ軸方向の位置を基準として、CY’及びCZ’だけ円筒状回転体3のY軸方向及びZ軸方向の位置をそれぞれ変更する。つまり、制御手段7の制御部は、CY’及びCZ’を演算し、円筒状回転体3のY軸方向及びZ軸方向の位置がそれぞれCY’及びCZ’だけ移動するように、制御手段7の機構部を制御する。
CY’=Ave(BYc(x)−CY)・・・(3)
CZ’=Ave(BZc(x)−CZ)・・・(4)
Note that the control means 7 according to this embodiment is configured such that when the central portion excluding the front end portion and the rear end portion of the steel pipe S to be subjected to flaw detection reaches the ultrasonic probe 1 installation position, the cylindrical rotating body 3 is corrected by CY ′ shown in the following formula (3), and the position of the cylindrical rotating body 3 in the Z-axis direction is corrected by CZ ′ shown in the following formula (4). In other words, the control means 7 determines the position of the cylindrical rotating body 3 in the Y-axis direction and the Z-axis direction set when the central portion of the steel pipe S that has been subjected to the previous flaw reaches the installation position of the ultrasonic probe 1. , The positions of the cylindrical rotating body 3 in the Y-axis direction and the Z-axis direction are changed by CY ′ and CZ ′, respectively. That is, the control unit 7 of the control unit 7 calculates CY ′ and CZ ′ and controls the control unit 7 so that the positions of the cylindrical rotating body 3 in the Y-axis direction and the Z-axis direction are moved by CY ′ and CZ ′, respectively. Control the mechanism.
CY ′ = Ave (BYc (x) −CY) (3)
CZ ′ = Ave (BZc (x) −CZ) (4)

ここで、上記式(3)及び(4)において、xは鋼管Sの軸方向の位置を、BYc(x)及びBZc(x)はそれぞれ前回探傷を実施した鋼管S(前回被探傷材)の中央部についての超音波探触子1設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、CY及びCZはそれぞれ前回被探傷材の中央部について補正した円筒状回転体3のY軸方向及びZ軸方向の位置補正量を、Ave( )は、括弧内の平均値を意味する。   Here, in the above formulas (3) and (4), x is the position in the axial direction of the steel pipe S, and BYc (x) and BZc (x) are the steel pipe S (previously flawed material) on which the previous flaw detection was performed, respectively. CY and CZ are Y values of the cylindrical rotating body 3 in which the center misalignment amounts in the Y-axis direction and the Z-axis direction at the position where the ultrasonic probe 1 is installed at the center portion are corrected for the center portion of the last material to be detected. The position correction amounts in the axial direction and the Z-axis direction, and Ave () means an average value in parentheses.

以上に説明した鋼管Sの中央部に対する制御手段7の演算及び制御動作によれば、今回被探傷材の中央部を探傷する際の円筒状回転体3の位置を一定の値に制御しても(すなわち、鋼管Sの中央部の各部位が軸方向に順次搬送されるに従って円筒状回転体3の位置を順次変更する複雑な制御を施さなくても)、比較的精度良く探傷可能である。   According to the calculation and control operation of the control means 7 for the central portion of the steel pipe S described above, even if the position of the cylindrical rotating body 3 at the time of flaw detection at the central portion of the material to be detected is controlled to a constant value. (In other words, flaw detection can be performed with relatively high accuracy without performing complicated control for sequentially changing the position of the cylindrical rotating body 3 as each portion of the central portion of the steel pipe S is sequentially conveyed in the axial direction).

なお、上記鋼管Sの中央部に対する制御手段7の演算及び制御動作は、前回被探傷材が存在する場合、すなわち、超音波探傷を開始してから2本目以降の鋼管Sに対して実施する動作である。1本目の鋼管Sについては、前回被探傷材についての超音波探触子1設置位置に於ける芯ずれ量であるBYc(x)及びBZc(x)、前回被探傷材についての円筒状回転体3の位置補正量CY及びCZが存在しないため、式(3)及び(4)に基づいて、今回被探傷材についての位置補正量CY’及びCZ’を算出できないからである。   The calculation and control operation of the control means 7 for the central portion of the steel pipe S is performed when the material to be inspected last time, that is, the second and subsequent steel pipes S after the start of ultrasonic flaw detection. It is. For the first steel pipe S, BYc (x) and BZc (x), which are misalignment amounts at the position where the ultrasonic probe 1 is installed for the previous flaw detection material, and the cylindrical rotating body for the previous flaw detection material This is because the position correction amounts CY ′ and CZ ′ for the current flaw detection material cannot be calculated based on the equations (3) and (4) because the position correction amounts CY and CZ of 3 do not exist.

従って、1本目の鋼管Sについては、例えば特許文献1で提案されている制御方法と同様に、軸芯測定手段6によって測定した鋼管Sの中央部の各部位の軸芯位置に基づいて芯ずれ量を算出し、この算出した各部位の芯ずれ量と同じ量だけ、円筒状回転体3の位置を順次補正することが考えられる。そして、2本目の鋼管Sの中央部に対して円筒状回転体3の位置補正量を算出する際には、式(3)及び(4)に示す位置補正量CY及びCZとして、上記算出した1本目の鋼管Sの中央部の各部位の芯ずれ量の軸方向平均値を用いればよい。   Therefore, for the first steel pipe S, for example, as in the control method proposed in Patent Document 1, the misalignment is based on the axis position of each part of the central portion of the steel pipe S measured by the axis measuring means 6. It is conceivable to calculate the amount and sequentially correct the position of the cylindrical rotating body 3 by the same amount as the calculated center misalignment amount of each part. And when calculating the position correction amount of the cylindrical rotating body 3 with respect to the center part of the second steel pipe S, the above calculation was performed as the position correction amounts CY and CZ shown in the equations (3) and (4). What is necessary is just to use the axial direction average value of the misalignment amount of each site | part of the center part of the 1st steel pipe S. FIG.

図5は、以上に説明した本実施形態に係る超音波探傷装置100を適用した場合と、適用しなかった場合(鋼管Sの曲がりを考慮せず、鋼管Sの外径に基づいて、鋼管Sと円筒状回転体3との芯出しを行って探傷した場合)とにおける欠陥の誤検出を評価した結果の一例を示すグラフである。図5の横軸は評価した年月を、縦軸は誤検出率(欠陥が存在すると誤検出した鋼管の本数/探傷を実施した鋼管の本数)を示す。   FIG. 5 shows a case where the ultrasonic flaw detector 100 according to the present embodiment described above is applied and a case where the ultrasonic flaw detector 100 is not applied (the steel pipe S based on the outer diameter of the steel pipe S without considering the bending of the steel pipe S). 5 is a graph showing an example of the result of evaluating the erroneous detection of defects in the case where a flaw and a cylindrical rotating body 3 are centered for flaw detection). The horizontal axis in FIG. 5 represents the evaluated year and month, and the vertical axis represents the false detection rate (the number of steel pipes erroneously detected as having defects / the number of steel pipes subjected to flaw detection).

図5に示すように、本実施形態に係る超音波探傷装置100を適用することにより、曲がりを有する鋼管であっても、欠陥の誤検出が大幅に低減され、精度良く探傷可能であることが分かった。   As shown in FIG. 5, by applying the ultrasonic flaw detection apparatus 100 according to the present embodiment, even if the steel pipe has a bend, erroneous detection of defects is greatly reduced, and flaw detection can be performed with high accuracy. I understood.

図1は、従来の超音波探傷装置における問題点を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining a problem in a conventional ultrasonic flaw detector. 図2は、本発明の一実施形態に係る超音波探傷装置の概略構成を模式的に示すブロック図である。FIG. 2 is a block diagram schematically showing a schematic configuration of the ultrasonic flaw detector according to one embodiment of the present invention. 図3は、図2に示す軸芯測定手段の一構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of the axial center measuring means shown in FIG. 図4は、図2に示す超音波探傷器によって被探傷材の軸芯位置を算出する方法を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a method of calculating the axial center position of the flaw detection material by the ultrasonic flaw detector shown in FIG. 図5は、図2に示す超音波探傷装置による探傷精度の評価結果の一例を示すグラフである。FIG. 5 is a graph showing an example of the evaluation result of the flaw detection accuracy by the ultrasonic flaw detector shown in FIG.

符号の説明Explanation of symbols

1・・・超音波探触子
2・・・超音波探傷器
3・・・円筒状回転体
4・・・上流側ロール
5・・・下流側ロール
6・・・軸芯測定手段
7・・・制御手段
100・・・超音波探傷装置
S・・・鋼管(被探傷材)
A・・・管周方向の入射角
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic probe 2 ... Ultrasonic flaw detector 3 ... Cylindrical rotary body 4 ... Upstream side roll 5 ... Downstream side roll 6 ... Axle measuring means 7 ...・ Control means 100 ... Ultrasonic flaw detector S ... Steel pipe (Flaw detection material)
A: Incident angle in the tube circumferential direction

Claims (2)

軸方向に沿って搬送される管状又は棒状の被探傷材に対して超音波を送受信する超音波探触子と、
前記超音波探触子からの出力信号を受信して、被探傷材に存在する欠陥を検出すると共に、前記超音波探触子から被探傷材までの距離を測定する超音波探傷器と、
前記超音波探触子が取り付けられ、被探傷材を挿通すると共に被探傷材の周方向に沿って回転する円筒状回転体と、
被探傷材の搬送方向に沿って前記円筒状回転体の上流側及び下流側にそれぞれ配置され、被探傷材を案内支持する上流側ロール及び下流側ロールと、
前記上流側ロールと前記円筒状回転体との間に配置され、被探傷材の軸芯位置を測定する軸芯測定手段と、
前記円筒状回転体の軸方向にそれぞれ直交し且つ互いに直交するY軸方向及びZ軸方向の位置を制御する制御手段とを備え、
前記制御手段は、
前記軸芯測定手段で測定した被探傷材のY軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のY軸方向の軸芯位置との差を、前記軸芯測定手段設置位置に於ける被探傷材のY軸方向の芯ずれ量として算出すると共に、前記軸芯測定手段で測定した被探傷材のZ軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のZ軸方向の軸芯位置との差を、前記軸芯測定手段設置位置に於ける被探傷材のZ軸方向の芯ずれ量として算出し、
前記超音波探傷器で測定したY軸方向に沿った前記超音波探触子から被探傷材までの距離に基づいて、被探傷材のY軸方向の軸芯位置を演算し、該演算した被探傷材のY軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のY軸方向の軸芯位置との差を、前記超音波探触子設置位置に於ける被探傷材のY軸方向の芯ずれ量として算出すると共に、前記超音波探傷器で測定したZ軸方向に沿った前記超音波探触子から被探傷材までの距離に基づいて、被探傷材のZ軸方向の軸芯位置を演算し、該演算した被探傷材のZ軸方向の軸芯位置と前記円筒状回転体の予め設定した初期のZ軸方向の軸芯位置との差を、前記超音波探触子設置位置に於ける被探傷材のZ軸方向の芯ずれ量として算出するように構成されており、
前記制御手段は、今回探傷を実施する被探傷材の先端部及び後端部が前記超音波探触子設置位置に到達する際に、前記円筒状回転体のY軸方向の位置を下記の式(1)に示すBY’(x)だけ補正すると共に、前記円筒状回転体のZ軸方向の位置を下記の式(2)に示すBZ’(x)だけ補正することを特徴とする超音波探傷装置。
BY’(x)=AY’(x)×(BY(x)−CY(x))/AY(x)・・・(1)
BZ’(x)=AZ’(x)×(BZ(x)−CZ(x))/AZ(x)・・・(2)
ここで、上記式(1)及び(2)において、xは被探傷材の軸方向の位置を、AY’(x)及びAZ’(x)はそれぞれ今回探傷を実施する被探傷材(今回被探傷材)の先端部及び後端部についての軸芯測定手段設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、AY(x)及びAZ(x)はそれぞれ前回探傷を実施した被探傷材(前回被探傷材)の先端部及び後端部についての軸芯測定手段設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、BY(x)及びBZ(x)はそれぞれ前回被探傷材の先端部及び後端部についての超音波探触子設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、CY(x)及びCZ(x)はそれぞれ前回被探傷材の先端部及び後端部について補正した円筒状回転体のY軸方向及びZ軸方向の位置補正量を、BY’(x)及びBZ’(x)はそれぞれ今回被探傷材の先端部及び後端部について予測される超音波探触子設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を意味する。
An ultrasonic probe that transmits and receives ultrasonic waves to a tubular or rod-shaped flaw detection material conveyed along the axial direction;
An ultrasonic flaw detector that receives an output signal from the ultrasonic probe, detects a defect existing in the flaw detection material, and measures a distance from the ultrasonic probe to the flaw detection material;
A cylindrical rotating body to which the ultrasonic probe is attached and which passes through the flaw detection material and rotates along the circumferential direction of the flaw detection material;
An upstream roll and a downstream roll that are arranged on the upstream side and the downstream side of the cylindrical rotating body along the conveying direction of the flaw detection material, respectively, and that guide and support the flaw detection material;
An axial center measuring means that is disposed between the upstream roll and the cylindrical rotating body and measures the axial center position of the flaw detection material;
Control means for controlling the positions in the Y-axis direction and the Z-axis direction orthogonal to the axial direction of the cylindrical rotating body and orthogonal to each other;
The control means includes
The difference between the axial center position in the Y-axis direction of the flaw detection material measured by the axial-core measuring means and the initial axial position in the Y-axis direction of the cylindrical rotating body is set as the axial-core measuring means installation position. Calculated as the amount of misalignment in the Y-axis direction of the flaw detection material at the same time, and the axial position of the flaw detection material in the Z-axis direction measured by the axial core measuring means and the preset initial position of the cylindrical rotating body The difference from the axial center position in the Z-axis direction is calculated as the amount of misalignment in the Z-axis direction of the flaw detection material at the axial center measuring means installation position,
Based on the distance from the ultrasonic probe to the flaw detection material along the Y-axis direction measured by the ultrasonic flaw detector, the axial position of the flaw detection material in the Y-axis direction is calculated, and the calculated flaw detection target The difference between the axial center position of the flaw detection material in the Y-axis direction and the initial axial center position of the cylindrical rotating body in the Y-axis direction is determined as the Y of the flaw detection material at the ultrasonic probe installation position. Calculated as the axial misalignment amount, and based on the distance from the ultrasonic probe to the flaw detection material along the Z axis direction measured by the ultrasonic flaw detector, the flaw detection material in the Z axis direction The axial position is calculated, and the difference between the calculated axial position in the Z-axis direction of the flaw detection material and the initial axial position in the Z-axis direction of the cylindrical rotating body is calculated by the ultrasonic probe. It is configured to calculate the amount of misalignment in the Z-axis direction of the flaw detection material at the child installation position,
The control means determines the position of the cylindrical rotating body in the Y-axis direction when the front end portion and the rear end portion of the flaw detection material to be subjected to the current flaw detection reach the ultrasonic probe installation position by the following formula: The ultrasonic wave is corrected by BY ′ (x) shown in (1) and the position of the cylindrical rotating body in the Z-axis direction is corrected by BZ ′ (x) shown in the following formula (2). Flaw detection equipment.
BY ′ (x) = AY ′ (x) × (BY (x) −CY (x)) / AY (x) (1)
BZ ′ (x) = AZ ′ (x) × (BZ (x) −CZ (x)) / AZ (x) (2)
Here, in the above formulas (1) and (2), x is the position in the axial direction of the flaw detection material, and AY ′ (x) and AZ ′ (x) are flaw detection materials to be flawed this time (current flaw detection materials). AY (x) and AZ (x) each carried out the previous flaw detection for the amount of misalignment in the Y-axis direction and the Z-axis direction at the axial center measuring means installation position for the front end portion and rear end portion of the flaw detection material). BY (x) and BZ (x) are the amounts of misalignment in the Y-axis direction and the Z-axis direction at the position where the axial center measuring means is installed at the front end portion and the rear end portion of the flaw detection material (previous flaw detection material). CY (x) and CZ (x) are the amounts of misalignment in the Y-axis direction and the Z-axis direction at the ultrasonic probe installation position at the front end portion and the rear end portion of the previous flaw detection material, respectively. Position correction amount in the Y-axis direction and Z-axis direction of the cylindrical rotating body corrected for the front end portion and the rear end portion of the flaw detection material , BY ′ (x) and BZ ′ (x) are the amounts of misalignment in the Y-axis direction and Z-axis direction at the ultrasonic probe installation positions predicted for the front end portion and the rear end portion of the flaw detection material, respectively. Means.
前記制御手段は、今回探傷を実施する被探傷材の先端部及び後端部を除く中央部が前記超音波探触子設置位置に到達する際に、前記円筒状回転体のY軸方向の位置を下記の式(3)に示すCY’だけ補正すると共に、前記円筒状回転体のZ軸方向の位置を下記の式(4)に示すCZ’だけ補正することを特徴とする請求項1に記載の超音波探傷装置。
CY’=Ave(BYc(x)−CY)・・・(3)
CZ’=Ave(BZc(x)−CZ)・・・(4)
ここで、上記式(3)及び(4)において、xは被探傷材の軸方向の位置を、BYc(x)及びBZc(x)はそれぞれ前回探傷を実施した被探傷材(前回被探傷材)の中央部についての超音波探触子設置位置に於けるY軸方向及びZ軸方向の芯ずれ量を、CY及びCZはそれぞれ前回被探傷材の中央部について補正した円筒状回転体のY軸方向及びZ軸方向の位置補正量を、Ave( )は、括弧内の平均値を意味する。
The control means is configured so that the position of the cylindrical rotating body in the Y-axis direction is reached when the central portion excluding the front end portion and the rear end portion of the flaw detection material that performs flaw detection reaches the ultrasonic probe installation position. Is corrected by CY ′ shown in the following formula (3), and the position of the cylindrical rotating body in the Z-axis direction is corrected by CZ ′ shown in the following formula (4). The described ultrasonic flaw detector.
CY ′ = Ave (BYc (x) −CY) (3)
CZ ′ = Ave (BZc (x) −CZ) (4)
Here, in the above formulas (3) and (4), x is the axial position of the flaw detection material, and BYc (x) and BZc (x) are flaw detection materials (previous flaw detection materials that were previously subjected to flaw detection). ) And CY and CZ are the Y values of the cylindrical rotating body obtained by correcting the center misalignment amounts in the Y-axis direction and Z-axis direction at the ultrasonic probe installation position at the center portion of The position correction amounts in the axial direction and the Z-axis direction, and Ave () means an average value in parentheses.
JP2006085387A 2006-03-27 2006-03-27 Ultrasonic flaw detector Active JP4560796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085387A JP4560796B2 (en) 2006-03-27 2006-03-27 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085387A JP4560796B2 (en) 2006-03-27 2006-03-27 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JP2007263586A true JP2007263586A (en) 2007-10-11
JP4560796B2 JP4560796B2 (en) 2010-10-13

Family

ID=38636734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085387A Active JP4560796B2 (en) 2006-03-27 2006-03-27 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP4560796B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209041A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Surface inspection device and surface inspection method
JP2016048167A (en) * 2014-08-27 2016-04-07 Jfeスチール株式会社 Inspected material position adjusting mechanism of non-destructive inspection equipment of long-length material
JP2020112547A (en) * 2018-12-21 2020-07-27 ザ・ボーイング・カンパニーThe Boeing Company Correction of dynamic position data using nondestructive inspection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209041A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Surface inspection device and surface inspection method
JP2016048167A (en) * 2014-08-27 2016-04-07 Jfeスチール株式会社 Inspected material position adjusting mechanism of non-destructive inspection equipment of long-length material
JP2020112547A (en) * 2018-12-21 2020-07-27 ザ・ボーイング・カンパニーThe Boeing Company Correction of dynamic position data using nondestructive inspection
US11921085B2 (en) 2018-12-21 2024-03-05 The Boeing Company Dynamic location data correction using non-destructive inspection

Also Published As

Publication number Publication date
JP4560796B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US9533335B2 (en) Apparatus to detect the deformity in thickness of tubular elements and corresponding method
JP4826949B2 (en) Seamless pipe manufacturing status monitoring apparatus and method, and seamless pipe manufacturing equipment
EA016934B1 (en) Method for detection of the geometry of test objects by means of ultrasound
JP6064810B2 (en) Inspecting material measuring apparatus and measuring method
JP4560796B2 (en) Ultrasonic flaw detector
JP6512157B2 (en) Thickness measurement apparatus, thickness evaluation apparatus, thickness measurement method and thickness evaluation method
JP2011007587A (en) Apparatus for measuring steel pipe dimensions
JP7028080B2 (en) Ultrasonic flaw detection method for welded parts of pipes
CN110906874A (en) End wall thickness measuring method and system based on steel pipe spiral advancing
JP4425690B2 (en) Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
CN211121076U (en) End wall thickness measuring system based on steel pipe spiral advancing
JP2004251839A (en) Pipe inner surface flaw inspection device
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JP3084082B2 (en) Method for detecting defects in metal tubes with spiral ribs inside
JPH06288991A (en) Nondestructive testing device
JPS6221058A (en) Transporting system of specimen
JP5505806B2 (en) Discrimination method of reflection echo
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JP2003172729A (en) Metallic pipe inspection device
JPS6170459A (en) Method and apparatus for adjusting sensitivity of ultrasonic flow detector
CN113804757B (en) Automatic flaw detector
JP5641435B2 (en) Ultrasonic oblique angle flaw detection method and ultrasonic oblique angle flaw detector
JP2021139755A (en) Length measurement device, length measurement method, and program
JP6090263B2 (en) Inspected material position adjustment mechanism in non-destructive inspection equipment for long materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4560796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350