JP4425690B2 - Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor - Google Patents

Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor Download PDF

Info

Publication number
JP4425690B2
JP4425690B2 JP2004133831A JP2004133831A JP4425690B2 JP 4425690 B2 JP4425690 B2 JP 4425690B2 JP 2004133831 A JP2004133831 A JP 2004133831A JP 2004133831 A JP2004133831 A JP 2004133831A JP 4425690 B2 JP4425690 B2 JP 4425690B2
Authority
JP
Japan
Prior art keywords
steel pipe
spiral steel
outer peripheral
surface wave
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133831A
Other languages
Japanese (ja)
Other versions
JP2005315722A (en
Inventor
将友 村益
伸 村田
勝春 山田
宗一 上田
文範 清田
幹夫 岩本
直文 羽田
淳二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
Nippon Steel Corp
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Shin Nippon Nondestructive Inspection Co Ltd filed Critical Nippon Steel Corp
Priority to JP2004133831A priority Critical patent/JP4425690B2/en
Publication of JP2005315722A publication Critical patent/JP2005315722A/en
Application granted granted Critical
Publication of JP4425690B2 publication Critical patent/JP4425690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/12Making tubes or metal hoses with helically arranged seams
    • B21C37/127Tube treating or manipulating combined with or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

本発明は、スパイラル鋼管の外周長測定方法及びその装置、スパイラル鋼管の外周長測定方法を用いたスパイラル鋼管の製造方法及びスパイラル鋼管の外周長測定装置を用いたスパイラル鋼管の製造設備に関する。 The present invention relates to a spiral steel pipe outer peripheral length measuring method and apparatus, a spiral steel pipe manufacturing method using the spiral steel pipe outer peripheral length measuring method, and a spiral steel pipe manufacturing facility using the spiral steel pipe outer peripheral length measuring apparatus.

従来、鋼管の外周長を測定する装置として、図13に示すように、測定ベルト100の固定端aから測定しようとする鋼管101の外周長より長い距離Lの位置に基準点pを設定し、測定ベルト100の固定端aを鋼管101の外表面上に固定端子102により密着固定して測定ベルト100を鋼管101に巻き付け、測定ベルト100の基準点p側を固定端aの固定位置から接線方向に取り出して、取り出した測定ベルト100の基準点pまでの距離kを測長器103で測定しL−kを演算して鋼管101の外周長を求める外周長測定装置104が提案されている(例えば、特許文献1参照)。
また、図14に示すように、外周長を測定しようとする鋼管105を架台106上に載置し架台面に対して所定の角度方向から投光器107で光を放射し、鋼管105を挟んで投光器107と反対側に設けたネジ108上に、例えば2つの光検出器109、110を配置し、一方の光検出器109を移動させるネジピッチを大きくし、他方の光検出器110を移動させるネジピッチを小さくすると共にそのネジ方向を反対として、1つのネジ駆動装置111で鋼管105の外径の変化に応じて各光検出器109、110の位置を同時に調整することが可能な鋼管の外径測定装置112が提案されている(例えば、特許文献2参照)。
Conventionally, as a device for measuring the outer peripheral length of a steel pipe, as shown in FIG. 13, a reference point p is set at a position of a distance L longer than the outer peripheral length of the steel pipe 101 to be measured from the fixed end a of the measuring belt 100, The fixed end a of the measurement belt 100 is tightly fixed on the outer surface of the steel pipe 101 by the fixed terminal 102, the measurement belt 100 is wound around the steel pipe 101, and the reference point p side of the measurement belt 100 is tangential from the fixed position of the fixed end a. An outer peripheral length measuring device 104 is proposed in which the distance k to the reference point p of the measuring belt 100 taken out is measured by the length measuring device 103 and Lk is calculated to obtain the outer peripheral length of the steel pipe 101 ( For example, see Patent Document 1).
Further, as shown in FIG. 14, a steel pipe 105 whose outer peripheral length is to be measured is placed on a gantry 106, light is emitted from a projector 107 from a predetermined angle direction with respect to the gantry surface, and the projector is sandwiched between the steel pipes 105. For example, two photodetectors 109 and 110 are arranged on a screw 108 provided on the opposite side of 107, the screw pitch for moving one photodetector 109 is increased, and the screw pitch for moving the other photodetector 110 is increased. A steel pipe outer diameter measuring device capable of simultaneously adjusting the positions of the photodetectors 109 and 110 according to a change in the outer diameter of the steel pipe 105 with a single screw driving device 111 while reducing the screw direction and reversing the screw direction. 112 has been proposed (see, for example, Patent Document 2).

一方、図15に示すように、帯板113を成形して製造したスパイラル鋼管114の溶接シーム部115の両側の鋼管表面上に表面波の発信子Aと受信子Bを配置し、発信子Aから受信子Bへ至る表面波伝播経路LABが溶接シーム部115を横切らないように設定し、測定した発信子Aから受信子Bへの表面波伝播時間と表面波伝播速度に基づいて表面波伝播経路LABの長さを求めてスパイラル鋼管114の外周長を算定する方法が提案されている(例えば、特許文献3参照)。
更に、図16に示すように、管材116の同一周面上に送信用と受信用の各超音波探触子117、118をジンバル機構119を介して取付け、送信用超音波探触子117から送信された表面波が管材116の表面上を伝播して受信用超音波探触子118に到達するまでの時間と表面波伝播速度から管材116の管周長を計測する超音波距離計測装置120が提案されている(例えば、特許文献4参照)。
On the other hand, as shown in FIG. 15, the transmitter A and the receiver B of the surface wave are arranged on the steel pipe surfaces on both sides of the welded seam portion 115 of the spiral steel pipe 114 manufactured by forming the strip 113, and the transmitter A The surface wave propagation path L AB from the receiver A to the receiver B is set so as not to cross the weld seam 115, and the surface wave is transmitted based on the measured surface wave propagation time and surface wave propagation velocity from the transmitter A to the receiver B. There has been proposed a method for calculating the outer peripheral length of the spiral steel pipe 114 by obtaining the length of the propagation path L AB (see, for example, Patent Document 3).
Further, as shown in FIG. 16, the transmitting and receiving ultrasonic probes 117 and 118 are mounted on the same peripheral surface of the tube material 116 via the gimbal mechanism 119, and the transmitting ultrasonic probe 117 is attached. An ultrasonic distance measuring device 120 that measures the tube circumference length of the tube material 116 from the time until the transmitted surface wave propagates on the surface of the tube material 116 and reaches the reception ultrasonic probe 118 and the surface wave propagation velocity. Has been proposed (see, for example, Patent Document 4).

特開昭58−83207号公報JP 58-83207 A 特開昭58−108406号公報JP-A-58-108406 特開平7−83644号公報Japanese Patent Laid-Open No. 7-83644 特開2000−329543号公報JP 2000-329543 A

一般に、図15に示すように、帯板113をスパイラル状に成形してスパイラル鋼管114を製造する場合、スパイラル鋼管114の外周長の変動に応じて帯板113の成形条件を逐次修正する必要がある。このためには、帯板113をスパイラル状に成形し外面溶接した直後にスパイラル鋼管114の外周長を測定するのが好ましい。そこで、特許文献1〜4に記載された発明を外面溶接した直後のスパイラル鋼管の外周長の測定に適用することを検討した。
特許文献1に記載された外周長測定装置104を使用する場合では、測定ベルト100の耐久性の点から安定した外周長の測定と測定精度の維持が困難になるという問題がある。また、外周長測定装置104を設置するには広いスペースを確保することが必要となるが、外面溶接した直後のスパイラル鋼管の外周長を測定しようとすると、外面溶接機が障害となって外周長測定装置104を設置することができないという問題も生じる。
特許文献2に記載された鋼管の外径測定装置112では、スパイラル鋼管の外径から外周長を算出するため、本質的に測定精度が劣るという問題が存在する。更に、溶接時に発生するヒューム等による劣悪な雰囲気を介して投光器107から放射された光を光検出器109、110で検出するので、安定した測定精度を維持してスパイラル鋼管の外径測定を行うことができないという問題が生じる。
In general, as shown in FIG. 15, when manufacturing the spiral steel pipe 114 by forming the strip 113 into a spiral shape, it is necessary to sequentially correct the forming conditions of the strip 113 in accordance with the fluctuation of the outer peripheral length of the spiral steel pipe 114. is there. For this purpose, it is preferable to measure the outer peripheral length of the spiral steel pipe 114 immediately after the strip 113 is formed into a spiral shape and welded to the outer surface. Therefore, it was examined that the inventions described in Patent Documents 1 to 4 are applied to the measurement of the outer peripheral length of a spiral steel pipe immediately after outer surface welding.
In the case of using the outer peripheral length measuring device 104 described in Patent Document 1, there is a problem that it is difficult to stably measure the outer peripheral length and maintain the measurement accuracy from the viewpoint of durability of the measuring belt 100. In addition, it is necessary to secure a wide space for installing the outer peripheral length measuring device 104. However, when the outer peripheral length of the spiral steel pipe immediately after the outer surface welding is to be measured, the outer surface welding machine becomes an obstacle and the outer peripheral length becomes longer. There also arises a problem that the measuring device 104 cannot be installed.
In the outer diameter measuring device 112 of the steel pipe described in Patent Document 2, since the outer peripheral length is calculated from the outer diameter of the spiral steel pipe, there is a problem that the measurement accuracy is essentially inferior. Furthermore, since the light emitted from the projector 107 is detected by the photodetectors 109 and 110 through an inferior atmosphere caused by fume generated during welding, the outer diameter of the spiral steel pipe is measured while maintaining stable measurement accuracy. The problem of not being able to do arise.

特許文献3に記載されたスパイラル鋼管の外周長測定方法を適用する際、表面波伝播経路LABがスパイラル鋼管の鋼管軸に垂直又は垂直に近くなる場合は、溶接熱の影響を避けるために発信子Aと受信子Bを溶接シーム部115から離して配置する必要がある。このとき、鋼管軸に対する溶接シーム部115の傾きによっては発信子Aと受信子Bが大きく離れて設置され、外周長を求める際に発信子Aと受信子Bの間の距離を別途測定せねばならず外周長の測定精度が低下するという問題が生じる。一方、表面波伝播経路LABがスパイラル鋼管の鋼管軸に対して傾いている場合は、測定した表面波伝播経路LABから幾何学的計算を行って外周長を算出するので精度に問題がある。更に、鋼管軸の方向の異なる位置に発信子Aと受信子Bを配置せねばならず、発信子Aと受信子Bの間隔が開くことから外面溶接した直後にスパイラル鋼管の外周長を測定することができなくなる。
特許文献4に記載された超音波距離計測装置120を使用する場合、発信子と受信子を表面波の伝播経路が溶接部を横切らないように配置すると特許文献3と同様の問題が生じる。また、外面溶接した直後のスパイラル鋼管の外周長を測定しようとして発信子と受信子を外面溶接機側に近づけて配置すると表面波の伝播経路が溶接部を横切るようになる。表面波が溶接部を横切る場合、表面波は溶接ビード部の盛り上がりに沿って伝播するので、表面波の伝播経路とスパイラル鋼管の外周長との間に差が生じ、この差をどのように処理してスパイラル鋼管の外周長を求めるかという問題が生じる。
When applying the method for measuring the outer peripheral length of a spiral steel pipe described in Patent Document 3, if the surface wave propagation path L AB is perpendicular or close to the pipe axis of the spiral steel pipe, it is transmitted to avoid the influence of welding heat. It is necessary to dispose the child A and the receiver B away from the weld seam 115. At this time, depending on the inclination of the weld seam portion 115 with respect to the steel pipe shaft, the transmitter A and the receiver B are installed at a large distance, and the distance between the transmitter A and the receiver B must be measured separately when determining the outer peripheral length. In other words, there arises a problem that the measurement accuracy of the outer peripheral length is lowered. On the other hand, when the surface wave propagation path L AB is inclined with respect to the steel pipe axis of the spiral steel pipe, the geometrical calculation is performed from the measured surface wave propagation path L AB to calculate the outer peripheral length, so that there is a problem in accuracy. . Furthermore, the transmitter A and the receiver B must be arranged at different positions in the direction of the steel pipe axis. Since the distance between the transmitter A and the receiver B is wide, the outer peripheral length of the spiral steel pipe is measured immediately after the outer surface welding. I can't do that.
When using the ultrasonic distance measuring device 120 described in Patent Document 4, if the transmitter and the receiver are arranged so that the propagation path of the surface wave does not cross the weld, the same problem as in Patent Document 3 occurs. Further, if the transmitter and receiver are arranged close to the outer surface welder in an attempt to measure the outer peripheral length of the spiral steel pipe immediately after the outer surface welding, the surface wave propagation path crosses the weld. When surface waves cross the weld, surface waves propagate along the rise of the weld bead, creating a difference between the surface wave propagation path and the outer circumference of the spiral steel pipe, and how to handle this difference. Thus, there arises a problem of determining the outer peripheral length of the spiral steel pipe.

本発明はかかる事情に鑑みてなされたもので、外面溶接した直後のスパイラル鋼管の外周長を高精度に測定することが可能なスパイラル鋼管の外周長測定方法及びその装置、並びにスパイラル鋼管の外周長の変動に応じて帯板の成形条件を逐次修正することが可能なスパイラル鋼管の製造方法及びその設備を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method and apparatus for measuring the outer peripheral length of a spiral steel pipe capable of accurately measuring the outer peripheral length of a spiral steel pipe immediately after outer surface welding, and the outer peripheral length of the spiral steel pipe. It is an object of the present invention to provide a method and apparatus for manufacturing a spiral steel pipe capable of sequentially correcting the forming conditions of a strip according to fluctuations in the above.

前記目的に沿う請求項1記載のスパイラル鋼管の外周長測定方法は、外径が1100mm未満のスパイラル鋼管の外表面上に表面波の発信子及び受信子を配置し、
前記スパイラル鋼管の鋼管軸に実質的に垂直な断面に、しかも、該スパイラル鋼管の溶接ビード部を横切るように前記表面波の伝播経路を設定して、
前記発信子から前記受信子への前記表面波の伝播時間を求め該表面波の伝播速度を用いて前記伝播経路の経路長を算出し、
前記発信子と前記受信子の間の距離と前記経路長から前記スパイラル鋼管の外周長を算出するスパイラル鋼管の外周長測定方法であって、
前記表面波の周波数範囲を0.1MHz以上10MHz以下として前記受信子により検出された、前記溶接ビード部の内部を直進する経路に対応する波形Dのピークと前記溶接ビード部の外表面に沿って伝播する経路に対応する波形Rのピークのうち、先に現れる前記波形Dのピークを選択し、該波形Dのピークに基づいて前記表面波の伝播時間を求める
The outer peripheral length measurement method of the spiral steel pipe according to claim 1, which meets the above-mentioned purpose, includes a transmitter and receiver for surface waves on the outer surface of the spiral steel pipe having an outer diameter of less than 1100 mm,
Setting the propagation path of the surface wave in a cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe, and across the weld bead portion of the spiral steel pipe,
Obtain the propagation time of the surface wave from the transmitter to the receiver and calculate the path length of the propagation path using the propagation speed of the surface wave,
A method for measuring the outer peripheral length of a spiral steel pipe that calculates the outer peripheral length of the spiral steel pipe from the distance between the transmitter and the receiver and the path length,
The frequency range of the surface waves detected by the receiving element and the 0.1MHz or 10MHz or less, along the outer surface of the peaks and the weld bead portion of the waveform D corresponding to the path for straight interior of the weld bead portion The peak of the waveform D that appears first among the peaks of the waveform R corresponding to the propagation path is selected, and the propagation time of the surface wave is obtained based on the peak of the waveform D.

スパイラル鋼管の溶接ビード部を介して、すなわち横切るように表面波の伝播経路を設定するので、溶接ビード部の熱影響が無視できるように溶接ビード部から十分に離れた位置に発信子と受信子を配置することができると共に、発信子と受信子の間の距離も接近させて配置することができる。このため、発信子と受信子をスパイラル鋼管の外表面上の小領域に配置してスパイラル鋼管の外周長の測定を行うことができる。
また、スパイラル鋼管の鋼管軸に対して実質的に垂直な円形断面に表面波の伝播経路を設定するので、伝播経路の経路長とスパイラル鋼管の外周長との間の差を小さくすることができる。
ここで、スパイラル鋼管の鋼管軸に実質的に垂直とは、スパイラル鋼管の外表面上で発信子及び受信子を結ぶ線によって形成される円形断面と鋼管軸と間の角度が85〜95°の範囲であることを指す。
The propagation path of the surface wave is set through the weld bead part of the spiral steel pipe, that is, across the weld bead part, so that the transmitter and receiver are located sufficiently away from the weld bead part so that the thermal effect of the weld bead part can be ignored. Can be arranged, and the distance between the transmitter and the receiver can also be arranged close to each other. For this reason, the outer circumference length of the spiral steel pipe can be measured by arranging the transmitter and the receiver in a small area on the outer surface of the spiral steel pipe.
Further, since the propagation path of the surface wave is set in a circular cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe, the difference between the propagation path length and the outer peripheral length of the spiral steel pipe can be reduced. .
Here, “substantially perpendicular to the steel pipe axis of the spiral steel pipe” means that the angle between the circular cross section formed by the line connecting the transmitter and the receiver on the outer surface of the spiral steel pipe and the steel pipe axis is 85 to 95 °. Indicates a range.

パイラル鋼管の外径が1100mm未満と小さい場合、表面波の伝播経路の経路長が短くなり、スパイラル鋼管の表面を伝播する際の表面波の減衰を押さえることができ、0.1MHz以上10MHz以下、好ましくは0.5MHz以上10MHz未満、更に好ましくは1MHz以上5MHz以下の周波数範囲の表面波を使用することができる。その結果、波形のピーク位置から表面波の伝播時間の高精度な測定を行うことができる。 If the outer diameter of the scan Pairaru steel pipe is small and less than 1100 mm, the path length of the propagation path of the surface wave becomes shorter, it is possible to suppress the attenuation of surface waves when propagating through the surface of the spiral pipe, 0.1 MHz or more below 10MHz Preferably, a surface wave having a frequency range of 0.5 MHz to less than 10 MHz, more preferably 1 MHz to 5 MHz can be used. As a result, the propagation time of the surface wave can be measured with high accuracy from the peak position of the waveform.

前記目的に沿う請求項記載のスパイラル鋼管の外周長測定装置は、スパイラル鋼管の鋼管軸に実質的に垂直な断面上で該スパイラル鋼管の外表面上に所定の隙間を有して配置され、該スパイラル鋼管の溶接ビード部を横切って表面波の送信と受信を行う発信子及び受信子と、
前記発信子から前記受信子への前記表面波の伝播時間を求め該表面波の伝播速度を用いて伝播経路の経路長を算出する第1の演算手段と、
前記発信子と前記受信子の間の距離及び前記経路長から前記スパイラル鋼管の外周長を算出する第2の演算手段とを有するスパイラル鋼管の外周長測定装置であって、
前記表面波の発信子及び受信子の周波数範囲を、前記スパイラル鋼管の外径が1100mm未満の場合は0.1MHz以上10MHz以下、前記スパイラル鋼管の外径が1100mm以上の場合は0.1MHz以上2MHz以下として前記受信子により検出された、前記溶接ビード部の内部を直進する経路に対応する波形Dのピークと前記溶接ビード部の外表面に沿って伝播する経路に対応する波形Rのピークのうち、
前記第1の演算手段には、前記スパイラル鋼管の外径が1100mm未満の場合は、先に現れる前記波形Dのピークを選択し、前記スパイラル鋼管の外径が1100mm以上の場合は、遅れて現れる前記波形Rのピークを選択する経路選択部が設けられている。
The outer peripheral length measuring device for a spiral steel pipe according to claim 2, which meets the object, is arranged with a predetermined gap on the outer surface of the spiral steel pipe on a cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe, A transmitter and receiver for transmitting and receiving surface waves across the weld bead of the spiral steel pipe;
First calculating means for obtaining a propagation time of the surface wave from the transmitter to the receiver and calculating a path length of the propagation path using a propagation speed of the surface wave;
An apparatus for measuring the outer peripheral length of a spiral steel pipe having a second computing means for calculating the outer peripheral length of the spiral steel pipe from the distance between the transmitter and the receiver and the path length,
When the outer diameter of the spiral steel pipe is less than 1100 mm, the frequency range of the surface wave transmitter and receiver is 0.1 MHz or more and 10 MHz or less, and 0.15 MHz or more when the outer diameter of the spiral steel pipe is 1100 mm or more. detected by follows to the receiving element, the peak of the waveform R corresponding to the path that propagates along the outer surface of the peaks and the weld bead portion of the waveform D corresponding to the path for straight interior of the weld bead portion home,
In the first calculation means, when the outer diameter of the spiral steel pipe is less than 1100 mm , the peak of the waveform D that appears first is selected, and when the outer diameter of the spiral steel pipe is 1100 mm or more , it appears with a delay. A path selection unit for selecting the peak of the waveform R is provided.

れによって、任意の外径のスパイラル鋼管に対して最適な伝播経路を設定することができる。 By this, it is possible to set an optimum propagation paths for spiral pipe of any outer diameter.

前記目的に沿う請求項記載のスパイラル鋼管の製造方法は、帯板を成形機でスパイラル状に成形し、該帯板の外表面側を外面溶接機で溶接してスパイラル鋼管を形成するスパイラル鋼管の製造方法において、
請求項1記載のスパイラル鋼管の外周長測定方法を用いて前記スパイラル鋼管の外周長を前記外面溶接機から10m以内の位置で測定し、その測定結果に基づいて前記成形機の成形条件を修正する。
これによって、スパイラル鋼管の外周長が変動した場合、早急に成形機の成形条件を修正することができる。
ここで、スパイラル鋼管の外周長の測定位置は外面溶接機から10m以内であるが、好ましくは5m以内、より好ましくは2m以内に設置する。また、成形機の成形条件とは、例えば、成形機に搬送する帯板の搬送方向の角度、入側内外面成形ロールの圧下量、外面押えロール圧下量を指す。
The spiral steel pipe manufacturing method according to claim 3 , wherein the spiral steel pipe is formed in a spiral shape with a molding machine, and the outer surface side of the strip is welded with an outer surface welding machine. In the manufacturing method of
The outer peripheral length of the spiral steel pipe was measured at a position within 10m from the outer surface welding machine using the circumferential length measurement method of the spiral steel pipe according to claim 1 Symbol placement, correct the forming conditions of the molding machine based on the measurement result To do.
Thereby, when the outer peripheral length of the spiral steel pipe fluctuates, the molding conditions of the molding machine can be corrected immediately.
Here, the measurement position of the outer peripheral length of the spiral steel pipe is within 10 m from the outer surface welding machine, but is preferably set within 5 m, more preferably within 2 m. Moreover, the molding conditions of the molding machine refer to, for example, the angle in the conveying direction of the strip transported to the molding machine, the amount of reduction of the entry side inner and outer surface forming rolls, and the amount of outer surface pressing roll reduction.

前記目的に沿う請求項記載のスパイラル鋼管の製造設備は、帯板をスパイラル状に成形する成形機と、
スパイラル状に成形された前記帯板の外表面側を溶接してスパイラル鋼管を形成する外面溶接機と、
請求項記載のスパイラル鋼管の外周長測定装置を有し、
前記スパイラル鋼管の外周長測定装置は前記外面溶接機から10m以内に設置され、前記成形機の成形条件を前記スパイラル鋼管の外周長の測定結果に基づいて修正する。
The manufacturing equipment for a spiral steel pipe according to claim 4, which meets the above-mentioned purpose, includes a molding machine for forming a strip into a spiral shape,
An outer surface welding machine for forming a spiral steel pipe by welding the outer surface side of the strip formed into a spiral shape;
It has a peripheral length measuring device of spiral steel pipe according to claim 2 ,
The outer peripheral length measuring device of the spiral steel pipe is installed within 10 m from the outer surface welding machine, and corrects the molding condition of the molding machine based on the measurement result of the outer peripheral length of the spiral steel pipe.

請求項1記載のスパイラル鋼管の外周長測定方法においては、スパイラル鋼管の溶接ビード部を横切るように表面波の伝播経路を設定するので、発信子と受信子をスパイラル鋼管の外表面上の小領域に配置してスパイラル鋼管の外周長の測定を行うことができ、例えば、発信子と受信子を外面溶接機側に近づけて配置することが可能になる。その結果、スパイラル鋼管の外周長の変動を早期に検出することが可能になる。
また、スパイラル鋼管の鋼管軸に対して実質的に垂直な断面の外周上に発信子と受信子を配置して表面波の伝播経路を設定するので、発信子と受信子間の距離及び伝播経路の経路長との和として求まる測定長とスパイラル鋼管の外周長との間の差を小さくすることができ、測定長に対して幾何学的計算を行う際の誤差が減少し精度の高いスパイラル鋼管の外周長の測定が可能になる。
In the outer peripheral length measuring method of spiral pipe as claimed in claim 1 Symbol placement, so setting the surface wave propagation path across the weld bead portion of the spiral pipe, the outgoing terminal and the receiving terminal on the outer surface of the spiral pipe small The outer circumferential length of the spiral steel pipe can be measured by arranging in the region, and for example, the transmitter and the receiver can be arranged close to the outer surface welder side. As a result, it becomes possible to detect the fluctuation of the outer peripheral length of the spiral steel pipe at an early stage.
In addition, since the transmitter and receiver are arranged on the outer periphery of the cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe to set the propagation path of the surface wave, the distance between the transmitter and the receiver and the propagation path The difference between the measurement length obtained as the sum of the path length and the outer peripheral length of the spiral steel pipe can be reduced, and errors in performing geometric calculations on the measurement length are reduced, resulting in a highly accurate spiral steel pipe. It is possible to measure the outer peripheral length of the.

また、請求項1記載のスパイラル鋼管の外周長測定方法においては、スパイラル鋼管の外径が1100mm未満であって、表面波の周波数範囲を0.1MHz以上10MHz以下とし、伝播経路を設定する際に、溶接ビード部の内部を直進する経路を採用するので、波形のピーク位置から表面波の伝播時間の高精度な測定を行うことができ、精度の高いスパイラル鋼管の外周長の測定が可能になる。 Moreover , in the outer peripheral length measuring method of the spiral steel pipe according to claim 1, when the outer diameter of the spiral steel pipe is less than 1100 mm and the frequency range of the surface wave is 0.1 MHz or more and 10 MHz or less, the propagation path is set. Since a path that goes straight through the inside of the weld bead is adopted, it is possible to measure the propagation time of the surface wave from the peak position of the waveform with high accuracy, and to measure the outer circumference of the spiral steel pipe with high accuracy. .

請求項記載のスパイラル鋼管の外周長測定装置においては、スパイラル鋼管の溶接ビード部を横切って表面波の伝播経路が形成されるように表面波の発信子及び受信子がスパイラル鋼管の外表面上に配置されているので、発信子と受信子の間の距離を小さくすることができ、例えば、発信子と受信子を外面溶接機側に近づけて配置することが可能になる。その結果、スパイラル鋼管の外周長の変動を早期に検出することが可能になる。
また、スパイラル鋼管の鋼管軸に対して実質的に垂直な断面上に表面波の伝播経路が設定されるので、伝播経路の経路長に対して幾何学的な計算を行う際の誤差が減少し精度の高いスパイラル鋼管の外周長の測定を行うことが可能になる。
3. The outer peripheral length measuring apparatus for a spiral steel pipe according to claim 2 , wherein the surface wave transmitter and receiver are arranged on the outer surface of the spiral steel pipe so that a propagation path of the surface wave is formed across the weld bead portion of the spiral steel pipe. Therefore, the distance between the transmitter and the receiver can be reduced. For example, the transmitter and the receiver can be arranged close to the outer surface welder side. As a result, it becomes possible to detect the fluctuation of the outer peripheral length of the spiral steel pipe at an early stage.
In addition, since the propagation path of the surface wave is set on a cross section substantially perpendicular to the pipe axis of the spiral steel pipe, the error in performing geometric calculation on the path length of the propagation path is reduced. It becomes possible to measure the outer peripheral length of a spiral steel pipe with high accuracy.

特に、表面波の発信子及び受信子の周波数範囲を、スパイラル鋼管の外径が1100mm未満の場合は0.1MHz以上10MHz以下、スパイラル鋼管の外径が1100mm以上の場合は0.1MHz以上2MHz以下とし、第1の演算手段には、スパイラル鋼管の外径が1100mm未満の場合は伝播経路として溶接ビード部の内部を直進する経路を採用し、スパイラル鋼管の外径が1100mm以上の場合は伝播経路として溶接ビード部の外表面に沿って伝播する経路を採用する経路選択部が設けられているので、任意の外径のスパイラル鋼管に対して最適な伝播経路を設定することができ、任意の外径のスパイラル鋼管において表面波の伝播時間を確実に、しかも精度よく測定することが可能になる。 In particular, the frequency range of the transmitting terminal and receiving terminal of the front surface waves, the outer diameter of the spiral pipe is 0.1MHz or 10MHz or less in the case of less than 1100 mm, the outer diameter of the spiral pipe is more than 0.1MHz in the case of more than 1100 mm 2MHz The first calculation means adopts a path that goes straight through the inside of the weld bead as a propagation path when the outer diameter of the spiral steel pipe is less than 1100 mm, and propagates when the outer diameter of the spiral steel pipe is 1100 mm or more. Since a path selection unit that employs a path that propagates along the outer surface of the weld bead as a path is provided, an optimal propagation path can be set for a spiral steel pipe of any outer diameter, It becomes possible to measure the propagation time of the surface wave reliably and accurately in the outer diameter spiral steel pipe.

請求項記載のスパイラル鋼管の製造方法においては、請求項1記載のスパイラル鋼管の外周長測定方法を用いてスパイラル鋼管の外周長を外面溶接機から10m以内の位置で測定し、その測定結果に基づいて成形機の成形条件を修正するので、形成されるスパイラル鋼管の外周長の変動を早期に検出して成形機の成形条件の修正を行うことが可能になる。その結果、外周長が規格外となるスパイラル鋼管の製造を防止することが可能になる。 In the method for producing a spiral pipe of claim 3, wherein the outer peripheral length of the spiral steel pipe was measured at a position within 10m from the outer surface welding machine using the circumferential length measurement method of the spiral steel pipe according to claim 1 Symbol placement, results of the measurement Therefore, the molding condition of the molding machine can be corrected by detecting the fluctuation of the outer peripheral length of the formed spiral steel pipe at an early stage. As a result, it becomes possible to prevent the manufacture of a spiral steel pipe whose outer peripheral length is out of specification.

請求項記載のスパイラル鋼管の製造設備においては、外周長測定装置は外面溶接機から10m以内に設置されているので、スパイラル鋼管の外周長の変動を早急に検出することが可能になる。そして、スパイラル鋼管の外周長が変動した場合、早急に成形機の成形条件を修正することができ、外周長が規格外となるスパイラル鋼管の製造を防止することが可能になる。 In the spiral steel pipe manufacturing facility according to the fourth aspect , since the outer peripheral length measuring device is installed within 10 m from the outer surface welding machine, it becomes possible to quickly detect the fluctuation of the outer peripheral length of the spiral steel pipe. And when the outer periphery length of a spiral steel pipe fluctuates, the molding conditions of a molding machine can be corrected immediately, and it becomes possible to prevent the manufacture of a spiral steel pipe whose outer periphery length is out of specification.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るスパイラル鋼管の製造設備の説明図、図2は同スパイラル鋼管の製造設備に使用するスパイラル鋼管の外周長測定装置の説明図、図3は本発明の一実施の形態に係るスパイラル鋼管の製造方法に適用するスパイラル鋼管の外周長測定方法における溶接ビード部を伝播する表面波の伝播経路を示す説明図、図4は大径スパイラル鋼管において発信子から送信した周波数0.1MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図、図5は大径スパイラル鋼管において発信子から送信した周波数5MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図、図6は小径スパイラル鋼管において発信子から送信した周波数0.1MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図、図7は小径スパイラル鋼管において発信子から送信した周波数5MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a manufacturing facility for a spiral steel pipe according to an embodiment of the present invention, FIG. 2 is an explanatory view of an outer peripheral length measuring device for a spiral steel pipe used in the manufacturing facility for the spiral steel pipe, and FIG. Explanatory drawing which shows the propagation path of the surface wave which propagates the weld bead part in the outer peripheral length measuring method of the spiral steel pipe applied to the manufacturing method of the spiral steel pipe concerning one embodiment of the present invention, FIG. 4 is transmitted in a large diameter spiral steel pipe FIG. 5 is an explanatory diagram showing a received signal waveform obtained when a receiver receives a surface wave having a frequency of 0.1 MHz transmitted from a child. FIG. 5 shows a receiver having a surface wave having a frequency of 5 MHz transmitted from the transmitter in a large-diameter spiral steel pipe. FIG. 6 is an explanatory diagram showing a received signal waveform obtained when receiving the signal at FIG. 6. FIG. 6 shows the reception of the surface wave having a frequency of 0.1 MHz transmitted from the transmitter in the small-diameter spiral steel pipe. Explanatory view showing a reception signal waveform obtained, FIG. 7 is an explanatory diagram showing a received signal waveform obtained when received by the receiving transducer surface wave of frequency 5MHz transmitted from the originating terminal in diameter spiral pipe.

図1に示すように、本発明の一実施の形態に係るスパイラル鋼管の製造設備10は、帯板11をスパイラル状に成形する成形機12と、スパイラル状に成形された帯板11の外表面側を溶接してスパイラル鋼管18を形成する外面溶接機13と、スパイラル鋼管の外周長測定装置(以下、単に外周長測定装置という)14を有している。以下これらについて、詳細に説明する。
成形機12は、コイル状に巻かれた帯板11を徐々に引き出し、製造するスパイラル鋼管18の外径に応じて搬送方向を変化させて送り出す前処理部15と、前処理部15から搬送された帯板11を複数の入側内外面成形ロール16でスパイラル鋼管18の外径に応じて圧下しながらスパイラル状に成形していく成形部17を有している。外面溶接機13は、スパイラル状の隣り合う帯板11間に連続して形成される接触部の外周側を溶接し一体化してスパイラル鋼管18にするもので、例えば、サブマージドアーク溶接機を使用することができる。
As shown in FIG. 1, a spiral steel pipe manufacturing facility 10 according to an embodiment of the present invention includes a forming machine 12 for forming a strip 11 into a spiral shape, and an outer surface of the strip 11 formed into a spiral shape. It has an outer surface welder 13 that welds the sides to form a spiral steel pipe 18, and an outer peripheral length measuring device (hereinafter simply referred to as an outer peripheral length measuring device) 14 of the spiral steel pipe. These will be described in detail below.
The forming machine 12 is transported from the pre-processing unit 15 and the pre-processing unit 15 that gradually pulls out the strip 11 wound in a coil shape and sends out the transport direction according to the outer diameter of the spiral steel pipe 18 to be manufactured. The strip 11 is formed with a plurality of inlet-side inner / outer surface forming rolls 16 so as to be formed into a spiral shape while being reduced according to the outer diameter of the spiral steel pipe 18. The outer surface welder 13 welds and integrates the outer peripheral side of the contact portion formed continuously between adjacent spiral strips 11 to form a spiral steel pipe 18. For example, a submerged arc welder is used. can do.

外周長測定装置14は、図2に示すように、外面溶接機13から10m以内、好ましくは5m以内、より好ましくは2m以内の位置に想定されるスパイラル鋼管18の鋼管軸に実質的に垂直(85〜95°)な断面の外周上(スパイラル鋼管18の外表面上)に、所定の隙間(発信子19と受信子20の中心間距離Mが、例えば100〜400mm)を有して配置され表面波の送信と受信を行う発信子19及び受信子20を有している。
このように、スパイラル鋼管18の外周長を外面溶接機13に近い位置で測定するようにすると、製造しているスパイラル鋼管18の外周長が変動した場合、早急に成形機12の成形条件を修正することができる。
ここで、発信子19と受信子20には、表面波を特定方向に送信し特定方向からの表面波を受信する機能を有するものを使用する。これによって、発信子19と受信子20をスパイラル鋼管18の外表面上に配置した際、発信子19からスパイラル鋼管18の鋼管軸に実質的に垂直な断面の外周上を遠回りに進行するように表面波を送信させることができ、遠回りに進行した表面波を受信子20で受信することができる。
As shown in FIG. 2, the outer peripheral length measuring device 14 is substantially perpendicular to the steel pipe axis of the spiral steel pipe 18 that is assumed to be located within 10 m, preferably within 5 m, more preferably within 2 m from the outer surface welding machine 13 ( A predetermined gap (a distance M between the center of the transmitter 19 and the receiver 20 is 100 to 400 mm, for example) is arranged on the outer periphery of the cross section (85 to 95 °) (on the outer surface of the spiral steel pipe 18). It has a transmitter 19 and a receiver 20 for transmitting and receiving surface waves.
As described above, when the outer peripheral length of the spiral steel pipe 18 is measured at a position close to the outer surface welding machine 13, when the outer peripheral length of the manufactured spiral steel pipe 18 fluctuates, the molding conditions of the molding machine 12 are corrected immediately. can do.
Here, as the transmitter 19 and the receiver 20, those having a function of transmitting a surface wave in a specific direction and receiving a surface wave from the specific direction are used. As a result, when the transmitter 19 and the receiver 20 are arranged on the outer surface of the spiral steel pipe 18, the transmitter 19 travels on the outer circumference of the cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe 18. A surface wave can be transmitted, and a surface wave traveling in a detour can be received by the receiver 20.

表面波の発信子19及び受信子20としては、スパイラル鋼管18の外径が1100mm未満の場合は0.1MHz以上10MHz以下、好ましくは0.5MHz以上10MHz未満、更に好ましくは1MHz以上5MHz以下の周波数範囲の超音波発信子、超音波受信子を使用し、スパイラル鋼管18の外径が1100mm以上の場合は0.1MHz以上2MHz以下、好ましくは0.5MHz以上1MHz以下の周波数範囲の超音波発信子、超音波受信子を使用する。
これによって、スパイラル鋼管18の外径が1100mm未満と外径が小さな場合では、表面波の伝播時間の高精度な測定を行うことができる。また、スパイラル鋼管18の外径が1100mm以上と外径が大きな場合では、表面波の伝播経路の経路長が長くなっても表面波の減衰を抑えて波形のピーク位置から表面波の伝播時間を精度よく測定することができる。
スパイラル鋼管の外径が1100mm以上と大きい場合、表面波の伝播経路の経路長が長くなり、スパイラル鋼管の表面を伝播する際の表面波の減衰が顕著となる。このため、0.1MHz以上2MHz以下、好ましくは0.5MHz以上1MHz以下の周波数範囲の表面波を使用する。これによって、表面波の減衰を抑えて確実に表面波を受信することができ、波形のピーク位置から表面波の伝播時間を精度よく測定することができる。
なお、表面波の周波数が小さくなると表面波の受信信号波が拡がって伝播時間の測定に誤差を伴うようになるが、スパイラル鋼管の外径が1100mm以上ではスパイラル鋼管の外周長が大きくなるため、スパイラル鋼管の外周長の測定における誤差の影響を小さくすることができる。
When the outer diameter of the spiral steel pipe 18 is less than 1100 mm, the surface wave transmitter 19 and the receiver 20 are 0.1 MHz to 10 MHz, preferably 0.5 MHz to less than 10 MHz, more preferably 1 MHz to 5 MHz. An ultrasonic transmitter having a frequency range of 0.1 MHz to 2 MHz, preferably 0.5 MHz to 1 MHz when the outer diameter of the spiral steel pipe 18 is 1100 mm or more using an ultrasonic transmitter or ultrasonic receiver in the range. Use an ultrasonic receiver.
As a result, when the outer diameter of the spiral steel pipe 18 is as small as less than 1100 mm, the propagation time of the surface wave can be measured with high accuracy. Further, when the outer diameter of the spiral steel pipe 18 is as large as 1100 mm or more, even if the path length of the surface wave propagation path is increased, the surface wave propagation time is reduced from the peak position of the waveform by suppressing the attenuation of the surface wave. It can be measured with high accuracy.
When the outer diameter of the spiral steel pipe is as large as 1100 mm or more, the path length of the propagation path of the surface wave becomes long, and the attenuation of the surface wave when propagating on the surface of the spiral steel pipe becomes remarkable. For this reason, a surface wave having a frequency range of 0.1 MHz to 2 MHz, preferably 0.5 MHz to 1 MHz is used. Accordingly, the surface wave can be reliably received while suppressing the attenuation of the surface wave, and the propagation time of the surface wave can be accurately measured from the peak position of the waveform.
In addition, when the frequency of the surface wave is reduced, the reception signal wave of the surface wave is spread and an error occurs in the measurement of the propagation time. However, when the outer diameter of the spiral steel pipe is 1100 mm or more, the outer peripheral length of the spiral steel pipe is increased. The influence of errors in the measurement of the outer peripheral length of the spiral steel pipe can be reduced.

更に、外周長測定装置14は、発信子19から受信子20への表面波の伝播時間を求め表面波の伝播速度を用いて伝播経路の経路長L(発信子19の中心からスパイラル鋼管18の鋼管軸に実質的に垂直な断面の外周上を遠回りに進行して受信子20の中心に到達するまでの距離)を算出する第1の演算手段21と、発信子19と受信子20の間の中心間距離M及び経路長Lからスパイラル鋼管18の外周長(L+M)を算出する第2の演算手段22を有している。
ここで、発信子19と受信子20は、スパイラル鋼管18の鋼管軸に実質的に垂直な断面の外周上に配置しているので、図3に示すように、発信子19から送信された表面波はスパイラル鋼管18の溶接ビード部23を横切って進行し受信子20に到達する。表面波が溶接ビード部23を横切る場合、表面波の一部は溶接ビード部23の内部を直進する経路DPを進行し、残りの表面波は溶接ビード部23の外表面に沿って伝播する経路RPを進行する。そして、経路DPは経路RPより短いがいずれも経路長Lと比較すると小さいため、受信子20では経路DPを通過した表面波が検出された後少し遅れて経路RPを通過した表面波が検出される。その結果、受信子20で表面波を受信すると、経路DPを進行する表面波の受信信号波形Dと経路RPを進行する表面波の受信信号波形Rが近接して観測される。
Further, the outer peripheral length measuring device 14 obtains the propagation time of the surface wave from the transmitter 19 to the receiver 20 and uses the propagation speed of the surface wave to determine the path length L of the propagation path (from the center of the transmitter 19 to the spiral steel pipe 18. A distance between the transmitter 19 and the receiver 20; a first calculator 21 that calculates the distance from the outer periphery of the cross section substantially perpendicular to the steel pipe axis to the far side and the center of the receiver 20; Second calculation means 22 for calculating the outer peripheral length (L + M) of the spiral steel pipe 18 from the center distance M and the path length L.
Here, since the transmitter 19 and the receiver 20 are arranged on the outer periphery of the cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe 18, the surface transmitted from the transmitter 19 as shown in FIG. The wave travels across the weld bead 23 of the spiral steel pipe 18 and reaches the receiver 20. When the surface wave crosses the weld bead part 23, a part of the surface wave travels along the path DP that travels straight inside the weld bead part 23, and the remaining surface wave propagates along the outer surface of the weld bead part 23. Proceed with RP. Since the path DP is shorter than the path RP, but both are smaller than the path length L, the receiver 20 detects the surface wave that has passed through the path RP with a slight delay after the surface wave that has passed through the path DP is detected. The As a result, when the receiver 20 receives the surface wave, the reception signal waveform D of the surface wave traveling on the path DP and the reception signal waveform R of the surface wave traveling on the path RP are closely observed.

一般に、物質の表層部に一定強度の表面波を伝播させて受信する場合の表面波の周波数と受信信号波形の関係を求めると、表面波の周波数が高い場合は受信信号波形は鋭く、そのピーク位置を容易に見いだすことができるが、減衰し易い特性から振幅(ピーク高さ)は小さくなる。一方、表面波の周波数が低いと受信新信号波形は幅広になってそのピーク位置を見いだすことが困難になるが、振幅(ピーク高さ)は大きくなる。
ここで、外径が1100mm以上の大径のスパイラル鋼管18において、発信子19から周波数0.1MHz未満の表面波を送信して受信子20で受信した場合、経路DPを進行した表面波の受信信号波形Dと経路RPを進行した表面波の受信信号波形Rはいずれも幅広であるため重なり合って観測され、ピーク位置の検出ができない。
一方、発信子19から周波数0.1MHz以上2MHz以下の表面波を送信して受信子20で受信した場合、各受信信号波形D、Rは重なり合うが、波形が鋭くなって分離して観測される。なお、経路DPはスパイラル鋼管18の内部を通過する経路であるため表面波は経路DPを進行する際に大きく減衰して受信信号波形Dのピーク高さは低くなる。発信子19から周波数0.1MHzの表面波を大径のスパイラル鋼管18上に送信して受信子20で受信したときの受信信号波形の例を図4に示す。
In general, when the relationship between the surface wave frequency and the received signal waveform when a surface wave of a certain intensity is propagated to the surface layer of the material and received, the received signal waveform is sharp and the peak is observed when the surface wave frequency is high. Although the position can be easily found, the amplitude (peak height) becomes small because of the characteristic of being easily attenuated. On the other hand, if the frequency of the surface wave is low, the received new signal waveform becomes wide and it is difficult to find the peak position, but the amplitude (peak height) increases.
Here, in a large-diameter spiral steel pipe 18 having an outer diameter of 1100 mm or more, when a surface wave having a frequency of less than 0.1 MHz is transmitted from the transmitter 19 and received by the receiver 20, reception of the surface wave traveling on the path DP is received. Since both the signal waveform D and the received signal waveform R of the surface wave that has traveled along the path RP are wide, they are observed to overlap each other, and the peak position cannot be detected.
On the other hand, when a surface wave having a frequency of 0.1 MHz or more and 2 MHz or less is transmitted from the transmitter 19 and received by the receiver 20, the received signal waveforms D and R are overlapped, but the waveforms are sharply separated and observed. . Since the path DP is a path that passes through the inside of the spiral steel pipe 18, the surface wave is greatly attenuated when traveling along the path DP, and the peak height of the received signal waveform D is lowered. FIG. 4 shows an example of a received signal waveform when a surface wave having a frequency of 0.1 MHz is transmitted from the transmitter 19 onto the large-diameter spiral steel pipe 18 and received by the receiver 20.

また、外径が1100mm以上の大径のスパイラル鋼管18において、発信子19から周波数2MHzを超えた表面波を送信して受信子20で受信した場合、表面波の周波数が高いため伝播中における減衰が大きくなり、溶接ビード部の内部を直進する経路DPを進行する表面波の減衰は非常に顕著になる。このため、各受信信号波形R、Dの検出が困難になる。
周波数5MHz以上の表面波を送信して受信子20で受信した場合、表面波の減衰が激しく、特に受信信号波形Dでは検出が非常に困難になる。発信子19から周波数5MHzの表面波を大径のスパイラル鋼管18上に送信して受信子20で受信したときの受信信号波形の例を図5に示す。
In addition, in a large-diameter spiral steel pipe 18 having an outer diameter of 1100 mm or more, when a surface wave having a frequency exceeding 2 MHz is transmitted from the transmitter 19 and received by the receiver 20, the surface wave has a high frequency, and thus attenuation during propagation. And the attenuation of the surface wave traveling along the path DP that travels straight inside the weld bead becomes very significant. This makes it difficult to detect the received signal waveforms R and D.
When a surface wave having a frequency of 5 MHz or more is transmitted and received by the receiver 20, the surface wave is severely attenuated, and in particular, it is very difficult to detect the received signal waveform D. FIG. 5 shows an example of a received signal waveform when a surface wave having a frequency of 5 MHz is transmitted from the transmitter 19 onto the large diameter spiral steel pipe 18 and received by the receiver 20.

外径が1100mm未満の小径のスパイラル鋼管18において、発信子19から周波数0.1MHz未満の表面波を送信して受信子20で受信した場合、経路DPを進行した表面波の受信信号波形Dと経路RPを進行した表面波の受信信号波形Rはいずれも幅広であるため重なり合って観測され、ピーク位置の検出ができない。
一方、周波数0.1MHz以上1MHz未満の表面波を送信して受信子20で受信した場合、経路DPを進行した表面波の受信信号波形Dと経路RPを進行した表面波の受信信号波形Rは重なり合うが、波形が鋭くなって分離して観測される。しかし、経路DPを進行する表面波は大きく減衰するので、経路長Lが短くなっても受信信号波形Dのピーク高さは受信信号波形Rのように高くならない。このため、各受信信号波形D、Rの分離はできるが多少困難になる。発信子19から周波数0.1MHzの表面波を小径のスパイラル鋼管18上に送信して受信子20で受信したときの受信信号波形の例を図6に示す。
In the spiral steel pipe 18 having a small outer diameter of less than 1100 mm, when a surface wave having a frequency of less than 0.1 MHz is transmitted from the transmitter 19 and received by the receiver 20, the received signal waveform D of the surface wave that has traveled the path DP Since the received signal waveforms R of the surface waves that have traveled along the path RP are wide, they are observed in an overlapping manner, and the peak position cannot be detected.
On the other hand, when a surface wave having a frequency of 0.1 MHz or more and less than 1 MHz is transmitted and received by the receiver 20, the received signal waveform D of the surface wave that has traveled the path DP and the received signal waveform R of the surface wave that has traveled the path RP are Although they overlap, the waveforms become sharp and separated. However, since the surface wave traveling along the path DP is greatly attenuated, the peak height of the received signal waveform D does not become as high as the received signal waveform R even when the path length L is shortened. For this reason, although the received signal waveforms D and R can be separated, it becomes somewhat difficult. FIG. 6 shows an example of a received signal waveform when a surface wave having a frequency of 0.1 MHz is transmitted from the transmitter 19 onto the small-diameter spiral steel pipe 18 and received by the receiver 20.

これに対して、外径が1100mm未満の小径のスパイラル鋼管18において発信子19から周波数1MHz以上5MHz以下の表面波を送信して受信子20で受信した場合、各受信信号波形D、Rはいずれも波形が鋭く、発信子19から受信子20までの表面波の経路長Lが短いために減衰が小さくなって各受信信号波形D、Rのピーク高さも高くなる。このため、各受信信号波形D、Rは分離して観測される。発信子19から周波数5MHzの表面波を小径のスパイラル鋼管18上に送信して受信子20で受信したときの受信信号波形の例を図7に示す。
また、発信子19から周波数5MHzを超え10MHz以下の表面波を送信して受信子20で受信した場合、表面波の減衰が大きくなって、各受信信号波形D、Rのピーク位置の検出はできるが多少困難となり、周波数10MHzを超える表面波を送信して受信子20で受信した場合、表面波の減衰が激しく、十分な大きさの受信信号波形D、Rを検出できない。
On the other hand, when a surface wave having a frequency of 1 MHz or more and 5 MHz or less is transmitted from the transmitter 19 and received by the receiver 20 in the small-diameter spiral steel pipe 18 having an outer diameter of less than 1100 mm, each of the received signal waveforms D and R is However, since the waveform is sharp and the path length L of the surface wave from the transmitter 19 to the receiver 20 is short, the attenuation is small and the peak height of each of the received signal waveforms D and R is also high. Therefore, the received signal waveforms D and R are observed separately. FIG. 7 shows an example of a received signal waveform when a surface wave having a frequency of 5 MHz is transmitted from the transmitter 19 onto the small-diameter spiral steel pipe 18 and received by the receiver 20.
Further, when a surface wave having a frequency exceeding 5 MHz and less than 10 MHz is transmitted from the transmitter 19 and received by the receiver 20, the attenuation of the surface wave is increased, and the peak positions of the received signal waveforms D and R can be detected. When a surface wave having a frequency exceeding 10 MHz is transmitted and received by the receiver 20, the attenuation of the surface wave is severe and the reception signal waveforms D and R having a sufficiently large size cannot be detected.

以上のことから、外径が1100mm以上の大径のスパイラル鋼管18において受信子20で表面波の受信を行うには、低周波数側の表面波を用いて溶接ビード部23の外表面に沿って伝播する経路RPを通過した表面波を受信するのが有利となる。
一方、外径が1100mm未満の小径のスパイラル鋼管18において受信子20で表面波の受信を行う場合も、低周波数側の表面波を用いて溶接ビード部23の外表面に沿って伝播する経路RPを通過した表面波を受信することが可能となるが、得られる受信信号波形Rは幅広となっているためピーク位置の検出精度が低下し、スパイラル鋼管18の外周長の測定精度も低下する。
From the above, in order to receive surface waves with the receiver 20 in the large-diameter spiral steel pipe 18 having an outer diameter of 1100 mm or more, along the outer surface of the weld bead 23 using surface waves on the low frequency side. It is advantageous to receive surface waves that have passed through the propagation path RP.
On the other hand, even when the surface wave is received by the receiver 20 in the small-diameter spiral steel pipe 18 having an outer diameter of less than 1100 mm, the path RP propagates along the outer surface of the weld bead portion 23 using the surface wave on the low frequency side. However, since the obtained received signal waveform R is wide, the detection accuracy of the peak position is lowered, and the measurement accuracy of the outer circumferential length of the spiral steel pipe 18 is also lowered.

ここで、小径のスパイラル鋼管18の製造管理基準は、例えば、外径が600mm以上では外周長の許容範囲は0.4%+3mm以内、600mm未満では外周長に対して6mm以内であるため、正確な外周長を求める際に外周長の測定精度が低下することは問題になる。このため、外径が1100mm未満の小径のスパイラル鋼管18において受信子20で表面波の受信を行う場合、ピーク位置の検出精度を上げるため高周波数側の表面波を用いると共に、スパイラル鋼管18の正確な外周長に相当する溶接ビード部23の内部を直進する経路DPを通過した表面波を受信するのがよい。
以上のことから、第1の演算手段21には、図3に示すように、スパイラル鋼管18の外径が1100mm未満の場合は伝播経路として溶接ビード部23の内部を直進する経路DPを採用し、スパイラル鋼管18の外径が1100mm以上の場合は伝播経路として溶接ビード部23の外表面に沿って伝播する経路RPを採用する経路選択部24を設ける。
なお、測定するスパイラル鋼管18の外周長、経路DP長、及び経路RP長の各範囲は予め見積もることができるので、表面波の伝播速度から、経路DPを通過する表面波の伝播時間tD と、経路RPを通過する表面波の伝播時間tR を予測することができる。このため、経路選択部24としては、伝播時間tD 又は伝播時間tR に対して前後に設けた一定時間幅内で検出されるピークの前側の表面波だけを検出するような、例えば、ゲート回路を用いて構成することができる。
Here, the manufacturing control standard of the small diameter spiral steel pipe 18 is accurate because, for example, when the outer diameter is 600 mm or more, the allowable range of the outer peripheral length is within 0.4% + 3 mm, and when less than 600 mm, the outer peripheral length is within 6 mm. When the outer peripheral length is determined, the measurement accuracy of the outer peripheral length is problematic. For this reason, when surface waves are received by the receiver 20 in the small-diameter spiral steel pipe 18 having an outer diameter of less than 1100 mm, surface waves on the high frequency side are used in order to increase the detection accuracy of the peak position, and the accuracy of the spiral steel pipe 18 is increased. It is preferable to receive the surface wave that has passed through the path DP that goes straight through the inside of the weld bead portion 23 corresponding to a long outer peripheral length.
From the above, as shown in FIG. 3, the first computing means 21 employs a path DP that travels straight inside the weld bead portion 23 as a propagation path when the outer diameter of the spiral steel pipe 18 is less than 1100 mm. When the outer diameter of the spiral steel pipe 18 is 1100 mm or more, a path selection unit 24 that employs a path RP that propagates along the outer surface of the weld bead part 23 is provided as a propagation path.
In addition, since each range of the outer peripheral length of the spiral steel pipe 18 to be measured, the path DP length, and the path RP length can be estimated in advance, the propagation time t D of the surface wave passing through the path DP can be calculated from the propagation speed of the surface wave. The propagation time t R of the surface wave passing through the path RP can be predicted. For this reason, as the route selection unit 24, for example, a gate that detects only the surface wave on the front side of the peak detected within a certain time width provided before and after the propagation time t D or the propagation time t R is used . A circuit can be used.

次に、本発明の一実施の形態に係るスパイラル鋼管の製造方法について説明する。
コイル状に巻かれた帯板11を前処理部15を介して成形部17に供給し、帯板11を複数の入側内外面成形ロール16で圧下しながらスパイラル状に成形していく。そして、スパイラル状に成形された隣り合う帯板11間に連続して形成される接触部の外周側を外面溶接機13で溶接し一体化してスパイラル鋼管18にする。
ここで、外面溶接機13から10m以内、好ましくは5m以内、より好ましくは2m以内の位置に想定されるスパイラル鋼管18の鋼管軸に実質的に垂直(85〜95°)な断面の外周上(スパイラル鋼管18の外表面上)に、スパイラル鋼管の外周長測定装置14の発信子19及び受信子20を、所定の隙間を有してスパイラル鋼管18の溶接ビード部23を横切って表面波の伝播経路が設定されるように配置する。なお、発信子19と受信子20の中心間距離Mは第2の演算手段22に予め入力しておく。
Next, the manufacturing method of the spiral steel pipe which concerns on one embodiment of this invention is demonstrated.
The strip 11 wound in a coil shape is supplied to the forming section 17 via the pretreatment section 15, and the strip 11 is formed into a spiral shape while being reduced by a plurality of entrance-side inner and outer surface forming rolls 16. Then, the outer peripheral side of the contact portion formed continuously between the adjacent strips 11 formed in a spiral shape is welded and integrated with the outer surface welding machine 13 to form a spiral steel pipe 18.
Here, on the outer periphery of the cross section substantially perpendicular (85 to 95 °) to the steel pipe axis of the spiral steel pipe 18 assumed within a position within 10 m, preferably within 5 m, more preferably within 2 m from the outer surface welder 13 ( On the outer surface of the spiral steel pipe 18, the transmitter 19 and the receiver 20 of the outer peripheral length measuring device 14 of the spiral steel pipe are propagated across the weld bead 23 of the spiral steel pipe 18 with a predetermined gap. Arrange so that the route is set. Note that the center-to-center distance M between the transmitter 19 and the receiver 20 is input to the second computing means 22 in advance.

このとき、製造しているスパイラル鋼管18の外径が1100mm未満の場合は、0.1MHz以上10MHz以下、好ましくは0.5MHz以上10MHz未満、更に好ましくは1MHz以上5MHz以下の周波数範囲の発信子19と受信子20を使用する。また、スパイラル鋼管の外径が1100mm以上の場合は0.1MHz以上2MHz以下、好ましくは0.5MHz以上1MHz以下の周波数範囲の発信子19と受信子20を使用する。
更に、スパイラル鋼管の外周長測定装置14の第1の演算手段21に設けられた経路選択部24を操作して、図3に示すように、スパイラル鋼管18の外径が1100mm未満の場合は溶接ビード部23の内部を直進する経路DPを有する伝播経路を選択し、スパイラル鋼管18の外径が1100mm以上の場合は溶接ビード部23の外表面に沿って伝播する経路RPを有する伝播経路を選択しておく。
At this time, when the outer diameter of the manufactured spiral steel pipe 18 is less than 1100 mm, the transmitter 19 having a frequency range of 0.1 MHz to 10 MHz, preferably 0.5 MHz to less than 10 MHz, more preferably 1 MHz to 5 MHz. And the receiver 20 are used. When the outer diameter of the spiral steel pipe is 1100 mm or more, the transmitter 19 and the receiver 20 having a frequency range of 0.1 MHz to 2 MHz, preferably 0.5 MHz to 1 MHz are used.
Further, by operating the path selector 24 provided in the first calculation means 21 of the outer peripheral length measuring device 14 of the spiral steel pipe, as shown in FIG. 3, when the outer diameter of the spiral steel pipe 18 is less than 1100 mm, welding is performed. A propagation path having a path DP that goes straight inside the bead portion 23 is selected. When the outer diameter of the spiral steel pipe 18 is 1100 mm or more, a propagation path having a path RP that propagates along the outer surface of the weld bead portion 23 is selected. Keep it.

選択された伝播経路を通過して受信子20で受信された表面波の受信信号を第1の演算手段21に入力して伝播時間を求め表面波の伝播速度を用いて伝播経路の経路長Lを算出する。そして、算出された経路長Lを第2の演算手段22に入力し、予め入力されている発信子19と受信子20の間の中心間距離Mを用いてスパイラル鋼管18の外周長(L+M)を算出する。
次いで、第2の演算手段22において、算出したスパイラル鋼管18の外周長(L+M)と、製造するスパイラル鋼管18の外周長目標値(例えば、スパイラル鋼管18の外径から求まる理論外周長)を比較し、例えば、外周長目標値と外周長(L+M)との偏差量を算出して、成形機12の制御装置に逐次入力する。そして、成形機12では、成形部17の入側内外面成形ロール16の圧下量及び/又は前処理部15における帯板11の搬送方向を逐次入力される偏差量に応じて修正する。これによって、形成されるスパイラル鋼管18の外周長の変動を検出しながら成形機12の成形条件の修正を逐次行うことができ、外周長が規格外となるスパイラル鋼管18の製造を防止することができる。
製造されたスパイラル鋼管18は溶接ビード部23の探傷を超音波探傷装置25で行って欠陥の有無を確認した後に走行切断装置26で所定長さに切り出し、搬送ローラ群27を介して次工程に搬送する。
The surface wave reception signal received by the receiver 20 through the selected propagation path is input to the first computing means 21 to obtain the propagation time, and the propagation length of the propagation path is determined using the propagation speed of the surface wave. Is calculated. Then, the calculated path length L is input to the second calculating means 22, and the outer peripheral length (L + M) of the spiral steel pipe 18 using the center-to-center distance M between the transmitter 19 and the receiver 20 input in advance. Is calculated.
Next, in the second calculation means 22, the calculated outer peripheral length (L + M) of the spiral steel pipe 18 is compared with the target outer peripheral length of the spiral steel pipe 18 to be manufactured (for example, the theoretical outer peripheral length obtained from the outer diameter of the spiral steel pipe 18). For example, a deviation amount between the outer peripheral length target value and the outer peripheral length (L + M) is calculated and sequentially input to the control device of the molding machine 12. The molding machine 12 corrects the amount of reduction of the entry-side inner / outer surface molding roll 16 of the molding unit 17 and / or the transport direction of the strip 11 in the pretreatment unit 15 according to the deviation amount sequentially input. Thereby, it is possible to sequentially correct the molding conditions of the molding machine 12 while detecting the fluctuation of the outer peripheral length of the spiral steel pipe 18 to be formed, and to prevent the manufacture of the spiral steel pipe 18 whose outer peripheral length is out of specification. it can.
The manufactured spiral steel pipe 18 is subjected to flaw detection on the weld bead 23 with the ultrasonic flaw detector 25 and is checked for the presence or absence of defects, and then cut into a predetermined length with the traveling cutting device 26 and passed to the next process via the conveying roller group 27. Transport.

次に、本発明の作用効果を確認するために行った実施例について説明する。ここで、図8は本発明の実施例1に係るスパイラル鋼管の外周長測定方法における発信子から送信した表面波を受信子で受信した際に得られる受信信号波形の検出精度に及ぼす表面波の周波数とスパイラル鋼管の外径の関係を示す説明図、図9は周波数の低い表面波を使用した場合の受信信号波形の説明図、図10は周波数の低い(高周波側)表面波を使用した場合の受信信号波形の説明図、図11は本発明の実施例2に係るスパイラル鋼管の製造方法における成形条件の修正を行った場合のスパイラル鋼管の外周長の変化挙動を示すグラフ、図12は比較例に係るスパイラル鋼管の製造方法における成形条件の修正を行った場合のスパイラル鋼管の外周長の変化挙動を示すグラフである。 Next, examples carried out for confirming the effects of the present invention will be described. Here, FIG. 8 shows the influence of the surface wave on the detection accuracy of the received signal waveform obtained when the surface wave transmitted from the transmitter is received by the receiver in the outer circumferential length measuring method of the spiral steel pipe according to the first embodiment of the present invention. FIG. 9 is an explanatory diagram showing the relationship between the frequency and the outer diameter of the spiral steel pipe, FIG. 9 is an explanatory diagram of a received signal waveform when a low-frequency surface wave is used, and FIG. 10 is a case where a low-frequency (high frequency side) surface wave is used FIG. 11 is a graph showing the change behavior of the outer peripheral length of the spiral steel pipe when the forming conditions are corrected in the manufacturing method of the spiral steel pipe according to Example 2 of the present invention, and FIG. 12 is a comparison. It is a graph which shows the change behavior of the perimeter length of a spiral steel pipe at the time of correcting the forming conditions in the manufacturing method of the spiral steel pipe concerning an example.

(実施例1)
外径が400〜1800mmのスパイラル鋼管の外表面上にその鋼管軸に実質的に垂直な断面に、しかも、溶接ビード部を横切って表面波の伝播経路が設定されるように発信子及び受信子を配置し、発信子から送信した表面波を受信子で受信した。なお、使用した表面波の周波数範囲は0.05〜20MHzである。
このとき、スパイラル鋼管の外径が1100mm未満の場合では表面波の伝播経路として溶接ビード部の内部を直進する経路を採用し、スパイラル鋼管の外径が1100mm以上の場合では表面波の伝播経路として溶接ビード部の外表面に沿って伝播する経路を採用し、受信子で受信して得られた受信信号波形から表面波の伝播時間の測定精度と測定のし易さを検討した。その結果を図8に示す。なお、図8では、測定対象とする受信信号波形から高精度に伝播時間の測定ができる場合を○、測定精度の点では使用できるが測定がし難い場合を△、測定精度の点で使用できない場合を×として、表面波の周波数とスパイラル鋼管の外径の関係を示している。
Example 1
Transmitter and receiver on the outer surface of a spiral steel pipe having an outer diameter of 400 to 1800 mm so that the propagation path of the surface wave is set in a cross section substantially perpendicular to the pipe axis and across the weld bead. The surface wave transmitted from the transmitter was received by the receiver. The used surface wave has a frequency range of 0.05 to 20 MHz.
At this time, when the outer diameter of the spiral steel pipe is less than 1100 mm, a path that goes straight inside the weld bead is adopted as the propagation path of the surface wave. When the outer diameter of the spiral steel pipe is 1100 mm or more, the propagation path of the surface wave is adopted. We adopted a path that propagates along the outer surface of the weld bead, and studied the measurement accuracy and ease of measurement of the propagation time of the surface wave from the received signal waveform received by the receiver. The result is shown in FIG. In FIG. 8, the case where the propagation time can be measured with high accuracy from the received signal waveform to be measured is ◯, the case where the measurement is difficult but the measurement is difficult, the case where the measurement is difficult, and the measurement accuracy cannot be used. The relationship between the frequency of the surface wave and the outer diameter of the spiral steel pipe is shown with x as the case.

図8の領域A1 では溶接ビード部の外表面に沿って伝播する経路を採用した伝播経路に相当する受信信号波形のピーク位置を検出しなければならないが、周波数の低い表面波を使用しているので受信信号波形が図9に示すように幅広になって、波形のピーク位置の正確な検出ができない。表面波の周波数を高周波数側にした領域A2 では、図10に示すように受信信号波形が鋭くなって、波形のピーク位置の検出が困難ではあるが可能になる。
図8の領域B1 では溶接ビード部の内部を直進する経路を採用した伝播経路に相当する受信信号波形のピーク位置を検出しなければならないが、周波数の低い表面波を使用しているので受信信号波形が幅広になるため溶接ビード部の外表面に沿って伝播する経路を採用した伝播経路に相当する受信信号波形と重なり合って、測定対象とする受信信号波形を正確に分離できない。表面波の周波数を高周波数側にした領域B2 では、受信信号波形が鋭くなるため測定対象とする受信信号波形を分離できるようになり、波形のピーク位置の検出が困難ではあるが可能になる。
In the area A 1 in FIG. 8, the peak position of the received signal waveform corresponding to the propagation path adopting the path that propagates along the outer surface of the weld bead portion must be detected. Therefore, the received signal waveform becomes wider as shown in FIG. 9, and the peak position of the waveform cannot be accurately detected. In the region A 2 where the frequency of the surface wave is on the high frequency side, as shown in FIG. 10, the received signal waveform becomes sharp, and it becomes possible to detect the peak position of the waveform.
In the area B 1 of FIG. 8, the peak position of the received signal waveform corresponding to the propagation path adopting the path that goes straight inside the weld bead portion must be detected. However, the reception is performed because the surface wave having a low frequency is used. Since the signal waveform becomes wider, it overlaps with the received signal waveform corresponding to the propagation path adopting the path that propagates along the outer surface of the weld bead portion, and the received signal waveform to be measured cannot be accurately separated. In the region B 2 where the frequency of the surface wave is on the high frequency side, the received signal waveform becomes sharp, so that the received signal waveform to be measured can be separated, and detection of the peak position of the waveform is possible. .

図8の領域C1 では溶接ビード部の外表面に沿って伝播する経路を採用した伝播経路に相当する受信信号波形のピーク位置を検出しなければならないが、周波数の高い表面波を使用しているので表面波の減衰が大きく、十分な大きさの受信信号波形を検出できない。表面波の周波数を低周波数側にした領域C2 では表面波の減衰が小さくなって、受信信号波形のピーク位置の検出が困難ではあるが可能になる。
図8の領域D1 では溶接ビード部の内部を直進する経路を採用した伝播経路に相当する受信信号波形のピーク位置を検出しなければならないが、表面波の減衰が大きく、十分な大きさの受信信号波形を検出できない。表面波の周波数を低周波数側にした領域D2 では、表面波の減衰が大きくなって、受信信号波形のピーク位置の検出が困難ではあるが可能になる。
In the area C 1 of FIG. 8, the peak position of the received signal waveform corresponding to the propagation path that employs the path that propagates along the outer surface of the weld bead must be detected. Therefore, the attenuation of the surface wave is large and a sufficiently large received signal waveform cannot be detected. In the region C 2 where the frequency of the surface wave is on the low frequency side, the attenuation of the surface wave is small, and it becomes possible to detect the peak position of the received signal waveform although it is difficult.
In the region D 1 in FIG. 8, the peak position of the received signal waveform corresponding to the propagation path adopting a path that goes straight inside the weld bead portion must be detected. However, the attenuation of the surface wave is large and the peak is sufficiently large. The received signal waveform cannot be detected. In the region D 2 where the frequency of the surface wave is on the low frequency side, the attenuation of the surface wave becomes large, and it becomes possible to detect the peak position of the received signal waveform although it is difficult.

(実施例2)
外面溶接機から鋼管軸に沿って3mの位置で鋼管軸に実質的に垂直な断面上のスパイラル鋼管の外表面上に周波数1MHzの表面波用の発信子及び受信子をそれぞれ配置し、スパイラル鋼管の外周長の測定結果に基づいて成形機の成形条件を修正しながら、外径が1000mmのスパイラル鋼管を製造した。製造しているスパイラル鋼管の外周長の変化挙動を図11に示す。なお、外径が1000mmのスパイラル鋼管の目標外周長は3141.5mm、外周長の合格下限値は3132.1mm、外周長の合格上限値は3150.9mm、製造管理下限値は3132.7mm、製造管理上限値は3150.3mmである。
図11に示すように、スパイラル鋼管の製造を開始して目標外周長に近い値を有するスパイラル鋼管を製造していたが、時刻T1 の時点でスパイラル鋼管の外周長が増加する傾向を示すようになってきた。しかし、外面溶接機から3mの位置で外周長の測定を行ってその測定結果に基づいて成形機の成形条件を修正するようにしたので、外周長の増加は時刻T2 の時点で製造管理上限値まで増加したがその後の増加を防止して、時刻T3 の時点からは外周長を徐々に減少させて目標外周長に近い値を有するスパイラル鋼管の製造ができるようになった。
このように、スパイラル鋼管が成形されてから早期の内にその外周長を測定し測定結果に基づいて成形機の成形条件を修正するため、外周長が合格範囲内で推移するようにスパイラル鋼管を製造できることが確認できた。
(Example 2)
A transmitter and receiver for a surface wave with a frequency of 1 MHz are arranged on the outer surface of a spiral steel pipe on a cross section substantially perpendicular to the steel pipe axis at a position 3 m along the steel pipe axis from the outer surface welding machine, respectively. A spiral steel pipe having an outer diameter of 1000 mm was manufactured while correcting the molding conditions of the molding machine based on the measurement result of the outer peripheral length. FIG. 11 shows the change behavior of the outer peripheral length of the manufactured spiral steel pipe. The target outer peripheral length of the spiral steel pipe having an outer diameter of 1000 mm is 3141.5 mm, the acceptable lower limit value of the outer circumferential length is 3132.1 mm, the acceptable upper limit value of the outer circumferential length is 3150.9 mm, the production control lower limit value is 312.7 mm, The management upper limit is 3150.3 mm.
As shown in FIG. 11, the spiral steel pipe having a value close to the target outer peripheral length has been manufactured since the start of the production of the spiral steel pipe, but the outer peripheral length of the spiral steel pipe tends to increase at the time T 1. It has become. However, since the outer peripheral length was measured at a position 3 m from the outer surface welder and the molding conditions of the molding machine were corrected based on the measurement result, the increase in the outer peripheral length was the upper limit of production control at time T 2. to prevent increased but thereafter increased to a value, from the point of time T 3 has enabled the production of spiral pipe having a value close to the target circumferential length gradually reduces the circumferential length.
In this way, in order to measure the outer peripheral length of the spiral steel pipe in the early stage after it is formed and to correct the molding conditions of the molding machine based on the measurement result, the spiral steel pipe is adjusted so that the outer peripheral length is kept within the acceptable range. It was confirmed that it could be manufactured.

(比較例)
外面溶接機から鋼管軸に沿って11mの位置で鋼管軸に実質的に垂直な断面上のスパイラル鋼管の外表面上に周波数1MHzの表面波用の発信子及び受信子をそれぞれ配置し、スパイラル鋼管の外周長の測定結果に基づいて成形機の成形条件を修正しながら、外径が1000mmのスパイラル鋼管を製造した。製造しているスパイラル鋼管の外周長の変化挙動を図12に示す。
図12に示すように、スパイラル鋼管の製造を開始して時刻S1 の時点でスパイラル鋼管の外周長が増加する傾向を示すようになってきた。しかし、外面溶接機から11mの位置で外周長の測定を行ってその測定結果に基づいて成形機の成形条件を修正するようにしたので、成形機の成形条件を修正する時刻が遅くなって、時刻S2 の時点で製造管理上限値に達し更に時刻S3 まで増加した後に修正の効果が現れて外周長は徐々に減少していき、時刻S4 の時点で製造管理上限値まで復帰し、その後更に減少して目標外周長に近い値を有するスパイラル鋼管の製造ができるようになった。
このように、スパイラル鋼管の成形機の成形条件を修正する判断を行う時間が遅くなると、外周長が不合格となる部分が発生してしまう。
(Comparative example)
A transmitter and receiver for a surface wave with a frequency of 1 MHz are respectively arranged on the outer surface of the spiral steel pipe on a cross section substantially perpendicular to the steel pipe axis at a position of 11 m along the steel pipe axis from the outer surface welding machine. A spiral steel pipe having an outer diameter of 1000 mm was manufactured while correcting the molding conditions of the molding machine based on the measurement result of the outer peripheral length. The change behavior of the outer peripheral length of the manufactured spiral steel pipe is shown in FIG.
As shown in FIG. 12, the outer peripheral length of the spiral steel pipe tends to increase at the time S 1 after starting the production of the spiral steel pipe. However, since the outer peripheral length was measured at a position 11 m from the outer surface welding machine and the molding conditions of the molding machine were corrected based on the measurement results, the time for correcting the molding conditions of the molding machine was delayed, After reaching the production control upper limit at time S 2 and further increasing to time S 3 , the effect of the correction appears and the outer peripheral length gradually decreases, and at time S 4 , the production control upper limit is restored. After that, it was further reduced and it became possible to manufacture spiral steel pipes having values close to the target outer peripheral length.
As described above, when the time for performing the determination for correcting the molding conditions of the spiral steel pipe molding machine is delayed, a portion where the outer peripheral length is rejected is generated.

以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明のスパイラル鋼管の外周長測定方法及びその装置並びにスパイラル鋼管の製造方法及びその設備を構成する場合も本発明の権利範囲に含まれる。
例えば、発信子と受信子は所定の隙間を有して別々に配置したが、発信子の送信方向と受信子の受信方向が反対になるように並べて一体化させてもよい。また、実施例では、外面溶接機から鋼管軸に沿って3mの位置に発信子と受信子をそれぞれ配置したが、外面溶接機から鋼管軸に沿って10m以内の位置であれば、スパイラル鋼管の製造設備の状況に合わせて設置することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The change in the range which does not change the summary of invention is possible, Each above-mentioned embodiment is possible. The case where the outer peripheral length measuring method and apparatus for the spiral steel pipe of the present invention and the spiral steel pipe manufacturing method and equipment thereof are configured by combining some or all of the forms and modifications are also included in the scope of the present invention.
For example, although the transmitter and the receiver are arranged separately with a predetermined gap, they may be arranged and integrated so that the transmission direction of the transmitter and the reception direction of the receiver are opposite. In the embodiment, the transmitter and the receiver are arranged at a position 3 m along the steel pipe axis from the outer surface welder. However, if the position is within 10 m along the steel pipe axis from the outer surface welder, the spiral steel pipe It can be installed according to the situation of manufacturing equipment.

本発明の一実施の形態に係るスパイラル鋼管の製造設備の説明図である。It is explanatory drawing of the manufacturing equipment of the spiral steel pipe which concerns on one embodiment of this invention. 同スパイラル鋼管の製造設備に使用するスパイラル鋼管の外周長測定装置の説明図である。It is explanatory drawing of the outer periphery length measuring apparatus of the spiral steel pipe used for the manufacturing equipment of the spiral steel pipe. 本発明の一実施の形態に係るスパイラル鋼管の製造方法に適用するスパイラル鋼管の外周長測定方法における溶接ビード部を伝播する表面波の伝播経路を示す説明図である。It is explanatory drawing which shows the propagation path of the surface wave which propagates the weld bead part in the outer peripheral length measuring method of the spiral steel pipe applied to the manufacturing method of the spiral steel pipe which concerns on one embodiment of this invention. 大径スパイラル鋼管において発信子から送信した周波数0.1MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図である。It is explanatory drawing which shows the received signal waveform obtained when the surface wave of the frequency of 0.1 MHz transmitted from the transmitter in the large diameter spiral steel pipe is received by the receiver. 大径スパイラル鋼管において発信子から送信した周波数5MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図である。It is explanatory drawing which shows the received signal waveform obtained when the surface wave of frequency 5MHz transmitted from the transmitter in the large diameter spiral steel pipe is received by the receiver. 小径スパイラル鋼管において発信子から送信した周波数0.1MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図である。It is explanatory drawing which shows the received signal waveform obtained when the surface wave of the frequency 0.1MHz transmitted from the transmitter in the small diameter spiral steel pipe is received by the receiver. 小径スパイラル鋼管において発信子から送信した周波数5MHzの表面波を受信子で受信した際に得られる受信信号波形を示す説明図である。It is explanatory drawing which shows the received signal waveform obtained when the surface wave of frequency 5MHz transmitted from the transmitter in the small diameter spiral steel pipe is received by the receiver. 本発明の実施例1に係るスパイラル鋼管の外周長測定方法における発信子から送信した表面波を受信子で受信した際に得られる受信信号波形の検出精度に及ぼす表面波の周波数とスパイラル鋼管の外径の関係を示す説明図である。The influence of the surface wave frequency and the outside of the spiral steel pipe on the detection accuracy of the received signal waveform obtained when the surface wave transmitted from the transmitter is received by the receiver in the method for measuring the outer peripheral length of the spiral steel pipe according to the first embodiment of the present invention. It is explanatory drawing which shows the relationship of a diameter. 周波数の低い表面波を使用した場合の受信信号波形の説明図である。It is explanatory drawing of a received signal waveform at the time of using a surface wave with a low frequency. 周波数の低い表面波を使用した場合の受信信号波形の説明図である。It is explanatory drawing of a received signal waveform at the time of using a surface wave with a low frequency. 本発明の実施例2に係るスパイラル鋼管の製造方法における成形条件の修正を行った場合のスパイラル鋼管の外周長の変化挙動を示すグラフである。It is a graph which shows the change behavior of the perimeter length of a spiral steel pipe at the time of correcting the forming conditions in the manufacturing method of the spiral steel pipe concerning Example 2 of the present invention. 比較例に係るスパイラル鋼管の製造方法における成形条件の修正を行った場合のスパイラル鋼管の外周長の変化挙動を示すグラフである。It is a graph which shows the change behavior of the perimeter length of a spiral steel pipe at the time of correcting the forming conditions in the manufacturing method of the spiral steel pipe concerning a comparative example. 従来例に係る鋼管の外周長測定装置の説明図である。It is explanatory drawing of the outer periphery length measuring apparatus of the steel pipe which concerns on a prior art example. 他の従来例に係る鋼管の外周長測定装置の説明図である。It is explanatory drawing of the outer peripheral length measuring apparatus of the steel pipe which concerns on another prior art example. 従来例に係るスパイラル鋼管の外周長測定方法の説明図である。It is explanatory drawing of the outer periphery length measuring method of the spiral steel pipe which concerns on a prior art example. 従来例に係る超音波距離計測装置を用いて管周長を計測する際の説明図である。It is explanatory drawing at the time of measuring pipe circumference using the ultrasonic distance measuring device which concerns on a prior art example.

符号の説明Explanation of symbols

10:スパイラル鋼管の製造設備、11:帯板、12:成形機、13:外面溶接機、14:スパイラル鋼管の外周長測定装置、15:前処理部、16:入側内外面成形ロール、17:成形部、18:スパイラル鋼管、19:発信子、20:受信子、21:第1の演算手段、22:第2の演算手段、23:溶接ビード部、24:経路選択部、25:超音波探傷装置、26:走行切断装置、27:搬送ローラ群 10: Manufacturing equipment for spiral steel pipe, 11: Strip plate, 12: Molding machine, 13: Outer surface welding machine, 14: Peripheral length measuring device for spiral steel pipe, 15: Pretreatment section, 16: Inner inner / outer surface molding roll, 17 : Forming part, 18: spiral steel pipe, 19: transmitter, 20: receiver, 21: first calculation means, 22: second calculation means, 23: weld bead part, 24: path selection part, 25: super Sonic flaw detector 26: traveling cutting device 27: transport roller group

Claims (4)

外径が1100mm未満のスパイラル鋼管の外表面上に表面波の発信子及び受信子を配置し、
前記スパイラル鋼管の鋼管軸に実質的に垂直な断面に、しかも、該スパイラル鋼管の溶接ビード部を横切るように前記表面波の伝播経路を設定して、
前記発信子から前記受信子への前記表面波の伝播時間を求め該表面波の伝播速度を用いて前記伝播経路の経路長を算出し、
前記発信子と前記受信子の間の距離と前記経路長から前記スパイラル鋼管の外周長を算出するスパイラル鋼管の外周長測定方法であって、
前記表面波の周波数範囲を0.1MHz以上10MHz以下として前記受信子により検出された、前記溶接ビード部の内部を直進する経路に対応する波形Dのピークと前記溶接ビード部の外表面に沿って伝播する経路に対応する波形Rのピークのうち、先に現れる前記波形Dのピークを選択し、該波形Dのピークに基づいて前記表面波の伝播時間を求めることを特徴とするスパイラル鋼管の外周長測定方法。
A surface wave transmitter and receiver are arranged on the outer surface of a spiral steel pipe having an outer diameter of less than 1100 mm,
Setting the propagation path of the surface wave in a cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe, and across the weld bead portion of the spiral steel pipe,
Obtain the propagation time of the surface wave from the transmitter to the receiver and calculate the path length of the propagation path using the propagation speed of the surface wave,
A method for measuring the outer peripheral length of a spiral steel pipe that calculates the outer peripheral length of the spiral steel pipe from the distance between the transmitter and the receiver and the path length,
The frequency range of the surface waves detected by the receiving element and the 0.1MHz or 10MHz or less, along the outer surface of the peaks and the weld bead portion of the waveform D corresponding to the path for straight interior of the weld bead portion The peak of the waveform D that appears first among the peaks of the waveform R corresponding to the path of propagation is selected, and the propagation time of the surface wave is obtained based on the peak of the waveform D. Perimeter length measurement method.
スパイラル鋼管の鋼管軸に実質的に垂直な断面上で該スパイラル鋼管の外表面上に所定の隙間を有して配置され、該スパイラル鋼管の溶接ビード部を横切って表面波の送信と受信を行う発信子及び受信子と、
前記発信子から前記受信子への前記表面波の伝播時間を求め該表面波の伝播速度を用いて伝播経路の経路長を算出する第1の演算手段と、
前記発信子と前記受信子の間の距離及び前記経路長から前記スパイラル鋼管の外周長を算出する第2の演算手段とを有するスパイラル鋼管の外周長測定装置であって、
前記表面波の発信子及び受信子の周波数範囲を、前記スパイラル鋼管の外径が1100mm未満の場合は0.1MHz以上10MHz以下、前記スパイラル鋼管の外径が1100mm以上の場合は0.1MHz以上2MHz以下として前記受信子により検出された、前記溶接ビード部の内部を直進する経路に対応する波形Dのピークと前記溶接ビード部の外表面に沿って伝播する経路に対応する波形Rのピークのうち、
前記第1の演算手段には、前記スパイラル鋼管の外径が1100mm未満の場合は、先に現れる前記波形Dのピークを選択し、前記スパイラル鋼管の外径が1100mm以上の場合は、遅れて現れる前記波形Rのピークを選択する経路選択部が設けられていることを特徴とするスパイラル鋼管の外周長測定装置。
It is arranged on the outer surface of the spiral steel pipe with a predetermined gap on a cross section substantially perpendicular to the steel pipe axis of the spiral steel pipe, and transmits and receives surface waves across the weld bead portion of the spiral steel pipe. A transmitter and receiver;
First calculating means for obtaining a propagation time of the surface wave from the transmitter to the receiver and calculating a path length of the propagation path using a propagation speed of the surface wave;
An apparatus for measuring the outer peripheral length of a spiral steel pipe having a second computing means for calculating the outer peripheral length of the spiral steel pipe from the distance between the transmitter and the receiver and the path length,
When the outer diameter of the spiral steel pipe is less than 1100 mm, the frequency range of the surface wave transmitter and receiver is 0.1 MHz or more and 10 MHz or less, and 0.15 MHz or more when the outer diameter of the spiral steel pipe is 1100 mm or more. detected by follows to the receiving element, the peak of the waveform R corresponding to the path that propagates along the outer surface of the peaks and the weld bead portion of the waveform D corresponding to the path for straight interior of the weld bead portion home,
In the first calculation means, when the outer diameter of the spiral steel pipe is less than 1100 mm , the peak of the waveform D that appears first is selected, and when the outer diameter of the spiral steel pipe is 1100 mm or more , it appears with a delay. An apparatus for measuring the outer peripheral length of a spiral steel pipe, wherein a path selection unit for selecting a peak of the waveform R is provided.
帯板を成形機でスパイラル状に成形し、該帯板の外表面側を外面溶接機で溶接してスパイラル鋼管を形成するスパイラル鋼管の製造方法において、
請求項1記載のスパイラル鋼管の外周長測定方法を用いて前記スパイラル鋼管の外周長を前記外面溶接機から10m以内の位置で測定し、その測定結果に基づいて前記成形機の成形条件を修正することを特徴とするスパイラル鋼管の製造方法。
In a method for manufacturing a spiral steel pipe, a band plate is formed into a spiral shape with a molding machine, and the outer surface side of the band plate is welded with an outer surface welding machine to form a spiral steel pipe.
The outer peripheral length of the spiral steel pipe was measured at a position within 10m from the outer surface welding machine using the circumferential length measurement method of the spiral steel pipe according to claim 1 Symbol placement, correct the forming conditions of the molding machine based on the measurement result A method of manufacturing a spiral steel pipe, characterized in that:
帯板をスパイラル状に成形する成形機と、
スパイラル状に成形された前記帯板の外表面側を溶接してスパイラル鋼管を形成する外面溶接機と、
請求項記載のスパイラル鋼管の外周長測定装置を有し、
前記スパイラル鋼管の外周長測定装置は前記外面溶接機から10m以内に設置され、前記成形機の成形条件を前記スパイラル鋼管の外周長の測定結果に基づいて修正することを特徴とするスパイラル鋼管の製造設備。
A molding machine for forming a strip into a spiral shape;
An outer surface welding machine for forming a spiral steel pipe by welding the outer surface side of the strip formed into a spiral shape;
It has a peripheral length measuring device of spiral steel pipe according to claim 2 ,
The outer peripheral length measuring device of the spiral steel pipe is installed within 10 m from the outer surface welding machine, and the forming condition of the molding machine is corrected based on the measurement result of the outer peripheral length of the spiral steel pipe. Facility.
JP2004133831A 2004-04-28 2004-04-28 Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor Expired - Fee Related JP4425690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133831A JP4425690B2 (en) 2004-04-28 2004-04-28 Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133831A JP4425690B2 (en) 2004-04-28 2004-04-28 Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor

Publications (2)

Publication Number Publication Date
JP2005315722A JP2005315722A (en) 2005-11-10
JP4425690B2 true JP4425690B2 (en) 2010-03-03

Family

ID=35443311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133831A Expired - Fee Related JP4425690B2 (en) 2004-04-28 2004-04-28 Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor

Country Status (1)

Country Link
JP (1) JP4425690B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713548B2 (en) * 2009-09-14 2015-05-07 新日鐵住金株式会社 Perimeter measurement method of spiral steel pipe
US9464889B2 (en) * 2010-09-16 2016-10-11 Ihi Corporation Method and apparatus for measuring hardened surface layer
CN103521890B (en) * 2013-10-12 2015-09-30 王晓宇 Two-sided pair of arc vertical position welding near infrared vision sensing and penetration control device and method
CN104765318B (en) * 2014-12-16 2017-09-15 沈阳富创精密设备有限公司 The PLASMA ARC WELDING Fuzzy control system and method measured based on bath temperature
EP3313592B1 (en) 2015-06-26 2020-11-04 Keystone Tower Systems, Inc. Spiral forming
CN110487227A (en) * 2019-09-26 2019-11-22 西安热工研究院有限公司 A kind of on-line monitoring system and method using ultrasound examination pipeline circumferential strain
CN110455230A (en) * 2019-09-26 2019-11-15 西安热工研究院有限公司 A kind of high-temperature pipe perimeter on-line monitoring system and method
CN113108729A (en) * 2021-05-28 2021-07-13 西安热工研究院有限公司 System and method for measuring pipeline perimeter based on ultrasonic waves

Also Published As

Publication number Publication date
JP2005315722A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP5448092B2 (en) Ultrasonic flaw detection method and apparatus for welds
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP5419592B2 (en) Ultrasonic inspection probe and ultrasonic inspection device
JP4425690B2 (en) Method and apparatus for measuring outer peripheral length of spiral steel pipe, method for manufacturing spiral steel pipe and equipment therefor
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
WO2018180697A1 (en) Defect detecting device, defect detecting method, and program
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP6837361B2 (en) Weld position detector, ultrasonic flaw detector, weld flaw detector method and weld position detection program
JP2002022714A (en) Ultrasonic flaw detector for welded steel pipe
JP4560796B2 (en) Ultrasonic flaw detector
JP3791436B2 (en) Ultrasonic flaw detection method
JP2008286639A (en) Coupling check method of ultrasonic oblique angle flaw detector
RU2486502C2 (en) Method for ultrasonic examination of pipes
JP2008238211A (en) Method and apparatus of manufacturing spiral pipe
JPH05240621A (en) Instrument for measuring outer diameter and wall thickness of pipe
JP2003322643A (en) Quality inspection method in welded steel pipe welded section
JP2012127832A (en) Non-destructive inspection method and device using guided wave
JP6939450B2 (en) Ultrasonic flaw detection method
JPH07294498A (en) Ultrasonic flaw detecting method and device therefor
KR102179231B1 (en) Ultrasonic wave apparatus for measure of distance
JP2836002B2 (en) Spiral steel pipe outer circumference length measurement method
JP3752807B2 (en) Surface defect detector
JP3800133B2 (en) Ultrasonic flaw detection method and apparatus for welded steel pipe welds
JP2015179011A (en) Defect inspection method of metal pipe, defect inspection device of metal pipe and defect inspection program of metal pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R151 Written notification of patent or utility model registration

Ref document number: 4425690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees