JP2007246801A - 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 - Google Patents
感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 Download PDFInfo
- Publication number
- JP2007246801A JP2007246801A JP2006074286A JP2006074286A JP2007246801A JP 2007246801 A JP2007246801 A JP 2007246801A JP 2006074286 A JP2006074286 A JP 2006074286A JP 2006074286 A JP2006074286 A JP 2006074286A JP 2007246801 A JP2007246801 A JP 2007246801A
- Authority
- JP
- Japan
- Prior art keywords
- group
- substituted
- unsubstituted
- energy
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CC[N+](*1c(cccc2)c2ccc1N(C)[N+](c1ccccc1)[O-])[N+](c1ccc(*(c2ccccc2)c2ccccc2)cc1)[O-] Chemical compound CC[N+](*1c(cccc2)c2ccc1N(C)[N+](c1ccccc1)[O-])[N+](c1ccc(*(c2ccccc2)c2ccccc2)cc1)[O-] 0.000 description 9
Landscapes
- Polymerisation Methods In General (AREA)
Abstract
【課題】本発明の課題は、300nmから450nmの波長領域の光照射時における感度が極めて高い感エネルギー線酸発生剤の提供にある。
【解決手段】下記一般式(1)で表記される感エネルギー線酸発生剤
一般式(1)
【化1】
(式中、R1〜R4は、置換基を表す。ただし、R1〜R4のうち少なくとも一つは、一般式(2)を表す。
Wは、S、S=O、P、N、Iを表す。
a、b、cおよびdは、各々0〜3の整数である。
X-は任意のアニオンを表す。)
一般式(2)
【化2】
(式中、R5およびR6は、水素原子、または置換基を表す。
Ar1およびAr2は、置換基を表す。
Mは、2価の置換基を表す。
Lは、>C=O、もしくは直接結合を表す。)
【解決手段】下記一般式(1)で表記される感エネルギー線酸発生剤
一般式(1)
【化1】
(式中、R1〜R4は、置換基を表す。ただし、R1〜R4のうち少なくとも一つは、一般式(2)を表す。
Wは、S、S=O、P、N、Iを表す。
a、b、cおよびdは、各々0〜3の整数である。
X-は任意のアニオンを表す。)
一般式(2)
【化2】
(式中、R5およびR6は、水素原子、または置換基を表す。
Ar1およびAr2は、置換基を表す。
Mは、2価の置換基を表す。
Lは、>C=O、もしくは直接結合を表す。)
Description
本発明は、感エネルギー線酸発生剤と該酸発生剤からの酸の発生方法、さらにはそれらを利用した感エネルギー線硬化性組成物および硬化物の製造方法に関する。さらに詳しくは、エネルギー線、特に光の照射により酸を発生し、発生した酸を触媒とした重合反応あるいは架橋反応により硬化性化合物を短時間に確実に重合させて良好な物性を有する硬化物を得ることが可能な材料と方法に関し、さらには、成形樹脂、注型樹脂、光造形用樹脂、封止剤、歯科用重合材料、印刷インキ、塗料、印刷版用感光性樹脂、印刷用カラープルーフ、カラーフィルター用レジスト、ブラックマトリクス用レジスト、プリント基板用レジスト、半導体製造用レジスト、マイクロエレクトロニクス用レジスト、マイクロマシン用部品製造用レジスト、絶縁材、ホログラム材料、導波路用材料、オーバーコート剤、接着剤、粘着剤、粘接着剤、剥離コート剤等の分野で良好な物性を有する硬化物を得るための感エネルギー線酸発生剤、感エネルギー線硬化性組成物および該硬化性組成物を使用した硬化物の製造方法に関する。さらに、本発明はエネルギー線、特に光の照射により酸を発生し、発生した酸を触媒とする他の用途にも関し、具体的には、発生した酸を触媒とする色素前駆体の発色反応を利用した画像形成製、偽造防止、エネルギー線量検出のための材料と方法に関し、さらには、発生した酸を触媒とする分解反応を利用した半導体製造用、TFT製造用、カラーフィルター製造用、マイクロマシン部品製造用等のポジ型レジスト材料に関する。
感エネルギー線酸発生剤は、光、主として、紫外線、可視光線等の照射を受けて酸を発生する。感エネルギー線酸発生剤は、その種類により酸を発生する光の波長や必要照射量が異なるが、紫外線、特に250nmから300nm未満の波長の紫外線を吸収して酸を発生するものが多い。
なかでも、オニウム塩類はその反応性の高さ故に、光に代表されるエネルギー線の照射により容易に分解して様々な活性種を生成することが知られており、これらの活性種により開始される重合や分解反応を利用した硬化材料やレジスト材料など様々な用途も提案されている(非特許文献1参照)。
感エネルギー線酸発生剤としてオニウム塩類を使用する場合、カウンターアニオン部位はエネルギー線の照射により酸発生剤から発生する酸の強さ、求核性、拡散性などを決定する要因となる。具体的なアニオンの例としては、求核性が低い強酸を発生する材料としてBF4 -、PF6 -、SbF6 -、AsF6 -等が挙げられる(特許文献1、特許文献2、非特許文献2、非特許文献3)。また、酸発生剤自身の溶解度や安全衛生性および、エネルギー線の照射により酸発生剤から発生する酸の強さを改善したアニオンとして、テトラキス(ペンタフルオロフェニル)ボレートに代表される電子吸引基で置換されたアリールボレート系材料を使用した例が知られている(特許文献3、非特許文献4)。さらに、レジスト材料の分野ではエネルギー線の照射により酸発生剤から発生する酸のレジスト樹脂に対する反応性や拡散性を制御して感度、解像度、レジストパターン形状を改善する目的で、各種スルホン酸系アニオンやスルホニルイミド系のアニオンの利用も提案されている(特許文献4,特許文献5、特許文献6、特許文献7など)。
一方、カチオン部位はエネルギー線の照射によって酸発生剤から発生する酸の量、すなわち感エネルギー線酸発生剤の感度を決定する要因となっている場合が多い。具体的には感エネルギー線酸発生剤中のカチオン部位のエネルギー線に対する吸収特性や酸化還元電位、化学結合の強さや向きなどの総合的な要因として酸発生の効率が決定されると考えられる。
ところで、感エネルギー線酸発生剤に照射して酸を発生するために使用されるエネルギー線はX線、紫外線、可視光線、赤外線、電子線など多岐にわたっている。これらの中でも、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプなどは最も一般的な光源に属し、これらの光源を利用する場合300nmから450nmの波長領域に主波長を有する光が照射されることとなる(非特許文献1)。これらの光源に対応すべく、上記波長領域のエネルギー線照射に対して酸発生剤の感度を向上させるための検討も行われている。
これまでの感エネルギー線酸発生剤は、紫外線、特に250nmから300nm未満の波長の紫外線を吸収して酸を発生するものが多いために、通常、300nmから450nmの波長領域の光照射では良好な感度が期待できなかった。この点を改良するため、カチオン部位に300nmから450nmの波長領域に吸収を有する芳香環、すなわちナフタレン環やアントラセン環などのクロモフォアを導入して、光の吸収特性を改善することが提案されている(特許文献3、非特許文献5)。また、上記波長に好適な吸収を有し、オニウム塩の増感剤として機能しうる材料を併用する方法も提案されており、そのような増感剤としてはアントラセン類やフェノチアジン類などが知られている(特許文献3、非特許文献6、非特許文献7、非特許文献8)。
米国特許4069055号明細書
米国特許4250311号明細書
特開平09−176112号公報
特開2003−35948号公報
特開2003−140331号公報
特開平10−226658号公報
特開2001−109155号公報
ラドテック研究会編「UV・EB硬化技術の現状と展望」シーエムシー出版 (2002年)
Macromolecules誌 第33巻 825−832頁(2000年)
Macromolecules誌 第33巻 833−842頁(2000年)
Macromolecules誌 第32巻 3209−3215頁(1999年 )
Journal of Polymer Science :Part A :Polymer Chemistry誌 第 38巻 1433−1442頁(2000年)
Journal of Photoscience 第5巻 111−120頁(1999 年)
Journal of Polymer Science :Part A :Polymer Chemistry誌 第 39巻 1187−1197頁(2001年)
Journal of Polymer Science :Part A :Polymer Chemistry誌 第 38巻 982−987頁(2000年)
上述した検討を通じて、オニウム塩類の感エネルギー線酸発生剤としての特性は向上しているものの、300nmから450nmの波長領域の光照射に対する酸発生感度の面では、酸発生剤単独で十分な特性を有する材料が見出されていない状況である。
先に述べたように、エネルギー線の照射による酸発生量すなわち酸発生感度は、カチオン部位に依存するため、この波長領域に特に有効なカチオン部位が見出されていないと言い換えることができる。例えば、カチオン部位にナフタレン環やアントラセン環などを導入することも提案されているが、吸収特性の改良が必ずしも感度の向上に結びつくとは限らず、具体的な分子設計に対する指針は著しく乏しい。実際、アントラセン環やナフタレン環を有するオニウム塩は、上記波長領域に対する感度は改善されているものの、光を吸収しても蛍光発光して失活するなどの理由から大幅な感度向上ではなく、生産性の向上のために更なるエネルギー線に対する感度の向上が求められる現状の中にあっては、十分なものとは言い難い。また、オニウム塩のカウンターアニオンとして様々なアニオンを使用した酸発生剤も提案されているが、これらは発生した後の酸の性質に影響を与えるものであって、本質的に300nmから450nmの波長領域の光照射に対する酸発生反応の効率を向上させるものではない。
また、オニウム塩類と増感剤の併用により300nmから450nmの波長領域に感度を発現させる方法も提案されているが、適切な増感剤を選択した上で適切な配合比率を決定するといった煩雑な手順が必要である。また、これらの波長領域に好適な吸収を有する増感剤は着色している場合が多く、用途によっては添加量が制限されため十分な感度を発現することができない場合も多い。実際に、アントラセン類やフェノチアジン類で増感することによりオニウム塩類の300nmから450nmの波長領域の光照射時における感度向上が認められるが、生産性の向上のために更なる感エネルギー線に対する感度の向上が求められる現状にあっては十分なものではなく、引き続き更なる高感度な感エネルギー線酸発生剤の開発が望まれている。
本発明者らは、以上の問題点を考慮し解決すべく鋭意研究を重ねた結果、増感剤を用いなくともエネルギー線、特に300nmから450nmの波長領域の光照射に対する酸発生の効率、すなわち、感度が、従来公知のオニウム塩類に比較して革新的に向上した材料を見出すに至った。すなわち本発明は、下記一般式(1)で表記される感エネルギー線酸発生剤に関する。
(式中、R1、R2、R3およびR4は、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基、または置換もしくは未置換のアルケニル基を表す。
ただし、R1、R2、R3およびR4のうち少なくとも一つは、一般式(2)を表す。
Wは、S、S=O、P、N、Iを表す。
a、b、cおよびdは、各々0〜3の整数であって、(a+b+c+d)はWの価数に等しい。
ただし、R1、R2、R3およびR4は、一体となって、環を形成してもよい。
X-は任意のアニオンを表す。)
ただし、R1、R2、R3およびR4のうち少なくとも一つは、一般式(2)を表す。
Wは、S、S=O、P、N、Iを表す。
a、b、cおよびdは、各々0〜3の整数であって、(a+b+c+d)はWの価数に等しい。
ただし、R1、R2、R3およびR4は、一体となって、環を形成してもよい。
X-は任意のアニオンを表す。)
(式中、R5およびR6は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、または置換もしくは未置換のアルケニル基を表す。
Ar1およびAr2は、それぞれ独立に、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基を表す。
Mは、置換もしくは未置換の2価の芳香族炭化水素基、または置換もしくは未置換の2価の複素環基を表す。
Lは、>C=O、もしくは直接結合を表す。
ただし、R5およびR6は、一体となって、環を形成してもよい。)
さらに、本発明は、下記一般式(3)で表記される上記感エネルギー線酸発生剤に関する。
Ar1およびAr2は、それぞれ独立に、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基を表す。
Mは、置換もしくは未置換の2価の芳香族炭化水素基、または置換もしくは未置換の2価の複素環基を表す。
Lは、>C=O、もしくは直接結合を表す。
ただし、R5およびR6は、一体となって、環を形成してもよい。)
さらに、本発明は、下記一般式(3)で表記される上記感エネルギー線酸発生剤に関する。
(式中、Ar1、Ar2、M、L、R5およびR6、X-は、一般式(2)で示したものと同義である。
R7およびR8は、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基、または置換もしくは未置換のアルケニル基を表す。
ただし、R7およびR8は、一体となって、環を形成してもよい。)
R7およびR8は、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基、または置換もしくは未置換のアルケニル基を表す。
ただし、R7およびR8は、一体となって、環を形成してもよい。)
さらに、本発明は、アニオンX-が、下記一般式(4)で表記されるボレートである上記記載の感エネルギー線酸発生剤に関する。
(ただし、Yはフッ素または塩素原子、
Zは、フッ素原子、シアノ基、ニトロ基、およびトリフルオロメチル基の中から選ばれる基で2つ以上置換されたフェニル基、
mは0から3の整数、nは1から4の整数を表し、m+n=4である。)
Zは、フッ素原子、シアノ基、ニトロ基、およびトリフルオロメチル基の中から選ばれる基で2つ以上置換されたフェニル基、
mは0から3の整数、nは1から4の整数を表し、m+n=4である。)
さらに、本発明は、上記記載の感エネルギー線酸発生剤に300nmから450nmの波長領域の光を照射して酸を発生させる、酸の発生方法に関する。
さらに、本発明は、上記記載の感エネルギー線酸発生剤(A)と、酸硬化性化合物(B)とを含む感エネルギー線硬化性組成物に関する。
さらに、本発明は、上記記載の感エネルギー線硬化性組成物に300nmから450nmの波長領域の光を含むエネルギー線を照射して硬化させる、硬化物の製造方法に関する。
本発明の感エネルギー線酸発生剤は、カチオン部位に特定の置換基を導入することで、エネルギー線、特に300nmから450nmの波長領域に良好な吸収特性を有するようになるとともに、該波長領域の光照射に対して、増感剤を併用しなくとも非常に高感度な光酸発生剤として機能することが可能となっている。そのため、本発明の感エネルギー線酸発生剤を使用すれば、従来公知のオニウム塩系の感エネルギー線酸発生剤から発生する酸を触媒とする重合反応、架橋反応、分解反応、発色反応などをより短時間に確実に実現することが可能となり、結果としてこれらの反応を応用した各種用途の大幅な高感度化や特性の向上を実現することが可能となる。
以下、詳細にわたって本発明の実施形態を説明する。
まず、本発明の感エネルギー線酸発生剤について説明する。本発明の感エネルギー線酸発生剤の特徴はカチオン部位に特定の構造を有することにより、エネルギー線、特に300nmから450nmの波長領域の光照射に対する大幅な高感度化を実現している。そのため、本発明の感エネルギー線酸発生剤は、アニオン種が同一であれば、従来公知のオニウム塩系の感エネルギー線酸発生剤に比較して大幅な高感度化と特性向上を実現することが可能であり、原理的にアニオン種は任意のものを使用することが可能である。
現時点では、この光照射による酸発生の反応機構の詳細は明らかではないが、カチオン部位がエネルギー線を吸収することにより、分子内での水素引き抜き反応を経てカチオン部位からプロトンを発生し、アニオンX-をカウンターアニオンとする酸、すなわちH+X-を発生していると考えられる。その際、特定のカチオン構造を有することにより、好適なエネルギー線吸収特性が付与されると同時に、励起状態における置換基効果により分解が効率的に進行していると考えられる。
本発明の感エネルギー線酸発生剤から酸を発生するために使用するエネルギー線源は特に限定されないが、特に好適な感度を発現する300nmから450nmの波長領域の光を照射できる光源が好ましく、上記波長領域の光と同時に他のエネルギー線を発していても良い。特に好ましい光源としては、300nmから450nmの波長領域に発光の主波長を有する光源であり、具体例としては、超高圧水銀ランプ、高圧水銀ランプ、水銀キセノンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、パルス発光キセノンランプ等が挙げられるがこれらに限定されるものではない。また、Nd−YAG3倍波レーザー、He−Cdレーザー、窒素レーザー、Xe−Clエキシマレーザー、Xe−Fエキシマレーザー、半導体励起固体レーザー等の300nmから450nmの波長領域に発光波長を有するレーザーも好適なエネルギー線源として使用することができる。また、電子線も好適なエネルギー線源として使用することが可能である。本発明の感エネルギー線酸発生剤(A)はいずれも300nmから450nmの波長領域に好適な吸収を有しており置換基によって吸収特性がやや異なるが、上記した光源を適宜選択することにより、非常に高感度な感エネルギー線酸発生剤として機能することが可能である。また、これらの光源は適宜、フィルター、ミラー、レンズ等の光学機器を介して照射することも可能である。
次に、本発明の感エネルギー線酸発生剤の構造について詳細に説明する。
本発明の感エネルギー線酸発生剤はその特性を阻害しない範囲において、一般式(1)に示したように、各種の置換基を導入することが可能である。置換基の導入により、本発明の感エネルギー線酸発生剤は吸収極大波長や透過率などのエネルギー線の吸収特性、併用する樹脂や溶剤に対する溶解度を適当に調整して用いることができる。
本発明の感エネルギー線酸発生剤は、一般式(1)に示したようなオニウム塩であり、具体的には、スルホニウム塩、スルホキソニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩、ピリジニウム塩、キノリニウム塩、イソキノリニウム塩、ベンゾオキサゾリウム塩、ベンゾチアゾリウム塩等を挙げることができる。
この内、本発明の感エネルギー線酸発生剤として好ましいオニウムカチオンの構造としては、一般式(5)〜一般式(13)から選ばれるオニウムカチオンをあげることができる。
(ただし、一般式(5)〜一般式(13)において、R1〜R4は、一般式(1)で説明したR1〜R4と同義であり、R1、R2、R3およびR4のうち少なくとも一つは、一般式(2)を表す。
R9は、置換もしくは未置換のアルキル基、置換もしくは未置換のアルキルチオ基を表す。
Rは、ハロゲン原子、水酸基、カルボキシル基、メルカプト基、シアノ基、ニトロ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアリールアルキル基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換の複素環チオ基、置換もしくは未置換のカルバモイル基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基のいずれかを表す。
Xは、酸素もしくは硫黄原子を表す。
iは0〜5の整数を表す。jは0〜4の整数を表す。kは0〜3の整数を表す。
また、隣接したR同士、R1とR2、R1とR3、R1とR4、R2とR3、R2とR4、R3とR4、R1とR、もしくはR1とR9は、相互に結合した環状構造であってもよい。)
この内、より好ましいオニウムカチオンの構造としては、一般式(5)、一般式(6)、一般式(8)、一般式(9)および一般式(13)から選ばれるオニウムカチオンであり、特に好ましいオニウムカチオンの構造としては、一般式(5)、一般式(6)、一般式(8)および一般式(13)から選ばれるオニウムカチオンであり、最も好ましいオニウムカチオンの構造は、一般式(5)のオニウムカチオンである。
また、隣接したR同士、R1とR2、R1とR3、R1とR4、R2とR3、R2とR4、R3とR4、R1とR、もしくはR1とR9は、相互に結合した環状構造であってもよい。)
この内、より好ましいオニウムカチオンの構造としては、一般式(5)、一般式(6)、一般式(8)、一般式(9)および一般式(13)から選ばれるオニウムカチオンであり、特に好ましいオニウムカチオンの構造としては、一般式(5)、一般式(6)、一般式(8)および一般式(13)から選ばれるオニウムカチオンであり、最も好ましいオニウムカチオンの構造は、一般式(5)のオニウムカチオンである。
この理由として、上に説明したオニウムカチオンは、概して、その還元電位が高いこと、即ち電子受容性が高いことが挙げられる。そのため、エネルギー線、ことに光の照射によって、分解し、容易に酸を発生する。
さらに、一般式(5)のオニウムカチオンは、合成の容易さも好ましい理由の一つとして挙げられる。
以下に、本発明の感エネルギー線酸発生剤を構成するオニウムカチオン中の置換基について説明する。
置換基R1〜R9およびRにおける置換もしくは未置換のアルキル基としては、炭素原子数1 〜18の置換もしくは未置換の直鎖状、分岐鎖状、環状アルキル基が挙げられ、具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、sec−ブチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、4−デシルシクロヘキシル基、フルオロメチル基、クロロメチル基、ブロモメチル基、トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、ヒドロキシメチル基、カルボキシメチル基、メルカプトメチル基、シアノメチル基、ニトロメチル基、アジドメチル基等を挙げることができるが、これらに限定されるものではない。
置換基R1〜R8、R、Ar1およびAr2における置換もしくは未置換のアリール基としては、炭素原子数6 〜18の単環、縮合多環アリール基が挙げられ、具体例としては、フェニル基、ビフェニル基、ターフェニル基、1−ナフチル基、2−ナフチル基、9−アンスリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、1−アセナフチル基、9−フルオレニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,5−キシリル基、メシチル基、p−クメニル基、p−ドデシルフェニル基、p−シクロヘキシルフェニル基、4−ビフェニル基、o−フルオロフェニル基、m−クロロフェニル基、p−ブロモフェニル基、p−ヒドロキシフェニル基、m−カルボキシフェニル基、o−メルカプトフェニル基、p−シアノフェニル基、m−ニトロフェニル基、m−アジドフェニル基等を挙げることができるがこれらに限定されるものではなく、また、一般式(5)〜一般式(6)の硫黄原子、一般式(7)のリン原子、一般式(8)の窒素原子、一般式(9)〜一般式(12)の炭素原子、一般式(13)のヨウ素原子と共有結合を形成することのできる置換位置であればどの置換位置で結合していても良く、それらも本発明のR1〜R8、R、Ar1およびAr2で表記される置換基の範疇に含まれる。
置換基R1〜R8、R、Ar1およびAr2における置換もしくは未置換の複素環基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜24の芳香族あるいは脂肪族の複素環基が挙げられ、具体例としては、2−チエニル基、2−ベンゾチエニル基、ナフト[2,3−b]チエニル基、3−チアントレニル基、2−チアンスレニル基、2−フリル基、2−ベンゾフリル基、ピラニル基、イソベンゾフラニル基、クロメニル基、キサンテニル基、フェノキサチイニル基、2H−ピロリル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリジニル基、イソインドリル基、3H−インドリル基、2−インドリル基、3−インドリル基、1H−インダゾリル基、プリニル基、4H−キノリジニル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサニリル基、キナゾリニル基、シンノリニル基、プテリジニル基、4aH−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、β−カルボリニル基、フェナントリジニル基、2−アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基、フェナルサジニル基、イソチアゾリル基、フェノチアジニル基、イソキサゾリル基、フラザニル基、3−フェニキサジニル基、イソクロマニル基、クロマニル基、ピロリジニル基、ピロリニル基、イミダゾリジニル基、イミダゾリニル基、ピラゾリジニル基、ピラゾリニル基、ピペリジル基、ピペラジニル基、インドリニル基、イソインドリニル基、キヌクリジニル基、モルホリニル基、チオキサントリル基、4−キノリニル基、4−イソキノリル基、3−フェノチアジニル基、2−フェノキサチイニル基、3−クマリニル基等を挙げることができるが、これらに限定されるものではなく、また、一般式(5)〜一般式(6)の硫黄原子、一般式(7)のリン原子、一般式(8)の窒素原子、一般式(9)〜一般式(12)の炭素原子、一般式(13)のヨウ素原子と共有結合を形成することのできる置換位置であればどの置換位置で結合していても良く、それらも本発明のR1〜R8、R、Ar1およびAr2で表記される置換基の範疇に含まれる。
置換基R1〜R8およびRにおけるアルケニル基としては、炭素原子数2から18の直鎖状、分岐鎖状、単環状または縮合多環状アルケニル基が挙げられ、それらは構造中に複数の炭素−炭素二重結合を有していてもよく、具体例としては、ビニル基、1−プロペニル基、アリル基、2−ブテニル基、3−ブテニル基、イソプロペニル基、イソブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、1,3−ブタジエニル基、シクロヘキサジエニル基、シクロペンタジエニル基、2−プロペニル基、1−オクテニル基、1−オクタデセニル基、トリフルオロエテニル基、1−クロロエテニル基、2,2−ジブロモエテニル基、4−ヒドロキシ−1−ブテニル基、1−カルボキシエテニル基、5−メルカプト−1−ヘキセニル基、1−シアノエテニル基、3−ニトロ−1−プロペニル基、4−アジド−2−ブテニル基等を挙げることができるが、これらに限定されるものではない。
置換基R1〜R8およびRにおける置換もしくは未置換のアルコキシル基としては、炭素原子数1〜18の直鎖状、分岐鎖状、環状アルコキシル基が挙げられ、具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、オクチルオキシ基、オクタデカンオキシ基、イソプロポキシ基、t−ブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、フルオロメトキシ基、クロロメトキシ基、ブロモメトキシ基、トリフルオロメトキシ基、トリクロロメトキシ基、トリブロモメトキシ基、ヒドロキシメトキシ基、カルボキシメトキシ基、メルカプトメトキシ基、シアノメトキシ基、ニトロメトキシ基、アジドメトキシ基等を挙げることができるが、これらに限定されるものではない。
置換基R1〜R8およびRにおける置換もしくは未置換のアリールオキシ基としては、炭素原子数4〜18の単環または縮合多環アリールオキシ基が挙げられ、具体例としては、フェノキシ基、1ーナフチルオキシ基、2−ナフチルオキシ基、9−アンスリルオキシ基、9−フェナントリルオキシ基、1−ピレニルオキシ基、5−ナフタセニルオキシ基、1−インデニルオキシ基、2−アズレニルオキシ基、1−アセナフチルオキシ基、9−フルオレニルオキシ基、o−トリルオキシ基、m−トリルオキシ基、p−トリルオキシ基、2,3−キシリルオキシ基、2,5−キシリルオキシ基、メシチルオキシ基、p−クメニルオキシ基、p−デシルフェノキシ基、p−シクロヘキシルフェノキシ基、4−ビフェノキシ基、o−フルオロフェノキシ基、m−クロロフェノキシ基、p−ブロモフェノキシ基、p−ヒドロキシフェノキシ基、m−カルボキシフェノキシ基、o−メルカプトフェノキシ基、p−シアノフェノキシ基、m−ニトロフェノキシ基、m−アジドフェノキシ基等を挙げることができるが、これらに限定されるものではなく、アリール基と酸素原子が上記以外の位置で結合していても良く、それらも本発明のR1〜R8およびRで表記される置換基の範疇に含まれる。
置換基R1〜R8およびRにおける置換もしくは未置換の複素環オキシ基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環または縮合多環状の複素環オキシ基が挙げられ、具体例としては、2−フラニルオキシ基、2−チエニルオキシ基、2−インドリルオキシ基、3−インドリルオキシ基、2−ベンゾフリルオキシ基、2−ベンゾチエニルオキシ基、2−カルバゾリルオキシ基、3−カルバゾリルオキシ基、4−カルバゾリルオキシ基、9−アクリジニルオキシ基等を挙げることができるが、これらに限定されるものではなく、複素環基と酸素原子が上記以外の位置で結合していても良く、それらも本発明のR1〜R8およびRで表記される置換基の範疇に含まれる。
置換基R9およびRにおける置換もしくは未置換のアルキルチオ基としては、炭素原子数1 〜18の直鎖状、分岐鎖状、環状アルキルチオ基が挙げられ、具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、デシルチオ基、ドデシルチオ基、オクタデシルチオ基、イソプロピルチオ基、イソブチルチオ基、sec−ブチルチオ基、t−ブチルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基、4−デシルシクロヘキシルチオ基、フルオロメチルチオ基、クロロメチルチオ基、ブロモメチルチオ基、トリフルオロメチルチオ基、トリクロロメチルチオ基、トリブロモメチルチオ基、ヒドロキシメチルチオ基、カルボキシメチルチオ基、メルカプトメチルチオ基、シアノメチルチオ基、ニトロメチルチオ基、アジドメチルチオ基等を挙げることができるが、これらに限定されるものではない。
置換基Rにおける置換もしくは未置換のアリールチオ基としては、炭素原子数4〜18の単環または縮合多環アリールチオ基が挙げられ、具体例としては、フェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、9−アンスリルチオ基、9−フェナントリルチオ基等を挙げることができるが、これらに限定されるものではなく、アリール基と硫黄原子は上記以外の位置で結合していても良く、それらも本発明のRで表記される置換基の範疇に含まれる。
置換基Rにおける置換もしくは未置換の複素環チオ基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環または縮合多環複素環チオ基が挙げられ、具体例としては、2−フリルチオ基、2−チエニルチオ基、2−ピロリルチオ基、6−インドリルチオ基、2−ベンゾフリルチオ基、2−ベンゾチエニルチオ基、2−カルバゾリルチオ基、3−カルバゾリルチオ基、4−カルバゾリルチオ基等を挙げることができるが、これらに限定されるものではなく、複素環基と硫黄原子は上記以外の位置で結合していても良く、それらも本発明のRで表記される置換基の範疇に含まれる。
置換基Rにおける置換もしくは未置換のアリールアルキル基としては、炭素原子数7 〜18の単環、縮合多環アリールアルキル基が挙げられ、具体例としては、ベンジル基、p−トリルメチル基、2−ナフチルメチル基、9−アンスリルメチル基、4−(9−アンスリル)ブチル基、o−フルオロベンジル基、m−クロロベンジル基、p−ブロモベンジル基、p−ヒドロキシベンジル基、m−カルボキシベンジル基、o−メルカプトベンジル基、p−シアノベンジル基、m−ニトロベンジル基、m−アジドベンジル基等を挙げることができるが、これらに限定されるものではない。
置換基R1〜R4、R7、R8およびRにおける置換もしくは未置換のアシル基としては、水素原子または炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族基が結合したカルボニル基、炭素原子数6〜18の単環状あるいは縮合多環状アリール基が結合したカルボニル基、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環または縮合多環状の複素環基が結合したカルボニル基が挙げられ、具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基、アクリロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、シンナモイル基ベンゾイル基、1−ナフトイル基、2−ナフトイル基、9−アンスリルカルボニル基、3−フロイル基、2−テノイル基、ニコチノイル基、イソニコチノイル基等を挙げることができるが、これらに限定されるものではなく、アリール基とカルボニル基、複素環基とカルボニル基は、それぞれ上記以外の位置で結合していても良く、それらも本発明のR1〜R4、R7、R8およびRで表記される置換基の範疇に含まれる。
置換基R1〜R4、R7、R8およびRにおける置換もしくは未置換のカルボニルオキシ基としては、水素原子または炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族基が結合したカルボニルオキシ基、あるいは、炭素原子数6〜18の単環状あるいは縮合アリール基が結合したカルボニルオキシ基、あるいは、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環または縮合多環状の複素環基が結合したカルボニルオキシ基が挙げられ、具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ラウロイルオキシ基、ミリストイルオキシ基、パルミトイルオキシ基、ステアロイルオキシ基、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、クロトノイルオキシ基、イソクロトノイルオキシ基、オレオイルオキシ基、ベンゾイルオキシ基、1−ナフトイルオキシ基、2−ナフトイルオキシ基、シンナモイルオキシ基、3−フロイルオキシ基、2−テノイルオキシ基、ニコチノイルオキシ基、イソニコチノイルオキシ基、9−アンスロイルオキシ基、5−ナフタセノイルオキシ基等を挙げることができるが、これらに限定されるものではなく、アリール基とカルボニルオキシ基、複素環基とカルボニルオキシ基は、それぞれ上記以外の位置で結合していても良く、それらも本発明のR1〜R4、R7、R8およびRで表記される置換基の範疇に含まれる。
置換基R1〜R4、R7、R8およびRにおける置換もしくは未置換のオキシカルボニル基としては、炭素原子数1〜12の炭酸エステル基または、炭素原子数7 〜19の単環、縮合多環アリールオキシカルボニル基が挙げられ、具体例としては、tert−ブトキシカルボニルオキシ基、tert−ペンチルオキシカルボニルオキシ基、1,1−ジエチルプロピルオキシカルボニルオキシ基、1−エチル−2−シクロペンテニルオキシカルボニルオキシ基、2−テトラヒドロピラニルオキシカルボニルオキシ基、1−エチルシクロペンチルオキシカルボニルオキシ基、フェノキシカルボニル基、1ーナフチルオキシカルボニル基、2−ナフチルオキシカルボニル基、9−アンスリルオキシカルボニル基、9−フェナントリルオキシカルボニル基、1−ピレニルオキシカルボニル基、5−ナフタセニルオキシカルボニル基、1−インデニルオキシカルボニル基、2−アズレニルオキシカルボニル基、1−アセナフチルオキシカルボニル基、9−フルオレニルオキシカルボニル基、o−トリルオキシカルボニル基、m−トリルオキシカルボニル基、p−トリルオキシカルボニル基、2,3−キシリルオキシカルボニル基、2,5−キシリルオキシカルボニル基、メシチルオキシカルボニル基、p−クメニルオキシカルボニル基、p−シクロヘキシルフェノキシカルボニル基、4−フェニルフェノキシカルボニル基、o−フルオロフェノキシカルボニル基、m−クロロフェノキシカルボニル基、p−ブロモフェノキシカルボニル基、p−ヒドロキシフェノキシカルボニル基、m−カルボキシフェノキシカルボニル基、o−メルカプトフェノキシカルボニル基、p−シアノフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、m−アジドフェノキシカルボニル基等を挙げることができるが、これらに限定されるものではない。
置換基Rにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
置換基Rにおける置換もしくは未置換のカルバモイル基としては、炭素原子数1〜30のカルバモイル基が挙げられ、具体例としては、N−メチルカルバモイル基、N−エチルカルバモイル基、N−プロピルカルバモイル基、N−ブチルカルバモイル基、N−ヘキシルカルバモイル基、N−シクロヘキシルカルバモイル基、N−オクチルカルバモイル基、N−デシルカルバモイル基、N−オクタデシルカルバモイル基、N−フェニルカルバモイル基、N−2−メチルフェニルカルバモイル基、N−2−クロロフェニルカルバモイル基、N−2−イソプロポキシフェニルカルバモイル基、N−2−(2−エチルヘキシル)フェニルカルバモイル基、N−3−クロロフェニルカルバモイル基、N−3−ニトロフェニルカルバモイル基、N−3−シアノフェニルカルバモイル基、N−4−メトキシフェニルカルバモイル基、N−4−シアノフェニルカルバモイル基、N−4−メチルスルファニルフェニルカルバモイル基、N−4−フェニルスルファニルフェニルカルバモイル基、N−メチル−N−フェニルカルバモイル基、N、N−ジメチルカルバモイル基、N、N−ジブチルカルバモイル基、N、N−ジフェニルカルバモイル基等を挙げることができるが、これらに限定されるものではない。
置換基Mにおける置換もしくは未置換の2価の芳香族炭化水素基としては、炭素原子数6 〜24の単環、縮合多環炭化水素環を含むアリーレン基が挙げられる。単環、縮合多環炭化水素環の具体例としては、
ベンゼン環、ビフェニレン環、ターフェニレン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、ナフタセン環、インデン環、アズレン環、アセナフテン環、フルオレン環、ペリレン環等を挙げることができるがこれらに限定されるものではない。
ベンゼン環、ビフェニレン環、ターフェニレン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、ナフタセン環、インデン環、アズレン環、アセナフテン環、フルオレン環、ペリレン環等を挙げることができるがこれらに限定されるものではない。
置換基Mにおける置換もしくは未置換の2価の複素環基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜24の芳香族あるいは脂肪族の複素環基が挙げられ、芳香族あるいは脂肪族の複素環の具体例としては、
チオフェン環、ベンゾチオフェン環、ナフト[2,3−b]チオフェン環、チアントレン環、フラン環、ベンゾフラン環、ピロール環、2H−ピロール環、イソベンゾフラン環、クロマン環、クロメン環、キサンテン環、フェノキサチイン環、イミダゾリジン環、ピラゾリジン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、イソインドール環、3H−インドール環、インドール環、インドリン環、イソインドリン環、1H−インダゾリン環、プリン環、4H−キノリジン環、イソキノリン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、4aH−カルバゾール環、カルバゾール環、β−カルボリン環、フェナントリジン環、アクリジン環、ペリミジン環、フェナントロリン環、フェナジン環、フェナルサジン環、イソチアゾリン環、フェノチアジン環、イソキサゾリン環、フラザン環、フェニキサジン環、イソクロマン環、ピロリジン環、イミダゾリジン環、イミダゾール環、ピラゾリジン環、ピラゾール環、ピペリジン環、ピペラジン環、キヌクリジン環、モルホリン環、チオキサントン環、クマリン環等を挙げることができるがこれらに限定されるものではない。
チオフェン環、ベンゾチオフェン環、ナフト[2,3−b]チオフェン環、チアントレン環、フラン環、ベンゾフラン環、ピロール環、2H−ピロール環、イソベンゾフラン環、クロマン環、クロメン環、キサンテン環、フェノキサチイン環、イミダゾリジン環、ピラゾリジン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、イソインドール環、3H−インドール環、インドール環、インドリン環、イソインドリン環、1H−インダゾリン環、プリン環、4H−キノリジン環、イソキノリン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、4aH−カルバゾール環、カルバゾール環、β−カルボリン環、フェナントリジン環、アクリジン環、ペリミジン環、フェナントロリン環、フェナジン環、フェナルサジン環、イソチアゾリン環、フェノチアジン環、イソキサゾリン環、フラザン環、フェニキサジン環、イソクロマン環、ピロリジン環、イミダゾリジン環、イミダゾール環、ピラゾリジン環、ピラゾール環、ピペリジン環、ピペラジン環、キヌクリジン環、モルホリン環、チオキサントン環、クマリン環等を挙げることができるがこれらに限定されるものではない。
さらに、R1〜R8、R、Ar1、Ar2、およびMにおいては、それぞれの置換基同士が隣接する場合に、相互に結合して環状構造を形成しても良い。
上述した置換基R1〜R9、R、Ar1、Ar2、およびMは、さらに他の置換基で置換されていても良く、そのような他の置換基としては、ヒドロキシル基、メルカプト基、シアノ基、ニトロ基、ハロゲン原子、アルキル基、アリール基、複素環基、アシル基、アルコキシル基、アリールオキシ基、複素環オキシ基、アシルオキシ基、アルキルチオ基、アリールチオ基、複素環チオ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アルキルアリールアミノ基、ベンジルアミノ基、ジベンジルアミノ基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
アルキル基としては炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基が挙げられ、具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec−ブチル基、tert−ブチル基、sec−ペンチル基、tert−ペンチル基、tert−オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、ボロニル基、4−デシルシクロヘキシル基等が挙げられる。
アリール基としては、炭素原子数6〜18の単環または縮合多環アリール基が挙げられ、具体例としては、フェニル基、1ーナフチル基、2−ナフチル基、9−アンスリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、1−アセナフチル基、9−フルオレニル基等が挙げられる。
複素環基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環または縮合多環複素環基が挙げられ、具体例としては、2−フラニル基、2−チエニル基、2−インドリル基、3−インドリル基、2−ベンゾフリル基、2−ベンゾチエニル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−アクリジニル基等が挙げられる。
アシル基としては、水素原子または炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族が結合したカルボニル基、あるいは、炭素原子数6〜18の単環状あるいは縮合多環状アリール基が結合したカルボニル基、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状あるいは縮合多環状複素環基が結合したカルボニル基が挙げられ、それらは構造中に不飽和結合を有していてもよく、具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基、アクリロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、ベンゾイル基、2−メチルベンゾイル基、4−メトキシベンゾイル基、1−ナフトイル基、2−ナフトイル基、シンナモイル基、3−フロイル基、2−テノイル基、ニコチノイル基、イソニコチノイル基、9−アンスロイル基、5−ナフタセノイル基等が挙げられる。
アルコキシル基としては、炭素原子数1〜18の直鎖状、分岐鎖状、単環状あるいは縮合多環状アルコキシル基があげられ、具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基、イソプロポキシ基、イソブトキシ基、イソペンチルオキシ基、sec−ブトキシ基、t−ブトキシ基、sec−ペンチルオキシ基、t−ペンチルオキシ基、t−オクチルオキシ基、ネオペンチルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、アダマンチルオキシ基、ノルボルニルオキシ基、ボロニルオキシ基、4−デシルシクロヘキシルオキシ基、2−テトラヒドロフラニルオキシ基、2−テトラヒドロフラニルオキシ基等が挙げられる。
アリールオキシ基としては、炭素原子数6〜18の単環状または縮合多環状アリールオキシ基が挙げられ、具体例としては、フェノキシ基、1ーナフチルオキシ基、2−ナフチルオキシ基、9−アンスリルオキシ基、9−フェナントリルオキシ基、1−ピレニルオキシ基、5−ナフタセニルオキシ基、1−インデニルオキシ基、2−アズレニルオキシ基、1−アセナフチルオキシ基、9−フルオレニルオキシ基等が挙げられる。
複素環オキシ基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状または縮合多環状複素環オキシ基が挙げられ、具体例としては、2−フラニルオキシ基、2−チエニルオキシ基、2−インドリルオキシ基、3−インドリルオキシ基、2−ベンゾフリルオキシ基、2−ベンゾチエニルオキシ基、2−カルバゾリルオキシ基、3−カルバゾリルオキシ基、4−カルバゾリルオキシ基、9−アクリジニルオキシ基等が挙げられる。
アシルオキシ基としては、水素原子または炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族が結合したカルボニルオキシ基、あるいは、炭素原子数6〜18の単環状または縮合多環状アリール基が結合したカルボニルオキシ基、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状または縮合多環状複素環基が結合したカルボニルオキシ基が挙げられ、具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ラウロイルオキシ基、ミリストイルオキシ基、パルミトイルオキシ基、ステアロイルオキシ基、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、クロトノイルオキシ基、イソクロトノイルオキシ基、オレオイルオキシ基、ベンゾイルオキシ基、1−ナフトイルオキシ基、2−ナフトイルオキシ基、シンナモイルオキシ基、3−フロイルオキシ基、2−テノイルオキシ基、ニコチノイルオキシ基、イソニコチノイルオキシ基、9−アンスロイルオキシ基、5−ナフタセノイルオキシ基等が挙げられる。
アルキルチオ基としては、炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状アルキルチオ基が挙げられ、具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、デシルチオ基、ドデシルチオ基、オクタデシルチオ基等が挙げられる。
アリールチオ基としては、炭素原子数6〜18の単環状または縮合多環状アリールチオ基が挙げられ、具体例としては、フェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、9−アンスリルチオ基、9−フェナントリルチオ基等が挙げられる。
複素環チオ基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状または縮合多環状複素環チオ基が挙げられ、具体例としては、2−フリルチオ基、2−チエニルチオ基、2−ピロリルチオ基、6−インドリルチオ基、2−ベンゾフリルチオ基、2−ベンゾチエニルチオ基、2−カルバゾリルチオ基、3−カルバゾリルチオ基、4−カルバゾリルチオ基等が挙げられる。
アルキルアミノ基としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、ノニルアミノ基、デシルアミノ基、ドデシルアミノ基、オクタデシルアミノ基、イソプロピルアミノ基、イソブチルアミノ基、イソペンチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基、sec−ペンチルアミノ基、tert−ペンチルアミノ基、tert−オクチルアミノ基、ネオペンチルアミノ基、シクロプロピルアミノ基、シクロブチルアミノ基、シクロペンチルアミノ基、シクロヘキシルアミノ基、シクロヘプチルアミノ基、シクロオクチルアミノ基、シクロドデシルアミノ基、1−アダマンタミノ基、2−アダマンタミノ基等が挙げられる。
ジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、ジノニルアミノ基、ジデシルアミノ基、ジドデシルアミノ基、ジオクタデシルアミノ基、ジイソプロピルアミノ基、ジイソブチルアミノ基、ジイソペンチルアミノ基、メチルエチルアミノ基、メチルプロピルアミノ基、メチルブチルアミノ基、メチルイソブチルアミノ基、シクロプロピルアミノ基、ピロリジノ基、ピペリジノ基、ピペラジノ基等が挙げられる。
アリールアミノ基としては、アニリノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、o−トルイジノ基、m−トルイジノ基、p−トルイジノ基、2−ビフェニルアミノ基、3−ビフェニルアミノ基、4−ビフェニルアミノ基、1−フルオレンアミノ基、2−フルオレンアミノ基、2−チアゾールアミノ基、p−ターフェニルアミノ基等が挙げられる。
ジアリールアミノ基としては、ジフェニルアミノ基、ジトリルアミノ基、N−フェニル−1−ナフチルアミノ基、N−フェニル−2−ナフチルアミノ基等が挙げられる。
アルキルアリールアミノ基としては、N−メチルアニリノ基、N−メチル−2−ピリジノ基、N−エチルアニリノ基、N−プロピルアニリノ基、N−ブチルアニリノ基、N−イソプロピル、N−ペンチルアニリノ基、N−エチルアニリノ基、N−メチル−1−ナフチルアミノ基等が挙げられる。
次に、一般式(1)中のアニオンX-について説明する。
一般式(1)中のアニオンX-は原理的に特に限定されるものではないが、非求核性アニオンが好ましい。アニオンX-が非求核性アニオンの場合、分子内に共存するカチオンや併用される各種材料における求核反応が起こりにくいため、結果として一般式(1)で表記される感エネルギー線酸発生剤自身やそれを用いた組成物の経時安定性を向上させることが可能である。ここでいう非求核性アニオンとは、求核反応を起こす能力が低いアニオンを指す。このようなアニオンとしては、BF4 -、PF6 -、SbF6 -、AsF6 -、SbCl6 -、BiCl5 -、SnCl6 -、ClO4 -、ジチオカルバメートアニオン、SCN-等が挙げられる。
また、アニオンX-としては、アルキルカルボン酸アニオン、アリールカルボン酸アニオン、複素環カルボン酸アニオン、アラルキルカルボン酸アニオン、アルキルスルホン酸アニオン、アリールスルホン酸アニオン、複素環スルホン酸アニオン、ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチルアニオン、ビス(アルコキシスルホニル)イミドアニオン等も挙げることができる。
X-として使用できるアルキルカルボン酸アニオンとは、アルキル基がカルボキシル基に結合した構造を有するカルボン酸が解離したカルボキシレートアニオンを意味し、上記アルキル基としては、炭素原子数1〜30の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基が挙げられ、具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec−ブチル基、t−ブチル基、sec−ペンチル基、t−ペンチル基、t−オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、ボロニル基、4−デシルシクロヘキシル基等を挙げることができるが、これらに限定されるものではない。
X-として使用できるアリールカルボン酸アニオンとは、アリール基がカルボキシル基に結合した構造を有するカルボン酸が解離したカルボキシレートアニオンを意味し、上記アリール基としては、炭素原子数4〜18の単環または縮合多環アリール基が挙げられ、具体例としては、フェニル基、1ーナフチル基、2−ナフチル基、9−アンスリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、1−アセナフチル基、9−フルオレニル基等を挙げることができるが、これらに限定されるものではない。
X-として使用できる複素環カルボン酸アニオンとは、複素環基がカルボキシル基に結合した構造を有するカルボン酸が解離したカルボキシレートアニオンを意味し、上記複素環基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜24の芳香族あるいは脂肪族の複素環基が挙げられ、具体例としては、2−フリル基、2−チエニル基、2−ピロリル基、6−インドリル基、2−ベンゾフリル基、2−ベンゾチエニル基、4−キノリニル基、4−イソキノリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−アクリジニル基、3−フェノチアジニル基、2−フェノキサチイニル基、3−フェニキサジニル基、3−チアントレニル基等を挙げることができるが、これらに限定されるものではない。
X-として使用できるアラルキルカルボン酸アニオンとは、アラルキル基がカルボキシル基に結合した構造を有するカルボン酸が解離したカルボキシレートアニオンを意味し、上記アラルキル基としては、炭素原子数6〜18のアラルキル基が挙げられ、ベンジル基、フェネチル基、ナフチルメチル基、アンスリルメチル基、ナフチルエチル基、アンスリルエチル基等が挙げられるが、これらに限定されるものではない。
さらにX-として使用できるアルキルカルボン酸アニオンにおけるアルキル基や、アリールカルボン酸アニオンにおけるアリール基、複素環カルボン酸アニオンにおける複素環基、アラルキルカルボン酸アニオンにおけるアラルキル基は、さらに他の置換基を有していても良く、そのような他の置換基としては、ヒドロキシル基、メルカプト基、シアノ基、ニトロ基、ハロゲン原子、アルキル基、アリール基、複素環基、アシル基、アルコキシル基、アリールオキシ基、複素環オキシ基、アシルオキシ基、アルキルチオ基、アリールチオ基、複素環チオ基等を挙げることができる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
アルキル基としては炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基が挙げられ、具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec−ブチル基、t−ブチル基、sec−ペンチル基、t−ペンチル基、t−オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、ボロニル基、4−デシルシクロヘキシル基等を挙げることができるが、これらに限定されるものではない。
アリール基としては、炭素原子数6〜18の単環または縮合多環アリール基が挙げられ、具体例としては、フェニル基、1ーナフチル基、2−ナフチル基、9−アンスリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、1−アセナフチル基、9−フルオレニル基等を挙げることができるが、これらに限定されるものではない。
複素環基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環または縮合多環複素環基が挙げられ、具体例としては、2−フラニル基、2−チエニル基、2−インドリル基、3−インドリル基、2−ベンゾフリル基、2−ベンゾチエニル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−アクリジニル基等を挙げることができるが、これらに限定されるものではない。
アシル基としては、水素原子または炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族が結合したカルボニル基、あるいは、炭素原子数6〜18の単環状あるいは縮合多環状アリール基が結合したカルボニル基、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状あるいは縮合多環状複素環基が結合したカルボニル基が挙げられ、それらは構造中に不飽和結合を有していてもよく、具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基、アクリロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、ベンゾイル基、2−メチルベンゾイル基、4−メトキシベンゾイル基、1−ナフトイル基、2−ナフトイル基、シンナモイル基、3−フロイル基、2−テノイル基、ニコチノイル基、イソニコチノイル基、9−アンスロイル基、5−ナフタセノイル基等を挙げることができるが、これらに限定されるものではない。
アルコキシル基としては、炭素原子数1〜18の直鎖状、分岐鎖状、単環状あるいは縮合多環状アルコキシル基があげられ、具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基、イソプロポキシ基、イソブトキシ基、イソペンチルオキシ基、sec−ブトキシ基、t−ブトキシ基、sec−ペンチルオキシ基、t−ペンチルオキシ基、t−オクチルオキシ基、ネオペンチルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、アダマンチルオキシ基、ノルボルニルオキシ基、ボロニルオキシ基、4−デシルシクロヘキシルオキシ基、2−テトラヒドロフラニルオキシ基、2−テトラヒドロフラニルオキシ基等を挙げることができるが、これらに限定されるものではない。
アリールオキシ基としては、炭素原子数6〜18の単環状または縮合多環状アリールオキシ基が挙げられ、具体例としては、フェノキシ基、1ーナフチルオキシ基、2−ナフチルオキシ基、9−アンスリルオキシ基、9−フェナントリルオキシ基、1−ピレニルオキシ基、5−ナフタセニルオキシ基、1−インデニルオキシ基、2−アズレニルオキシ基、1−アセナフチルオキシ基、9−フルオレニルオキシ基等を挙げることができるが、これらに限定されるものではない。
複素環オキシ基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状または縮合多環状複素環オキシ基が挙げられ、具体例としては、2−フラニルオキシ基、2−チエニルオキシ基、2−インドリルオキシ基、3−インドリルオキシ基、2−ベンゾフリルオキシ基、2−ベンゾチエニルオキシ基、2−カルバゾリルオキシ基、3−カルバゾリルオキシ基、4−カルバゾリルオキシ基、9−アクリジニルオキシ基等を挙げることができるが、これらに限定されるものではない。
アシルオキシ基としては、水素原子または炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族が結合したカルボニルオキシ基、あるいは、炭素原子数6〜18の単環状または縮合多環状アリール基が結合したカルボニルオキシ基、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状または縮合多環状複素環基が結合したカルボニルオキシ基が挙げられ、具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ラウロイルオキシ基、ミリストイルオキシ基、パルミトイルオキシ基、ステアロイルオキシ基、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、クロトノイルオキシ基、イソクロトノイルオキシ基、オレオイルオキシ基、ベンゾイルオキシ基、1−ナフトイルオキシ基、2−ナフトイルオキシ基、シンナモイルオキシ基、3−フロイルオキシ基、2−テノイルオキシ基、ニコチノイルオキシ基、イソニコチノイルオキシ基、9−アンスロイルオキシ基、5−ナフタセノイルオキシ基等を挙げることができるが、これらに限定されるものではない。
アルキルチオ基としては、炭素原子数1〜18の直鎖状、分岐鎖状、単環状または縮合多環状アルキルチオ基が挙げられ、具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、デシルチオ基、ドデシルチオ基、オクタデシルチオ基等を挙げることができるが、これらに限定されるものではない。
アリールチオ基としては、炭素原子数6〜18の単環状または縮合多環状アリールチオ基が挙げられ、具体例としては、フェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、9−アンスリルチオ基、9−フェナントリルチオ基等を挙げることができるが、これらに限定されるものではない。
複素環チオ基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜18の単環状または縮合多環状複素環チオ基が挙げられ、具体例としては、2−フリルチオ基、2−チエニルチオ基、2−ピロリルチオ基、6−インドリルチオ基、2−ベンゾフリルチオ基、2−ベンゾチエニルチオ基、2−カルバゾリルチオ基、3−カルバゾリルチオ基、4−カルバゾリルチオ基等を挙げることができるが、これらに限定されるものではない。
X-として使用できるアルキルスルホン酸アニオンとはアルキル基がスルホン酸基に結合した構造を有するアルキルスルホン酸が解離したスルホン酸アニオンを意味し、上記アルキル基としては、炭素原子数1〜30の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基が挙げられ、具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec−ブチル基、t−ブチル基、sec−ペンチル基、t−ペンチル基、t−オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、ボロニル基、4−デシルシクロヘキシル基などを挙げることができるが、これらに限定されるものではない。また、カンファースルホン酸が解離したスルホン酸アニオンもカウンターアニオンX-として使用できるアルキルスルホン酸アニオンに含まれる。
X-として使用できるアリールスルホン酸アニオンとは、アリール基がスルホン酸基に結合した構造を有するアリールスルホン酸が解離したスルホン酸アニオンを意味し、上記アリール基としては、炭素原子数4〜18の単環または縮合多環アリール基が挙げられ、具体例としては、フェニル基、1ーナフチル基、2−ナフチル基、9−アンスリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、1−アセナフチル基、9−フルオレニル基等を挙げることができるが、これらに限定されるものではない。
X-として使用できる複素環スルホン酸アニオンとは、複素環基がスルホン酸基に結合した構造を有する複素環スルホン酸が解離したスルホン酸アニオンを意味し、上記複素環基としては、窒素原子、酸素原子、硫黄原子、リン原子を含む、炭素原子数4〜24の芳香族あるいは脂肪族の複素環基が挙げられ、具体例としては、2−フリル基、2−チエニル基、2−ピロリル基、6−インドリル基、2−ベンゾフリル基、2−ベンゾチエニル基、4−キノリニル基、4−イソキノリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−アクリジニル基、3−フェノチアジニル基、2−フェノキサチイニル基、3−フェニキサジニル基、3−チアントレニル基等を挙げることができるが、これらに限定されるものではない。
さらにX-として使用できるアルキルスルホン酸アニオンにおけるアルキル基や、アリールスルホン酸アニオンにおけるアリール基、複素環スルホン酸アニオンにおける複素環基は、さらに他の置換基を有していてもよく、そのような他の置換基としては、ヒドロキシル基、メルカプト基、シアノ基、ニトロ基、ハロゲン原子、アルキル基、アリール基、アシル基、アルコキシル基、アリールオキシ基、複素環オキシ基、アシルオキシ基、アルキルチオ基、アリールチオ基、複素環チオ基等を挙げることができ、具体例としては、上記アルキルカルボン酸アニオンにおけるアルキル基や、アリールカルボン酸アニオンにおけるアリール基、複素環カルボン酸アニオンにおける複素環基、アラルキルカルボン酸アニオンにおけるアラルキル基に対して、置換していても良い置換基として例示したものと同一の置換基が挙げられるが、これらに限定されるものではない。
X-として使用できるビス(アルキルスルホニル)イミドアニオンにおけるアルキル基としては、炭素原子数1〜6の直鎖状、分岐鎖状または環状アルキル基が挙げられ、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、s−ブチル基、t−ブチル基、s−ペンチル基、t−ペンチル基、ネオペンチル基、シクロペンチル基、シクロヘキシル基等が挙げられるが、これらに限定されるものではない。
これらのアルキル基はさらに置換基を有していてもよく、そのような置換基としてはハロゲン原子、アルキル基、アルコキシル基、アルキルチオ基等を挙げることができ、特にフッ素原子で置換されているアルキル基が好ましい。カウンターアニオンX-として使用できるビス(アルキルスルホニル)イミドアニオンにおけるフッ素原子で置換されたアルキル基の具体例としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基が挙げられる。
X-として使用できるトリス(アルキルスルホニル)メチルアニオンにおけるアルキル基としては、炭素原子数1〜6の直鎖状、分岐鎖状または環状アルキル基が挙げられ、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、s−ブチル基、t−ブチル基、s−ペンチル基、t−ペンチル基、ネオペンチル基、シクロペンチル基、シクロヘキシル基等が挙げられるが、これらに限定されるものではない。
これらのアルキル基はさらに置換基を有していてもよく、そのような置換基としてはハロゲン原子、アルキル基、アルコキシル基、アルキルチオ基等を挙げることができ、特にフッ素原子で置換されたアルキル基が好ましい。カウンターアニオンX-として使用できるトリス(アルキルスルホニル)メチルアニオンにおけるフッ素原子で置換されたアルキルの基の具体例としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基が挙げられる。
X-として使用できるビス(アルコキシスルホニル)イミドアニオンとは、ビス(1,1,1,3,3,3−ヘキサフルオロイソプロポキシスルホニル)イミドアニオン等を挙げることができる。また、特開2003−215791号公報に記載のイミドアニオンも本発明のビス(アルコキシスルホニル)イミドアニオンの範疇に含まれる。
上記した例示アニオンの中で、一般式(1)中のカウンターアニオンX-として特に好ましいものとしては、スルホン酸基が結合する炭素原子がフッ素化されたアルキルスルホン酸アニオン、フッ素原子またはフッ素原子を有する基で置換されたアリールスルホン酸アニオンが挙げられ、特に好ましくは、炭素原子数1〜8の直鎖アルキル基の水素原子がすべてフッ素原子で置換されたパーフルオロアルカンスルホン酸アニオン挙げられ、さらに具体的にはパーフルオロオクタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオンが挙げられる。
一般式(1)中のカウンターアニオンX-としては、下記一般式(4)で示されるボレートアニオンが、比較的容易に合成でき、かつ、発生する酸が非常に強く、他のカウンターアニオンと比較して、種々の有機溶媒やポリマー、オリゴマーに対する相溶性、溶解性が極めて高く、高い安全衛生性を有するため、特に好ましく使用できる。
(式中、Yはフッ素または塩素原子、
Zは、フッ素原子、シアノ基、ニトロ基、およびトリフルオロメチル基の中から選ばれる基で2つ以上置換されたフェニル基、
mは0から3の整数、nは1から4の整数を表し、m+n=4である。)
Zは、フッ素原子、シアノ基、ニトロ基、およびトリフルオロメチル基の中から選ばれる基で2つ以上置換されたフェニル基、
mは0から3の整数、nは1から4の整数を表し、m+n=4である。)
一般式(4)で表されるボレートアニオンにおける置換基Zとしては、3,5−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、2,3,4,6−テトラフルオロフェニル基、ペンタフルオロフェニル基、2,4−ビス(トリフルオロメチル)フェニル基、3,5−ビス(トリフルオロメチル)フェニル基、2,4,6−トリフルオロ−3,5−ビス(トリフルオロメチル)フェニル基、3,5−ジニトロフェニル基、2,4,6−トリフルオロ−3,5−ジニトロフェニル基、2,4−ジシアノフェニル基、4−シアノ−3,5−ジニトロフェニル基、4−シアノ−2,6−ビス(トリフルオロメチル)フェニル基等が挙げられるが、これらに限定されるものではない。
したがって、一般式(4)で表されるボレートアニオンの構造として、具体的には、ペンタフルオロフェニルトリフルオロボレート、3,5−ビス(トリフルオロメチル)フェニルトリフルオロボレート、ビス(ペンタフルオロフェニル)ジフルオロボレート、ビス[3,5−ビス(トリフルオロメチル)フェニル]ジフルオロボレート、トリス(ペンタフルオロフェニル)フルオロボレート、トリス[3,5−ビス(トリフルオロメチル)フェニル]フルオロボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート等が挙げることができるが、これらに限定されるものではない。
この内、本発明の一般式(4)で表されるボレートアニオンの構造として、好ましいものは、テトラキス(ペンタフルオロフェニル)ボレートおよびテトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレートである。
また、一般式(4)で表記されるボレートアニオンの中心元素であるホウ素をガリウムに置き換えたアニオン、すなわち、ガレートアニオンも一般式(4)中のアニオンX-として使用することが可能であり、そのようなアニオンの中では、テトラキス(ペンタフルオロフェニル)ガレートが好ましいアニオンとして挙げられる。
本発明の感エネルギー線酸発生剤は上記で例示したオニウムカチオンと各種アニオンとの組み合わせからなる。
以下に具体的な構造を示すが、本発明の感エネルギー線酸発生剤の構造はそれらに限定されるものではない。
ただし、上記構造式中のX-はBF4 -、PF6 -、SbF6 -、SCN-および以下に示した構造から選ばれるアニオンいずれであってもよい。
本発明の感エネルギー線酸発生剤(A)を得るための合成方法は特に限定されず、従来公知の化学反応、後処理方法、精製方法および分析方法を適宜、組み合わせることにより、容易に合成して構造確認することが可能である。フェナシルスルホニウム塩の合成方法としては、Journal of Polymer Science :Part A :Polymer Chemistry誌 第38巻 1433−1442頁(2000年)、Macromolecules誌 第33巻 825−832頁(2000年)などに記載の方法等が挙げられ、これらに記載の合成に使用されている原料を適宜、置き換えることにより、本発明の感エネルギー線酸発生剤を合成することが可能である。
合成方法の一例を挙げると、アセトフェノン誘導体を出発原料として合成する。適当なアセトフェノン誘導体が入手できない場合は、ベンゼン誘導体に対するフリーデル−クラフツ反応によるアセチル化により、対応するアセトフェノン誘導体を得ることができる。上記したアセトフェノン誘導体のアセチル基を臭素などの臭素化試薬によって臭素化し、次いで、この誘導体とスルフィドを反応させることにより、本発明の感エネルギー線酸発生剤(A)のカチオン部位に相当する、スルホニウムのブロマイド塩を得ることができる。このようにして得られたスルホニウム・ブロマイド塩は、アニオンX-を有する金属塩と容易にイオン交換を行うことができ、本発明の感エネルギー線酸発生剤を得ることができる。
本発明の感エネルギー線酸発生剤(A)はエネルギー線、特に300nmから450nmの波長領域の光照射により、非常に高感度な光酸発生剤として機能するため、従来公知の感エネルギー線酸発生剤から発生する酸を触媒とする重合反応、架橋反応、分解反応、発色反応などをより短時間に確実に実現することが可能となり、結果としてこれらの反応を応用した各種用途の大幅な高感度化や特性の向上を実現することが可能となる。以下に本発明の感エネルギー線酸発生剤の利用方法について記述する。
以下に述べる本発明の感エネルギー線酸発生剤(A)を含有する各種機能を有する組成物は、そのエネルギー線に対する感度をさらに向上させるために、必要に応じて公知の酸増殖剤を併用して用いることができる。酸増殖剤とは、酸発生剤から発生した酸を触媒とした熱分解反応によりさらなる酸を発生する材料であり、さらに、酸増殖剤から発生する酸自身も他の酸増殖剤を分解しうるため、酸増殖剤を用いることにより飛躍的に酸の濃度を向上させることが可能となる。そのような酸増殖剤は特に限定されないが、具体例としては特開平8−248561号公報、特開平10−1508号公報、特開平5−297576号公報に記載の材料が挙げられる。
本発明の感エネルギー線酸発生剤(A)と酸硬化性化合物(B)とを含む組成物はエネルギー線、特に300nmから450nmの波長領域の光の照射により、迅速かつ確実に硬化し、良好な特性を有する硬化物を得ることが可能な感エネルギー線硬化性組成物として使用することができる。
本発明の感エネルギー線酸硬化性組成物に用いる酸硬化性化合物(B)について説明する。ここで、酸硬化性化合物(B)とは、本発明の感エネルギー線酸発生剤(A)との共存下、エネルギー線の照射、特に300nmから450nmの波長領域の光照射の作用によって、重合もしくは架橋反応によって高分子量物質に変換可能な化合物を意味し、以下に表す化合物またはそれらの混合物がこれに含まれる。
まず、感エネルギー線酸発生剤(A)から発生する酸触媒のもとで、あるいは加熱との併用のもとで、架橋または重合反応により高分子量化する化合物が酸硬化性化合物(B)として挙げられる。
典型的な例として、ホルムアルデヒドプレカーサーとしてのメチロール基、あるいは置換されたメチロール基を有する化合物として、下記一般式(14)で表される構造の化合物が挙げられる。
(ただし、一般式(14)中、Aは、GまたはG−J−Gで示される基であり、Gは置換もしくは非置換の単核もしくは縮合多核芳香族炭化水素基、または置換もしくは未置換の酸素、硫黄、窒素含有の複素環基を意味する。Jは単結合、または炭素原子数1〜4の置換もしくは未置換のアルキレン基、置換もしくは未置換のアリーレン基、置換もしくは未置換のアリールアルキレン基、もしくは−O−、−S−、−SO2−、−CO−、−COO−、−OCOO−、−CONH−、−SO2−O−及びこれらの結合を一部に有するような置換もしくは未置換のアルキレン基を意味する。またAはフェノール樹脂のような重合体であってもよい。Q及びQ’は、互いに独立して、水素原子、置換もしくは未置換の炭素原子数1〜4のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換のアリールアルキル基、または置換もしくは未置換のアシル基を意味する。rは1〜3の整数、sは0〜3の整数である。)
ここで、Gで表される、置換もしくは非置換の単核もしくは縮合多核芳香族炭化水素基としては、o−フェニレン基、m−フェニレン基、p−フェニレン基、4−メチル−1,2−フェニレン基、4−クロロ−1,2−フェニレン基、4−ヒドロキシ−1,2−フェニレン基、2−メチル−1,4−フェニレン基、p,p’−ビフェニリレン基、1,2−ナフチレン基、9,10−アンスリレン基、2,7−フェナンスリレン基等が挙げられる。
Gで表される、置換もしくは未置換の酸素、硫黄、窒素含有の複素環基としては、2,5−フリレン基、2,5−チエニレン基、2,4−オキサゾリレン基、2,4−チアゾリレン基、2,5−ベンゾフリレン基、2,5−ベンゾチエニレン基、2,6−ピリジレン基、5,8−キノリレン基等が挙げられる。
Jで表される、置換もしくは未置換の炭素原子数1〜4のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルメチレン基、クロロメチレン基、ジメチルメチレン基、ビス(トリフルオロメチル)メチレン基等が挙げられる。
Jで表される、置換もしくは未置換のアリーレン基としては、o−フェニレン基、m−フェニレン基、p−フェニレン基、4−メチル−1,2−フェニレン基、4−クロロ−1,2−フェニレン基、4−ヒドロキシ−1,2−フェニレン基、2−メチル−1,4−フェニレン基、p,p’−ビフェニリレン基、1,2−ナフチレン基、9,10−アンスリレン基、2,7−フェナンスリレン基等が挙げられる。
Jで表される、置換もしくは未置換のアリールアルキレン基としては、ベンジリデン基、p−トリルメチレン基、2−ナフチルメチレン基等が挙げられる。
さらに、Jで表される、−O−、−S−、−SO2−、−CO−、−COO−、−OCOO−、−CONH−、−SO2−O−結合を一部に有するような置換もしくは未置換のアルキレン基としては、メチレンジオキシ基、エチレンジオキシ基、プロピレンジオキシ基、ジエチレンジオキシ基、トリエチレンジオキシ基、メチレンジチオ基、エチレンジチオ基、プロピレンジチオ基、ジエチレンジチオ基、トリエチレンジチオ基、メチレンジスルホニル基、エチレンジスルホニル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、−OOC−CH2−COO−基、−OOC−(CH2)2−COO−基、−CH2−OCOO−CH2−基、−CH2−(OCOO−CH2)2−基等が挙げられる。
また、QおよびQ’で表される、置換もしくは未置換の炭素原子数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等が挙げられる。
QおよびQ’で表される、置換もしくは未置換のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
QおよびQ’で表される、置換もしくは未置換のアリール基としては、フェニル基、p−トリル基、キシリル基、メシチル基、クメニル基、p−メトキシフェニル基、ビフェニリル基、ナフチル基、アンスリル基、フェナントリル基、p−シアノフェニル基、p−ニトロフェニル基、3,5−ビス(トリフルオロメチル)フェニル基、p−フルオロフェニル基、p−クロロフェニル基、p−ジメチルアミノフェニル基、p−フェニルチオフェニル基等が挙げられる。
QおよびQ’で表される、置換もしくは未置換のアリールアルキル基としては、ベンジル基、2−ナフチルメチル基、9−アンスリルメチル基、フェニチル基、スチリル基、シンナミル基等が挙げられる。
QおよびQ’で表される、置換もしくは未置換のアシル基としては、アセチル基、ヘキサノイル基、ベンゾイル基、シクロヘキサノイル基、メトキサリル基、サリチロイル基等が挙げられる。
このような酸硬化性化合物(B)の具体例としては、様々なアミノプラスト類またはフェノプラスト類、すなわち尿素−ホルムアルデヒド、メラミン−ホルムアルデヒド、ベンゾグアナミン−ホルムアルデヒド、グリコールウリル−ホルムアルデヒド樹脂やそれらの単量体、もしくはオリゴマーがある。これらは、塗料用のベヒクル等の用途に多くのものが市販されている。例えば、アメリカンサイアナミッド社が製造するCymel(登録商標)300、301、303、350、370、380、1116、1130、1123、1125、1170等、あるいは三和ケミカル社製ニカラック(登録商標)Mw30、Mw30M、Mw30HM、Mx45、Bx4000等のシリーズをその典型例としてあげることができる。これらは1種類でも2種以上を組み合わせて用いてもよい。
また、別の酸硬化性化合物(B)の具体例としては、ホルムアルデヒドプレカーサーとなり得るようなメチロール化またはアルコキシジメチル化されたフェノール誘導体がある。これらは単量体として用いても、レゾール樹脂、ベンジルエーテル樹脂のように樹脂化されたものを用いてもよい。
さらに、酸硬化性化合物(B)の別な系統として、シラノール基を有する化合物、例えば特開平2−154266号公報、特開平2−173647号公報に開示されている化合物を挙げることができる。
また、ポリエンとポリチオールの混合物、例えばポリエンとして、ジアリルフタレート、ジアリルイソフタレート、ジアリルマレエート、ジアリルカーボネート、トリアリルイソシアヌレート、ポリイソシアネートとアリルアルコールから製造されるウレタン系ポリエン(例えばヘキサメチレンジイソシアネートとアリルアルコールの重縮合反応によって得られるウレタン化合物など)などから選択される化合物と、例えばポリチオールとして、トリメチロールプロパントリチオールグリコレート、ペンタエリスリトール−テトラ−3−メルカプトプロピオネートなどから選択される化合物との混合物も、酸硬化性化合物(B)として例表することができる。
また、以下に表すアルコキシシラン類も酸硬化性化合物(B)として挙げることができる。具体例としては、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン類や、γ−クロロプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン等のアルコキシシリル基を有する化合物、さらに詳しくは、東レ・ダウコーニング社製品カタログ、59頁もしくは、信越シリコーンシランカップリング剤製品カタログ(昭和62年9月発行)記載の「シランカップリング剤」、あるいは東レ・ダウコーニング社製品カタログ、61頁もしくは、東芝シリコーン社総合カタログ、27頁(1986年4月発行)記載の「シラン化合物」として業界で知られるアルコキシシリル基を有する化合物が、アルコキシシラン類として挙げることができる。
さらに、酸硬化性化合物(B)として、カチオン重合可能な化合物あるいはその混合物をあげることができる。ここでいうカチオン重合可能な化合物とは、例えば、エポキシ化合物、オキセタン化合物、スチレン類、ビニル化合物、ビニルエーテル類、スピロオルソエステル類、ビシクロオルソエステル類、スピロオルソカーボナート類、環状エーテル類、ラクトン類、オキサゾリン類、アジリジン類、シクロシロキサン類、ケタール類、環状酸無水物類、ラクタム類およびアリールジアルデヒド類、エピスルフィド基、エチレンイミン基、水酸基などがあげられる。また、これらの重合性基を測鎖に有するアクリル系、ウレタン系、ポリエステル系、ポリオレフィン系、ポリエーテル系、天然ゴム、ブロック共重合体ゴム、シリコーン系に代表される、重合性あるいは架橋性ポリマーおよびオリゴマーも酸硬化性化合物(B)に含まれる。
まず、エポキシ化合物としては、従来、公知の芳香族エポキシ化合物、脂環式エポキシ化合物、脂肪族エポキシ化合物、更にはエポキシド単量体、エピサルファイト単量体類グリシジルアミン型エポキシ樹脂、ナフタレン型エポキシ樹脂、異節環状型エポキシ樹脂、多官能性エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂などのアルコール型エポキシ樹脂、臭素化エポキシ樹脂などのハロゲン化エポキシ樹脂、ゴム変成エポキシ樹脂、ウレタン変成エポキシ樹脂、エポキシ化ポリブタジエン、エポキシ化スチレン−ブタジエン−スチレンブロック共重合体、エポキシ基含有ポリエステル樹脂、エポキシ基含有ポリウレタン樹脂、エポキシ基含有アクリル樹脂等があげられる。芳香族エポキシ化合物の例としては、フェニルグリシジルエーテルなどの単官能エポキシ化合物や、少なくとも1個の芳香族核を有する多価フェノールまたはそのアルキレンオキサイド付加体のポリグリシジルエーテルであって、例えばビスフェノールA、テトラブロモビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール化合物またはビスフェノール化合物のアルキレンオキサイド(例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等)付加体とエピクロルヒドリンとの反応によって製造されるグリシジルエーテル類、ノボラック型エポキシ樹脂類(例えば、フェノール・ノボラック型エポキシ樹脂、クレゾール・ノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等)、トリスフェノールメタントリグリシジルエーテル等が挙げられる。エポキシ基を有する化合物としては、これらのエポキシ樹脂は常温で液体であっても良いし、固体であっても良い。また、エポキシ基含有オリゴマーも好適に用いることができ、例えば、ビスフェノールA型エポキシオリゴマー(例えば、油化シェルエポキシ社製、エピコート1001、1002等)を挙げることができる。さらに、上記エポキシ基含有モノマーやオリゴマーの付加重合体を用いてもよく、例えば、グリシジル化ポリエステル、グリシジル化ポリウレタン、グリシジル化アクリル等を挙げることができる。
なかでも、光カチオン重合性がより高く、少ない光量でもより効率的に光硬化が進行することから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂等が好適に用いられる。これらのエポキシ基を有する化合物は、単独で用いられても良いし、2種類以上が併用されても良い。
脂環式エポキシ樹脂の具体例としては、例えば、1,2:8,9−ジエポキシリモネン、4−ビニルシクロヘキセンモノエポキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド、(3,4−エポキシシクロヘキシル)メチル−3,4−エポキシシクロヘキシルカルボキシレート、ビス−(3,4−エポキシシクロヘキシル)アジペート、ノルボルネンモノエポキサイド、リモネンモノエポキサイド、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサノン−メタ−ジオキサン、ビス−(3,4−エポキシシクロヘキシルメチレン)アジペート、ビス−(2,3−エポキシシクロペンチル)エーテル、(2,3−エポキシ−6−メチルシクロヘキシルメチル)アジペート、ジシクロペンタジエンジオキサイド、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタ−ジオキサン、2,2−ビス[4−(2,3−エポキシプロポキシ)シクロヘキシル]ヘキサフルオロプロパン、BHPE−3150(ダイセル化学工業(株)製、脂環式エポキシ樹脂(軟化点71℃)等が挙げられるが、これらに限定されるものではない。
脂肪族エポキシ樹脂の具体例としては、例えば1,4−ブタンジオールジクリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、エチレングリコールモノグリシジルエーテル、プロピレングリコールジグリシジルエーテル、プロピレングリコールモノグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグルコールジグリシジルエーテル、ネオペンチルグルコールモノグリシジルエーテル、グリセロールジグリシジルエーテル、グルセロールトリグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパンモノグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリセロールトリグリシジルエーテル、ソルビトールテトラグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル等が挙げられるが、これらに限定されるものではない。
オキセタン化合物の具体例としては、例えば、フェノキシメチルオキセタン、3,3−ビス(メトキシメチル)オキセタン、3,3−ビス(フェノキシメチル)オキセタン、3−エチル−3−(フェノキシメチル)オキセタン、3−エチル−3−(2−エチルヘキシロキシメチル)オキセタン、3−エチル−3−{[3−(トリエトキシシリル)プロポキシ]メチル}オキセタン、ジ[1−エチル(3−オキセタニル)]メチルエーテル、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン等が挙げられるが、これらに限定されるものではない。
スチレン類としては、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロメチルスチレン等が挙げられるが、これらに限定されるものではない。
ビニル化合物としては、N−ビニルカルバゾール、N−ビニルピロリドン等が挙げられるが、これらに限定されるものではない。
ビニルエーテル類としては、例えばn−(またはiso−、t−)ブチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル、1,4ブタンジオールジビニルエーテル、エチレングリゴールジビニルエーテル、エチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、プロピレングリコールモノビニルエーテル、ネオペンチルグリコールジビニルグリコール、ネオペンチルグリコールモノビニルグリコール、グリセロールジビニルエーテル、グリセロールトリビニルエーテル、トリメチロールプロパンモノビニルエーテル、トリメチロールプロパンジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジグリセロールトリビニルエーテル、ソルビトールテトラビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ヒドロキシブチルビニルエーテル、ドデシルビニルエーテル2,2−ビス(4−シクロヘキサノール)プロパンジビニルエーテル、2,2−ビス(4−シクロヘキサノール)トリフルオロプロパンジビニルエーテルなどのアルキルビニルエーテル類、アリルビニルエーテルなどのアルケニルビニルエーテル類、エチニルビニルエーテル、1−メチル−2−プロペニルビニルエーテルなどのアルキニルビニルエーテル類、4−ビニルエーテルスチレン、ハイドロキノンジビニルエーテル、フェニルビニルエーテル、p−メトキシフェニルビニルエーテル、ビスフェノールAジビニルエーテル、テトラブロモビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、フェノキシエチレンビニルエーテル、p−ブロモフェノキシエチレンビニルエーテルなどのアリールビニルエーテル類、1,4−ベンゼンジメタノールジビニルエーテル、N−m−クロロフェニルジエタノールアミンジビニルエーテル、m−フェニレンビス(エチレングリコール)ジビニルエーテル等のアラルキルジビニルエ一テル類、ウレタンポリビニルエーテル(例えば、ALLIED−SIGNAL社製、VECtomer2010)等が挙げられるが、これらに限定されるものではない。
スピロオルソエステル類としては、1,4,6−トリオキサスピロ[4.4]ノナン、2−メチル−1,4,6−トリオキサスピロ[4.4]ノナン、1,4,6−トリオキサスピロ[4.5]デカン等が挙げられるが、これらに限定されるものではない。
ビシクロオルソエステル類としては、1−フェニル−4−エチル−2,6,7−トリオキサビシクロ[2.2.2]オクタン、1−エチル−4−ヒドロキシメチル−2,6,7−トリオキサビシクロ[2.2.2]オクタン等が挙げられるが、これらに限定されるものではない。
スピロオルソカーボナート類としては、1,5,7,11−テトラオキサスピロ[5.5]ウンデカン、3,9−ジベンジル−1,5,7,11−テトラオキサスピロ[5.5]ウンデカン等のような環状エ一テル類等が挙げられるが、これらに限定されるものではない。
環状エーテル類としては、オキセタン、フェニルオキセタンなどのオキセタン類、テトラヒドロフラン、2−メチルテトラヒドロフランなどのテトラヒドロフラン類、テトラヒドロピラン、3−プロピルテトラヒドロピランなどのテトラヒドロピラン類およびトリメチレンオキサイド、s−トリオキサン等が挙げられるが、これらに限定されるものではない。
ラクトン類としては、β−プロピオラクトン、γ−ブチルラクトン、δ−カプロラクトン、δ−バレロラクトン等が挙げられるが、これらに限定されるものではない。
オキサゾリン類としては、オキサゾリン、2−フェニルオキサゾリン、2−デシルオキサゾリン等が挙げられるが、これらに限定されるものではない。
アジリジン類としては、アジリジン、N−エチルアジリジン等が挙げられるが、これらに限定されるものではない。
シクロシロキサン類としては、ヘキサメチルトリシロキサン、オクタメチルシクロテトラシロキサン、トリフェニルトリメチルシクロトリシロキサン等が挙げられるが、これらに限定されるものではない。
シクロシロキサン類としては、ヘキサメチルトリシロキサン、オクタメチルシクロテトラシロキサン、トリフェニルトリメチルシクロトリシロキサン等が挙げられるが、これらに限定されるものではない。
ケタール類としては、1,3−ジオキソラン、1,3−ジオキサン、2,2−ジメチル−1,3−ジオキサン、2−フェニル−1,3−ジオキサン、2,2−ジオクチル−1,3−ジオキソラン等が挙げられるが、これらに限定されるものではない。
環状酸無水物類としては、無水フタル酸、無水マレイン酸、無水コハク酸などが、ラクタム類としてはβ−プロピオラクタム、γ−ブチロラクタム、δ−カプロラクタム等が挙げられるが、これらに限定されるものではない。
アリールジアルデヒド類としては1,2−ベンゼンジカルボキシアルデヒド、1,2−ナフタレンジアルデヒド等が挙げられるが、これらに限定されるものではない。
上記酸硬化性化合物(B)は、単独で用いられてもよく、2種以上併用されてもよい。
上記酸硬化性化合物(B)としては、エポキシ化合物、オキセタン化合物、ビニルエーテル類が好ましい。特に好ましくは、エポキシ化合物、オキセタン化合物である。エポキシ化合物、オキセタン化合物の重合は比較的反応性が高く、かつ硬化時間が短いため、硬化工程の短縮を図ることができる。
感エネルギー線酸硬化性組成物における、各成分配合比に特別な限定はないが、酸硬化性化合物(B)100重量部に対して、感エネルギー線酸発生剤(A)を0.01〜40重量部、好ましくは0.1〜25重量部の比率で用いることが好ましい。
本発明の感エネルギー線硬化性組成物は、液状性または流動性であればそのままの形態で粘着剤、接着剤、粘接着剤、封止剤、塗料、表面コート剤、光造形樹脂、光形成シートなどに、また染料や顔料などを添加することによりプルーフ材料、印刷インキ、インキジェット用インキなどに、水酸化アパタイトなどのフィラーを添加することにより歯科用レジンなどに使用することができる。
顔料としては、無機顔料および有機顔料のどちらもを使用することができる。無機顔料としてはカーボンブラック、酸化チタンなど、有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、キノフタロン系、ジオキサジン系、アントラキノン系、インジゴ系、メチン系、ジケトピロロピロール系など従来より使用されているものが使用可能である。これらの顔料は、色相を最適化するために、複数組み合わせて使用することも可能である。また、これらの顔料は均一性、経時安定性や透明性を高めるために、適当な分散器を用いて微粒子状に分散して使用することも可能である。また、顔料誘導体などの分散剤を併用して用いることも可能である。
染料としては油溶性染料及び塩基性染料がある。具体的にはオイルイエロー#101、オイルイエロー#103、オイルピンク#312、オイルグリーンBG、オイルブルーBOS、オイルブルー#603、オイルプラックBY、オイルブラックBS、オイルブラックT−505(以上、オリエント化学工業株式会社製)、クリスタルバイオレット(CI−42555)、メチルバイオレット(CI−42535)、ローダミンB(CI−45170B)、マラカイトグリーン(CI−42000)、メチレンブルー(CI−52015)などを挙げることができるが、これらに限定されるものではない。
また各種高分子重合体をバインダーとして併用し、溶剤に混合溶解し、ガラス板、アルミニウム板、シリコンウェハ、金属板、ポリマーフィルム(板)、紙などに塗布し、膜を形成して使用することも可能である。
本発明の感エネルギー線硬化性組成物と混合して使用可能なバインダーは本発明の感エネルギー線酸発生剤(A)および酸硬化性化合物(B)が分離することなく均一に溶解することができれば、特に限定はされない。具体例としては、ポリアクリレート類、ポリ−α−アルキルアクリレート類、ポリアミド類、ポリビニルアセタール類、ポリホルムアルデヒド類、ポリウレタン類、ポリカーボネート類、ポリスチレン類、ポリビニルエステル類等の重合体あるいは共重合体等が挙げられ、さらに具体的には、ポリメタクリル酸、ポリメタクリレート、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリビニルカルバゾール、ポリビニルピロリドン、ポリビニルブチラール、ポリビニルアセテート、ノボラック樹脂、フェノール樹脂、エポキシ樹脂、アルキッド樹脂その他、赤松清監修、「新・感光性樹脂の実際技術」、(シーエムシー、1987年)や「10188の化学商品」、657〜767頁(化学工業日報社、1988年)記載の業界公知の有機高分子重合体が挙げられる。また、これらのバインダー自身が酸を触媒とする架橋反応に関与しうる官能基を有していても良い。また、これらの高分子重合体がフェノール性水酸基やカルボン酸基に代表される置換基によりアルカリ現像性などの機能が付与されている場合には、アルカリ現像液に対する溶解性が付与され、後述するネガ型レジストとして応用することも可能である。
本発明の感エネルギー線硬化性組成物は、酸発生剤(A)を使用した効果により、増感剤を用いなくともエネルギー線、特に300nmから450nmの波長領域の光照射に対して非常に迅速かつ確実に硬化することが可能であるが、必要に応じて増感剤を併用して用いてもよい。
本発明と併用することができる増感剤の例としては、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ナフタセン誘導体、ペリレン誘導体、ペンタセン誘導体等の縮合多環芳香族誘導体、アクリジン誘導体、ベンゾチアゾール誘導体、カルコン誘導体やジベンザルアセトン等に代表される不飽和ケトン類、ベンジルやカンファーキノン等に代表される1,2−ジケトン誘導体、ベンゾイン誘導体、フルオレン誘導体、ナフトキノン誘導体、アントラキノン誘導体、キサンテン誘導体、チオキサンテン誘導体、キサントン誘導体、チオキサントン誘導体、クマリン誘導体、ケトクマリン誘導体、シアニン誘導体、メロシアニン誘導体、オキソノール誘導体等のポリメチン色素、アクリジン誘導体、アジン誘導体、チアジン誘導体、フェノチアジン誘導体、オキサジン誘導体、インドリン誘導体、アズレン誘導体、アズレニウム誘導体、スクアリリウム誘導体、ポルフィリン誘導体、テトラフェニルポルフィリン誘導体、トリアリールメタン誘導体、テトラベンゾポルフィリン誘導体、テトラピラジノポルフィラジン誘導体、フタロシアニン誘導体、テトラアザポルフィラジン誘導体、テトラキノキサリロポルフィラジン誘導体、ナフタロシアニン誘導体、サブフタロシアニン誘導体、ピリリウム誘導体、チオピリリウム誘導体、テトラフィリン誘導体、アヌレン誘導体、スピロピラン誘導体、スピロオキサジン誘導体、チオスピロピラン誘導体、カルバゾール誘導体、金属アレーン錯体、有機ルテニウム錯体等が挙げられ、その他さらに具体的には大河原信ら編、「色素ハンドブック」(1986年、講談社)、大河原信ら編、「機能性色素の化学」(1981年、シーエムシー)、池森忠三朗ら編、「特殊機能材料」(1986年、シーエムシー)、フォトポリマー懇話会編、「感光材料リストブック」(1996年、ぶんしん出版)に記載の色素および増感剤が挙げられるがこれらに限定されるものではなく、これらは必要に応じて任意の比率で二種以上用いてもかまわない。
これらの増感剤のうち、好ましいものとしては、ナフタレン誘導体、アントラセン誘導体の縮合多環芳香族誘導体および、フェノチアジン誘導体、カルバゾール誘導体、ベンゾチアゾール誘導体が挙げられ、中でも特に好ましいものとして、アントラセン誘導体が挙げられる。
これらの具体例としては、アントラセン、1−アントラセンカルボン酸、2−アントラセンカルボン酸、9−アントラセンカルボン酸、9−アントラアルデヒド、9,10−ビス(クロロメチル)アントラセン、9,10−ビス(フェニルエチニル)アントラセン、9−ブロモアントラセン、1−クロロ−9,10−ビス(フェニルエチニル)アントラセン、9−シアノアントラセン、9,10−ジブロモアントラセン、9,10−ジシアノアントラセン、9,10−ジメチルアントラセン、9,10−ジブチルアントラセン、9,10−ジフェニルアントラセン、9,10−ジ−p−トリルアントラセン、9,10−ビス(p−メトキシフェニル)アントラセン、2−ヒドロキシメチルアントラセン、9−ヒドロキシメチルアントラセン、9−メチルアントラセン、9−フェニルアントラセン、9,10−ジメトキシアントラセン、9,10−ジエトキシアントラセン、9,10−ジブトキシアントラセン、9,10−ジフェノキシアントラセン、9,10−ジメトキシアントラセン−2−スルホン酸ナトリウム、1,4,9,10−テトラヒドロキシアントラセン、2,2,2−トリフルオロー1−(9−アンスリル)エタノール、1,8,9−トリヒドロキシアントラセン、1,8−ジメトキシ−9,10−ビス(フェニルエチニル)アントラセン、9−ビニルアントラセン、9−アントラセンメタノール、9−アントラセンメタノールのトリメチルシロキシエーテル、フェノチアジン、N−エチルカルバゾール、N−フェニルカルバゾール、1−メトキシナフタレン、2−メトキシナフタレン。1,4−ジメトキシナフタレン等が挙げられる。
上記増感剤を併用する場合の添加量は特に限定されないが、本発明の感エネルギー線酸発生剤100重量部に対し、0〜100重量部が好ましい。
本発明の感エネルギー線酸発生剤(A)は酸発生剤として十分高い感度を有しているが、他の酸発生剤と併用して用いることも可能である。感エネルギー線酸発生剤(A)と併用することが可能な酸発生剤は特に限定されず、「PAG」、「酸発生剤」、「光酸発生剤」、「光重合開始剤」、「カチオン重合開始剤」、「重合触媒」等の名称で業界公知の材料を適宜選択して使用することできる。また、他の酸発生剤を使用する場合は、単独または複数組み合わせて使用することも可能である。
本発明の感エネルギー線酸発生剤と併用することが可能な他の感エネルギー線酸発生剤としては、まず、オニウム塩系化合物が挙げられる。このようなオニウム塩系化合物の例としては、スルホニウム塩系、ヨードニウム塩系、ホスホニウム塩系、ジアゾニウム塩系、ピリジニウム塩系、ベンゾチアゾリウム塩系、スルホキソニウム塩系、フェロセン系の化合物が挙げられ、これらの構造は特に限定されず、ジカチオンなどの多価カチオン構造を有していてもよく、カウンターアニオンも公知のものを適宜、選択して使用することができる。
また、本発明の感エネルギー線酸発生剤と併用することが可能なオニウム塩以外の感エネルギー線酸発生剤としては、ニトロベンジルスルホナート類、アルキルまたはアリール−N−スルホニルオキシイミド類、ハロゲン化されていてもよいアルキルスルホン酸エステル類、1,2−ジスルホン類、オキシムスルホナート類、ベンゾイントシラート類、β−ケトスルホン類、β−スルホニルスルホン類、ビス(アルキルスルホニル)ジアゾメタン類、イミノスルホナート類、イミドスルホナート類、トリハロメチルトリアジン類などのトリハロアルキル基を有する化合物等を挙げることができるが、これらに限定されるものではない。
本発明の感エネルギー線酸発生剤(A)と併用する他の酸発生剤の比率は特に限定されないが、本発明の酸発生剤(A)100重量部に対して0〜99重量部の範囲で使用することが好ましい。
本発明の感エネルギー線酸発生剤を使用した硬化性組成物は、上記各成分を溶解する溶媒に溶かして支持体上に塗布して用いることができる。ここで使用する溶媒は、本発明の感エネルギー線硬化性組成物を均一に溶解できるものであれば特に限定されない。具体例としては1,1,2,2−テトラクロロエタン、エチレンジクロライド、シクロヘキサノン、シクロペンタノン、γ−ブチロラクトン、メチルエチルケトン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルメトキシプロピオナート、エチルエトキシプロピオナート、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、エチレングリコールモノエチルエ一テルアセテート、プロピレングリコールモノメチルエ一テル、プロピレングリコールモノメチルエ一テルアセテート、トルエン、酢酸エチル、酢酸イソアミル、乳酸メチル、乳酸エチル、エトキシプロピオン酸エチル、N,N一ジメチルホルムアミド、N,N一ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等が好ましく、これらの溶媒を単独あるいは混合して使用する。
また、さらに、上記溶媒に界面活性剤、ハレーション防止剤、帯電防止剤、レベリング剤、消泡剤等の添加剤を適宜混合して使用することも可能である。
本発明の感エネルギー線硬化性組成物含む溶液は、ロールコーター、スピンコーター、グラビアコーター、コンマコーター、バーコーター、カーテンコーター、ダイコーター、インクジェットプリンター等を用いてシート状基材上に塗布され、これを乾燥することによって皮膜を形成することができる。シート状基材として、本発明で用いられるものに制限はないが、紙、不織布、布地、多孔質ガラスシート等の多孔質性基材、あるいは合成紙、コート紙、高分子フィルム、金属箔等の基材を使用することが可能である。これらの基材は単独でも良いし、積層された複合基材の形態でも使用できる。また、この様にして形成された硬化物層の皮膜を保護する目的で、さらに高分子フィルム等の保護膜を設けることも可能である。
本発明の感エネルギー線酸発生剤(A)と、酸硬化性化合物(B)とを含む感エネルギー線硬化性組成物は、エネルギー線、特に300nmから450nmの波長領域の光を照射した場合、感エネルギー線酸発生剤(A)から効率的に発生する酸により、容易に硬化することが可能であり、良好な特性を持った硬化物を得ることができる。
本発明の酸硬化性組成物を硬化させるために使用するエネルギー線源は特に限定されないが、感エネルギー線酸発生剤(A)が特に好適な感度を発現する300nmから450nmの波長領域の光を照射できる光源が好ましく、上記波長領域の光と同時に他のエネルギー線を発していても良い。特に好ましい光源としては、300nmから450nmの波長領域に発光の主波長を有する光源であり、具体例としては、超高圧水銀ランプ、高圧水銀ランプ、水銀キセノンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、パルス発光キセノンランプ等が挙げられるがこれらに限定されるものではない。また、Nd−YAG3倍波レーザー、He−Cdレーザー、窒素レーザー、Xe−Clエキシマレーザー、Xe−Fエキシマレーザー、半導体励起固体レーザー等の300nmから450nmの波長領域に発光波長を有するレーザーも好適なエネルギー線源として使用することができる。また、電子線も好適なエネルギー線源として使用することが可能である。本発明の感エネルギー線酸発生剤(A)はいずれも300nmから450nmの波長領域に好適な吸収を有しており置換基によって吸収特性がやや異なるが、上記した光源を適宜選択することにより、非常に高感度な感エネルギー線酸発生剤として機能することが可能である。また、これらの光源は適宜、フィルター、ミラー、レンズ等の光学機器を介して本発明の感エネルギー線硬化性組成物に照射することが可能である。
本発明の感エネルギー線硬化性組成物は、上記エネルギー線源からのエネルギー線照射と同時、あるいはエネルギー線照射後に加熱することにより硬化を促進させ、良好な特性を有する硬化物を得ることも可能である。
本発明の感エネルギー線硬化性組成物を硬化した場合、エネルギー線を照射した部分は有機溶剤やアルカリ現像液に対する溶解性が低下することとなる。そのため、部分的にエネルギー線を透過する特性を有するパターンマスクを介して露光したり、レーザーにより直接パターンを描画した後に、有機溶剤やアルカリ現像液等で現像すれば、エネルギー線が照射された部分のみ不溶化したパターンとして残存させることができ、いわゆるネガ型レジスト材料として使用することも可能である。このようなレジストの用途としては、例えば、感光性印刷版や、カラーフィルター用レジスト、ブラックマトリクス用レジスト、半導体レジスト、ソルダーレジスト、回路基板用レジスト等のネガ型フォトレジストが挙げられる。
上記のようなネガ型のレジストを用いてパターン形成を行うに当たっては、精密集積回路素子の製造に使用されるような基板(例:シリコン/二酸化シリコン被覆、ガラス基板上に形成されたシリコン層など)、プリント回路用に使用されるような基板(例:銅張り積層板)、カラーフィルターに用いられるようなガラス板(またはプラスチック板)、あるいは平版印刷版に使用されるような基板(例:陽極酸化されたAl板)上に、スピナー、コーター等の適当な塗布方法により塗布した後、制御された条件のもとでプリベークし、所定のマスクを介してエネルギー線照射したり、あるいはレーザー(あるいは電子線)による直接描画をした後、制御された条件のもとで、エネルギー線の未照射領域を現像液により選択的に除去することにより、良好なパターン画像を形成することができる。
また、発生した酸を系中に拡散せしめる目的のため、あるいは発生した酸による硬化反応を促進せしめる目的のために、エネルギー線による照射を行った後に、加熱(ポストベーク)することも可能である。加熱方法は特に限定されないが、例としては加熱オーブン、ホットプレートの使用等が挙げられる。加熱温度は、酸発生剤の種類、使用する高分子化合物の種類によって適宜選択することが望ましいが、酸発生剤の分解温度以下が好ましい。
また、上記ネガ型レジストを現像するための現像液としては有機溶媒あるいはアルカリ現像液が挙げられる。有機溶媒としては先に述べた本発明の感エネルギー線硬化性組成物を均一に溶解するために使用可能な溶媒と同一のものが挙げられる。また、アルカリ現像液とは、以下に示す無機もしくは有機塩基の溶液があげられ、これらは、本発明の硬化性組成物に使用する酸硬化性化合物あるいは併用するバインダーがカルボン酸基やフェノール性水酸基などのアルカリ可溶性基を有する場合に有効である。
アルカリ現像液としては、具体的には、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第一アミン類、ジエチルアミン、ジ−n−ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四扱アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することが望ましい。更に、上記アルカリ類の水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。
本発明の感エネルギー線硬化性組成物を上記と同様の方法で部分的に硬化した場合、硬化した部分と未硬化の部分で屈折率に代表される光学特性にも差が生じる。この原理を利用すれば、通信用の導波路や、ホログラムなどの画像形成材料として使用することも可能である。
本発明の感エネルギー線酸発生剤および該酸発生剤から発生する酸触媒の他の用途としては、酸による触媒反応を利用したポジ型レジスト材料を挙げることができ、特に化学増幅型のポジ型レジスト材料が有効である。
すなわち、本発明の感エネルギー線酸発生剤(A)と、酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)とを含む組成物は、エネルギー線、特に300nmから450nmの波長領域の光の照射により、良好な感度と溶解コントラストを有する感エネルギー線ポジ型レジスト組成物として使用することができる。
本発明で使用する酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)について説明する。
本発明で使用する、酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)とは、例えば、カルボン酸のエステル、炭酸のエステル、フェノール性水酸基のエーテル、アルコキシシラン等があげられ、これらはいずれも、そのエステル結合や、炭素−酸素結合、シロキシ結合が、酸を触媒とする反応により、カルボキシル基、水酸基、シラノール基へと変化する分解反応あるいは脱保護反応を経て、アルカリ現像液に対する溶解性が増加する化合物である。すなわち、酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)とは、カルボキシル基、アルコール性水酸基、フェノール性水酸基、シラノール基等の酸性基を有するアルカリ現像液に対して可溶な化合物の、該酸性基の水素原子を、酸の存在下では容易に分解される保護基により保護し、アルカリ現像液に対する溶解性を抑止したアルカリ難溶性化合物と言い換えることができ、「化学増幅型レジスト」用の材料として、業界公知のものがこれに含まれる。
上記したカルボキシル基、アルコール性水酸基、フェノール性水酸基、シラノール基等の酸性基を有するアルカリ現像液に対して可溶な代表的な化合物としては、ポリ−o−ヒドロキシスチレン、ポリ−m−ヒドロキシスチレン、ポリ−p−ヒドロキシスチレンが挙げられる。また、p−ヒドロキシスチレンをN−置換マレイミド、無水マレイン酸、アクリル酸、メタクリル酸、アルキルアクリレート、アルキルメタクリレート、スチレン、シクロオレフィン、ビニルエーテルから選ばれるモノマーを共重合した高分子重合体などもアルカリ現像液に可溶な化合物として挙げることができるが、これらに限定されるものではなく、業界公知のポジ型レジスト材料であれば、いずれも使用可能である。
化合物(C)の原料となるアルカリ現像液に可溶な化合物の分子量は、特に限定されないが、GPCによるポリスチレン換算重量平均分子量で1000から100000の範囲が好ましく、成膜性や塗工適性の観点からは2000から50000の範囲が特に好ましい。
上記したアルカリ現像液に対して可溶な化合物のアルカリ現像液の溶解性を抑止するために用いる、酸の存在化で容易に分解される保護基としては、メトキシメチル基、エトキシエチル基、t−ブトキシメチル基、イソプロポキシメチル基、1−メトキシエチル基、1−エトキシエチル基、1−イソプロポキシエチル基、1−エトキシエチル基、テトラヒドロフラニル基、テトラヒドロピラニル基に代表されるアルコキシアルキル基、t−ブトキシカルボニルオキシメチル基、1−メチル1−フェニルエトキシカルボニルオキシメチル基に代表されるアルコキシカルボニルオキシアルキル基、t−ブチル基、t−ペンチル基、1−メチル−1−フェニルエチル基に代表される3級アルキル基、トリメチルシリル基、エチルジメチルシリル基、t−ブチルジメチルシリル基に代表されるトリアルキルシリル基等を挙げることができるが、これらに限定されるものではない。
アルカリ現像液に対して可溶な化合物中に存在する酸性基を、酸の存在化で容易に分解される保護基により保護する場合、該酸性基の全てを保護しなくとも十分なアルカリ現像液に対する溶解抑止の効果を得ることができるが、保護基の導入率としては、アルカリ現像液に対して可溶な化合物中に存在する酸性基の数を100%とした場合、10%から100%の酸性基を保護基により保護することが好ましい。保護基の導入率が10%より小さければ、アルカリ現像液に対する十分な溶解抑止効果を得ることができず、本発明の酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)として十分機能しない。
これらの酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)は単独または複数併用して用いることができる。また、他のアルカリ可溶性樹脂、例えばフェノール性ノボラック樹脂と混合して使用することもできる。
本発明の感エネルギー線酸発生剤(A)と、酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)とを含む組成物は、エネルギー線、特に300nmから450nmの波長領域の光照射により、酸発生剤(A)から効率的に酸が発生し、この酸を触媒として、エネルギー線の照射前にはアルカリ現像液に対して低い溶解度を有していた化合物(C)の構造中にある保護基が容易に分解され、その結果、アルカリ現像液に対する化合物(C)の溶解度が大幅に増加することとなる。従って、部分的にエネルギー線が照射する特性を有するマスクを介してエネルギー線を照射したり、あるいは、レーザーなどでパターンを直接描画した場合、エネルギー線が付与された部分のみがアルカリ現像液に対する溶解度が大幅に増加するため、アルカリ現像液で現像した場合にいわゆるポジ型レジストのパターンを形成することが可能である。本発明を利用したポジ型レジスト組成物は、酸発生剤(A)から効率的に発生する酸により、良好なレジスト感度を実現するとともに、エネルギー線を照射した部分と照射しない部分に高い溶解度の差、すなわち溶解コントラストを生じさせることが可能である。
酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)に対する感エネルギー線酸発生剤(A)の配合比は特に限定されないが、化合物(C)100重量部に対して、感エネルギー線酸発生剤(A)を0.01〜20重量部、好ましくは0.1〜10重量部の比率で用いることが好ましい。
本発明を利用したポジ型レジスト組成物には、芳香族化合物類のt−ブチルエステル、t−ブチルカーボネート、t−ブチルエーテル類〔Proc.SPIE,920,p60(1988年)、Polym.Eng.Sci.,第29巻,846頁(1989年)〕、テトラヒドロピラニル基で保護したポリヒドロキシ化合物類〔特開平1−67500号〕、その他アセタール化合物類〔Polym.Eng.Sci.,第29巻,874頁(1989年)〕等の低分子の溶解性抑制剤も使用することができる。また、本発明を利用したポジ型レジスト組成物には耐環境性の向上やパターン形状の制御のためにアミン系化合物を添加することも可能である。
この様なポジ型レジスト組成物には、着色などの目的で、必要に応じて更に染料などを含有させることができる。好適な染料としては油溶性染料及び塩基性染料がある。具体的にはオイルイエロー#101、オイルイエロー#103、オイルピンク#312、オイルグリーンBG、オイルブルーBOS、オイルブルー#603、オイルプラックBY、オイルブラックBS、オイルブラックT−505(以上、オリエント化学工業株式会社製)、クリスタルバイオレット(CI−42555)、メチルバイオレット(CI−42535)、ローダミンB(CI−45170B)、マラカイトグリーン(CI−42000)、メチレンブルー(CI−52015)などを挙げることができる。
以上の様な、本発明の感エネルギー線酸発生剤(A)を使用したポジ型レジスト組成物は、上記各成分を均一に溶解する溶媒に溶かして支持体上に塗布して用いることができる。ここで使用する溶媒としては、ポジ型レジスト組成物を均一に溶解できるものであれば特に限定されない。具体例としては1,1,2,2−テトラクロロエタン、エチレンジクロライド、シクロヘキサノン、シクロペンタノン、γ−ブチロラクトン、メチルエチルケトン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルメトキシプロピオナート、エチルエトキシプロピオナート、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、エチレングリコールモノエチルエ一テルアセテート、プロピレングリコールモノメチルエ一テル、プロピレングリコールモノメチルエ一テルアセテート、トルエン、酢酸エチル、酢酸イソアミル、乳酸メチル、乳酸エチル、エトキシプロピオン酸エチル、N,N一ジメチルホルムアミド、N,N一ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等が好ましく、これらの溶媒を単独あるいは混合して使用する。
また、さらに、上記溶媒に界面活性剤、ハレーション防止剤、帯電防止剤、レベリング剤、消泡剤、吸光度を調整するための光吸収剤等の添加剤を適宜混合して使用することも可能である。
本発明を利用したポジ型レジスト組成物は、感エネルギー線酸発生剤(A)を使用することにより十分な感度を有しているが、他の酸発生剤や増感剤を併用して用いることも可能である。そのような、他の酸発生剤や増感剤としては、本発明の感エネルギー線硬化性組成物の項で説明した材料と同様のものを挙げることができる。
上記の様なポジ型レジスト組成物を用いてパターン形成を行うに当たっては、精密集積回路素子の製造に使用されるような基板(例:シリコン/二酸化シリコン被覆、ガラス基板上に形成されたシリコン層など)、プリント回路用に使用されるような基板(例:銅張り積層板)、カラーフィルターに用いられるようなガラス板(またはプラスチック板)、あるいは平版印刷版に使用されるような基板(例:陽極酸化されたAl板)上に、スピナー、コーター等の適当な塗布方法により塗布した後、制御された条件のもとでプリベークし、所定のマスクを介して光(あるいは電子線)照射したり、あるいはレーザー(あるいは電子線)による直接描画をした後、制御された条件のもとで、照射領域を現像処理して選択的に除去することにより、良好なパターン画像を形成することができる。
本発明を利用したポジ型レジスト組成物に照射する、エネルギー線源としては、先に本発明の硬化性組成物の説明の際に列挙したものと同様のエネルギー線源を使用することができる。また、ステッパーを使用した縮小投影露光も可能である。
また、発生した酸を系中に拡散せしめる目的のため、あるいは発生した酸による脱保護反応を促進せしめる目的のために、エネルギー線による照射を行った後に、加熱することも可能である。加熱方法としては、加熱オーブン、ホットプレートなどの使用が可能である。該方法により、いわゆる化学増幅が可能となる。加熱温度は、酸発生剤の種類、使用する高分子化合物の種類によって適宜選択することが望ましいが、一般的には40℃〜160℃の範囲で行う。
また、本発明を利用したポジ型レジスト組成物を現像するためのアルカリ現像液とは、以下に示す無機もしくは有機塩基の溶液があげられ、これは、先に説明した、酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)が、酸を触媒とする反応により、カルボキシル基や水酸基、シラノール基等へと変化したものを、溶解させ、除去するために用いられる。
それに相応しい現像液としては、具体的には、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第一アミン類、ジエチルアミン、ジ−n−ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四扱アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することが望ましい。さらに、上記アルカリ類の水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。
本発明の感エネルギー線酸発生剤(A)を利用した他の用途としては、酸による発色反応を利用した発色材料が挙げられる。
本発明の感エネルギー線酸発生剤(A)と、酸との反応により発色する色素前駆体(D)とを含む組成物は、エネルギー線、特に300nmから450nmの波長領域の光照射により、迅速かつ良好な発色濃度を有する感エネルギー線発色性組成物として機能することができる。
本発明で使用する酸との反応により発色する色素前駆体(D)について説明する。本発明に使用可能な色素前駆体としては、既に公知の色素前駆体、例えば、トリフェニルメタン系色素、トリメタンフタリド系色素、フェノチアジン色素、フェノキサジン色素、フルオラン色素、インドリルフタリド色素、アザフタリド色素、ジフェニルメタン系色素、クロメノピラゾール系色素、ロイコオーラミン色素、ローダミンラクタム系色素、アゾメチン系色素およびロイコキサンテン系色素等が挙げられる。
これら色素前駆体(D)の具体的な例としては、特開昭59−190891号公報、特開昭60−202155号公報、特開昭62−167086号公報、特開昭61−51381号公報、特開昭60−184878号公報、特開昭50−195173号公報、特開昭62−27171号公報、特開昭62−106964号公報、特開昭62−4752号公報、特開昭61−230981号公報、特開昭61−101556号公報、特開昭62−84157号公報、特開昭56−52759号公報、特開昭60−196177号公報、特開昭58−7453号公報、特開昭58−76458号公報、特開昭59−135254号公報、特開昭55−265号公報、特開昭52−82243号公報、特開昭57−195155号公報、特開昭62−74961号公報、特開昭63−236679号公報、特開昭号公報、特開昭58−209589号公報、特開昭62−179983号公報、特開昭63−317558号公報、特開昭49−103710号公報、特開昭63−251278号公報、特開昭63−251279号公報、特開昭63−251280号公報、特開昭51−8012号公報、特開昭58−192887号公報、特開昭58−192885号公報、特開昭62−77132号公報、特開昭54−126114号公報、特開昭64−251148号公報、特開昭47−460110号公報、特開昭61−195164号公報、特開昭61−230981号公報、特開昭63−270662号公報、特開昭53−90255号公報、特開昭63−199268号公報、特開昭51−121035号公報、特開昭55−115448号公報、特開昭58−157779号公報、特開昭61−87758号公報、特開昭62−243652号公報、特開昭61−113589号公報、特開昭62−176881号公報、特開昭60−230890号公報、特開昭48−95420号公報、特開昭59−162086号公報、特開昭62−198495号公報、特開昭59−199757号公報、特開昭64−51978号公報、特開昭62−127353号公報、特開昭62−292859号公報、特開昭50−124930号公報、特開昭54−111528号公報、特開昭49−59127号公報、特開昭52−92618号公報、特開昭50−137549号公報、特開昭54−61637号公報、特開昭59−25393号公報、特開昭53−97512号公報、特開昭62−94841号公報、特開昭62−198494号公報、特開昭64−3176特公昭46−16052号公報、特公昭51−92207号公報、特公昭48−43296号公報、特公昭51−23204号公報、特公昭52−10871号公報、特公昭58−40991号公報、特公昭51−15445号公報、特公昭60−27692号公報、特公昭54−26929号公報、特公昭55−49086号公報、特公昭56−162690号公報、特公昭46−4614号公報、特公昭47−20479号公報、特公昭47−42364号公報、特公昭60−1341号公報、特公昭59−30748号公報、特公昭47−1179号公報、特公昭45−4698号公報、特公昭46−16053号公報、特公昭49−3047号公報、特公昭45−8557号公報、特公昭61−12952号公報、特公昭56−12515号公報、特公昭64−2589号公報、特公昭46−22649号公報、特公昭54−25445号公報、特公昭47−19799号公報、特公昭51−23202号公報、特公昭55−7473号公報、特公昭56−11596号公報、特公昭57−24233号公報、特公昭60−25275号公報、特公昭60−23991号公報、特公昭51−92207号公報、特公昭48−18725号公報、特公昭61−25745号公報、特公昭51−16807号公報、特公昭63−43398号公報、特公昭42−25654号公報、特公昭59−3279号公報、特公昭60−6794号公報、特公昭50−14532号公報、特公昭37−4041号公報、特公昭46−12248号公報、特開平4−224990号公報、特開平4−225982号公報、特開平4−18060号公報、特開平2−26789号公報、特開平3−143680号公報、特開平3−294280号公報、特開平2−58574号公報、特開平3−127794号公報、特開平1−190484号公報、特開平2−26783号公報、特開平4−223467号公報、特開平1−213636号公報、特開平1−160979号公報、特開平1−264889号公報、特開平2−135264号公報、特開平2−39987号公報、特開平2−26782号公報、特公平4−60035号公報、米国特許第4444591号明細書、米国特許第4515971号明細書、米国特許第4341403号明細書、米国特許第3560229号明細書、米国特許第4436920号明細書、米国特許第4390616号明細書、米国特許第4775656号明細書、米国特許第3514310号明細書、米国特許第2417897号明細書、米国特許第2548366号明細書、米国特許第2505472号明細書、米国特許第4220356号明細書、米国特許第4057562号明細書、米国特許第4316036号明細書、米国特許第4505093号明細書、米国特許第4562449号明細書、米国特許第3873573号明細書、米国特許第4119777号明細書、米国特許第4795736号明細書、米国特許第4794069号明細書、米国特許第3787412号明細書、米国特許第4820841号明細書、米国特許第4598150号明細書、米国特許第4446321号明細書、英国特許第1339316号明細書、英国特許第1160940号明細書、欧州特許第433024号公報等の公知文献にて開示されている材料を用いることができる。
本発明の感エネルギー線発色性組成物には、高分子バインダーをさらに添加して用いることが好ましい。その様な高分子バインダーには特に制限はなく、本発明の感エネルギー線酸発生剤(A)、色素前駆体(D)との相溶性を有し、かつ適当な溶媒によって溶解され塗布可能であり、また望ましくは熱可塑性の高分子化合物であれば特に問題はないが、色素前駆体(D)の発色を誘起しうるカルボキシル基、スルホン酸基、フェノール性水酸基、シラノール基などの残基を有しない高分子化合物が好ましい。これら官能基の最低含有量については、適宜選択することが望まれる。
具体的な高分子バインダーの例としては、ポリスチレン、スチレン/アクリル酸エステル共重合体、スチレン/メタクリル酸エステル共重合体、ポリアクリル酸メチル、ポリアクリル酸エチルなどのポリアクリル酸エステル類、ポリメタクリル酸メチル、ポリメタクリル酸エチルなどのポリメタクリル酸エステル類、ポリ酢酸ビニル、エチレン/酢酸ビニル共重合体、ポリウレタン、ビスフェノールA(または、テトラブロモビスフェノールA、ビスフェノールF、ビスフェノールSなど)型エポキシ樹脂、ノボラック型エポキシ樹脂、セルロースアセテート、セルロースアセテートサクシネート、メチルセルロース、エチルセルロースなどのセルロース誘導体、ポリビニルブチラール、ポリビニルホルマール、ポリアミド樹脂、ポリエステル樹脂、アルキッド樹脂等を挙げることができる。
本発明を利用した感エネルギー線発色性組成物は、感エネルギー線酸発生剤(A)を使用することにより十分な感度を有しているが、他の酸発生剤や増感剤を併用して用いることも可能である。そのような、他の酸発生剤や増感剤としては、本発明の感エネルギー線硬化性組成物の項で説明した材料と同様のものを挙げることができる。
この様にして得られた感エネルギー線発色性組成物を、シート状基材の上に膜形成された感エネルギー線発色性組成物とするに当たっては、該組成物を溶媒に溶解して基材上に塗布する方法をとることができる。ここで使用する溶媒としては、特に限定はないが、例えばMEK、MIBK、シクロヘキサノン、シクロペンタノン等のケトン系溶媒、酢酸エチル、酢酸アミル(またはイソアミル)、酢酸ブチル等の酢酸エステル系溶媒、乳酸メチル、乳酸エチル等の乳酸エステル類、1,1,2,2−テトラクロロエタン、エチレンジクロライド等のハロゲン系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2−メトキシエチルアセテート、エチレングリコールモノエチルエ一テルアセテート、プロピレングリコールモノメチルエ一テルアセテート、プロピレングリコールモノメチルエ一テル等のグリコール誘導体系溶媒、トルエン、キシレン等の芳香族系溶媒、N,N一ジメチルホルムアミド、N,N一ジメチルアセトアミド、ジメチルスルホキシド等が好ましく、これらの溶媒を単独あるいは混合して使用する。また、一旦基材上に形成した該組成物を、熱転写方式などにより他の基材に転写して発色性組成物を作成する方法も選択できる。
またさらに、上記溶媒に界面活性剤、ハレーション防止剤、帯電防止剤、レベリング剤、消泡剤などの添加剤を適宜混合して使用することも可能である。
上記の感エネルギー線発色性組成物の配合比に特に制限はないが、好ましくは、感エネルギー線酸発生剤(A)100重量部に対して、色素前駆体(D)が0.1〜40000重量部の範囲、また高分子バインダーを使用するに当たっては、感エネルギー線酸発生剤(A)100重量部に対して、25〜100000重量部の範囲で配合することができる。特に色素前駆体(D)の含有率は、最大発色濃度が、光学濃度(Optical Density)で少なくとも0.5以上、より好ましくは1.0以上になるように調整することにより、視認性が高まるために望ましい。
この様にして調製した、本発明の感エネルギー線発色性組成物を含む溶液は、ロールコーター、スピンコーター、グラビアコーター、コンマコーター、バーコーター、カーテンコーター、ダイコーター、インクジェットプリンターなどを用いてシート状基材上に塗布され、これを乾燥することによって皮膜を形成することができる。シート状基材として、本発明で用いられるものに制限はないが、紙、不織布、布地、多孔質ガラスシートなどの多孔質性基材、あるいは合成紙、コート紙、高分子フィルム、金属箔などの基材等を使用することが可能である。これらの基材は単独でも良いし、積層された複合基材の形態でも使用できる。また、この様にして形成された感エネルギー線発色性組成物層の皮膜を保護する目的で、さらに高分子フィルムなどの保護膜を設けることも可能である。
以上の様にして作成された本発明の感エネルギー線発色性組成物は、所定のマスク(ネガマスク)を通してエネルギー線を照射したり、あるいはレーザー光(あるいは電子線ビーム)を用いて直接描画することにより、部分的に発色させ、迅速に高い発色濃度を有する良好なパターン画像を得ることができる。また、酸発生剤(A)から発生した酸を十分拡散させ、色素前駆体(D)との反応を促進するために、エネルギー線の照射と同時、あるいはエネルギー線照射後に加熱することも可能である。
本発明の感エネルギー線発色性組成物を発色させるために使用するエネルギー線源は特に限定はされないが、先に述べた感エネルギー線硬化性組成物および感エネルギー線ポジ型レジスト組成物の説明で列挙したものと同様のエネルギー線源を使用することが可能である。
本発明の実施例および比較例に使用した感エネルギー線酸発生剤(A)および増感剤の構造を以下に示した。
合成例1
化合物(1)の合成
2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノンの合成
(ジ−p−トリル)フェニルアミン5.00gをジクロロメタン50mlに溶解し、さらに塩化アルミニウム2.68gを添加して0℃にて攪拌下、ブロモアセチルブロマイド4.63gをジクロロメタン5mlに溶解した溶液を30分かけて添加した。添加終了後、25℃で20時間攪拌した。反応液を氷水300gにあけ、クロロホルム200mlにて抽出した。有機層を硫酸マグネシウムにて乾燥し、乾燥剤をろ過して溶媒を溜去し、2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノンを4.33g得た(収率60%)。
化合物(1)の合成
2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノンの合成
(ジ−p−トリル)フェニルアミン5.00gをジクロロメタン50mlに溶解し、さらに塩化アルミニウム2.68gを添加して0℃にて攪拌下、ブロモアセチルブロマイド4.63gをジクロロメタン5mlに溶解した溶液を30分かけて添加した。添加終了後、25℃で20時間攪拌した。反応液を氷水300gにあけ、クロロホルム200mlにて抽出した。有機層を硫酸マグネシウムにて乾燥し、乾燥剤をろ過して溶媒を溜去し、2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノンを4.33g得た(収率60%)。
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ブロマイドの合成
2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノン2.00gをジクロロメタン20mlに溶解して、ジメチルスルフィド0.63gを添加し、室温にて24時間攪拌した。この溶液にジエチルエーテル100ml添加し、溶液中に析出した結晶をろ過し、得られた結晶をジエチルエーテルにて洗浄した後、乾燥し、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ブロマイド1.99gを得た(収率86%)。
2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノン2.00gをジクロロメタン20mlに溶解して、ジメチルスルフィド0.63gを添加し、室温にて24時間攪拌した。この溶液にジエチルエーテル100ml添加し、溶液中に析出した結晶をろ過し、得られた結晶をジエチルエーテルにて洗浄した後、乾燥し、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ブロマイド1.99gを得た(収率86%)。
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート(化合物(1))の合成
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ブロマイド1.00gをイオン交換水1000mlに溶解し、ナトリウム・テトラキス(ペンタフルオロフェニル)ボレート水溶液(重量濃度4.68%)31.13gを室温にて10分かけて滴下し、滴下終了後室温のまま2時間攪拌した。析出物をろ過し、得られた固体をジクロロメタン50mlに溶解して水にて抽出洗浄した。有機層を硫酸マグネシウムで乾燥し、乾燥剤を除去後、0℃に冷却してヘキサン100mlを滴下した。生成した結晶をろ過し、ヘキサンで洗浄後、乾燥して[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート(化合物(1))を1.90g得た(収率82%)。
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ブロマイド1.00gをイオン交換水1000mlに溶解し、ナトリウム・テトラキス(ペンタフルオロフェニル)ボレート水溶液(重量濃度4.68%)31.13gを室温にて10分かけて滴下し、滴下終了後室温のまま2時間攪拌した。析出物をろ過し、得られた固体をジクロロメタン50mlに溶解して水にて抽出洗浄した。有機層を硫酸マグネシウムで乾燥し、乾燥剤を除去後、0℃に冷却してヘキサン100mlを滴下した。生成した結晶をろ過し、ヘキサンで洗浄後、乾燥して[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート(化合物(1))を1.90g得た(収率82%)。
合成例2
化合物(6)の合成
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロホスファート(化合物(6))の合成
遮光下、化合物(1)の合成の項で合成した2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノン1.50gをアセトン20mlに溶解し、ジメチルスルフィド0.47gを添加し0℃に冷却した。0℃のまま、この溶液に、AgPF6(ヘキサフルオロホスファートの銀塩)0.96gをアセトン10mlに加えた溶液を1時間かけて滴下し、室温まで昇温後、24時間遮光のまま攪拌した。生成した固体をろ過により除去し、得られた溶液の溶媒を溜去して固体を得た。この固体をアセトン−ヘキサンにて再沈し、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロホスファート(化合物(6))を0.89g得た(収率45%)。
化合物(6)の合成
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロホスファート(化合物(6))の合成
遮光下、化合物(1)の合成の項で合成した2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノン1.50gをアセトン20mlに溶解し、ジメチルスルフィド0.47gを添加し0℃に冷却した。0℃のまま、この溶液に、AgPF6(ヘキサフルオロホスファートの銀塩)0.96gをアセトン10mlに加えた溶液を1時間かけて滴下し、室温まで昇温後、24時間遮光のまま攪拌した。生成した固体をろ過により除去し、得られた溶液の溶媒を溜去して固体を得た。この固体をアセトン−ヘキサンにて再沈し、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロホスファート(化合物(6))を0.89g得た(収率45%)。
合成例3
化合物(7)の合成
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロアンチモネート(化合物(7))の合成
遮光下、化合物(1)の合成の項で合成した2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノン1.50gをアセトン20mlに溶解し、ジメチルスルフィド0.47gを添加し0℃に冷却した。0℃のまま、この溶液に、AgSbF6(ヘキサフルオロアンチモネートの銀塩)1.31gをアセトン10mlに加えた溶液を1時間かけて滴下し、室温まで昇温後、24時間遮光のまま攪拌した。生成した固体をろ過により除去し、得られた溶液の溶媒を溜去して固体を得た。この固体をアセトン−ヘキサンにて再沈し、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロアンチモネート(化合物(7))を1.02g得た(収率44%)。
化合物(7)の合成
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロアンチモネート(化合物(7))の合成
遮光下、化合物(1)の合成の項で合成した2−ブロモ−1−〔4−(ジ−p−トリル−アミノ)−フェニル〕−エタノン1.50gをアセトン20mlに溶解し、ジメチルスルフィド0.47gを添加し0℃に冷却した。0℃のまま、この溶液に、AgSbF6(ヘキサフルオロアンチモネートの銀塩)1.31gをアセトン10mlに加えた溶液を1時間かけて滴下し、室温まで昇温後、24時間遮光のまま攪拌した。生成した固体をろ過により除去し、得られた溶液の溶媒を溜去して固体を得た。この固体をアセトン−ヘキサンにて再沈し、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ヘキサフルオロアンチモネート(化合物(7))を1.02g得た(収率44%)。
合成例4
化合物(8)の合成
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・パーフルオロブタンスルホネート(化合物(8))の合成
化合物(1)の合成の項で合成した[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ブロマイド1.00gをイオン交換水1000mlに溶解し、室温にて攪拌下、パーフルオロブタンスルホン酸カリウム0.74gをイオン交換水40mlに溶解した溶液を30分かけて滴下した。滴下終了後の溶液を室温にてさらに6時間攪拌し、析出した結晶をろ過してイオン交換水でよく洗浄した。この結晶をメチルイソブチルケトン50mlに溶解し、イオン交換水に抽出洗浄後、有機層を硫酸マグネシウムにて乾燥し、乾燥剤を除去後、ヘキサン200mlを室温にて滴下し、得られた結晶をろ過し、ヘキサンで洗浄して乾燥することにより、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・パーフルオロブタンスルホネート(化合物(8))を0.74g得た(収率50%)。
化合物(8)の合成
[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・パーフルオロブタンスルホネート(化合物(8))の合成
化合物(1)の合成の項で合成した[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・ブロマイド1.00gをイオン交換水1000mlに溶解し、室温にて攪拌下、パーフルオロブタンスルホン酸カリウム0.74gをイオン交換水40mlに溶解した溶液を30分かけて滴下した。滴下終了後の溶液を室温にてさらに6時間攪拌し、析出した結晶をろ過してイオン交換水でよく洗浄した。この結晶をメチルイソブチルケトン50mlに溶解し、イオン交換水に抽出洗浄後、有機層を硫酸マグネシウムにて乾燥し、乾燥剤を除去後、ヘキサン200mlを室温にて滴下し、得られた結晶をろ過し、ヘキサンで洗浄して乾燥することにより、[2−〔4−(ジ−p−トリル−アミノ)−フェニル〕−2−オキソ−エチル]−ジメチルスルホニウム・パーフルオロブタンスルホネート(化合物(8))を0.74g得た(収率50%)。
合成例5〜9
上記した合成例1から合成例4の方法を応用することにより、本発明の感エネルギー線酸発生剤である化合物(3)〜化合物(5)、化合物(9)〜化合物(10)も得ることができた。
上記した合成例1から合成例4の方法を応用することにより、本発明の感エネルギー線酸発生剤である化合物(3)〜化合物(5)、化合物(9)〜化合物(10)も得ることができた。
上記合成例1〜9で合成した本発明の感エネルギー線酸発生剤(A)の元素分析の結果を表2として示した。
実施例1
感エネルギー線酸発生剤(A)として化合物(1)を0.6mmol、酸硬化性化合物(B)として3,4−エポキシシクロヘキシルメチル−3,4エポキシシクロヘキサンカルボキシレート(ダウ・ケミカル日本株式会社製、脂環式エポキシモノマー、製品名UVR−6110)を10gからなる感エネルギー線酸硬化性組成物をドクターブレードを用いて約10μmの厚みでアルミ板上に塗布し、メタルハライドランプを使用した光照射装置(3kW、2灯)にて15m/minのコンベア速度でエネルギー線を照射したところタックフリーの良好な硬化膜が得られた。
感エネルギー線酸発生剤(A)として化合物(1)を0.6mmol、酸硬化性化合物(B)として3,4−エポキシシクロヘキシルメチル−3,4エポキシシクロヘキサンカルボキシレート(ダウ・ケミカル日本株式会社製、脂環式エポキシモノマー、製品名UVR−6110)を10gからなる感エネルギー線酸硬化性組成物をドクターブレードを用いて約10μmの厚みでアルミ板上に塗布し、メタルハライドランプを使用した光照射装置(3kW、2灯)にて15m/minのコンベア速度でエネルギー線を照射したところタックフリーの良好な硬化膜が得られた。
実施例2〜6、比較例1〜7
実施例1の感エネルギー線酸発生剤(A)0.6mmolを、表3に示した感エネルギー線酸発生剤それぞれ0.6mmolに置き替えた他は、実施例1と全く同一の所作にて光照射を実施し、光照射後の膜のタックを評価した。タックは3段階にて評価し、表3に併せて示した。
実施例1の感エネルギー線酸発生剤(A)0.6mmolを、表3に示した感エネルギー線酸発生剤それぞれ0.6mmolに置き替えた他は、実施例1と全く同一の所作にて光照射を実施し、光照射後の膜のタックを評価した。タックは3段階にて評価し、表3に併せて示した。
本発明の感エネルギー線酸発生剤(A)を用いた場合、いずれの場合もタックが全くない良好な結果を示した(実施例1〜6)。一方、感エネルギー線酸発生剤(A)以外のものでは、十分な硬化が進行しないことから、タックが残存した不十分な硬化膜しか得られなかった(比較例1〜7)。
実施例7
感エネルギー線酸発生剤(A)として化合物(1)を0.08mmol、酸硬化性化合物(B)として3,4−エポキシシクロヘキシルメチル−3,4エポキシシクロヘキサンカルボキシレート(ダウ・ケミカル日本株式会社製、脂環式エポキシモノマー、製品名UVR−6110)を1g、バインダー樹脂としてポリメチルメタクリレート(Aldrich社製試薬、分子量c.a.996000)1g、溶剤としてシクロヘキサノン16g、増感剤0mmol(無添加)からなる均一な塗液を調整し、この塗液を#600にて研磨したステンレス板上にスピンコーターにて塗布した後、40℃のオーブン中で15分間加熱して溶媒を除去し2μmの膜厚の塗工膜を形成した。この塗工膜にウシオ電気株式会社製の水銀−キセノンランプUXM−200YAの光を365nmの光のみを選択的に透過するバンドパスフィルターおよび光量調節のためのNDフィルターを介して6mW/cm2の強度にて照射した。この光照射の間、反射式のIR(サーモニコレー社製 Magna560FTIR、ラピッドスキャンモード)を使用して、ステンレス板上の塗工膜のエポキシ基の特性吸収に相当する789cm-1の吸収強度をモニターした。この吸収強度の経時変化から、光照射前の上記特性吸収の強度を基準とした場合のエポキシモノマーの消費率を算出したところ、光照射10秒後ではエポキシモノマー消費率10%、光照射30秒後では同30%の消費率であった。
感エネルギー線酸発生剤(A)として化合物(1)を0.08mmol、酸硬化性化合物(B)として3,4−エポキシシクロヘキシルメチル−3,4エポキシシクロヘキサンカルボキシレート(ダウ・ケミカル日本株式会社製、脂環式エポキシモノマー、製品名UVR−6110)を1g、バインダー樹脂としてポリメチルメタクリレート(Aldrich社製試薬、分子量c.a.996000)1g、溶剤としてシクロヘキサノン16g、増感剤0mmol(無添加)からなる均一な塗液を調整し、この塗液を#600にて研磨したステンレス板上にスピンコーターにて塗布した後、40℃のオーブン中で15分間加熱して溶媒を除去し2μmの膜厚の塗工膜を形成した。この塗工膜にウシオ電気株式会社製の水銀−キセノンランプUXM−200YAの光を365nmの光のみを選択的に透過するバンドパスフィルターおよび光量調節のためのNDフィルターを介して6mW/cm2の強度にて照射した。この光照射の間、反射式のIR(サーモニコレー社製 Magna560FTIR、ラピッドスキャンモード)を使用して、ステンレス板上の塗工膜のエポキシ基の特性吸収に相当する789cm-1の吸収強度をモニターした。この吸収強度の経時変化から、光照射前の上記特性吸収の強度を基準とした場合のエポキシモノマーの消費率を算出したところ、光照射10秒後ではエポキシモノマー消費率10%、光照射30秒後では同30%の消費率であった。
実施例8〜12、および比較例8〜23
実施例7における感エネルギー線酸発生剤(A)0.08mmolを表4に示した感エネルギー線酸発生剤0.08mmol、増感剤を表4に示した化合物および添加量に置き替えた他は実施例7と全く同一の操作にて実験を行い、エポキシモノマーの消費率を算出した。結果も表4に併せて示した。
実施例7における感エネルギー線酸発生剤(A)0.08mmolを表4に示した感エネルギー線酸発生剤0.08mmol、増感剤を表4に示した化合物および添加量に置き替えた他は実施例7と全く同一の操作にて実験を行い、エポキシモノマーの消費率を算出した。結果も表4に併せて示した。
本発明の感エネルギー線酸発生剤(A)を用いた場合は、いずれの場合も著しく感度が向上した (実施例7〜12)。一方、本発明の感エネルギー線酸発生剤(A)以外を用いた場合、殆ど重合は進行せず(比較例8〜14)、本発明の感エネルギー線酸発生剤(A)と類似したアミンを増感剤として添加しても、十分な感度向上は得られなかった(比較例15〜21)。
実施例13
酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)としてポリ−p−ヒドロキシスチレン(分子量8000)中のフェノール水酸基の74%を1−エトキシエチル基で保護(アセタール化)した樹脂1g、感エネルギー線酸発生剤(A)として化合物(1)を0.05mmol、溶剤としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)9gを均一になるまで混合し、ポジ型レジスト用の塗液を調整した。この塗液を#600にて研磨したステンレス板上にスピンコーターを用いて塗布し、90℃のホットプレート上で90秒間加熱して、0.5μmの膜を形成した。この塗工膜にウシオ電気株式会社製の水銀−キセノンランプUXM−200YAの光を365nmの光のみを選択的に透過するバンドパスフィルターおよび光量調節のためのNDフィルターを介して照射した。光照射の間、反射式のIR(サーモニコレー社製、Magna560FTIR、ラピッドスキャンモード)を使用して、この光照射により発生した酸によるアセタール基の脱保護反応の進行を、ステンレス板上の塗工膜のアセタール基の特性吸収に相当する947cm-1の減衰としてモニターした。この特性吸収強度の経時変化から、光照射前の上記特性吸収の強度を基準とした場合のアセタール基の脱保護率を算出したところ、光照射10秒後ではアセタール基の脱保護率10%、光照射30秒後では同31%の脱保護率であった。
酸を触媒とする反応によりアルカリ現像液に対する溶解性が増加する化合物(C)としてポリ−p−ヒドロキシスチレン(分子量8000)中のフェノール水酸基の74%を1−エトキシエチル基で保護(アセタール化)した樹脂1g、感エネルギー線酸発生剤(A)として化合物(1)を0.05mmol、溶剤としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)9gを均一になるまで混合し、ポジ型レジスト用の塗液を調整した。この塗液を#600にて研磨したステンレス板上にスピンコーターを用いて塗布し、90℃のホットプレート上で90秒間加熱して、0.5μmの膜を形成した。この塗工膜にウシオ電気株式会社製の水銀−キセノンランプUXM−200YAの光を365nmの光のみを選択的に透過するバンドパスフィルターおよび光量調節のためのNDフィルターを介して照射した。光照射の間、反射式のIR(サーモニコレー社製、Magna560FTIR、ラピッドスキャンモード)を使用して、この光照射により発生した酸によるアセタール基の脱保護反応の進行を、ステンレス板上の塗工膜のアセタール基の特性吸収に相当する947cm-1の減衰としてモニターした。この特性吸収強度の経時変化から、光照射前の上記特性吸収の強度を基準とした場合のアセタール基の脱保護率を算出したところ、光照射10秒後ではアセタール基の脱保護率10%、光照射30秒後では同31%の脱保護率であった。
実施例14〜21、および比較例24〜33
実施例13における感エネルギー線酸発生剤(A)0.05mmolを表5に示した酸発生剤0.05mmolに置き換えた他は実施例13と全く同一の操作で実験をおこない、アセタール基の脱保護率を評価した。結果を表5に示した。
実施例13における感エネルギー線酸発生剤(A)0.05mmolを表5に示した酸発生剤0.05mmolに置き換えた他は実施例13と全く同一の操作で実験をおこない、アセタール基の脱保護率を評価した。結果を表5に示した。
本発明の感エネルギー線酸発生剤(A)を用いた場合は、いずれの場合もアセタール基の脱保護反応が迅速に進行した (実施例13〜21)。一方、本発明の感エネルギー線酸発生剤(A)以外を用いた場合、アセタール基の脱保護反応は、殆ど進行しなかった(比較例24〜33)。
実施例22
感エネルギー線酸発生剤(A)として化合物(1)を0.08mmol、酸硬化性化合物(B)として3,4−エポキシシクロヘキシルメチル−3,4エポキシシクロヘキサンカルボキシレート(ダウ・ケミカル日本株式会社製、脂環式エポキシモノマー、製品名UVR−6110)を1g、バインダー樹脂としてポリメチルメタクリレート(Aldrich社製試薬、分子量c.a.996000)1g、溶剤としてシクロヘキサノン16gからなる均一な塗液を調整した。この塗液をガラス板上にスピンコーターにて塗工して、40℃で10分間乾燥し、1.5μmの膜厚の塗工膜を形成した。この塗工膜上に21√2ステップタブレット(大日本スクリーン社製グレイスケールフィルム)を置き、ウシオ電機社製500mWの高圧水銀ランプの光を熱線カットフィルターを介して30秒間露光した後、トルエン中に60秒間含浸させて現像処理を行い、ステップタブレットに対応した完全に硬化して不溶化した段数を感度として評価したところ、感度は14段であった。
感エネルギー線酸発生剤(A)として化合物(1)を0.08mmol、酸硬化性化合物(B)として3,4−エポキシシクロヘキシルメチル−3,4エポキシシクロヘキサンカルボキシレート(ダウ・ケミカル日本株式会社製、脂環式エポキシモノマー、製品名UVR−6110)を1g、バインダー樹脂としてポリメチルメタクリレート(Aldrich社製試薬、分子量c.a.996000)1g、溶剤としてシクロヘキサノン16gからなる均一な塗液を調整した。この塗液をガラス板上にスピンコーターにて塗工して、40℃で10分間乾燥し、1.5μmの膜厚の塗工膜を形成した。この塗工膜上に21√2ステップタブレット(大日本スクリーン社製グレイスケールフィルム)を置き、ウシオ電機社製500mWの高圧水銀ランプの光を熱線カットフィルターを介して30秒間露光した後、トルエン中に60秒間含浸させて現像処理を行い、ステップタブレットに対応した完全に硬化して不溶化した段数を感度として評価したところ、感度は14段であった。
実施例23〜27および比較例34〜49
実施例16の感エネルギー線酸発生剤(A)0.08mmolを表6に示した酸発生剤0.08mmol、増感剤を表6に示した化合物および添加量に置き替えた他は実施例22と全く同一の操作で感度段数を評価した。実験結果も併せて表6に示した。
実施例16の感エネルギー線酸発生剤(A)0.08mmolを表6に示した酸発生剤0.08mmol、増感剤を表6に示した化合物および添加量に置き替えた他は実施例22と全く同一の操作で感度段数を評価した。実験結果も併せて表6に示した。
本発明の感エネルギー線酸発生剤(A)を用いた場合は、いずれの場合も高い感度段数を示した (実施例22〜27)。一方、本発明の感エネルギー線酸発生剤(A)以外を用いた場合、十分な硬化物は得られず(比較例34〜40)、本発明の感エネルギー線酸発生剤(A)と類似したアミンを増感剤として添加しても、十分な感度段数は得られなかった(比較例41〜49)。
実施例28
感エネルギー線酸発生剤(A)として化合物(1)を0.04mmol、酸により発色する色素前駆体(D)としてクリスタルバイオレットラクトン0.04mmol、バインダーとしてポリメチルメタクリレート(Aldrich社製試薬、分子量c.a.996000)1g、溶剤としてシクロヘキサノン9gを混合し均一な塗液を調製した。この塗液をガラス板上スピンコーターにて塗工して40℃で15分間乾燥して、6μmの膜厚の塗工膜を形成した。この塗工膜に対して、ウシオ電気株式会社製の水銀−キセノンランプUXM−200YAの光を365nmの光のみを選択的に透過するバンドパスフィルターおよび光量調節のためのNDフィルターを介して54mW/cm2の強度にて3秒間照射したところ、光照射された部分に青色の発色が認められた。光照射後の塗工膜の吸収スペクトルを測定し、発色した色素の吸収極大波長に相当する608nmの吸光度を測定したところ、吸光度は0.12であった。
感エネルギー線酸発生剤(A)として化合物(1)を0.04mmol、酸により発色する色素前駆体(D)としてクリスタルバイオレットラクトン0.04mmol、バインダーとしてポリメチルメタクリレート(Aldrich社製試薬、分子量c.a.996000)1g、溶剤としてシクロヘキサノン9gを混合し均一な塗液を調製した。この塗液をガラス板上スピンコーターにて塗工して40℃で15分間乾燥して、6μmの膜厚の塗工膜を形成した。この塗工膜に対して、ウシオ電気株式会社製の水銀−キセノンランプUXM−200YAの光を365nmの光のみを選択的に透過するバンドパスフィルターおよび光量調節のためのNDフィルターを介して54mW/cm2の強度にて3秒間照射したところ、光照射された部分に青色の発色が認められた。光照射後の塗工膜の吸収スペクトルを測定し、発色した色素の吸収極大波長に相当する608nmの吸光度を測定したところ、吸光度は0.12であった。
実施例29〜33および比較例50〜65
実施例20における感エネルギー線酸発生剤(A)0.04mmolを表7に示した酸発生剤0.04mmolに、増感剤を表7に示した化合物および添加量に変更した他は、実施例28と全く同一の実験をおこない、光照射後の608nmにおける色素の発色濃度を評価した。結果を表7に示した。
実施例20における感エネルギー線酸発生剤(A)0.04mmolを表7に示した酸発生剤0.04mmolに、増感剤を表7に示した化合物および添加量に変更した他は、実施例28と全く同一の実験をおこない、光照射後の608nmにおける色素の発色濃度を評価した。結果を表7に示した。
本発明の感エネルギー線酸発生剤(A)を用いた場合は、いずれの場合も十分な発色を示した (実施例28〜33)。一方、本発明の感エネルギー線酸発生剤(A)以外を用いた場合、十分な発色を示さなかった(比較例50〜65)。
本発明はエネルギー線の照射、特に300から450nmの光の照射に対して非常に高感度な酸発生剤として機能する感エネルギー線酸発生剤を提供するものである。従って本発明の酸発生剤は、従来より用いられてきたエネルギー線の照射により発生する酸を触媒とした重合、架橋、分解、発色反応などを迅速かつ確実に進行させることができ、その結果として各種用途のエネルギー線に対する高感度化、あるいは反応が十分進行することによる各種用途の特性向上等が期待できる。本発明により、高感度化や特性向上が期待できる用途の例としては、重合あるいは架橋反応を利用した成形樹脂、注型樹脂、光造形用樹脂、封止剤、歯科用重合材料、印刷インキ、塗料、印刷版用感光性樹脂、印刷用カラープルーフ、カラーフィルター用レジスト、ブラックマトリクス用レジスト、プリント基板用レジスト、半導体製造用レジスト、マイクロエレクトロニクス用レジスト、マイクロマシン用部品製造用レジスト、絶縁材、ホログラム材料、導波路用材料、オーバーコート剤、接着剤、粘着剤、粘接着剤、剥離コート剤等、あるいは発生した酸を触媒とする色素前駆体の発色反応を利用した画像形成方法、偽造防止方法、エネルギー線量検出方法など、さらには、発生した酸を触媒とする分解反応を利用した半導体製造用、TFT製造用、カラーフィルター製造用、マイクロマシン部品製造用等のポジ型レジスト材料等が挙げられる。
Claims (6)
- 下記一般式(1)で表記される感エネルギー線酸発生剤
一般式(1)
(式中、R1、R2、R3およびR4は、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基、または置換もしくは未置換のアルケニル基を表す。
ただし、R1、R2、R3およびR4のうち少なくとも一つは、一般式(2)を表す。
Wは、S、S=O、P、N、Iを表す。
a、b、cおよびdは、各々0〜3の整数であって、(a+b+c+d)はWの価数に等しい。
ただし、R1、R2、R3およびR4は、一体となって、環を形成してもよい。
X-は任意のアニオンを表す。)
一般式(2)
(式中、R5およびR6は、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、または置換もしくは未置換のアルケニル基を表す。
Ar1およびAr2は、それぞれ独立に、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基を表す。
Mは、置換もしくは未置換の2価の芳香族炭化水素基、または置換もしくは未置換の2価の複素環基を表す。
Lは、>C=O、もしくは直接結合を表す。
ただし、R5およびR6は、一体となって、環を形成してもよい。)
- 下記一般式(3)で表記される請求項1記載の感エネルギー線酸発生剤。
一般式(3)
(式中、Ar1、Ar2、M、L、R5およびR6、X-は、一般式(2)で示したものと同義である。
R7およびR8は、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基、または置換もしくは未置換のアルケニル基を表す。
ただし、R7およびR8は、一体となって、環を形成してもよい。) - 請求項1〜3いずれか記載の感エネルギー線酸発生剤に300nmから450nmの波長領域の光を照射して酸を発生させる、酸の発生方法。
- 請求項1〜3いずれか記載の感エネルギー線酸発生剤(A)と、酸硬化性化合物(B)とを含む感エネルギー線硬化性組成物。
- 請求項5記載の感エネルギー線硬化性組成物に300nmから450nmの波長領域の光を含むエネルギー線を照射して硬化させる、硬化物の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006074286A JP2007246801A (ja) | 2006-03-17 | 2006-03-17 | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006074286A JP2007246801A (ja) | 2006-03-17 | 2006-03-17 | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007246801A true JP2007246801A (ja) | 2007-09-27 |
Family
ID=38591435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006074286A Pending JP2007246801A (ja) | 2006-03-17 | 2006-03-17 | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007246801A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012015052A1 (ja) * | 2010-07-29 | 2012-02-02 | 住友化学株式会社 | 積層構造体、それを用いた電子デバイス、芳香族化合物及び該化合物の製造方法 |
JP2013087081A (ja) * | 2011-10-18 | 2013-05-13 | Hitachi Chemical Co Ltd | 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料及びこれらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置 |
-
2006
- 2006-03-17 JP JP2006074286A patent/JP2007246801A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012015052A1 (ja) * | 2010-07-29 | 2012-02-02 | 住友化学株式会社 | 積層構造体、それを用いた電子デバイス、芳香族化合物及び該化合物の製造方法 |
JP2012049524A (ja) * | 2010-07-29 | 2012-03-08 | Sumitomo Chemical Co Ltd | 積層構造体、それを用いた電子デバイス、芳香族化合物及び該化合物の製造方法 |
US9184388B2 (en) | 2010-07-29 | 2015-11-10 | Sumitomo Chemical Company, Limited | Layered structure, electronic device using same, aromatic compound, and method for manufacturing said compound |
JP2013087081A (ja) * | 2011-10-18 | 2013-05-13 | Hitachi Chemical Co Ltd | 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料及びこれらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3937466B2 (ja) | 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物および硬化性組成物 | |
JP5781947B2 (ja) | 新規スルホン酸誘導体化合物及び新規ナフタル酸誘導体化合物 | |
JP6211001B2 (ja) | 新規スルホン酸誘導体化合物、光酸発生剤、カチオン重合開始剤、レジスト組成物およびカチオン重合性組成物 | |
JPH107709A (ja) | 感エネルギー線活性剤組成物、それを用いた感応性組成物ならびに画像形成用組成物 | |
JPH101508A (ja) | 感活性線酸発生剤組成物、感応性組成物および画像記録用組成物 | |
GB2476976A (en) | Protected aryl ketones and their use as photoinitiators | |
JP2004506070A (ja) | 光開始反応 | |
JP5045018B2 (ja) | 感エネルギー線酸発生組成物、酸の発生方法、および感エネルギー線硬化性組成物 | |
JP4529641B2 (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 | |
JP3838234B2 (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 | |
JP2002122986A (ja) | ポジ型感光性樹脂組成物、ポジ型感光性ドライフィルム、その組成物を使用して得られる材料及びパターン形成方法 | |
JP6295702B2 (ja) | 反応性単量体、およびそれを用いた重合性組成物 | |
JP4400219B2 (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 | |
JP2006011005A (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 | |
JPH09183960A (ja) | 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物および硬化性組成物 | |
JP2015168618A (ja) | スルホン酸誘導体化合物、光酸発生剤、レジスト組成物、カチオン重合開始剤、およびカチオン重合性組成物 | |
JP2007246801A (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 | |
JPH09241614A (ja) | 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物、硬化性組成物およびその硬化物 | |
JPH09202873A (ja) | 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物、硬化性組成物およびその硬化物 | |
JPH101507A (ja) | 重合性組成物およびその硬化物 | |
JP4543640B2 (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 | |
JP2006008587A (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 | |
JP5034263B2 (ja) | 感エネルギー線酸硬化性組成物 | |
JP3873310B2 (ja) | 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物、硬化性組成物およびその硬化物 | |
JP2006008586A (ja) | 感エネルギー線酸発生剤、酸の発生方法、および感エネルギー線硬化性組成物 |