JP2004019003A - Printed circuit board and plating method thereon - Google Patents

Printed circuit board and plating method thereon Download PDF

Info

Publication number
JP2004019003A
JP2004019003A JP2003102494A JP2003102494A JP2004019003A JP 2004019003 A JP2004019003 A JP 2004019003A JP 2003102494 A JP2003102494 A JP 2003102494A JP 2003102494 A JP2003102494 A JP 2003102494A JP 2004019003 A JP2004019003 A JP 2004019003A
Authority
JP
Japan
Prior art keywords
water
soluble
plating
gold
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102494A
Other languages
Japanese (ja)
Inventor
Jung Chang-Kyo
ジョン、チャンーギョ(Chang−Kyo, JUNG)
Shin Young-Hwan
シン、ヨン−ファン(Young−Hwan, SHIN)
Oh Hwa-Sub
オ、ファーソブ(Hwa−Sub, OH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2004019003A publication Critical patent/JP2004019003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for plating a printed circuit board, which prevents nickel of a substrate layer from diffusing into the surface in an assembly step, by filling cavities of a pad for bonding of the printed circuit board with reduction plating, which are formed during plating, and which improves the reliability of an electroless plating step. <P>SOLUTION: This method comprises the step of providing the printed circuit board including the pad section 12 for bonding, on which a definite circuit pattern is formed, the step of forming a mask layer 11 on a part except the pad section for bonding, the step of forming a nickel plated layer 14 on the bonding pad section, the step of forming the displacement-type electroless gold plated layer 15 on the nickel plated layer, by contacting it with an displacement-type water-soluble plating liquid containing a water-soluble gold compound, and the step of forming the reduction-type electroless gold plated layer 16 on the above displacement-type gold plated layer, by contacting it with the reduction-type water-soluble plating liquid including the water-soluble gold compound. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プリント回路基板及びそのメッキ方法に関し、さらに詳しくは、プリント回路基板のボンディング用パッドのメッキに際して、置換型金メッキ後に還元方式で2次金メッキを行って、置換メッキ時に形成され得る空隙を塞ぐことにより、アセンブリ工程時に下地ニッケルが表面へ拡散することを防止して無電解メッキ工程の信頼性を向上させることが可能なプリント回路基板及びそのメッキ方法に関する。
【0002】
【従来の技術】
プリント回路基板は基板上に回路パターン及びパッド部を含んでおり、一般に、前記回路パターン及びパッド部12は銅材質からなる。ところが、外部に露出された銅層は、時間経過に伴って酸化して半導体及びプリント回路基板の実装時に信頼性を低下させるので、これを防止するための表面処理として、パッド部を金メッキする工程が必ず行われている。
【0003】
一方、無電解金メッキ工程において、メッキされる金属パッドにはんだ付け特性が要求される場合には、還元型金メッキによって厚さ0.05〜0.1μmの薄い金メッキが適用され、本発明でのようなボンディングなどの特性が要求される場合には置換型金メッキによって厚さ0.5μm以上の厚い金メッキが適用される。
【0004】
例えば、特許文献1には、ソルダーマスクを用いて金メッキしようとする回路パターン部位に無電解ニッケル層を形成した後、シアン化金カリウム、一つ以上の有機伝導性塩及び一つ以上の還元剤を含む金浸漬メッキ液を接触させてプリント回路基板を製造する方法が開示されている。
【0005】
また、特許文献2には、基板上にシアン化金カリウム、水酸化カリウム、シアン化カリウム、有機酸及び安定剤を含む金浸漬メッキ液を接触させて無電解メッキする方法が開示されている。
【0006】
一方、特許文献3には、金メッキを施そうとする銅部位上に非結晶質の第1の無電解ニッケル皮膜を形成し、結晶質の第2の無電解ニッケル皮膜を形成した後、置換反応を主反応とする無電解金メッキ方法が開示されている。この他にも、銅層上にニッケル−金メッキ層を形成する改良技術は、特許文献4及び特許文献5に開示されている。
【0007】
【特許文献1】
米国特許第6,383,269号明細書
【特許文献2】
米国特許第5,178,918号明細書
【特許文献3】
特開平7−7243号公報
【特許文献4】
米国特許第5,173,130号明細書
【特許文献5】
米国特許第5,235,139号明細書
【0008】
これと関連し、図1〜図4には従来の技術に係るプリント回路基板の概略的な金メッキ工程が示されている。
【0009】
図1及び図2を参照すると、まず、当業界で広く知られている方法によって、基板1上にパターン化された回路(図示せず)及びパッド部2を形成した後、前記パッド部2を除いた残部にフォトソルダーマスク層3を形成する。
【0010】
その後、図3に示すように、前記パッド部2上に、クエン酸を主成分とする無電解ニッケルメッキ液を約85℃で約20分間処理し、厚さ約3〜6μm、燐含量約5〜8%のニッケルメッキ層4を形成する。
【0011】
その後、図4に示すように、前記ニッケルメッキ層4上に置換型浸漬金メッキ液を接触させて厚さ0.5μm以上の無電解金メッキ層5を形成する。
【0012】
ところが、図3に示すように、前述した従来の技術に係るプリント回路基板のメッキ工程によれば、所望の金メッキを得るためにニッケルと銀のイオン化傾向を用いた置換方式の金メッキを採用しており、この過程で下地のニッケルは金メッキ液と置換されて溶出される。この際、ニッケルの溶出経路となる空隙(pore)が金メッキ組織内に生成される。前記空隙はアセンブリ工程中のベーキング工程などの熱処理を経ることにより、下地ニッケルの金メッキ表面への拡散を引き起こす原因となる。さらに、前記下地ニッケルの拡散は、ワイヤボンディング引張強度(wire bonding pull strength)の低下など製品の信頼性に影響を及ぼす重要な因子として働くとともに、製品の信頼性を低下させる原因になっている。
【0013】
しかし、このような問題点があるにも拘わらず、金メッキ方式を自己触媒型無電解金メッキ(還元型)に変えることができない理由は、還元金メッキ方式ではボンディング用パッド上のメッキに要求される0.5μm以上の厚さが量産工程で得られないためである。一般的な還元型金メッキのメッキ厚さは約0.1μm未満である。
【0014】
【発明が解決しようとする課題】
本発明者は、前述した問題点を解決するために様々な研究を重ねた挙句、ボンディング用パッドのメッキに際して、置換型金メッキ後に還元方式で2次金メッキを行って、置換メッキ時に形成され得る空隙を塞ぐことにより、アセンブリ工程時に下地ニッケルが表面へ拡散することを防止することが可能なことを見出し、本発明を完成するに至った。
【0015】
従って、本発明の第1の目的は、プリント回路基板のボンディング用パッドのメッキ時に発生する空隙を還元メッキによって塞ぐことにより、アセンブリ工程時に下地ニッケルが表面に拡散することを防止し、無電解メッキ工程の信頼性を向上させることが可能なプリント回路基板のメッキ方法を提供することにある。
【0016】
本発明の第2の目的は、前記方法によってメッキされたプリント回路基板を提供することにある。
【0017】
【課題を解決するための手段】
前記目的を達成するための本発明に係るプリント回路基板のメッキ方法は、ボンディング用パッド部12を含み、一定の回路パターンが形成されたプリント回路基板を提供する段階と、前記ボンディング用パッド部を除いた部分にマスク層13を形成する段階と、前記ボンディングパッド部上にニッケルメッキ層14を形成する段階と、前記ニッケルメッキ層上に水溶性金化合物を含む置換型水溶性メッキ液を接触させて置換型無電解金メッキ層15を形成する段階と、前記置換型金メッキ層上に水溶性金化合物を含む還元型水溶性メッキ液を接触させて還元型無電解金メッキ層16を形成する段階とを含む。
【0018】
前記第2の目的を達成するための本発明に係るプリント回路基板は前記方法によってメッキされて製造される。
【0019】
前述したように、本発明によれば、置換型金メッキ後に還元方式で2次金メッキを行って、置換メッキ時に形成され得る空隙を塞ぐことにより、アセンブリ工程時に下地ニッケルが表面へ拡散することを防止することができるため、ワイヤボンディング引張強度などを一定の水準以上に維持させて無電解メッキ工程の信頼性を向上させることができる。
【0020】
【発明の実施の形態】
以下、本発明を添付図に基づいてより具体的に説明する。
【0021】
図5〜図9は本発明によってプリント回路基板をメッキする方法の概略的な工程を示す断面図である。図11は本発明によってメッキされたプリント回路基板の金メッキ層表面を概略的に示す図である。
図5を参照すると、本発明に係るメッキ工程に先立って、基板11上に一定の回路パターン(図示せず)及びボンディング用パッド部12を形成するが、前記工程は当業界で広く知られたフォトリソグラフィ(photolithography)によることが典型的である。
さらに、図6を参照すると、フォトソルダーマスクPSRを前記プリント回路基板11上に塗布するが、前記ソルダーマスク層13は後述するメッキ過程でメッキに対するレジストの役割を果たす。前記ソルダーマスク層13にドライフィルムを適用し、露光及び現像過程を経て前記ボンディング用パッド部12上のソルダーマスク層部位のみを剥離する。
【0022】
次に、上述したソルダーマスク層剥離工程の完了後、露出されたパッド部12上にメッキ工程が行われる。本発明によれば、まず、金メッキに先立ってプリント回路基板上のパッド部12上に無電解ニッケルメッキ層の形成工程が行われた後、ボンディング用メッキに要求される金メッキ層の厚さにまで、置換型金メッキが行われる。その後、前記置換型金メッキ工程時に形成された空隙を塞ぐために還元型金メッキ処理を行われる。
【0023】
一方、前記露出されたボンディング用パッド部12上のメッキ原理を簡略に説明すると、次の通りである。
金属イオンを含有した溶液から金属を析出させる際、MX++X−→M0の電子移動が発生する。これらの化学的変化を引き起こす方法としては、還元剤を用いる自己触媒型無電解メッキ(還元メッキ)とイオン化傾向を用いる置換メッキがある。
まず、無電解ニッケルメッキは、ニッケル塩を含有した溶液から次亜リン酸塩などの還元剤によって化学的にニッケルを析出させることであり、メッキ液としてはニッケル塩、還元剤、錯化剤、安定剤及び湿潤剤などを含む。前処理工程が施されたプリント回路基板をPd、AuまたはPtのような触媒の中でメッキ液に浸漬すると、それぞれ下記反応式1及び下記反応式2のような主反応及び副反応が表面で発生する。
【0024】
【式1】

Figure 2004019003
@001
【0025】
【式2】
Figure 2004019003
@002
このように、触媒核を中心としてニッケルの触媒反応が起り、メッキが析出される。この際、副反応として、リン(P)が皮膜中に共析することになり、Ni−Pの非結晶性組織になる。
【0026】
一方、無電解ニッケルメッキ上に置換型金メッキが析出する場合の主反応は、下記反応式3で表わされる。
【0027】
【式3】
Figure 2004019003
@003
即ち、金メッキ液中にニッケル及びリンがイオン状態で溶出され、逆にAu+は電子を受け入れて金属状態で陰極の表面に析出する反応である。
【0028】
一方、還元型無電解金メッキの原理は前述した無電解ニッケルメッキの場合と同一である。
従って、図7を参照すると、上述したソルダーマスク層剥離工程の完了後、露出したパッド部12上に、従来から知られた工程によって無電解ニッケルメッキ層14が形成される。この際、前記ニッケルメッキ層の厚さは約3〜5μmであることが好ましい。
その後、図8を参照すると、パッド部12上のニッケルメッキ層14の損傷を防止する金メッキ層15を形成するために、前記ニッケルメッキ層が形成されたプリント回路基板を十分な時間置換型無電解水溶性メッキ液に接触、浸漬させて所望の金メッキの厚さ、好ましくは0.3〜1.5μmに形成する。但し、当業者であれば、様々な工程条件の変化によって前記範囲未満または超過厚さのメッキ層を形成することも可能であるという点をは言うまでもない。
【0029】
一方、前記置換型メッキ液は、水溶性金化合物、有機酸、錯化剤、安定剤及び還元剤などを含むことができ、置換型金メッキ液に一般的に使用される組成であれば、特別な制限なく使用することができる。好ましくは、前記置換型メッキ液中の水溶性金化合物の濃度は3.6〜4.4g/Lであればよい。
この際、前記置換型メッキ液のpHは約4.5〜4.7であることが好ましく、前記置換型メッキ過程で要求される温度は約82〜88℃である。また、前記置換型無電解メッキ工程は約20〜30分間行われると良い。
さらに、図9を参照すると、前記置換型金メッキ時に発生する空隙を塞ぐために、前記置換型無電解メッキ層15の形成されたプリント回路基板を十分な時間還元型無電解水溶性メッキ液に接触、浸漬させて薄い厚さ、好ましくは0.05〜0.1μmに還元型金メッキ層16を形成する。
一方、前記還元型メッキ液は、水溶性金化合物、有機酸、錯化剤、安定剤及び還元剤などを含むことができ、一般的に用いられる還元型金メッキ液に使用される組成であれば、特別な制限なく使用することができる。好ましくは、前記還元型メッキ液中の水溶性金化合物の濃度は3.8〜4.2g/Lであることが良い。
【0030】
この際、前記還元型メッキ液のpHは約7.0〜7.8であることが好ましく、前記還元型メッキ過程で要求される温度は約55〜65℃である。また、前記置換型無電解メッキ工程は約2〜5分間行われることが良い。
【0031】
本発明に使用される水溶性金化合物としては亜硫酸金ナトリウムが代表的であるが、これのみには限定されない。
一方、本発明に係る置換型金メッキ工程及び還元型金メッキ工程は、同一の装備で連続的に行われる形態のインライン(in−line)方式、或いはまず置換型金メッキ工程を行った後、別途の設備または装置で還元型金メッキを行う形態の組合わせ方式で行われることができる。
より詳細には、前記インライン方式では、置換型金メッキ工程を済ませた後、これに使用された水溶性金メッキ液を回収し、1〜3回純水洗浄した後、還元型金メッキ液を用いて金メッキを行うことができる。
【0032】
前記組合わせ方式としては、(1)置換型金メッキ工程を済ませた後、これに使用された水溶性金メッキ液を回収し、1〜3回純水洗浄した後、水分を乾燥させ、還元型金メッキ液で金メッキを行う方法と、(2)置換型金メッキ工程を済ませた後、これに使用された水溶性金メッキ液を回収し、1〜3回純水洗浄した後、水分を乾燥させ、表面の汚染物を除去するためにジェットスクラビング処理(jet scrubbing)を行った後、再び純水洗浄し、還元型金メッキ液で金メッキを行う方法と、(3)置換型金メッキ工程を済ませた後、これに使用された水溶性金メッキ液を回収し、1〜3回純水洗浄した後、水分を乾燥させ、表面の汚染物を除去するためにプラズマクリーニング処理(plasma cleaning)を行った後、再び純水洗浄し、還元型金メッキ液で金メッキを行う方法がある。
【0033】
また、本発明によれば、最適の金メッキ層を形成するために、メッキ工程中に選択的に前処理過程を行うことができる。即ち、まず銅材質のパッド部に物理的な研磨を行って表面の異物を除去し、化学的に有機物を除去する。また、銅層の表面をエッチングさせた後、ニッケルメッキ層の形成に先立って選択的に触媒の役割をするパラジウムPdなどで処理することが好ましい。
【0034】
前述したように、本発明によれば、図11に示すように、置換型金メッキ後に還元方式で2次金メッキを行って、置換メッキ時に形成され得る空隙を塞ぐことにより、アセンブリ工程時に下地ニッケルが表面へ拡散することを防止することができるため、ワイヤボンディング引張強度などを一定の水準以上に維持させて無電解メッキ工程の信頼性を向上させることができる。
【0035】
【実施例】
以下、実施例によって本発明をより具体的に説明するが、これらの実施例により本発明の範疇が限定されるものではない。
【0036】
下記実施例では、銅材質のパッド部を除いた部分にフォトソルダーマスク層が形成されたプリント回路基板を50℃で3分間浸漬し、脱脂剤80〜120mL/Lで脱脂し、酸化膜を除去し且つ銅表面を粗化するために酸洗及びエッチング工程を行った後、パラジウムを用いて触媒処理し、その後水洗し、無電解ニッケルメッキ液(NIMUDEN NPR−4, UYEMURA社)によって85℃で20分間メッキした。この際、パッド部上の無電解ニッケル層の厚さは約4.5μmであった。その後、ニッケル層の形成されたプリント回路基板を水洗した後、次のように前記ニッケル層上に金メッキ工程を行った。
【0037】
(実施例1)
前記活性化処理されたプリント回路基板をpH約4.5の置換型メッキ液(TSK−25、UYEMURA社)入りのメッキ液槽に約26分間浸漬し、前記プリント回路基板のニッケルメッキ層上に厚さ約0.5μmの置換型無電解金メッキ層を形成した。
その後、前記メッキ液槽で置換型メッキに使用された水溶性金メッキ液を回収し、前記メッキ液槽を1〜3回純水洗浄した後、95℃で1分間水分を乾燥させ、その後pH約7.5の還元型メッキ液(TSK−97,UYEMURA社)を前記メッキ液槽に入れ、そこに前記置換型金メッキ液で処理されたプリント回路基板を約4分間浸漬して前記プリント回路基板の置換型金メッキ層上に厚さ約0.07μmの還元型無電解金メッキ層をさらに形成した。
次に、前記メッキ工程後に水洗し、80℃で15分間乾燥させ、プリント回路基板の金メッキ層を得た。こうして得たプリント回路基板の金メッキ層の表面を5000倍拡大したSEM写真を図12に示す。
(比較例1)
前記活性化処理されたプリント回路基板をpH約4.5の置換型メッキ液(TSK−25,UYEMURA社)入りのメッキ液槽に約50分間浸漬し、前記プリント回路基板のニッケルメッキ層上に厚さ約0.7μmの置換型無電解金メッキ層を形成した。
前記メッキ工程後に水洗し、95℃で1分間乾燥させ、プリント回路基板の金メッキ層を得た。こうして得たプリント回路基板の金メッキ層の表面を5000倍拡大したSEM写真を図13に示す。
図12及び図13に示すように、本発明によって置換型金メッキを行った後、還元型金メッキを行って得た金メッキ層は、従来の技術によって置換型金メッキのみを行って得た金メッキ層から空隙が発見されたこととは異なり、空隙が発生しないことが分る。
本発明の単純な変形乃至変更は、全て本発明の領域に属するもので、本発明の具体的な保護範囲は特許請求の範囲によって明らかになる。
【0038】
【発明の効果】
前述したように、本発明によれば、置換型金メッキ後に還元方式で2次金メッキを行って置換メッキ時の空隙を塞ぐことにより、アセンブリ工程における下地ニッケルの表面拡散を防止することができるため、ワイヤボンディング引張強度の低下など無電解メッキの信頼性低下を解決することができる。また、包装容器内に湿気など水分が残存する場合に金属の拡散が加速することからみて、空隙問題を解決することにより、長期間保管時に吸湿などによる下地金属(ニッケル)の拡散を防止することができるので、製品保管期間の延長を可能にする間接効果が発生して製品の信頼性を保障する有効期間を延長することができる。
【図面の簡単な説明】
【図1】従来の技術に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図2】従来の技術に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図3】従来の技術に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図4】従来の技術に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図5】本発明に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図6】本発明に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図7】本発明に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図8】本発明に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図9】本発明に係るプリント回路基板のメッキ工程を概略的に示す断面図である。
【図10】従来の技術によってメッキされたプリント回路基板の金メッキ層表面に空隙が発生した状態を概略的に示す図である。
【図11】本発明によってメッキされたプリント回路基板の金メッキ層表面を概略的に示す図である。
【図12】本発明の実施例1によってメッキされたプリント回路基板の金メッキ層表面の微細構造を5000倍拡大して示すSEM写真である。
【図13】本発明の比較例1によってメッキされたプリント回路基板の金メッキ層表面の微細構造を5000倍拡大して示すSEM写真である。
【符号の説明】
1、11 基板
2、12 パッド部
3、13 ソルダーマスク層
4、14 ニッケルメッキ層
5、15 置換型金メッキ層
16 還元型金メッキ層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a printed circuit board and a method of plating the same. More specifically, in plating a bonding pad of a printed circuit board, secondary gold plating is performed in a reduction method after replacement-type gold plating to form a gap that can be formed during replacement plating. The present invention relates to a printed circuit board capable of preventing base nickel from diffusing to a surface during an assembly process and improving the reliability of an electroless plating process, and a plating method therefor.
[0002]
[Prior art]
The printed circuit board includes a circuit pattern and a pad portion on the substrate. Generally, the circuit pattern and the pad portion 12 are made of a copper material. However, since the copper layer exposed to the outside is oxidized with the passage of time and lowers the reliability when mounting the semiconductor and the printed circuit board, a step of plating the pad portion with gold is performed as a surface treatment to prevent this. Is always done.
[0003]
On the other hand, in the electroless gold plating step, when the metal pads to be plated require soldering characteristics, thin gold plating having a thickness of 0.05 to 0.1 μm is applied by reduction gold plating, as in the present invention. When a characteristic such as good bonding is required, a thick gold plating having a thickness of 0.5 μm or more is applied by displacement-type gold plating.
[0004]
For example, Patent Literature 1 discloses that after forming an electroless nickel layer on a circuit pattern portion to be plated with gold using a solder mask, potassium cyanide, one or more organic conductive salts, and one or more reducing agents are used. A method for manufacturing a printed circuit board by contacting a gold immersion plating solution containing
[0005]
Further, Patent Document 2 discloses a method of performing electroless plating by bringing a gold immersion plating solution containing gold potassium cyanide, potassium hydroxide, potassium cyanide, an organic acid, and a stabilizer into contact with a substrate.
[0006]
On the other hand, Patent Literature 3 discloses a method in which a first amorphous non-electrolytic nickel film is formed on a copper portion to be plated with gold, and a second crystalline electroless nickel film is formed. An electroless gold plating method having a main reaction is disclosed. In addition, Patent Literature 4 and Patent Literature 5 disclose improved techniques for forming a nickel-gold plating layer on a copper layer.
[0007]
[Patent Document 1]
US Patent No. 6,383,269 [Patent Document 2]
US Patent No. 5,178,918 [Patent Document 3]
JP-A-7-7243 [Patent Document 4]
US Patent No. 5,173,130 [Patent Document 5]
US Patent No. 5,235,139
In this connection, FIGS. 1 to 4 show a schematic gold plating process for a printed circuit board according to the prior art.
[0009]
Referring to FIGS. 1 and 2, first, a patterned circuit (not shown) and a pad portion 2 are formed on a substrate 1 by a method widely known in the art, and then the pad portion 2 is formed. A photo solder mask layer 3 is formed on the remaining portion.
[0010]
Thereafter, as shown in FIG. 3, an electroless nickel plating solution containing citric acid as a main component is treated on the pad portion 2 at about 85 ° C. for about 20 minutes to have a thickness of about 3 to 6 μm and a phosphorus content of about 5 μm. A nickel plating layer 4 of about 8% is formed.
[0011]
Thereafter, as shown in FIG. 4, an electroless gold plating layer 5 having a thickness of 0.5 μm or more is formed on the nickel plating layer 4 by contacting a substitution type immersion gold plating solution.
[0012]
However, as shown in FIG. 3, according to the above-described prior art plating process of a printed circuit board, in order to obtain a desired gold plating, a replacement-type gold plating using the ionization tendency of nickel and silver is adopted. In this process, the underlying nickel is replaced with the gold plating solution and eluted. At this time, a pore serving as a nickel elution path is generated in the gold plating structure. The voids cause a diffusion of the underlying nickel to the gold-plated surface through a heat treatment such as a baking step during the assembly process. Furthermore, the diffusion of the nickel underlayer acts as an important factor affecting the reliability of the product such as a decrease in wire bonding pull strength, and also causes a reduction in the reliability of the product.
[0013]
However, in spite of these problems, the gold plating method cannot be changed to the self-catalytic electroless gold plating (reduction type) because of the reduction gold plating method required for plating on bonding pads. This is because a thickness of 0.5 μm or more cannot be obtained in the mass production process. The plating thickness of typical reduction gold plating is less than about 0.1 μm.
[0014]
[Problems to be solved by the invention]
The inventor of the present invention has conducted various studies to solve the above-mentioned problems. At the time of plating the bonding pad, the secondary gold plating is performed in a reduction method after the replacement gold plating, and the voids that can be formed during the replacement plating are formed. It has been found that by blocking the surface of the base material, it is possible to prevent the base nickel from diffusing to the surface during the assembly process, and have completed the present invention.
[0015]
Therefore, a first object of the present invention is to prevent the underlying nickel from diffusing to the surface during the assembly process by closing the voids generated during the plating of the bonding pads of the printed circuit board by the reduction plating, thereby preventing the electroless plating. An object of the present invention is to provide a method of plating a printed circuit board, which can improve the reliability of a process.
[0016]
A second object of the present invention is to provide a printed circuit board plated by the above method.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, a method of plating a printed circuit board according to the present invention includes providing a printed circuit board including a bonding pad portion 12 and having a predetermined circuit pattern formed thereon. Forming a mask layer 13 on the removed portion, forming a nickel plating layer 14 on the bonding pad portion, and contacting a substitution type water-soluble plating solution containing a water-soluble gold compound on the nickel plating layer. Forming a substitution-type electroless gold plating layer 15 and contacting the reduction-type aqueous plating solution containing a water-soluble gold compound on the substitutional gold plating layer to form a reduction-type electroless gold plating layer 16. Including.
[0018]
The printed circuit board according to the present invention for achieving the second object is manufactured by plating by the above method.
[0019]
As described above, according to the present invention, the secondary nickel plating is performed in a reduction manner after the substitutional gold plating to close the gaps that can be formed at the time of the substitutional plating, thereby preventing the base nickel from diffusing to the surface during the assembly process. Therefore, the wire bonding tensile strength and the like can be maintained at a certain level or more, and the reliability of the electroless plating process can be improved.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.
[0021]
5 to 9 are cross-sectional views illustrating schematic steps of a method of plating a printed circuit board according to the present invention. FIG. 11 is a diagram schematically illustrating a surface of a gold plating layer of a printed circuit board plated according to the present invention.
Referring to FIG. 5, prior to a plating process according to the present invention, a predetermined circuit pattern (not shown) and a bonding pad portion 12 are formed on a substrate 11, which process is widely known in the art. Typically, photolithography is used.
Referring to FIG. 6, a photo solder mask PSR is applied on the printed circuit board 11, and the solder mask layer 13 functions as a resist for plating in a plating process described later. A dry film is applied to the solder mask layer 13 and only portions of the solder mask layer on the bonding pad portion 12 are removed through exposure and development processes.
[0022]
Next, after the above-described solder mask layer peeling step is completed, a plating step is performed on the exposed pad portion 12. According to the present invention, first, after the step of forming the electroless nickel plating layer on the pad portion 12 on the printed circuit board prior to the gold plating, the thickness of the gold plating layer required for the plating for bonding is reduced. , Replacement metal plating is performed. Thereafter, a reduction-type gold plating process is performed to close the gap formed during the replacement-type gold plating process.
[0023]
On the other hand, the principle of plating on the exposed bonding pad portion 12 will be briefly described as follows.
When a metal is precipitated from a solution containing metal ions, an electron transfer of MX ++ X− → M0 occurs. Methods for causing these chemical changes include autocatalytic electroless plating (reduction plating) using a reducing agent and displacement plating using ionization tendency.
First, electroless nickel plating is to chemically deposit nickel from a solution containing a nickel salt with a reducing agent such as hypophosphite. As a plating solution, a nickel salt, a reducing agent, a complexing agent, Contains stabilizers and wetting agents. When the printed circuit board subjected to the pretreatment process is immersed in a plating solution in a catalyst such as Pd, Au or Pt, a main reaction and a side reaction as shown in the following reaction formulas 1 and 2 are performed on the surface. appear.
[0024]
(Equation 1)
Figure 2004019003
$ 001
[0025]
[Equation 2]
Figure 2004019003
$ 002
As described above, the catalytic reaction of nickel occurs around the catalytic nucleus, and plating is deposited. At this time, as a side reaction, phosphorus (P) is eutectoid in the film, resulting in a non-crystalline structure of Ni-P.
[0026]
On the other hand, the main reaction when the substitutional gold plating is deposited on the electroless nickel plating is represented by the following reaction formula 3.
[0027]
[Equation 3]
Figure 2004019003
$ 003
That is, nickel and phosphorus are eluted in the gold plating solution in an ionic state, while Au + is a reaction that accepts electrons and precipitates on the surface of the cathode in a metallic state.
[0028]
On the other hand, the principle of the reduction type electroless gold plating is the same as that of the above-described electroless nickel plating.
Accordingly, referring to FIG. 7, after the above-described solder mask layer peeling process is completed, an electroless nickel plating layer 14 is formed on the exposed pad portion 12 by a conventionally known process. At this time, the thickness of the nickel plating layer is preferably about 3 to 5 μm.
Thereafter, referring to FIG. 8, in order to form a gold plating layer 15 for preventing the nickel plating layer 14 on the pad portion 12 from being damaged, the printed circuit board on which the nickel plating layer is formed is subjected to a sufficient time-replacement type electroless. It is contacted with and dipped in a water-soluble plating solution to form a desired gold plating thickness, preferably 0.3 to 1.5 μm. However, those skilled in the art can, of course, form a plating layer having a thickness less than or greater than the above range by changing various process conditions.
[0029]
On the other hand, the replacement plating solution may include a water-soluble gold compound, an organic acid, a complexing agent, a stabilizer, a reducing agent, and the like. It can be used without any restrictions. Preferably, the concentration of the water-soluble gold compound in the displacement plating solution may be 3.6 to 4.4 g / L.
At this time, the pH of the displacement plating solution is preferably about 4.5 to 4.7, and the temperature required in the displacement plating process is about 82 to 88 ° C. In addition, the replacement type electroless plating process is preferably performed for about 20 to 30 minutes.
Further, referring to FIG. 9, the printed circuit board on which the substitutional electroless plating layer 15 is formed is brought into contact with a reduction type electroless water-soluble plating solution for a sufficient time in order to close a gap generated at the time of the substitutional gold plating. The reduced gold plating layer 16 is formed by immersion to a thin thickness, preferably 0.05 to 0.1 μm.
On the other hand, the reduction-type plating solution may include a water-soluble gold compound, an organic acid, a complexing agent, a stabilizer, a reducing agent, and the like, provided that the composition is used in a commonly used reduction-type plating solution. , Can be used without any special restrictions. Preferably, the concentration of the water-soluble gold compound in the reduced plating solution is 3.8 to 4.2 g / L.
[0030]
At this time, the pH of the reduction plating solution is preferably about 7.0 to 7.8, and the temperature required in the reduction plating process is about 55 to 65 ° C. In addition, the replacement type electroless plating process is preferably performed for about 2 to 5 minutes.
[0031]
A typical example of the water-soluble gold compound used in the present invention is gold sodium sulfite, but is not limited thereto.
On the other hand, the replacement-type gold plating process and the reduction-type gold plating process according to the present invention may be performed in an in-line manner in which the same equipment is continuously used. Alternatively, it can be performed by a combination method of performing reduction gold plating with an apparatus.
More specifically, in the in-line method, after completing the substitutional gold plating process, the water-soluble gold plating solution used for this is collected, washed with pure water 1 to 3 times, and then subjected to gold plating using a reduced gold plating solution. It can be performed.
[0032]
The combination method is as follows: (1) After completion of the replacement type gold plating step, the water-soluble gold plating solution used for this step is collected, washed with pure water 1 to 3 times, and then the moisture is dried. A method of performing gold plating with a solution, and (2) after completing the substitution type gold plating step, collecting a water-soluble gold plating solution used for the plating, washing the resultant with pure water one to three times, drying the water, and drying the surface. After performing jet scrubbing treatment to remove contaminants, washing with pure water again, and performing gold plating with a reduction type gold plating solution, and (3) after performing a substitution type gold plating step, The used water-soluble gold plating solution is collected, washed with pure water for 1 to 3 times, then dried to remove water, and subjected to plasma cleaning to remove surface contaminants. After, washed with pure water again, there is a method of performing gold plating with reduced gold plating solution.
[0033]
Further, according to the present invention, a pretreatment process can be selectively performed during a plating process in order to form an optimal gold plating layer. That is, first, a pad portion made of a copper material is physically polished to remove foreign substances on the surface and chemically removed organic matter. Further, after the surface of the copper layer is etched, it is preferable to perform a treatment with palladium Pd or the like which selectively plays a role of a catalyst before forming the nickel plating layer.
[0034]
As described above, according to the present invention, as shown in FIG. 11, the secondary nickel plating is performed in a reduction manner after the substitutional gold plating to close the voids that can be formed at the time of the substitutional plating. Since the diffusion to the surface can be prevented, the wire bonding tensile strength and the like can be maintained at a certain level or more, and the reliability of the electroless plating process can be improved.
[0035]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the scope of the present invention is not limited by these Examples.
[0036]
In the following embodiment, a printed circuit board on which a photo solder mask layer is formed is immersed at 50 ° C. for 3 minutes in a portion excluding a copper pad portion, and degreased with a degreasing agent of 80 to 120 mL / L to remove an oxide film. After performing the pickling and etching steps to roughen the copper surface, the catalyst is treated with palladium, followed by washing with water, and at 85 ° C. with an electroless nickel plating solution (NIMUDEN NPR-4, UYEMURA). Plated for 20 minutes. At this time, the thickness of the electroless nickel layer on the pad portion was about 4.5 μm. Then, after the printed circuit board on which the nickel layer was formed was washed with water, a gold plating process was performed on the nickel layer as follows.
[0037]
(Example 1)
The activated printed circuit board is immersed for about 26 minutes in a plating solution tank containing a substitution type plating solution (TSK-25, UYEMURA) having a pH of about 4.5, and is placed on the nickel plating layer of the printed circuit board. A substitution type electroless gold plating layer having a thickness of about 0.5 μm was formed.
Thereafter, the water-soluble gold plating solution used for displacement plating was recovered in the plating solution tank, and the plating solution tank was washed with pure water 1 to 3 times, and then dried at 95 ° C. for 1 minute, and then the pH was reduced to about The reduced type plating solution of 7.5 (TSK-97, UYEMURA) is put in the plating solution tank, and the printed circuit board treated with the replacement type gold plating solution is immersed therein for about 4 minutes, and the A reduced electroless gold plating layer having a thickness of about 0.07 μm was further formed on the substitutional gold plating layer.
Next, after the plating step, the substrate was washed with water and dried at 80 ° C. for 15 minutes to obtain a gold plating layer of a printed circuit board. FIG. 12 shows an SEM photograph in which the surface of the gold plating layer of the printed circuit board obtained in this manner is magnified 5000 times.
(Comparative Example 1)
The activated printed circuit board is immersed for about 50 minutes in a plating solution tank containing a substitution type plating solution (TSK-25, UYEMURA) having a pH of about 4.5, and is placed on the nickel plating layer of the printed circuit board. A substitution type electroless gold plating layer having a thickness of about 0.7 μm was formed.
After the plating step, the substrate was washed with water and dried at 95 ° C. for 1 minute to obtain a gold plating layer of a printed circuit board. FIG. 13 shows an SEM photograph in which the surface of the gold plating layer of the printed circuit board thus obtained is magnified 5000 times.
As shown in FIGS. 12 and 13, the gold plating layer obtained by performing the replacement-type gold plating after performing the replacement-type gold plating according to the present invention is separated from the gold-plated layer obtained by performing only the replacement-type gold plating according to the conventional technique. It can be seen that no voids are generated unlike the discovery of
All simple modifications and alterations of the present invention belong to the scope of the present invention, and the specific protection scope of the present invention will become apparent from the appended claims.
[0038]
【The invention's effect】
As described above, according to the present invention, by performing secondary gold plating in a reduction method after replacement-type gold plating to close the gaps during the replacement plating, it is possible to prevent surface diffusion of the base nickel in the assembly process, A reduction in the reliability of electroless plating, such as a reduction in wire bonding tensile strength, can be solved. In addition, the diffusion of metal is accelerated when moisture such as moisture remains in the packaging container. Therefore, by solving the void problem, the diffusion of the underlying metal (nickel) due to moisture absorption during long-term storage can be prevented. Therefore, an indirect effect that allows the product storage period to be extended occurs, and the validity period that guarantees the reliability of the product can be extended.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the related art.
FIG. 2 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the related art.
FIG. 3 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the related art.
FIG. 4 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the related art.
FIG. 5 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the present invention.
FIG. 6 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the present invention.
FIG. 7 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the present invention.
FIG. 8 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the present invention.
FIG. 9 is a cross-sectional view schematically illustrating a plating process of a printed circuit board according to the present invention.
FIG. 10 is a view schematically showing a state in which a gap is generated on a surface of a gold plating layer of a printed circuit board plated by a conventional technique.
FIG. 11 is a view schematically illustrating a surface of a gold plating layer of a printed circuit board plated according to the present invention;
FIG. 12 is an SEM photograph showing a microstructure of a surface of a gold plating layer of a printed circuit board plated according to Example 1 of the present invention at 5000 times magnification.
FIG. 13 is a SEM photograph showing the microstructure of the surface of the gold plating layer of the printed circuit board plated according to Comparative Example 1 of the present invention at 5000 times magnification.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 11 Substrate 2, 12 Pad part 3, 13 Solder mask layer 4, 14 Nickel plating layer 5, 15 Substitution type gold plating layer 16 Reduction type gold plating layer

Claims (18)

ボンディング用パッド部(12)を含み、一定の回路パターンが形成されたプリント回路基板を提供する段階と、
該ボンディング用パッド部を除いた部分にマスク層(1)を形成する段階と、
該ボンディング用パッド部上にニッケルメッキ層(14)を形成する段階と、
該ニッケルメッキ層上に水溶性金化合物を含む置換型水溶性メッキ液を接触させて置換型無電解金メッキ層(15)を形成する段階と、
前記置換型金メッキ層上に水溶性金化合物を含む還元型水溶性メッキ液を接触させて還元型無電解金メッキ層(16)を形成する段階と、を含むことを特徴とするプリント回路基板のメッキ方法。
Providing a printed circuit board including a bonding pad portion (12) and having a predetermined circuit pattern formed thereon;
Forming a mask layer (1) in a portion other than the bonding pad portion;
Forming a nickel plating layer (14) on the bonding pad portion;
Contacting a substitution type water-soluble plating solution containing a water-soluble gold compound on the nickel plating layer to form a substitution type electroless gold plating layer (15);
Contacting a reduced-type water-soluble plating solution containing a water-soluble gold compound on the replacement-type gold-plated layer to form a reduced-type electroless gold-plated layer (16). Method.
前記置換型水溶性メッキ液は有機酸、錯化剤、安定剤及び還元剤をさらに含むことを特徴とする請求項1記載のプリント回路基板のメッキ方法。The method of claim 1, wherein the substitution type water-soluble plating solution further comprises an organic acid, a complexing agent, a stabilizer, and a reducing agent. 前記還元型水溶性メッキ液は有機酸、錯化剤、安定剤及び還元剤をさらに含むことを特徴とする請求項1記載のプリント回路基板のメッキ方法。The method of claim 1, wherein the reduced water-soluble plating solution further comprises an organic acid, a complexing agent, a stabilizer, and a reducing agent. 前記置換型無電解メッキによって形成された金メッキ層(15)の厚さは0.3〜1.5μmであることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method according to claim 1, wherein the thickness of the gold plating layer formed by the substitutional electroless plating is 0.3 to 1.5 [mu] m. 前記還元型無電解メッキによって形成された金メッキ層(16)の厚さは0.05〜0.1μmであることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method according to claim 1, wherein the thickness of the gold plating layer formed by the electroless plating is 0.05 to 0.1 [mu] m. 前記水溶性金化合物は亜硫酸金ナトリウムであることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method according to claim 1, wherein the water-soluble gold compound is sodium gold sulfite. 前記置換型無電解水溶性メッキ液中の水溶性金化合物の濃度は3.6〜4.4g/Lであることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method according to claim 1, wherein the concentration of the water-soluble gold compound in the substitutional electroless water-soluble plating solution is 3.6 to 4.4 g / L. 前記還元型無電解水溶性メッキ液中の水溶性金化合物の濃度は3.8〜4.2g/Lであることを特徴とする請求項1記載のプリント回路基板のメッキ方法。The method of claim 1, wherein the concentration of the water-soluble gold compound in the reduced electroless water-soluble plating solution is 3.8 to 4.2 g / L. 前記置換型無電解水溶性メッキ液のpHは4.5〜4.7であることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method of claim 1, wherein the substitution type electroless water-soluble plating solution has a pH of 4.5 to 4.7. 前記還元型無電解水溶性メッキ液のpHは7.0〜7.8であることを特徴とする請求項1記載のプリント回路基板のメッキ方法。The method of claim 1, wherein the pH of the reduced electroless water-soluble plating solution is 7.0 to 7.8. 前記置換型無電解水溶性メッキ液の温度は82〜88℃であることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method according to claim 1, wherein the temperature of the substitutional electroless water-soluble plating solution is 82 to 88 [deg.] C. 前記還元型無電解水溶性メッキ液の温度は55〜65℃であることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method according to claim 1, wherein the temperature of the reduced electroless water-soluble plating solution is 55 to 65 [deg.] C. 前記置換型金メッキ層上に水溶性金化合物を含む還元型水溶性メッキ液を接触させて還元型無電解金メッキ層を形成する段階が20〜30分間行われることを特徴とする請求項1記載のプリント回路基板のメッキ方法。The method according to claim 1, wherein the step of forming a reduced electroless gold plating layer by contacting a reduced water-soluble plating solution containing a water-soluble gold compound on the replacement gold plating layer is performed for 20 to 30 minutes. Plating method of printed circuit board. 前記ニッケルメッキ層上に水溶性金化合物を含む置換型水溶性メッキ液を接触させて置換型無電解金メッキ層を形成する段階が2〜5分間行われることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The print according to claim 1, wherein the step of forming a substitutional electroless gold plating layer by contacting a substitutional water-soluble plating solution containing a water-soluble gold compound on the nickel plating layer is performed for 2 to 5 minutes. Plating method for circuit boards. 前記置換型金メッキ層上に水溶性金化合物を含む還元型水溶性メッキ液を接触させて還元型無電解金メッキ層を形成する段階及び前記ニッケルメッキ層上に水溶性金化合物を含む置換型水溶性メッキ液を接触させて置換型無電解金メッキ層を形成する段階はインライン方式によって同一の装備で連続的に行われることを特徴とする請求項1記載のプリント回路基板のメッキ方法。Contacting a reduced water-soluble plating solution containing a water-soluble gold compound on the replacement gold plating layer to form a reduced electroless gold plating layer, and replacing water-soluble gold compound containing a water-soluble gold compound on the nickel plating layer. 2. The method of claim 1, wherein the step of forming the substitutional electroless gold plating layer by contacting the plating solution is performed continuously with the same equipment by an in-line method. 前記置換型金メッキ層上に水溶性金化合物を含む還元型水溶性メッキ液を接触させて還元型無電解金メッキ層を形成する段階及び前記ニッケルメッキ層上に水溶性金化合物を含む置換型水溶性メッキ液を接触させて置換型無電解金メッキ層を形成する段階は組合わせ方式によって別途の設備または装置で個別的に行われることを特徴とする請求項1記載のプリント回路基板のメッキ方法。Contacting a reduced water-soluble plating solution containing a water-soluble gold compound on the replacement gold plating layer to form a reduced electroless gold plating layer, and replacing water-soluble gold compound containing a water-soluble gold compound on the nickel plating layer. 2. The method according to claim 1, wherein the step of forming the substitutional electroless gold plating layer by contacting the plating solution is performed individually by a separate facility or apparatus by a combination method. 前記ニッケルメッキ層の厚さは3〜5μmであることを特徴とする請求項1記載のプリント回路基板のメッキ方法。2. The method as claimed in claim 1, wherein the thickness of the nickel plating layer is 3-5 [mu] m. 請求項1乃至17のいずれかの方法によってメッキされたことを特徴とするプリント回路基板。A printed circuit board plated by the method according to claim 1.
JP2003102494A 2002-06-14 2003-04-07 Printed circuit board and plating method thereon Pending JP2004019003A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020033227A KR20030095688A (en) 2002-06-14 2002-06-14 Printed circuit board and plating method thereof

Publications (1)

Publication Number Publication Date
JP2004019003A true JP2004019003A (en) 2004-01-22

Family

ID=31185727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102494A Pending JP2004019003A (en) 2002-06-14 2003-04-07 Printed circuit board and plating method thereon

Country Status (2)

Country Link
JP (1) JP2004019003A (en)
KR (1) KR20030095688A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027454A (en) * 2005-07-19 2007-02-01 Seiko Epson Corp Wiring pattern, method of forming the same, wiring board, electro-optical device, and electronic apparatus
WO2008153026A1 (en) * 2007-06-12 2008-12-18 Tokuyama Corporation Metallized substrate and process for producing the same
KR100981445B1 (en) 2008-05-07 2010-09-13 (주)인터플렉스 High ductility Au surface treating method of flexible printed circuit board
KR101009228B1 (en) 2009-08-19 2011-01-19 삼성전기주식회사 A fabricating method of a printed circuit board
CN102703885A (en) * 2012-06-04 2012-10-03 汕头超声印制板公司 Gold plating process for PCB (Printed Circuit Board)
CN103222348A (en) * 2011-10-25 2013-07-24 建业(惠州)电路版有限公司 Process for chemical plating of nickel and gold on circuit board

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619345B1 (en) * 2004-07-16 2006-09-08 삼성전기주식회사 Method for plating on printed circuit board for semi-conductor package and printed circuit board produced therefrom
KR100772432B1 (en) * 2006-08-25 2007-11-01 대덕전자 주식회사 Method of manufacturing printed circuit board
US8455361B2 (en) * 2010-01-07 2013-06-04 Texas Instruments Incorporated Electroless plating of porous and non-porous nickel layers, and gold layer in semiconductor device
KR101184796B1 (en) 2010-12-29 2012-09-20 와이엠티 주식회사 board structure and method for manufacturing the same
KR101219905B1 (en) * 2011-04-08 2013-01-09 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
CN103572264B (en) * 2012-07-25 2016-02-03 建业(惠州)电路版有限公司 Circuit board surface treatment method
KR102117481B1 (en) 2013-12-16 2020-06-01 삼성전기주식회사 Printed circuit board and manufacturing method of the same
KR101877296B1 (en) * 2017-07-12 2018-07-11 주식회사 익스톨 Circuit pattern plating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122248A (en) * 1986-11-12 1988-05-26 Nec Corp Manufacture of semiconductor device
KR100189819B1 (en) * 1996-08-31 1999-06-01 이해규 Palladium plated lead frame for semiconductor device
KR20000009009A (en) * 1998-07-20 2000-02-15 유무성 Lead frame and semiconductor package using thereof
JP3968554B2 (en) * 2000-05-01 2007-08-29 セイコーエプソン株式会社 Bump forming method and semiconductor device manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027454A (en) * 2005-07-19 2007-02-01 Seiko Epson Corp Wiring pattern, method of forming the same, wiring board, electro-optical device, and electronic apparatus
JP4742715B2 (en) * 2005-07-19 2011-08-10 セイコーエプソン株式会社 Wiring pattern forming method and wiring board manufacturing method
WO2008153026A1 (en) * 2007-06-12 2008-12-18 Tokuyama Corporation Metallized substrate and process for producing the same
JP2008311316A (en) * 2007-06-12 2008-12-25 Tokuyama Corp Metalized substrate, and its manufacturing method
US8309164B2 (en) 2007-06-12 2012-11-13 Tokuyama Corporation Metallized substrate and method for producing the same
KR100981445B1 (en) 2008-05-07 2010-09-13 (주)인터플렉스 High ductility Au surface treating method of flexible printed circuit board
KR101009228B1 (en) 2009-08-19 2011-01-19 삼성전기주식회사 A fabricating method of a printed circuit board
CN103222348A (en) * 2011-10-25 2013-07-24 建业(惠州)电路版有限公司 Process for chemical plating of nickel and gold on circuit board
CN102703885A (en) * 2012-06-04 2012-10-03 汕头超声印制板公司 Gold plating process for PCB (Printed Circuit Board)
CN102703885B (en) * 2012-06-04 2014-09-03 汕头超声印制板公司 Gold plating process for PCB (Printed Circuit Board)

Also Published As

Publication number Publication date
KR20030095688A (en) 2003-12-24

Similar Documents

Publication Publication Date Title
JP5573429B2 (en) Electroless nickel-palladium-gold plating method, plated product, printed wiring board, interposer, and semiconductor device
US5380560A (en) Palladium sulfate solution for the selective seeding of the metal interconnections on polyimide dielectrics for electroless metal deposition
US6127052A (en) Substrate and method for producing it
JP2004019003A (en) Printed circuit board and plating method thereon
JP3662010B2 (en) Alloy plating solution for surface treatment of modular printed circuit boards
JP2012521490A (en) Pretreatment method for electroless nickel plating
JP3728572B2 (en) Wiring board manufacturing method
JP2007177268A (en) Noble metal surface activation liquid for electroless nickel plating
WO2015083662A1 (en) Method for forming nickel layer at surface of aluminum material and semiconductor wafer substrate obtained using said formation method
KR100619345B1 (en) Method for plating on printed circuit board for semi-conductor package and printed circuit board produced therefrom
JP4647159B2 (en) Formation method of electroless plating film
JP2000038682A (en) Nickel plating method and semiconductor device
JP2003293143A (en) Cleaning agent for palladium catalyst, method for cleaning palladium catalyst, method for plating electronic parts using the agent, and electronic parts
JP2023538951A (en) Method for depositing electroless nickel on copper without activation with palladium
JP2000256866A (en) Electroless nickel plating bath
JP2572430B2 (en) Method of providing metal locally on the surface of a substrate
JP4096671B2 (en) Electronic component plating method and electronic component
JP4842620B2 (en) Method for manufacturing printed wiring board having high-density copper pattern
JP5201897B2 (en) Electroless copper plating solution and electroless copper plating method
JP2009179845A (en) Electroless plating method
US20080199627A1 (en) Catalytic treatment method, electroless plating method, and method for forming circuit using electroless plating
US20040202958A1 (en) Plating-pretreatment solution and plating-pretreatment method
JP4059133B2 (en) Electroless nickel-gold plating method
JP4975344B2 (en) Plating method
JP2003313672A (en) Method for plating electronic parts, and electronic parts

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919