JP2007246963A - Plated body and plating method - Google Patents

Plated body and plating method Download PDF

Info

Publication number
JP2007246963A
JP2007246963A JP2006070369A JP2006070369A JP2007246963A JP 2007246963 A JP2007246963 A JP 2007246963A JP 2006070369 A JP2006070369 A JP 2006070369A JP 2006070369 A JP2006070369 A JP 2006070369A JP 2007246963 A JP2007246963 A JP 2007246963A
Authority
JP
Japan
Prior art keywords
plating layer
plating
nickel plating
plated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070369A
Other languages
Japanese (ja)
Other versions
JP4975344B2 (en
Inventor
Tadashi Kurashina
匡 倉科
Toshie Kitahara
利枝 北原
Hiroshi Nishinakayama
宏 西中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Electric Ind Co Ltd
Original Assignee
Yamato Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Electric Ind Co Ltd filed Critical Yamato Electric Ind Co Ltd
Priority to JP2006070369A priority Critical patent/JP4975344B2/en
Publication of JP2007246963A publication Critical patent/JP2007246963A/en
Application granted granted Critical
Publication of JP4975344B2 publication Critical patent/JP4975344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated body having a plated layer superior in adhesion formed on the surface of an insulative substrate through a wet process from the beginning to the end, and to provide a plating method. <P>SOLUTION: This plating method comprises sequentially the step ST1 of acid/alkali cleaning a glass substrate, a masking step ST2, a catalyzing treatment step ST3, an electroless nickel-plating step ST5, and a gold plating step ST6. A nickel plating layer containing 6 to 10 mass% phosphor (columnar-deposition-type middle-phosphorus nickel plated layer) is employed, as a nickel plating layer. In addition, the cleaning step prior to a step of forming the middle-phosphorus nickel plating layer includes the step of ultrasonic-cleaning the glass substrate in water, and the step of solvent-cleaning it with a water-soluble organic polar solvent after the water cleaning step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁基体の表面にめっき層が形成されためっき体、および絶縁基体の表面に対するめっき方法に関するものである。   The present invention relates to a plated body in which a plating layer is formed on the surface of an insulating substrate, and a plating method for the surface of the insulating substrate.

ガラス、プラスチックなどの絶縁基体の表面に金めっき層を形成する場合には、絶縁基体の表面に印刷などの方法で下地金属層を形成した後、その表面にニッケルめっき層、および金めっき層を順次、形成していく方法が提案されている(特許文献1参照)。
特開2000−297380号公報
When a gold plating layer is formed on the surface of an insulating substrate such as glass or plastic, after forming a base metal layer on the surface of the insulating substrate by a method such as printing, a nickel plating layer and a gold plating layer are formed on the surface. A method of sequentially forming the layers has been proposed (see Patent Document 1).
JP 2000-297380 A

しかしながら、印刷、さらにはスパッタ法などといった乾式の成膜方法では、設備、密着性、生産性、微細かつ複雑な形状への適用性に問題があり、一貫して湿式法を行うことが望まれている。しかしながら、これまでの湿式法では、めっき層の密着性が低く、実用化に至っていないのが現状である。   However, dry deposition methods such as printing and sputtering have problems in equipment, adhesion, productivity, and applicability to fine and complex shapes, and it is desirable to perform the wet method consistently. ing. However, in the conventional wet method, the adhesiveness of the plating layer is low, and the present situation is that it has not been put into practical use.

かかる状況に鑑みて、本発明の課題は、一貫して湿式法により絶縁基体の表面に密着性の優れためっき層を形成しためっき体、およびめっき方法を提供することにある。   In view of this situation, an object of the present invention is to provide a plated body in which a plating layer having excellent adhesion is formed on the surface of an insulating substrate by a wet method, and a plating method.

本願発明は、本願発明者が種々検討した結果、従来であれば、ピンホールが発生しやすいとして、下地層としての使用が敬遠されていた中リンニッケルめっき層(柱状析出タイプのリンニッケルめっき層)の特性を最大限活用することにより、めっき層の密着強度を高めたことに特徴を有する。   As a result of various investigations by the inventors of the present application, the present inventor has found that a medium phosphorus nickel plating layer (columnar precipitation type phosphorus nickel plating layer), which has been avoided in the past as it is likely to generate pinholes. ) To maximize the adhesion strength of the plating layer.

すなわち、本発明では、絶縁基体の被めっき面にめっき層が形成されためっき体において、前記絶縁基体の前記被めっき面には、組織が基板面に対して垂直方向に成長した柱状析出タイプのニッケルめっき層からなる下地層が形成され、当該下地層の上層に前記めっき層が形成されていることを特徴とする。   That is, in the present invention, in a plated body in which a plating layer is formed on a surface to be plated of an insulating base, a columnar precipitation type in which a structure grows in a direction perpendicular to the substrate surface on the surface to be plated of the insulating base. A base layer made of a nickel plating layer is formed, and the plating layer is formed above the base layer.

本発明では、絶縁基体の表面に対するめっき方法において、前記絶縁基体の被めっき面に対して核を形成する触媒化処理工程と、前記被めっき面に対する無電解めっきによりニッケルめっき層からなる下地層を形成する下地層形成工程と、前記下地層の表面にめっき層を形成するめっき工程とを有し、前記下地層形成工程では、前記下地層として、組織が基板面に対して垂直方向に成長した柱状析出タイプのニッケルめっき層を形成することを特徴とする。   In the present invention, in the plating method for the surface of the insulating substrate, a catalytic treatment step for forming nuclei on the surface to be plated of the insulating substrate, and an underlayer made of a nickel plating layer by electroless plating on the surface to be plated An underlayer forming step to form, and a plating step to form a plating layer on the surface of the underlayer. In the underlayer forming step, the structure grows in a direction perpendicular to the substrate surface as the underlayer. A columnar precipitation type nickel plating layer is formed.

本発明では、絶縁基体の被めっき面にめっき層が形成されためっき体において、前記絶縁基体の前記被めっき面には、リン含有量が6〜10質量%のニッケルめっき層からなる下地層が形成され、当該下地層の上層に前記めっき層が形成されていることを特徴とする。   In the present invention, in the plated body in which the plating layer is formed on the surface to be plated of the insulating base, the base layer made of a nickel plating layer having a phosphorus content of 6 to 10% by mass is formed on the surface to be plated of the insulating base. And the plating layer is formed on the base layer.

本発明では、絶縁基体の表面に対するめっき方法において、前記絶縁基板の被めっき面に対して核を形成する触媒化処理工程と、前記被めっき面に対する無電解めっきによりニッケルめっき層からなる下地層を形成する下地層形成工程と、前記下地層の表面にめっき層を形成するめっき工程とを有し、前記下地層形成工程では、前記下地層として、リン含有量が6〜10質量%の中リンニッケルめっき層を形成することを特徴とする。   In the present invention, in the plating method for the surface of the insulating substrate, a catalytic treatment process for forming nuclei on the surface to be plated of the insulating substrate, and an underlayer made of a nickel plating layer by electroless plating on the surface to be plated An underlayer forming step to form, and a plating step to form a plating layer on the surface of the underlayer. In the underlayer forming step, the phosphorus content is medium phosphorus with a phosphorus content of 6 to 10% by mass. A nickel plating layer is formed.

本発明において、前記めっき層は、例えば金めっき層である。すなわち、前記めっき工程では、前記めっき層として金めっき層を無電解めっきにより形成する。   In the present invention, the plating layer is, for example, a gold plating layer. That is, in the plating step, a gold plating layer is formed by electroless plating as the plating layer.

本発明に係るめっき方法では、前記触媒化処理工程の後、前記下地層形成工程の前に行う洗浄工程では、水洗浄の後、水溶性有機極性溶剤を用いた溶剤洗浄を行うことが好ましい。ここで、前記触媒化処理工程を複数回、繰り返し行う場合、当該触媒化処理工程を行った後の各洗浄工程では、水洗浄の後、水溶性有機極性溶剤を用いた溶剤洗浄を行うことが好ましい。   In the plating method according to the present invention, in the cleaning step performed after the catalyst treatment step and before the base layer forming step, it is preferable to perform solvent cleaning using a water-soluble organic polar solvent after water cleaning. Here, in the case where the catalytic treatment step is repeated a plurality of times, in each cleaning step after the catalytic treatment step, solvent washing using a water-soluble organic polar solvent may be performed after water washing. preferable.

本発明において、前記溶剤洗浄は、前記水溶性有機極性溶剤として、低級アルコールおよびアセトンのいずれかを用いることが好ましい。   In the present invention, the solvent cleaning preferably uses any one of a lower alcohol and acetone as the water-soluble organic polar solvent.

本発明において、前記水洗浄では、超音波洗浄を行うことが好ましい。   In the present invention, it is preferable to perform ultrasonic cleaning in the water cleaning.

本発明では、絶縁基体の被めっき面に対して、リン含有量が6〜10質量%のニッケルめっき層により、組織が基板面に対して垂直方向に成長した柱状ニッケルめっき層からなる下地層を形成し、この下地層の上層にめっき層が形成する。そのため、本発明によれば、めっき層の絶縁基板の密着性を高めることができる。   In the present invention, an underlayer composed of a columnar nickel plating layer having a structure grown in a direction perpendicular to the substrate surface by a nickel plating layer having a phosphorus content of 6 to 10% by mass with respect to the surface to be plated of the insulating substrate. Then, a plating layer is formed on the underlayer. Therefore, according to this invention, the adhesiveness of the insulating substrate of a plating layer can be improved.

次に、本発明を絶縁基体としてのガラス基板上にめっき層として金めっき層を形成する場合に適用した例を説明する。   Next, an example in which the present invention is applied to the case where a gold plating layer is formed as a plating layer on a glass substrate as an insulating substrate will be described.

(全体構成)
図1は、本発明の金めっき方法(金めっき体の製造方法)を示す工程図である。本発明では、バイオチップなどの電極をガラス基板上に形成するにあたって、ソーダガラスなどからなるガラス基板(絶縁基体)に対する酸・アルカリ洗浄工程ST1、マスキング工程ST2、触媒化処理工程ST3、マスク除去工程ST4、無電解ニッケルめっき工程(下地形成工程)ST5、金めっき工程ST6(めっき工程)をこの順に行う。なお、各工程の途中あるいは工程後には、洗浄工程を行うが、かかる洗浄工程については、図1への図示を省略してある。
(overall structure)
FIG. 1 is a process diagram showing a gold plating method (a method for producing a gold plating body) of the present invention. In the present invention, when an electrode such as a biochip is formed on a glass substrate, an acid / alkali cleaning step ST1, a masking step ST2, a catalytic treatment step ST3, a mask removing step for a glass substrate (insulating base) made of soda glass or the like. ST4, electroless nickel plating step (base forming step) ST5, and gold plating step ST6 (plating step) are performed in this order. In addition, although a washing | cleaning process is performed in the middle of each process or after a process, illustration to FIG. 1 is abbreviate | omitted about this washing | cleaning process.

本形態では、前記の各工程のうち、酸・アルカリ洗浄工程ST1では、濃硫酸へのガラス基板の浸漬を約5分行った後、洗浄工程を行う。次に、濃度が200〜500g/LのNaOH水溶液へのガラス基板の浸漬を15秒〜2分行った後、洗浄工程を行う。   In this embodiment, among the above steps, in the acid / alkali cleaning step ST1, the cleaning step is performed after the glass substrate is immersed in concentrated sulfuric acid for about 5 minutes. Next, after the glass substrate is immersed in an aqueous NaOH solution having a concentration of 200 to 500 g / L for 15 seconds to 2 minutes, a cleaning process is performed.

次に、マスキング工程ST2では、ガラス基板の表面全体を感光性樹脂にて覆った後、露光、現像し、被めっき面以外をレジストマスクで覆う。   Next, in the masking step ST2, the entire surface of the glass substrate is covered with a photosensitive resin, then exposed and developed, and the portions other than the surface to be plated are covered with a resist mask.

次に、触媒化処理工程ST3では、濃度が0.01〜0.1g/LのSnCl2の水溶液(室温)にガラス基板を約1分間浸漬した後、水洗浄を行い、次に、濃度が0.01〜0.1g/LのPdCl2の水溶液(室温)にガラス基板を約1分間浸漬し、ガラス基板にパラジウム核を定着させる。次に洗浄工程を行う。 Next, in the catalytic treatment step ST3, the glass substrate is immersed in an aqueous solution (room temperature) of SnCl 2 having a concentration of 0.01 to 0.1 g / L for about 1 minute, and then washed with water. The glass substrate is immersed in an aqueous solution (room temperature) of 0.01 to 0.1 g / L of PdCl 2 for about 1 minute to fix palladium nuclei on the glass substrate. Next, a cleaning process is performed.

この洗浄工程では、ガラス基板を水洗浄後、水溶性有機極性溶剤による溶剤洗浄を行う。ここで、水洗浄の際には、超音波洗浄を行う。また、溶剤洗浄の際には、水溶性有機極性溶剤として、低級アルコールあるいはアセトンを用いることが好ましく、その後の乾燥やコストなどを考慮すると、これら溶剤のうち、メチルアルコールを用いることが好ましい。   In this cleaning step, the glass substrate is washed with water and then washed with a water-soluble organic polar solvent. Here, ultrasonic cleaning is performed during water cleaning. In the solvent cleaning, it is preferable to use a lower alcohol or acetone as the water-soluble organic polar solvent, and considering the subsequent drying and cost, it is preferable to use methyl alcohol among these solvents.

なお、触媒化処理工程ST3(SnCl2の水溶液への浸漬、およびPdCl2の水溶液への浸漬)を複数回、繰り返し行う場合、触媒化処理工程を行う度に上記の洗浄工程(超音波洗浄による水洗浄、および溶剤洗浄)を行う。 When the catalytic treatment step ST3 (immersion of SnCl 2 in an aqueous solution and immersion of PdCl 2 in an aqueous solution) is repeated a plurality of times, the above cleaning step (by ultrasonic cleaning) is performed each time the catalytic treatment step is performed. Perform water cleaning and solvent cleaning).

次に、マスク除去工程ST4では、剥離液を用いてレジストマスクを除去する。次に、洗浄工程を行う。   Next, in the mask removal step ST4, the resist mask is removed using a stripping solution. Next, a cleaning process is performed.

この洗浄工程でも、ガラス基板を水洗浄後、水溶性有機極性溶剤による溶剤洗浄を行う。ここで、水洗浄の際には、超音波洗浄を行う。また、溶剤洗浄の際には、水溶性有機極性溶剤として、低級アルコールあるいはアセトンを用いることが好ましく、その後の乾燥やコストなどを考慮すると、これらの溶剤のうち、メチルアルコールを用いることが好ましい。   Also in this cleaning step, the glass substrate is washed with water and then with a water-soluble organic polar solvent. Here, ultrasonic cleaning is performed during water cleaning. In the solvent cleaning, it is preferable to use a lower alcohol or acetone as the water-soluble organic polar solvent, and considering the subsequent drying and cost, it is preferable to use methyl alcohol among these solvents.

次に、無電解ニッケルめっき工程ST5では、ガラス基板を無電解ニッケルめっき液(80℃)に15分間浸漬し、ニッケルめっき層からなる下地層を形成する。かかる下地層は、後述する金めっき層を密着性良く形成する機能を担う。次に、水洗浄を行う。ニッケルめっき層は薄すぎると、被めっき面を完全に被覆することができず、この上に形成される金めっき層の密着強度が低くなってしまう一方、厚すぎると、ニッケルめっき層の内部応力が大きくなってニッケルめっき層自身の密着強度が低下しまうので、これらの弊害を避けることのできる所定の厚さ範囲、例えば約0.3〜0.4μmの厚さに形成する。   Next, in the electroless nickel plating step ST5, the glass substrate is immersed in an electroless nickel plating solution (80 ° C.) for 15 minutes to form a base layer made of a nickel plating layer. Such a base layer has a function of forming a gold plating layer described later with good adhesion. Next, water washing is performed. If the nickel plating layer is too thin, the surface to be plated cannot be completely covered, and the adhesion strength of the gold plating layer formed thereon will be low. On the other hand, if the nickel plating layer is too thick, the internal stress of the nickel plating layer will be reduced. Since the adhesion strength of the nickel plating layer itself decreases, the thickness is formed in a predetermined thickness range, for example, about 0.3 to 0.4 μm, which can avoid these problems.

また、本形態では、後述する理由から、ニッケルめっき層として、リン含有量が6〜10質量%のニッケルめっき層(中リンニッケルめっき層)を形成する。かかる中リンニッケルめっき層は、組織が基板面に対して垂直方向に成長した柱状析出タイプの層として形成される。   In this embodiment, a nickel plating layer (medium phosphorus nickel plating layer) having a phosphorus content of 6 to 10% by mass is formed as the nickel plating layer for the reason described later. Such a medium phosphorous nickel plating layer is formed as a columnar precipitation type layer whose structure has grown in a direction perpendicular to the substrate surface.

次に、金めっき工程ST6では、置換金めっき工程、水洗浄、および還元金めっき工程をこの順に行い、しかる後に、水洗浄を行う。   Next, in the gold plating step ST6, the replacement gold plating step, the water cleaning, and the reduction gold plating step are performed in this order, and then the water cleaning is performed.

これらの金めっき工程のうち、置換型金めっき工程は、下地層としてのニッケルめっき層の表面のニッケルと、置換型無電解金めっき液中の金とを化学的に置換させることによってニッケルめっき層の表面に無電解金めっき層を形成する工程である。このような置換型の無電解金めっき層の形成には、例えば、シアン化金カリウムと、錯化剤としてのエチレンジアミン四酢酸(EDTA)、クエン酸等と、pH調整剤等を配合した無電解金めっき液を用いる。なお、置換型の無電解金めっき層は、その厚みが薄すぎる場合には、ニッケルめっき層の表面を均質に覆うことが困難である一方、厚すぎると、ニッケルめっき層が金との置換反応により消費されてしまうので、これらの弊害を避けることのできる所定の厚さ範囲に形成する。   Among these gold plating processes, the substitutional gold plating process is a nickel plating layer by chemically replacing nickel on the surface of the nickel plating layer as the underlayer and gold in the substitutional electroless gold plating solution. This is a step of forming an electroless gold plating layer on the surface. For forming such a substitutional electroless gold plating layer, for example, electroless gold cyanide, ethylenediaminetetraacetic acid (EDTA) as a complexing agent, citric acid, etc., and a pH adjusting agent or the like are blended. Use a gold plating solution. If the thickness of the substitutional electroless gold plating layer is too thin, it is difficult to uniformly cover the surface of the nickel plating layer. On the other hand, if the thickness is too thick, the nickel plating layer is replaced with gold. Therefore, it is formed in a predetermined thickness range that can avoid these adverse effects.

次に、還元金めっき工程は、自己触媒型の無電解めっきであり、置換型の金めっき層の表面の金を触媒として、この金めっき層上に無電解金めっき層を0.2μm以上の厚さに形成する。このような還元型の無電解金めっき層の形成には、例えば、シアン化金カリウムと、還元剤としてのジメチルアミンボラン、水素化ホウ素ナトリウム、およびヒドラジンなどと、錯化剤としてのシアン化カリウム等とから成る無電解めっき液を用いる。   Next, the reduction gold plating process is an electrocatalytic electroless plating, and the gold on the surface of the substitutional gold plating layer is used as a catalyst, and an electroless gold plating layer is formed on the gold plating layer by 0.2 μm or more. Form to thickness. In order to form such a reduced electroless gold plating layer, for example, potassium gold cyanide, dimethylamine borane, sodium borohydride, and hydrazine as a reducing agent, potassium cyanide as a complexing agent, and the like An electroless plating solution consisting of

なお、金めっき層の所定領域に白金めっき層や銀めっき層を形成する必要がある場合には、金めっき層の表面にレジストマスクを形成した後、電解銀めっきを行い、次に、電解白金めっきを行い、しかる後にレジストマスクを除去する。   In addition, when it is necessary to form a platinum plating layer or a silver plating layer in a predetermined region of the gold plating layer, after forming a resist mask on the surface of the gold plating layer, electrolytic silver plating is performed, and then electrolytic platinum Plating is performed, and then the resist mask is removed.

(ニッケルめっき層の構成)
このようなめっき方法を用いてガラス基板に金めっき層を形成しためっき体を製造するにあたって、本形態では、ニッケルめっき層として、EDS(エネルギー分散型X線分析装置)による分析結果でリン含有量が6〜10質量%のニッケルめっき層(中リンニッケルめっき層)を形成する。かかる中リンニッケルめっき層を用いた場合に、以下に説明するように、組織が基板面に対して垂直方向に成長した柱状析出タイプの層として形成される結果、ニッケルめっき層自身が下地との密着強度が高く、かつ、ニッケルめっき層の上層に形成した金めっき層の下地に対する密着強度が大きい。
(Configuration of nickel plating layer)
In manufacturing a plated body in which a gold plating layer is formed on a glass substrate using such a plating method, in this embodiment, as a nickel plating layer, phosphorus content is determined by an analysis result by an EDS (energy dispersive X-ray analyzer). Forms a nickel plating layer (medium phosphorus nickel plating layer) of 6 to 10% by mass. When such a medium phosphorous nickel plating layer is used, as will be described below, the structure is formed as a columnar precipitation type layer grown in a direction perpendicular to the substrate surface. The adhesion strength is high, and the adhesion strength of the gold plating layer formed on the upper layer of the nickel plating layer is high.

まず、本願発明者は、ニッケルめっき層として、ニッケルめっき層におけるリン含有量が約5質量%の低リンニッケルめっき層と、ニッケルめっき層におけるリン含有量が約8質量%の中リンニッケルめっき層と、ニッケルめっき層におけるリン含有量が約14質量%の高リンニッケルめっき層を形成した。   First, the inventor of the present application, as a nickel plating layer, has a low phosphorus nickel plating layer having a phosphorus content of about 5% by mass in the nickel plating layer and a medium phosphorus nickel plating layer having a phosphorus content of about 8% by mass in the nickel plating layer. And the high phosphorus nickel plating layer whose phosphorus content in a nickel plating layer is about 14 mass% was formed.

この時点において、ニッケルめっき層の表面状態を電子顕微鏡で観察したところ、図2に示すように、中リンニッケルめっき層では、低リンニッケルめっき層および高リンニッケルめっき層と比較してノジュールが少ないという結果であった。   At this time, when the surface state of the nickel plating layer was observed with an electron microscope, as shown in FIG. 2, the medium phosphorus nickel plating layer had less nodules than the low phosphorus nickel plating layer and the high phosphorus nickel plating layer. It was the result.

また、ニッケルめっき層を約3μm位まで厚く形成してその断面を電子顕微鏡で観察したところ、図3に示すように、低リンニッケルめっき層および高リンニッケルめっき層は層状析出タイプであったが、低リンニッケルめっき層では、組織が基板面に対して垂直方向に成長した柱状析出タイプであった。   Further, when the nickel plating layer was formed to a thickness of about 3 μm and the cross section was observed with an electron microscope, as shown in FIG. 3, the low phosphorus nickel plating layer and the high phosphorus nickel plating layer were layered precipitation types. The low phosphorus nickel plating layer was a columnar precipitation type in which the structure grew in a direction perpendicular to the substrate surface.

次に、引き剥がし試験により、ニッケルめっき層、およびニッケルめっき層の上層に金めっき層を形成した後の密着強度を検討したので、その結果を図4に示す。図4から分かるように、ニッケルめっき層自身としては、中リンニッケルめっき層が低リンニッケルめっき層および高リンニッケルめっき層と比較して密着強度が大きい傾向にある。また、金めっき層を形成した後においては、中リンニッケルめっき層を用いた場合には、低リンニッケルめっき層および高リンニッケルめっき層を用いた場合と比較して明らかに密着強度が大きいことがわかる。   Next, since the adhesion strength after the gold plating layer was formed on the nickel plating layer and the nickel plating layer was examined by a peeling test, the result is shown in FIG. As can be seen from FIG. 4, as the nickel plating layer itself, the medium phosphorus nickel plating layer tends to have a higher adhesion strength than the low phosphorus nickel plating layer and the high phosphorus nickel plating layer. In addition, after the gold plating layer is formed, the adhesion strength is clearly greater when the medium phosphorus nickel plating layer is used than when the low phosphorus nickel plating layer and the high phosphorus nickel plating layer are used. I understand.

なお、低リンニッケルめっき層、中リンニッケルめっき層、および高リンニッケルめっき層を形成する際の析出速度と、ニッケルめっき層自身の密着強度との関係を図5に示すが、析出速度と密着強度との間には相関性が見られなかった。すなわち、析出速度が中程度の中リンニッケルめっき層の密着性が最も良好であるという結果であった。よって、中リンニッケルめっき層の密着性が高い理由は、柱状析出タイプであることに起因すると考えられる。   FIG. 5 shows the relationship between the deposition rate when forming the low phosphorus nickel plating layer, the medium phosphorus nickel plating layer, and the high phosphorus nickel plating layer and the adhesion strength of the nickel plating layer itself. There was no correlation with intensity. That is, the adhesion of the medium phosphorus nickel plating layer with a medium deposition rate was the best. Therefore, the reason why the intermediate phosphorous nickel plating layer has high adhesion is considered to be due to the columnar precipitation type.

また、低リンニッケルめっき層、中リンニッケルめっき層、および高リンニッケルめっき層を形成した際の内部応力(薄膜内部応力測定装置による測定結果)と、ニッケルめっき層自身の密着強度との関係を図6に示すが、内部応力と密着強度との間には相関性が見られなかった。すなわち、内部応力が最も大である中リンニッケルめっき層の密着性が逆に最も良好であるという結果であった。よって、中リンニッケルめっき層の密着性が高い理由は、柱状析出タイプであることに起因すると考えられる。   In addition, the relationship between the internal stress (measured by the thin film internal stress measuring device) when the low phosphorus nickel plating layer, medium phosphorus nickel plating layer, and high phosphorus nickel plating layer are formed, and the adhesion strength of the nickel plating layer itself. As shown in FIG. 6, no correlation was found between internal stress and adhesion strength. That is, the adhesion of the medium phosphorous nickel plating layer having the largest internal stress was the best. Therefore, the reason why the intermediate phosphorous nickel plating layer has high adhesion is considered to be due to the columnar precipitation type.

(本形態の主な効果)
以上説明したように、本発明では、ガラス基板などの絶縁基体の被めっき面に金めっき層を形成された金めっき体を製造するにあたって、金めっき層の下地層としてリン含有量が6〜10質量%の中リンニッケルめっき層を形成する。かかる中リンニッケルめっき層は、柱状析出タイプであるため、ニッケルめっき層自身の下地との密着強度が高く、その結果、ニッケルめっき層の上層に形成した金めっき層の密着強度が大きい。
(Main effects of this form)
As described above, in the present invention, when manufacturing a gold plated body in which a gold plating layer is formed on a surface to be plated of an insulating substrate such as a glass substrate, the phosphorus content is 6 to 10 as the base layer of the gold plating layer. A medium phosphorous nickel plating layer of mass% is formed. Since the medium phosphorous nickel plating layer is a columnar precipitation type, the adhesion strength between the nickel plating layer itself and the base is high, and as a result, the adhesion strength of the gold plating layer formed on the nickel plating layer is high.

その理由については現在のところ断定できるまでには到っていないが、柱状析出タイプの中リンニッケルめっき層は、下地との密着強度が高い一方、ピンホールが発生しやすい傾向にあるため、従来は、下地層として不向きとされていたが、本形態では、その前段階で行う洗浄工程において、水洗浄に超音波洗浄を行い、水洗浄後には水溶性有機極性溶媒による溶剤洗浄を行うことにより、ピンホールの発生原因を除去した結果、柱状析出タイプの中リンニッケルめっき層の欠点(ピンホールの問題)を解消したので、金めっき層の密着強度を格段に向上できたものと考えられる。   The reason for this has not yet been determined, but the columnar precipitation type medium phosphorous nickel plating layer has high adhesion strength to the substrate, but tends to generate pinholes. However, in this embodiment, in the cleaning process performed in the previous stage, ultrasonic cleaning is performed for water cleaning, and solvent cleaning with a water-soluble organic polar solvent is performed after water cleaning. As a result of eliminating the cause of the occurrence of pinholes, the defect (pinhole problem) of the columnar precipitation type medium phosphorous nickel plating layer was solved, and it is considered that the adhesion strength of the gold plating layer was significantly improved.

(その他の実施の形態)
なお、上記形態では、ソーダガラスからなるガラス基板(絶縁基体)にめっきを行う例であったが、その他のガラス基板、石英基板、セラミックス、樹脂材料などの絶縁基体に対してめっきを行う場合に本発明を適用してもよい。
(Other embodiments)
In the above embodiment, the glass substrate (insulating base) made of soda glass is an example of plating. However, when plating is performed on insulating substrates such as other glass substrates, quartz substrates, ceramics, and resin materials. The present invention may be applied.

本発明の金めっき方法(金めっき体の製造方法)を示す工程図である。It is process drawing which shows the gold plating method (manufacturing method of a gold plating body) of this invention. 低リンニッケルめっき層、中リンニッケルめっき層、および高リンニッケルめっき層を形成した時点での各表面状態を電子顕微鏡で撮像した結果を示す説明図である。It is explanatory drawing which shows the result of having imaged each surface state in the time of forming a low phosphorus nickel plating layer, a medium phosphorus nickel plating layer, and a high phosphorus nickel plating layer with the electron microscope. 低リンニッケルめっき層、中リンニッケルめっき層、および高リンニッケルめっき層の断面を電子顕微鏡で撮像した結果を示す説明図である。It is explanatory drawing which shows the result of having imaged the cross section of the low phosphorus nickel plating layer, the medium phosphorus nickel plating layer, and the high phosphorus nickel plating layer with the electron microscope. 低リンニッケルめっき層、中リンニッケルめっき層、高リンニッケルめっき層の密着強度、およびそれらの上層に形成した金めっき層の密着強度を比較して示すグラフである。It is a graph which compares and shows the adhesive strength of the low phosphorus nickel plating layer, the medium phosphorus nickel plating layer, and the high phosphorus nickel plating layer, and the adhesive strength of the gold plating layer formed in those upper layers. 低リンニッケルめっき層、中リンニッケルめっき層、および高リンニッケルめっき層を形成する際の析出速度と、ニッケルめっき層自身の密着強度との関係を示すグラフである。It is a graph which shows the relationship between the precipitation rate at the time of forming a low phosphorus nickel plating layer, a medium phosphorus nickel plating layer, and a high phosphorus nickel plating layer, and the adhesion strength of the nickel plating layer itself. 低リンニッケルめっき層、中リンニッケルめっき層、および高リンニッケルめっき層の内部応力と、ニッケルめっき層自身の密着強度との関係を示すグラフである。It is a graph which shows the relationship between the internal stress of a low phosphorus nickel plating layer, a medium phosphorus nickel plating layer, and a high phosphorus nickel plating layer, and the adhesion strength of nickel plating layer itself.

符号の説明Explanation of symbols

ST1 酸・アルカリ洗浄工程
ST2 マスキング工程
ST3 触媒化処理工程
ST4 マスク除去工程
ST5 無電解ニッケルめっき工程
ST6 金めっき工程
ST1 Acid / alkali cleaning step ST2 Masking step ST3 Catalytic treatment step ST4 Mask removal step ST5 Electroless nickel plating step ST6 Gold plating step

Claims (10)

絶縁基体の被めっき面にめっき層が形成されためっき体において、
前記絶縁基体の前記被めっき面には、組織が基板面に対して垂直方向に成長した柱状析出タイプのニッケルめっき層からなる下地層が形成され、当該下地層の上層に前記めっき層が形成されていることを特徴とするめっき体。
In the plated body in which the plating layer is formed on the surface to be plated of the insulating base,
A base layer composed of a columnar precipitation type nickel plating layer having a structure grown in a direction perpendicular to the substrate surface is formed on the surface to be plated of the insulating base, and the plating layer is formed on the base layer. A plated body characterized in that
絶縁基体の被めっき面にめっき層が形成されためっき体において、
前記絶縁基体の前記被めっき面には、リン含有量が6〜10質量%の中リンニッケルめっき層からなる下地層が形成され、当該下地層の上層に前記めっき層が形成されていることを特徴とするめっき体。
In the plated body in which the plating layer is formed on the surface to be plated of the insulating base,
On the surface to be plated of the insulating substrate, a base layer made of a medium phosphorous nickel plating layer having a phosphorus content of 6 to 10% by mass is formed, and the plating layer is formed on the base layer. Characteristic plated body.
請求項1または2において、前記めっき層は金めっき層であることを特徴とするめっき体。   The plated body according to claim 1, wherein the plating layer is a gold plating layer. 絶縁基体の表面に対するめっき方法において、
前記絶縁基体の被めっき面に対して核を形成する触媒化処理工程と、前記被めっき面に対する無電解めっきによりニッケルめっき層からなる下地層を形成する下地層形成工程と、前記下地層の表面にめっき層を形成するめっき工程とを有し、
前記下地層形成工程では、前記下地層として、組織が基板面に対して垂直方向に成長した柱状析出タイプのニッケルめっき層を形成することを特徴とするめっき方法。
In the plating method for the surface of the insulating substrate,
A catalytic treatment step for forming nuclei on the surface to be plated of the insulating substrate, a base layer forming step for forming a base layer made of a nickel plating layer by electroless plating on the surface to be plated, and a surface of the base layer A plating step of forming a plating layer on
In the underlayer forming step, as the underlayer, a columnar precipitation type nickel plating layer having a structure grown in a direction perpendicular to the substrate surface is formed.
絶縁基体の表面に対するめっき方法において、
前記絶縁基板の被めっき面に対して核を形成する触媒化処理工程と、前記被めっき面に対する無電解めっきによりニッケルめっき層からなる下地層を形成する下地層形成工程と、前記下地層の表面にめっき層を形成するめっき工程とを有し、
前記下地層形成工程では、前記下地層として、リン含有量が6〜10質量%の中リンニッケルめっき層を形成することを特徴とするめっき方法。
In the plating method for the surface of the insulating substrate,
A catalytic treatment step for forming nuclei on the surface to be plated of the insulating substrate; a base layer forming step for forming a base layer made of a nickel plating layer by electroless plating on the surface to be plated; and a surface of the base layer A plating step of forming a plating layer on
In the underlayer forming step, a medium phosphorous nickel plating layer having a phosphorus content of 6 to 10% by mass is formed as the underlayer.
請求項4または5において、前記触媒化処理工程の後、前記下地層形成工程の前に行う洗浄工程では、水洗浄の後、水溶性有機極性溶剤を用いた溶剤洗浄を行うことを特徴とするめっき方法。   The solvent cleaning using a water-soluble organic polar solvent is performed after the water cleaning in the cleaning step performed after the catalyzing treatment step and before the base layer forming step. Plating method. 請求項4または5において、前記触媒化処理工程を複数回、繰り返し行い、
当該触媒化処理工程を行った後の各洗浄工程では、水洗浄の後、水溶性有機極性溶剤を用いた溶剤洗浄を行うことを特徴とするめっき方法。
In claim 4 or 5, the catalytic treatment step is repeated a plurality of times,
A plating method characterized in that, in each cleaning step after performing the catalyst treatment step, solvent cleaning using a water-soluble organic polar solvent is performed after water cleaning.
請求項6または7において、前記溶剤洗浄は、前記有機極性溶剤として、低級アルコールおよびアセトンのうちのいずれかを用いることを特徴とするめっき方法。   8. The plating method according to claim 6, wherein the solvent cleaning uses any one of lower alcohol and acetone as the organic polar solvent. 請求項6ないし8のいずれかにおいて、前記水洗浄では、超音波洗浄を行うことを特徴とするめっき方法。   9. The plating method according to claim 6, wherein in the water cleaning, ultrasonic cleaning is performed. 請求項4ないし9のいずれかにおいて、前記めっき工程では、前記めっき層として金めっき層を無電解めっきにより形成することを特徴とするめっき方法。   10. The plating method according to claim 4, wherein in the plating step, a gold plating layer is formed as the plating layer by electroless plating.
JP2006070369A 2006-03-15 2006-03-15 Plating method Expired - Fee Related JP4975344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070369A JP4975344B2 (en) 2006-03-15 2006-03-15 Plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070369A JP4975344B2 (en) 2006-03-15 2006-03-15 Plating method

Publications (2)

Publication Number Publication Date
JP2007246963A true JP2007246963A (en) 2007-09-27
JP4975344B2 JP4975344B2 (en) 2012-07-11

Family

ID=38591581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070369A Expired - Fee Related JP4975344B2 (en) 2006-03-15 2006-03-15 Plating method

Country Status (1)

Country Link
JP (1) JP4975344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136810A (en) * 2011-12-28 2013-07-11 Tekurabo:Kk Method for manufacturing semiconductor component

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212440A (en) * 1992-11-30 1994-08-02 Mitsubishi Kasei Corp Method for electroless plating on nonconductive base
JPH0730227A (en) * 1992-12-17 1995-01-31 Nec Corp Film coating material containing palladium and wiring forming method using the material
JPH07118866A (en) * 1993-10-21 1995-05-09 Nippon Chem Ind Co Ltd Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JPH07212008A (en) * 1994-01-25 1995-08-11 Matsushita Electric Works Ltd Circuit board forming method
JPH10168579A (en) * 1996-12-12 1998-06-23 Ngk Spark Plug Co Ltd Wiring board and its manufacture
JP2000096252A (en) * 1998-09-18 2000-04-04 C Uyemura & Co Ltd Method for plating to hard disk substrate
JP2000297380A (en) * 1999-04-14 2000-10-24 Yamato Denki Kogyo Kk Electroless plating method for glass ceramic substrate
JP2000336486A (en) * 1999-05-28 2000-12-05 Osaka City Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method
JP2001152045A (en) * 1999-11-29 2001-06-05 Shin Etsu Chem Co Ltd Gold-plated silica and method for producing the same
JP2003147549A (en) * 2001-11-08 2003-05-21 Nippon Parkerizing Co Ltd Nickel based surface treatment film having excellent heat resisting adhesive property with resin
JP2003247076A (en) * 2002-02-21 2003-09-05 C Uyemura & Co Ltd Method for depositing electroless plating film, and plated article
JP2004131801A (en) * 2002-10-10 2004-04-30 Nippon Chem Ind Co Ltd Conductive electroless plating powder and method for manufacturing the same
JP2004143587A (en) * 2002-10-02 2004-05-20 Univ Kanagawa Method for forming thin film and catalyzed treatment solution used therefor
JP2004149824A (en) * 2002-10-29 2004-05-27 Murata Mfg Co Ltd Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component
JP2004197160A (en) * 2002-12-18 2004-07-15 Nippon Chem Ind Co Ltd Conductive electroless-plated powder and manufacturing method therefor
JP2005163153A (en) * 2003-12-05 2005-06-23 Japan Pure Chemical Co Ltd Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212440A (en) * 1992-11-30 1994-08-02 Mitsubishi Kasei Corp Method for electroless plating on nonconductive base
JPH0730227A (en) * 1992-12-17 1995-01-31 Nec Corp Film coating material containing palladium and wiring forming method using the material
JPH07118866A (en) * 1993-10-21 1995-05-09 Nippon Chem Ind Co Ltd Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JPH07212008A (en) * 1994-01-25 1995-08-11 Matsushita Electric Works Ltd Circuit board forming method
JPH10168579A (en) * 1996-12-12 1998-06-23 Ngk Spark Plug Co Ltd Wiring board and its manufacture
JP2000096252A (en) * 1998-09-18 2000-04-04 C Uyemura & Co Ltd Method for plating to hard disk substrate
JP2000297380A (en) * 1999-04-14 2000-10-24 Yamato Denki Kogyo Kk Electroless plating method for glass ceramic substrate
JP2000336486A (en) * 1999-05-28 2000-12-05 Osaka City Substrate applied with catalytic nucleus, catalyzing treatment to substrate and electroless plating method
JP2001152045A (en) * 1999-11-29 2001-06-05 Shin Etsu Chem Co Ltd Gold-plated silica and method for producing the same
JP2003147549A (en) * 2001-11-08 2003-05-21 Nippon Parkerizing Co Ltd Nickel based surface treatment film having excellent heat resisting adhesive property with resin
JP2003247076A (en) * 2002-02-21 2003-09-05 C Uyemura & Co Ltd Method for depositing electroless plating film, and plated article
JP2004143587A (en) * 2002-10-02 2004-05-20 Univ Kanagawa Method for forming thin film and catalyzed treatment solution used therefor
JP2004131801A (en) * 2002-10-10 2004-04-30 Nippon Chem Ind Co Ltd Conductive electroless plating powder and method for manufacturing the same
JP2004149824A (en) * 2002-10-29 2004-05-27 Murata Mfg Co Ltd Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component
JP2004197160A (en) * 2002-12-18 2004-07-15 Nippon Chem Ind Co Ltd Conductive electroless-plated powder and manufacturing method therefor
JP2005163153A (en) * 2003-12-05 2005-06-23 Japan Pure Chemical Co Ltd Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136810A (en) * 2011-12-28 2013-07-11 Tekurabo:Kk Method for manufacturing semiconductor component

Also Published As

Publication number Publication date
JP4975344B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US6127052A (en) Substrate and method for producing it
JP2012521490A (en) Pretreatment method for electroless nickel plating
US20140030532A1 (en) Method of forming metal thin film using electroless deposition and thin film device fabricated using the method
JP2005336600A (en) Electroless plating method for silicon substrate and method for forming metallic layer on silicon substrate
JP2004019003A (en) Printed circuit board and plating method thereon
TW201821643A (en) Electroless palladium/gold plating process
KR100759452B1 (en) A method for preparing aluminum nitride board having nickel pattern
JP4975344B2 (en) Plating method
JP4647159B2 (en) Formation method of electroless plating film
JP6191212B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2003082469A (en) Metallic film pattern forming method
JP2000038682A (en) Nickel plating method and semiconductor device
WO2003069390A1 (en) Optical fiber coated with metal
JP2006219724A (en) Electroless plating process
US7147896B2 (en) Electroless nickel plating method for the preparation of zirconia ceramic
JP4521345B2 (en) Catalyst treatment method, electroless plating method, and circuit forming method using electroless plating method
CN1250772C (en) Electroplating pretreatment solution and electroplating pretreatment method
JP2015017296A (en) Electroless plating method
JP5360527B2 (en) Pretreatment method for electroless plating on magnetic materials
JP4955274B2 (en) Plating wiring board and electroless plating method
JP2011184748A (en) Plating method
JP2007305660A (en) Plating wiring board, and method for manufacturing plating wiring board
JP4577156B2 (en) Electroless nickel plating bath and electroless plating method using the same
JP2010077467A (en) Electroless plating method of polyimide resin
JP2007016279A (en) Electroless plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees