JP2007232870A - プロジェクタ - Google Patents

プロジェクタ Download PDF

Info

Publication number
JP2007232870A
JP2007232870A JP2006052204A JP2006052204A JP2007232870A JP 2007232870 A JP2007232870 A JP 2007232870A JP 2006052204 A JP2006052204 A JP 2006052204A JP 2006052204 A JP2006052204 A JP 2006052204A JP 2007232870 A JP2007232870 A JP 2007232870A
Authority
JP
Japan
Prior art keywords
optical compensation
optical
plate
liquid crystal
compensation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006052204A
Other languages
English (en)
Inventor
Takashi Endo
隆史 遠藤
Nobuo Shimizu
信雄 清水
Toshiaki Hashizume
俊明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006052204A priority Critical patent/JP2007232870A/ja
Publication of JP2007232870A publication Critical patent/JP2007232870A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 簡易な工程で効率的に光学補償板を加工することができる光学補償素子の製造方法を提供すること。
【解決手段】 第1及び第2光学補償層73a,73bの材料として、第1及び第2水晶板53,54の表面である上下露出平面50a,50bのエッチングを行って目標の厚みとするとともに、これらの表面に研磨を行って、露出平面50a,50bを平滑化して鏡面とする。これにより、第1及び第2水晶板53,54の厚さを目標値である8μm程度とする。
【選択図】 図2

Description

本発明は、液晶表示パネルに組み込まれる光学補償素子の製造方法に関し、さらに、当該製造方法によって得た液晶装置及びこれを組み込んだプロジェクタに関する。
従来、液晶パネルのコントラスト低下の原因となる液晶パネルの位相ずれを補償するため、光学異方性を有する光学素子が用いられている。特に、プロジェクタ等においては、耐熱性に優れた無機物質である水晶やサファイア等の光学異方性材料からなる光学補償板を2枚用いて液晶パネルの光学補償を行っている(特許文献1,2参照)。
特開2004−198650号公報 特開2004−317752号公報
しかし、光学補償板として水晶等を用いる場合、光学補償板を10μm以下に極めて薄くする必要があり、かつ、光学補償板の厚みを1μm程度の精度で調節する必要があり、光学補償板の製造が容易でなかった。具体的には、100μm程度の厚みに切り出した水晶板を石英基板に貼り付け、水晶板の表面を研磨することによって、水晶板を10μm以下に薄くしていたが、水晶板の研磨に際して水晶板に強い応力が生じてしまうので、水晶板が石英基板から剥離してしまう現象が生じていた。
そこで、本発明は、簡易な工程で効率的に光学補償板を加工することができる光学補償素子の製造方法を提供することを目的とする。
また、本発明は、上記の光学補償素子の製造方法によって得た液晶装置及びこれを組み込んだプロジェクタを提供することを目的とする。
上記課題を解決するため、本発明は、液晶の入射側及び出射側の少なくとも一方に配置される光学補償素子の製造方法に関するものであって、当該製造方法は、光学補償板に対してエッチングを行うことによって、光学補償板の厚みを減少させる工程を備えることを特徴とする。
上記製造方法では、光学補償板に対してエッチングを行うことによって光学補償板に強い応力を生じさせること無く光学補償板の厚みを減少させるので、エッチング後の光学補償板の厚みを最終目標値に近づけ或いはこれと等しくすることができる。これにより、光学補償板の研磨時間を少なくすることができ、或いは光学補償板の研磨工程自体を省略することができる。よって、光学補償板の厚み調整の段階で光学補償板の製造歩留まりが低下することを防止できるので、光学補償素子ひいては液晶装置の生産性を向上させることができる。
また、本発明の別の態様では、光学補償板が光学的異方性結晶であり、光学補償板が、入射面に対して傾いて設けられた光学軸を有し、当該光学軸の傾きが、液晶を通過した光に生じる位相ずれを補償する方向に設定されている。この場合、液晶の入射側や出射側で液晶分子のプレチルト角やチルト角が生じていても、入射光や射出光に生じる位相ずれを適切に補償することができ、コントラストを向上させることができる。
また、本発明の別の態様では、光学補償板の厚みを減少させる工程の前に、透光性基板の少なくとも一方の平坦面上に、光学補償板をアライメントして接着剤で貼り付ける工程を備える。この場合、光学補償板をアライメントして貼り付けた透光性基板に対してエッチングを行うことによって光学補償板の厚みを減少させるので、極めて薄い光学補償板を透光性基板によって支持することができ、光学部品として取り扱いやすくなるとともに、透光性基板を液晶装置に対して位置決めすることによって光学補償板の位置を所望の位置に配置することができる。
また、本発明のさらに別の態様では、透光性基板に光学補償板を貼り付ける工程が、透光性基板の一方の平坦面上に接着剤を塗布する工程と、透光性基板と光学補償板とを貼り合わせてアライメントする工程と、接着剤を硬化させる工程とを備える。この場合、透光性基板に対して光学補償板をアライメントする作業時間が確保され光学補償板を貼り付ける工程の作業性を高めることができる。
また、本発明の別の態様では、光学補償板をアライメントして接着剤で貼り付ける工程は、透光性基板の他方の平坦面上に、光学的異方性材料で形成された別の光学補償板をアライメントして接着剤で貼り付ける工程を含む。この場合、透光性基板の両平坦面に互いにアライメントされた一対の光学補償板を接着剤で貼り付けることができ、一対の光学補償板によって液晶パネルの位相ずれを複数方向に関して補償するといった機能を有する光学補償素子を簡易に製造することができる。
また、本発明のさらに別の態様では、透光性基板が石英ガラス製であり、接着剤が紫外線硬化樹脂である。この場合、石英ガラス製の透光性基板上に紫外線硬化樹脂を介して水晶製の光学補償板を貼り付けた光学補償素子を得ることができ、紫外線硬化樹脂によって水晶製の光学補償板の貼り付け作業を効率化できる。
また、本発明の具体的な態様又は観点によれば、上記製造方法において、光学補償板のエッチング後に露出した平面を研磨する工程をさらに備える。この場合、光学補償板のエッチング後に露出した平面が微視的に凹凸を有する粗い面であっても、機械的研磨によって平滑な鏡面にすることができ、例えば光学補償板の透過率等といった光学的特性が損なわれることを防止できる。なお、この場合、光学補償板の露出平面を研磨することになるが、不要な厚み部分をすべて研磨する場合に比較して、光学補償板にかかる応力が低減されるので、光学補償板が透光性基板から剥離することを確実に防止できる。
また、本発明の別の態様では、光学補償板のエッチング後に露出した平面を、接着剤を介して別の透明部材に接着する工程さらに備える。この場合、製造された光学補償素子を別の透明部材(具体的には、液晶パネルを構成する他の光学部品)に組み付けることができる。ここで、光学補償板のエッチング後の露出平面がある程度以上平滑な面であれば、光学補償板の光学的特性が損なわれることを防止できる。
また、本発明に係る液晶装置は、上述の光学補償素子の製造方法によって作製した光学補償素子を有する。
上記液晶装置では、入射光や射出光に生じる位相ずれを適切に補償することができ、コントラストを向上させることができる。
また、本発明に係るプロジェクタは、上述の液晶装置を含む光変調装置と、光変調装置を照明する照明装置と、光変調装置によって形成された画像を投射する投射レンズとを備える。
上記プロジェクタでは、入射光や射出光に生じる位相ずれを適切に補償した液晶装置を組み込んでいるので、コントラストを向上させた高品位の画像を投射することができる。
〔第1実施形態〕
図1は、本発明の第1実施形態に係る光学補償素子の製造方法によって得た液晶ライトバルブ(光変調装置)の構造を説明する拡大断面図である。
図示の液晶ライトバルブ31において、入射側の第1偏光フィルタ31bと、射出側の第2偏光フィルタ31cとの間に挟まれた偏光変調部31aは、入射光の偏光方向を入力信号に応じて画素単位で変化させる液晶パネルすなわち液晶装置である。
偏光変調部31aは、液晶層71を挟んで、入射側に透明な第1基板72aと、射出側に透明な第2基板72bとを備える。さらに、偏光変調部31aは、入射側透光性基板である第1基板72aの外側に入射側カバー74aを備え、射出側透光性基板である第2基板72bの外側に射出側カバー74bを備える。
第1基板72aの液晶層71側の面上には、透明な共通電極75が設けられており、その上に第1配向膜76が形成されている。一方、第2基板72bの液晶層71側の面上には、マトリクス状に配置された複数の透明画素電極77と、各透明画素電極77に電気的に接続されている薄膜トランジスタ(不図示)とが設けられており、その上に第2配向膜78が形成されている。各画素は、1つの画素電極77と、共通電極75と、これらの間に挟まれた液晶層71とで構成される。なお、第1基板72aと共通電極75との間には、各画素を区分するように格子状のブラックマトリックス79が設けられている。
ここで、第1及び第2配向膜76,78は、液晶層71を構成する液晶分子を動作に必要な方向に配列させるためのものである。このうち、第1偏光フィルタ31b側すなわち第1基板72a側に設けた第1配向膜76は、仕上げ時に施されるラビング工程によって、第1配向膜76付近の液晶の配向を、第1偏光フィルタ31bの偏光透過軸と略一致するX軸方向にする役割を有する。また、第2基板72b側に設けた第2配向膜78は、仕上げ時に施されるラビング工程によって、第2配向膜78付近の液晶の配向を、第1偏光フィルタ31bの偏光透過軸に対して90°傾いた方向、すなわち射出側の第2偏光フィルタ31cの偏光透過軸と略一致するY軸方向にする。
この偏光変調部31aにおいて、入射側カバー74aの入射面すなわち第1偏光フィルタ31bに対向する一方の平坦面には、10μm程度以下の厚さを有する薄い第1光学補償層73aが貼り付けられている。また、入射側カバー74aと第1基板72aとの間には、10μm程度以下の厚さを有する薄い第2光学補償層73bが挿入されている。ここで、第1光学補償層73aや第2光学補償層73bは、光学接着剤によって入射側カバー74aの両平坦面上に貼り付けられて複合型の光学補償素子OCを構成しており、このような複合型の光学補償素子OCは、第1基板72aの入射面上に光学接着剤によって貼り付けられる。
第1光学補償層73aは、その光学軸が入射側の第1配向膜76のラビング方向であるX軸を含むXZ面内になるように配置された光学補償素子である。さらに、第1光学補償層73aの光学軸は、X軸に対して所定の傾斜角(例えば35°)を成してZ軸方向に傾いている。
第2光学補償層73bは、その光学軸が入射側の第2配向膜78のラビング方向であるY軸を含むYZ面内になるように配置された光学補償素子である。さらに、第2光学補償層73bの光学軸は、Y軸に対して所定の傾斜角(例えば35°)を成してZ軸方向に傾いている。
第1配向膜76付近の液晶分子のプレチルト角と光学軸を傾斜させた第1光学補償層73aの屈折率異方性とによる位相変調と、第2配向膜78付近の液晶分子のプレチルト角と光学軸を傾斜させた第2光学補償層73bの屈折率異方性による位相変調とが互いに相殺され、偏光変調部31aを透過する偏光状態が補償される。これにより、液晶ライトバルブ31によって形成される画像のコントラストを向上させることができる。
しかし、第1光学補償層73aの光学軸と第2光学補償層73bの光学軸とがZ軸方向から見て90°の角度をなすように配置された場合は、Z軸に平行な光に対しては液晶層71での偏光の位相変化を補償していない。そこで、Z軸に平行な光に対しても液晶層71での偏光の位相変化を補償できるように、第1光学補償層73aの光学軸と第2光学補償層73bの光学軸とがZ軸方向から見て90°に近い角度となるように適宜設定する。従って、本実施形態において、Z軸方向から見たときの第1光学補償層73aの光学軸と第2光学補償層73bの光学軸とがなす角度を略90°と記載する。
なお、以上の偏光変調部31aにおいて、第1光学補償層73aと第2光学補償層73bとは、これらの配置を互いに入れ替えることができる。また、第1光学補償層73aや第2光学補償層73bは、入射側カバー74aの両平坦面に貼り付けるのではなく、射出側カバー74bの両平坦面に貼り付けることもできる。つまり、第1光学補償層73aや第2光学補償層73bで構成される光学補償素子を液晶層71の射出側に配置することができ、入射側の第1基板72aのかわりにマイクロレンズ配置した場合であっても同様のコントラスト向上効果が得られる。
図2は、図1の液晶ライトバルブ31に組み込まれる光学補償素子OCの製造方法を説明するフローチャートである。また、図3〜8は、光学補償素子OCの製造工程を概念的に説明する図である。以下、図2のフローチャート等に基づいて、光学補償素子OCの製造方法を説明する。
まず、光学補償素子OCの構成要素となる、第1及び第2光学補償層73a,73b並びに入射側カバー74aの材料を準備する(ステップS11)。具体的には、第1及び第2光学補償層73a,73bの材料となる2つの水晶板材を切り出して、それぞれの一対の対向する平面に対して研磨等の加工を施した薄板状で長方形の水晶板53,54(光学補償板)を得る。この際、水晶板53,54の光学軸は、当該水晶板の外形の各辺に対して予め定められた最適な角度方向となるように設定される。なお、水晶板53,54の厚みは、第1及び第2光学補償層73a,73bの目標厚みである8μmよりも10倍以上厚い0.1mmとなっている。一方、入射側カバー74aの材料となる合成石英板材を切り出して、一対の対向する平面に対して研磨等の加工を施した薄板状で長方形の石英基板51(透光性基板)を得る。この石英基板51の外形輪郭すなわち縦横寸法は、偏光変調部31aの縦横寸法に対応するものとなっている。また、石英基板51の厚みは、1.0mm程度となっている。
次に、ステップS11で得た一対の水晶板53,54と石英基板51とを洗浄して互いに貼り付け可能な状態にする(ステップS12)。
次に、図3に示すように、ステップS12で洗浄後の石英基板51の一方の平坦面51a上に低粘性の紫外線硬化樹脂URを薄く広げて塗布し、同様にステップS12で洗浄後の第1水晶板53を、紫外線硬化樹脂URを介して石英基板51の平坦面51a上に乗せて貼り合わせる(ステップS13)。なお、紫外線硬化樹脂URは、エポキシ系の樹脂であり、後述するフッ酸に対してある程度の耐侵食性を有する。
次に、図4に示すように、第1水晶板53を石英基板51上でまわすように相対的に動かして、紫外線硬化樹脂UR内の気泡を抜く(ステップS14)。
次に、図5(a)に示すアライメント用の治具61を利用して、石英基板51に対して第1水晶板53をアライメントする(ステップS15)。この際、石英基板51を治具61の載置面61a上に置き、図5(b)に示すように、石英基板51の基準線51sと第1水晶板53の基準線53sとがアライメント用の突起61bの側面61cに密着するように、石英基板51と第1水晶板53とを突起61b側に押し付ける。これにより、石英基板51の基準線51sと第1水晶板53の基準線51sとが互いに平行に設定されアライメントが達成される。
次に、ステップS13と同様にして、図6に示すように、石英基板51の他方の平坦面51b上に低粘性の紫外線硬化樹脂URを薄く広げて塗布し、洗浄済の第2水晶板54を、紫外線硬化樹脂URを介して石英基板51の平坦面51b上に乗せて貼り合わせる(ステップS16)。
次に、ステップS14と同様にして、第2水晶板54を石英基板51上でまわすように相対的に動かして紫外線硬化樹脂UR内の気泡を抜く(ステップS17)。
次に、図5(a)に示すアライメント用の治具61と同様のものを利用して、石英基板51の平坦面51bの垂直方向から見たときに、第1水晶53の光学軸と第2水晶54の光学軸とが略90°の角度をなすように、石英基板51に対して第2水晶板54をアライメントする(ステップS18)。これにより、石英基板51の基準線と、第1水晶板53の基準線と、第2水晶板54の基準線とが互いに平行に設定されアライメントが達成される。
次に、石英基板51に対して第1水晶板53と第2水晶板54とを貼り合わせた接合体に紫外線を照射することによって、紫外線硬化樹脂URを完全に硬化させる(ステップS19)。これにより、図7に示すような3層構造の接合体50を得ることができる。
次に、ステップS19で得た接合体50すなわち光学部材の表面を適宜洗浄して次の工程が可能な状態とする(ステップS21)。
次に、接合体50に対してフッ酸処理を施す(ステップS22)。具体的には、接合体50を耐食性のホルダ63に固定した状態で、フッ化水素溶液HFSで満たした処理容器64中に浸漬する。接合体50の浸漬処理時間は、フッ化水素溶液HFSによる第1及び第2水晶板53,54のエッチング速度に応じて適宜設定する。具体的な実施例では、フッ化水素溶液HFSの濃度やエッチング時間の設定によって、第1及び第2水晶板53,54の厚みが10μm程度となるようにした。第1及び第2水晶板53,54の厚みは、偏光変調部31aの性能に影響を及ぼすので、エッチング処理後の第2水晶板53,54の膜厚測定結果からフィードバックをかけて適正なエッチングが達成されるエッチング時間を決定した。また、第1及び第2水晶板53,54の表面で、フッ化水素溶液HFSによるエッチング速度の分布が形成されないように、フッ化水素溶液HFSに適度の対流を形成するとともに、必要に応じてホルダ63とともに接合体50を回転させることとする。さらに、フッ化水素溶液HFSによるエッチング速度は、温度に依存するので、フッ化水素溶液HFSの温度管理は重要である。通常は、フッ化水素溶液HFSの温度が高いと第1及び第2水晶板53,54のエチング速度が増加し、温度が低いと第1及び第2水晶板53,54のエチング速度が減少する。
なお、処理容器64やホルダ63は、フッ酸に対して耐久性を有するポリテトラフルオロエチレン等の材料からなるものを用いる。
また、フッ化水素溶液HFSによる処理に際しては、接合体50の上下露出平面50a,50bだけでなく側面50sも侵食されるが、接合体50の全体形状を変化させる程の侵食ではないので、その光学特性にダメージは生じない。
次に、ステップS22でエッチング処理した接合体50すなわち光学部材の表面を適宜洗浄して次の工程が可能な状態とする(ステップS23)。
次に、ステップS23で洗浄後の接合体50の表面仕上げ加工として、第1及び第2水晶板53,54の表面である上下露出平面50a,50bの研磨を行って、両露出平面50a,50bを平滑化して鏡面とするとともに、第1及び第2水晶板53,54の厚さを目標値である8μm程度となるようにする(ステップS24)。第1及び第2水晶板53,54の厚さは、膜厚測定装置によって監視しつつ研磨することによって適正値に調整できる。この際、接合体50のリタデーションを計測することによっても、第1及び第2水晶板53,54の厚さを制御することができる。
最後に、ステップS24の研磨によって仕上げが完了した接合体50を洗浄して、光学補償素子OCの作製を完了する(ステップS25)。
以上のようにして得た光学補償素子OCは、図1に示す偏光変調部31aの組立工程に際して、入射側カバー74a等として、第1基板72a表面に貼り付けられる。
なお、以上の実施形態では、第1及び第2水晶板53,54の表面である上下露出平面50a,50bの仕上げ研磨等を行っているが(ステップS24,S25)、このような仕上げ研磨工程は省略することができる。つまり、第1及び第2水晶板53,54のエッチング後の表面の表面粗さが一定以下で比較的平坦である場合、露出平面50a,50bの平滑化は不要であり、エッチング面をそのまま入射面又は射出面として使用することができる。特に、第2光学補償層73bとなるべき第2水晶板54については、光学接着剤を介して第1基板72aに貼り付けられるので、光学接着剤の屈折率が第2水晶板54に近いものであれば、光学接着剤によって凹凸が埋められ、露出平面50bからなる界面での散乱の発生を防止できる。
また、上記実施形態では、第1及び第2光学補償層73a,73bの材料として第1及び第2水晶板53,54を用い、入射側カバー74aの材料として石英基板51を用いているが、上記水晶板53,54はサファイア基板等に置き換えることができ、上記石英基板51は光学ガラス、白板ガラス、青板ガラス等の透明で複屈折のない材料に置き換えることができる。
図9は、図1の液晶ライトバルブ31を組み込んだプロジェクタの光学系の構成を説明する図である。
本プロジェクタ10は、光源光を発生する光源装置21と、光源装置21からの光源光を赤緑青の3色に分割する色分離光学系23と、色分離光学系23から射出された各色の照明光によって照明される光変調部25と、光変調部25からの各色の像光を合成するクロスダイクロイックプリズム27と、クロスダイクロイックプリズム27を経た像光をスクリーン(不図示)に投射するための投射光学系である投射レンズ29とを備える。このうち、光源装置21、色分離光学系23、光変調部25、及びクロスダイクロイックプリズム27は、スクリーンに投射すべき像光を形成する画像形成装置となっている。
以上のプロジェクタ10において、光源装置21は、光源ランプ21aと、凹レンズ21bと、一対のフライアイ光学系21d,21eと、偏光変換部材21gと、重畳レンズ21iとを備える。このうち、光源ランプ21aは、例えば高圧水銀ランプからなり、光源光を回収して前方に射出させる凹面鏡を備える。凹レンズ21bは、光源ランプ21aからの光源光を平行化する役割を有するが、省略することもできる。一対のフライアイ光学系21d,21eは、マトリックス状に配置された複数の要素レンズからなり、これらの要素レンズによって凹レンズ21bを経た光源ランプ21aからの光源光を分割して個別に集光・発散させる。偏光変換部材21gは、フライアイ光学系21eから射出した光源光を例えば図9の紙面に垂直なS偏光成分のみに変換して次段光学系に供給する。重畳レンズ21iは、偏光変換部材21gを経た照明光を全体として適宜収束させることにより、光変調部25に設けた各色の光変調装置に対する重畳照明を可能にする。つまり、両フライアイ光学系21d,21eと重畳レンズ21iとを経た照明光は、以下に詳述する色分離光学系23を経て、光変調部25に設けられた各色の液晶パネル25a,25b,25cを均一に重畳照明する。
色分離光学系23は、第1及び第2ダイクロイックミラー23a,23bと、補正光学系である3つのフィールドレンズ23f,23g,23hと、反射ミラー23j,23m,23n,23oとを備え、光源装置21とともに照明装置を構成する。ここで、第1ダイクロイックミラー23aは、赤緑青の3色のうち赤光及び緑光を反射し青光を透過させる。また、第2ダイクロイックミラー23bは、入射した赤及び緑の2色のうち緑光を反射し赤光を透過させる。この色分離光学系23において、光源装置21からの略白色の光源光は、反射ミラー23jで光路を折り曲げられて第1ダイクロイックミラー23aに入射する。第1ダイクロイックミラー23aを通過した青光は、例えばS偏光のまま、反射ミラー23mを経てフィールドレンズ23fに入射する。また、第1ダイクロイックミラー23aで反射されて第2ダイクロイックミラー23bでさらに反射された緑光は、例えばS偏光のままフィールドレンズ23gに入射する。さらに、第2ダイクロイックミラー23bを通過した赤光は、例えばS偏光のまま、レンズLL1,LL2及び反射ミラー23n,23oを経て、入射角度を調節するためのフィールドレンズ23hに入射する。レンズLL1,LL2及びフィールドレンズ23hは、リレー光学系を構成している。このリレー光学系は、第1レンズLL1の像を、第2レンズLL2を介してほぼそのままフィールドレンズ23hに伝達する機能を備えている。
光変調部25は、それぞれが液晶装置である3つの液晶パネル25a〜25cと、各液晶パネル25a〜25cを挟むように配置される3組の偏光フィルタ25e,25f,25gとを備える。ここで、青光用の液晶パネル25aと、これを挟む一対の偏光フィルタ25e,25eとは、輝度変調後の像光のうち青光を画像情報に基づいて2次元的に輝度変調するための青色用の液晶ライトバルブを構成する。青色用の液晶ライトバルブは、図1に示す液晶ライトバルブ31と同様の構造を有しており、コントラスト向上のための光学補償素子OCを組み込んでいる。同様に、緑光用の液晶パネル25bと、対応する偏光フィルタ25f,25fも、緑色用の液晶ライトバルブを構成し、赤光用の液晶パネル25cと、偏光フィルタ25g,25gも、赤色用の液晶ライトバルブを構成する。そして、これら緑光及び赤色用の液晶ライトバルブも、図1に示す液晶ライトバルブ31と同様の構造を有している。
青光用の第1液晶パネル25aには、色分離光学系23の第1ダイクロイックミラー23aを透過することによって分岐された青光が、フィールドレンズ23fを介して入射する。緑光用の第2液晶パネル25bには、色分離光学系23の第2ダイクロイックミラー23bで反射されることによって分岐された緑光が、フィールドレンズ23gを介して入射する。赤光用の第3液晶パネル25cは、第2ダイクロイックミラー23bを透過することによって分岐された赤光が、フィールドレンズ23hを介して入射する。各液晶パネル25a〜25cは、入射した照明光の空間的強度分布を変調する非発光型の光変調装置であり、各液晶パネル25a〜25cにそれぞれ入射した3色の光は、各液晶パネル25a〜25cに電気的信号として入力された駆動信号或いは画像信号に応じて変調される。その際、偏光フィルタ25e,25f,25gによって、各液晶パネル25a〜25cに入射する照明光の偏光方向が調整されるとともに、各液晶パネル25a〜25cから射出される変調光から所定の偏光方向の成分光が像光として取り出される。
クロスダイクロイックプリズム27は、光合成部材であり、4つの直角プリズムを貼り合わせた平面視略正方形状をなし、直角プリズム同士を貼り合わせた界面には、X字状に交差する一対の誘電体多層膜27a,27bが形成されている。一方の第1誘電体多層膜27aは青色光を反射し、他方の第2誘電体多層膜27bは赤色光を反射する。このクロスダイクロイックプリズム27は、液晶パネル25aからの青光を第1誘電体多層膜27aで反射して進行方向右側に射出させ、液晶パネル25bからの緑光を第1及び第2誘電体多層膜27a,27bを介して直進・射出させ、液晶パネル25cからの赤光を第2誘電体多層膜27bで反射して進行方向左側に射出させる。
投射レンズ29は、クロスダイクロイックプリズム27で合成されたカラーの像光を、所望の倍率でスクリーン(不図示)上に投射する。つまり、各液晶パネル25a〜25cに入力された駆動信号或いは画像信号に対応する所望の倍率のカラー動画やカラー静止画がスクリーン上に投射される。
〔第2実施形態〕
図10は、本発明の第2実施形態に係る光学補償素子の製造方法を説明するフローチャートである。第2実施形態の製造方法は、第1実施形態の製造方法を一部変更したものであり、特に説明しない部分については第1実施形態と同様であるものとする。
まず、光学補償素子OCの構成要素となる、第1及び第2光学補償層73a,73b並びに入射側カバー74aの材料を準備する(ステップS31)。具体的には、第1及び第2光学補償層73a,73bの材料となる1つの水晶板材を切り出して、その平面に対して研磨等の加工を施した薄板状で長方形の水晶板53を得る。この際、水晶板53の光学軸は、水晶板の外形の辺に対して例えば45°となるように設定され(図11参照)、水晶板53のサイズは第1実施形態の場合の2倍となっている。また、水晶板の厚みは、上記実施例同様に0.1mm程度となっている。一方、入射側カバー74aの材料となる合成石英板材を切り出して、それぞれの平面に対して研磨等の加工を施した薄板状で長方形の石英基板を得る。この石英基板のサイズも第1実施形態の場合の2倍となっている。
次に、ステップS31で得た水晶板と石英基板とを洗浄して互いに貼り付け可能な状態にする(ステップS32)。
次に、第1実施形態の場合と同様に、図3に示すように、ステップS32で洗浄後の石英基板51の一方の平坦面51a上に低粘性の紫外線硬化樹脂URを薄く広げて塗布し、洗浄後の水晶板53を、紫外線硬化樹脂URを介して石英基板51の平坦面51a上に乗せて貼り合わせる(ステップS33)。
次に、第1実施形態の場合と同様に、図4に示すように、水晶板53を石英基板51上でまわすように相対的に動かして紫外線硬化樹脂UR内の気泡を抜く(ステップS34)。
次に、図5(a)に示すアライメント用の治具61を利用して、石英基板51に対して水晶板53をアライメントする(ステップS35)。
次に、石英基板51と第1水晶板53とを貼り合わせた接合体に紫外線を照射することによって、紫外線硬化樹脂URを完全に硬化させる(ステップS39)。これにより、石英基板51及び水晶板53からなる2層構造の接合体を得ることができる。
次に、図12に示すように、石英基板51及び水晶板53からなる2層構造の接合体150の裏面側、すなわち石英基板51の他方の平坦面51bに、後で除去可能なマスク68を形成する。このマスク68は、例えばクローム及び金の合金からなり、スパッタ等の成膜方法で形成される。マスク68は、エッチャントであるフッ酸に対して耐食性を有するものであれば、上記材料に限らず、ゴム系の各種有機物等を使用することもできる。
次に、ステップS20を経た接合体150すなわち光学部材の表面を適宜洗浄して次の工程が可能な状態とする(ステップS21)。
次に、接合体50に対してフッ酸処理を施す(ステップS22)。具体的には、接合体150を図8に示す耐食性のホルダ63に固定した状態で、フッ化水素溶液HFSで満たした処理容器64中に所定時間浸漬する。この際、接合体150の表側の露出平面50aは、エッチング処理によって削られるが、接合体150の裏側の露出平面50bは、マスク68によって保護される。
次に、ステップS22でエッチング処理した接合体150すなわち光学部材の表面を適宜洗浄して次の工程が可能な状態とする(ステップS23)。
次に、ステップS23で洗浄後の接合体150の裏面に設けたマスク68を適当なエッチャントによってエッチング除去する(ステップS41)。なお、マスク68を除去するためのエッチャントは、石英基板51を侵食せず、石英基板51の表面を荒らさないものが望ましい。また、マスク68を除去するためのエッチングは、ウエットエッチングに限らず、ドライエッチングとすることもできる。
次に、ステップS41でエッチング処理した接合体150すなわち光学部材の表面を適宜洗浄して次の工程が可能な状態とする(ステップS42)。
次に、ステップS42で洗浄後の接合体150を2つの部分150A,150Bに切断し(図13(a)参照)、両部分150A,150Bを水晶板53が対向するように互いに貼り合わせる(図13(b)参照)。この際、ステップS33と同様、両部分150A,150Bの間に紫外線硬化樹脂URを挟んで気泡を抜いた後、ステップS35と同様、治具61を用いて両部分150A,150Bをアライメントし、紫外線で紫外線硬化樹脂URを硬化させる。これにより、両部分150A,150Bが互いにアライメントされて接合され、石英基板51の平坦面51aに対して垂直方向から見たとき両部分150A,150Bを構成する各水晶板53の光学軸が略90°の角度をなす状態となる(図13(c)参照)。
最後に、ステップS44の貼り合わせによって仕上げが完了した接合体150を洗浄して、光学補償素子OCの作製を完了する(ステップS25)。このようにして得た光学補償素子OCは、これ自体で直交する2方向に関して位相差を補償する光学補償素子OCとしての機能を果たす。
なお、以上のようにして得た光学補償素子OCは、偏光変調部31aの組立工程に際して、入射側カバー74a等として、第1基板72a表面に貼り付けられる。
〔第3実施形態〕
図14は、本発明の第3実施形態に係る光学補償素子の製造方法を説明するフローチャートである。第3実施形態の製造方法は、第1実施形態の製造方法を一部変更したものであり、特に説明しない部分については第1実施形態と同様であるものとする。
まず、光学補償素子OCの構成要素となる、第1及び第2光学補償層73a,73b並びに入射側カバー74aの材料を準備する(ステップS51)。具体的には、第1及び第2光学補償層73a,73bの材料となる2つの水晶板材を切り出して、それぞれの一対の対向する平面に対して研磨等の加工を施した薄板状の水晶板53,54(光学補償板)を得る。この際、水晶板53,54の光学軸は、当該水晶板の外形の各辺に対して例えば45°となるように設定されている(図15参照)。なお、水晶板53,54の厚みは、上記実施例同様に0.1mm程度となっている。一方、入射側カバー74aの材料となる合成石英板材を切り出して、一対の対向する平面に対して研磨等の加工を施した薄板状の石英基板51(透光性基板)を得る。この石英基板51の外形輪郭すなわち縦横寸法は、偏光変調部31aの縦横寸法に対応するものとなっている。また、石英基板51の厚みは、1.0mm程度となっている。
次に、ステップS51で得た一対の水晶板53,54と石英基板51とを洗浄して互いに貼り付け可能な状態にする(ステップS52)。
次に、図16に示すように、ステップS52で洗浄後の水晶板53の一方の平坦面53a上に低粘性の紫外線硬化樹脂URを薄く広げて塗布し、洗浄後の水晶板54を、紫外線硬化樹脂URを介して水晶板53の平坦面53a上に乗せて貼り合わせる(ステップS53)。
次に、図17に示すように、水晶板54を水晶板53上でまわすように相対的に動かして紫外線硬化樹脂UR内の気泡を抜く(ステップS54)。
次に、図5(a)に示すアライメント用の治具61を利用して、水晶板53の平坦面53aに対して垂直方向から見たとき、各水晶板53,54の光学軸が略90°の角度をなすように、水晶板53に対して水晶板54をアライメントする(ステップS55)。
次に、水晶板53と水晶板54とを貼り合わせた接合体に紫外線を照射することによって、紫外線硬化樹脂URを完全に硬化させる(ステップS56)。これにより、水晶板53及び水晶板54からなる2層構造の接合体を得ることができる。
次に、ステップS54を経た水晶板53と水晶板54とを貼り合わせた接合体すなわち光学部材の表面を適宜洗浄して次の工程が可能な状態とする(ステップS57)。
次に、水晶板53と水晶板54とを貼り合わせた接合体に対してフッ酸処理を施す(ステップS58)。具体的には、水晶板53と水晶板54とを貼り合わせた接合体を図8に示す耐食性のホルダ63に固定した状態で、フッ化水素溶液HFSで満たした処理容器64中に所定時間浸漬する。
次に、ステップS58でエッチング処理した水晶板53と水晶板54とを貼り合わせた接合体すなわち光学部材の表面を適宜洗浄して次の工程が可能な状態とする(ステップS59)。
次に、ステップS59で洗浄後の水晶板53と水晶板54とを貼り合わせた接合体の厚さを目標の厚みになるように調整する(ステップS60)。第1及び第2水晶板53,54の厚さは、膜圧測定装置によって監視しつつ研磨または再度エッチングすることによって適正値に調整できる。この際、接合体50のリタデーションを計測することによっても、第1及び第2水晶板53,54の厚さを制御することができる。
次に、ステップS60で目標厚みに調整された水晶板53と水晶板54とを貼り合わせた接合体を洗浄する(ステップS61)
次に、石英基板51の一方の平坦面51a上に低粘性の紫外線硬化樹脂URを薄く広げて塗布し、ステップS59で洗浄後の水晶板53と水晶板54とを貼り合わせた接合体を、紫外線硬化樹脂URを介して石英基板51の平坦面51a上に乗せて貼り合わせる(ステップS62)。
次に、水晶板53と水晶板54とを貼り合わせた接合体を石英基板51上でまわすように相対的に動かして紫外線硬化樹脂UR内の気泡を抜く(ステップS63)。
次に、図5(a)に示すアライメント用の治具61を利用して、石英基板51に対して水晶板53と水晶板54とを貼り合わせた接合体をアライメントする(ステップS64)。
次に、石英基板51と水晶板53と水晶板54とを貼り合わせた接合体に紫外線を照射することによって、紫外線硬化樹脂URを完全に硬化させる(ステップS65)。これにより、石英基板51、水晶板53及び水晶板54からなる3層構造の接合体を得ることができる。
次に、表面仕上げ加工として、第1水晶53の表面または第2水晶板54の表面のうち露出している上露出平面を研磨し平滑化して鏡面とする(ステップS66)。
最後に、ステップS66の上露出平面を鏡面仕上げされた水晶板53、水晶板54および石英基板51を貼り合わせた接合体を洗浄して、光学補償素子OCの作製を完了する(ステップS67)。
なお、以上のようにして得た光学補償素子OCは、偏光変調部31aの組立工程に際して、入射側カバー74a等として、第1基板72a表面に貼り付けられる。
なお、本実施形態ではステップS66の表面仕上げ加工として、光学部品の上露出面を研磨して鏡面とする方法採用していたが、これに限らず、該上露出平面に接着剤を介して他の石英基板(透光性基板)を貼り付けてもよい。
以上実施形態に即して本発明を説明したが、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
また、上記実施形態では、透過型の液晶パネルすなわち偏光変調部31aに適用する光学補償素子OCについて説明したが、反射型の液晶パネルにも水晶板の光学軸を適宜設定することによって上記光学補償素子OCと同様の手法で作製した光学補償素子を組み込むことができる。
また、上記光学補償素子OCにおいて、第1光学補償層73a及び第2光学補償層73bのいずれか一方は省略することができる。
また、上記実施形態のプロジェクタ10では、光源装置21を、光源ランプ21a、一対のフライアイ光学系21d,21e、偏光変換部材21g、及び重畳レンズ21iで構成したが、フライアイ光学系21d,21e、偏光変換部材21g等については省略することができ、光源ランプ21aも、LED等の別光源に置き換えることができる。
また、上記実施形態では、色分離光学系23を用いて照明光の色分離を行って、光変調部25において各色の変調を行った後に、クロスダイクロイックプリズム27において各色の像の合成を行っているが、単一の液晶パネルすなわち液晶ライトバルブ31によって画像を形成することもできる。
第1実施形態に係る液晶パネルの構造を説明する側方断面図である。 図1の液晶パネルを構成する光学補償素子の製法を説明するフローチャートである。 石英基板に対する第1水晶板の貼り合わせを説明する斜視図である。 石英基板に対する第1水晶板の貼り合わせを説明する斜視図である。 (a)、(b)は、石英基板と第1水晶板とのアライメントを説明する斜視図及び平面図である。 石英基板に対する第2水晶板の貼り合わせを説明する斜視図である。 石英基板に対して一対の水晶板を貼り付けた接合体の側方断面図である。 接合体をフッ酸処理する工程を説明する図である。 図1の液晶ライトバルブを組み込んだプロジェクタの光学系を説明する図である。 第2実施形態の光学補償素子の製法を説明するフローチャートである。 水晶板の光学軸の設定を説明する斜視図である。 石英基板に対して水晶板を貼り付けた接合体の側方断面図である。 (a)〜(c)は、接合体の切断及び積層貼り付けを説明する平面図である。 第3実施形態の光学補償素子の製法を説明するフローチャートである。 水晶板の光学軸の設定を説明する斜視図である。 第1水晶板に対する第2水晶板の貼り合わせを説明する斜視図である。 第1水晶板に対する第2水晶板の貼り合わせを説明する斜視図である。
符号の説明
10…プロジェクタ、 21…光源装置、 23…色分離光学系、 23a,23b…ダイクロイックミラー、 25…光変調部、 25a,25b,25c…液晶パネル、 25e,25f,25g…偏光フィルタ、 27…クロスダイクロイックプリズム、 29…投射レンズ、 31…液晶ライトバルブ、 31a…偏光変調部、 31b…第1偏光フィルタ、 31c…第2偏光フィルタ、 50…接合体、 50a,50b…露出平面、 51…石英基板、 51a,51b…平坦面、 53…第1水晶板、 54…第2水晶板、 61…治具、 63…ホルダ、 64…処理容器、 68…マスク、 71…液晶層、 72a…第1基板、 72b…第2基板、 73a…第1光学補償層、 73b…第2光学補償層、 74a…入射側カバー、 74b…射出側カバー、 75…共通電極、 76…第1配向膜、 77…透明画素電極、 78…第2配向膜、 79…ブラックマトリックス、 150…接合体、 OC…光学補償素子、 UR…紫外線硬化樹脂

Claims (10)

  1. 液晶の入射側及び出射側の少なくとも一方に配置される光学補償素子の製造方法であって、
    光学補償板に対してエッチングを行うことによって、前記光学補償板の厚みを減少させる工程
    を備えることを特徴とする光学補償素子の製造方法。
  2. 前記光学補償板は、光学的異方性結晶であり、
    前記光学補償板は、入射面に対して傾いて設けられた光学軸を有し、当該光学軸の傾きは、前記液晶を通過した光に生じる位相ずれを補償する方向に設定されている請求項1から請求項1のいずれか一項記載の光学補償素子の製造方法。
  3. 前記光学補償板の厚みを減少させる工程の前に、透光性基板の少なくとも一方の平坦面上に、前記光学補償板をアライメントして接着剤で貼り付ける工程、
    を備える請求項1及び請求項2のいずれか一項記載の光学補償素子の製造方法。
  4. 前記透光性基板に前記光学補償板を貼り付ける工程は、前記透光性基板の前記一方の平坦面上に前記接着剤を塗布する工程と、前記透光性基板と前記光学補償板とを貼り合わせてアライメントする工程と、前記接着剤を硬化させる工程とを備える請求項3記載の光学補償素子の製造方法。
  5. 前記光学補償板をアライメントして接着剤で貼り付ける工程は、前記透光性基板の他方の平坦面上に、光学的異方性材料で形成された別の光学補償板をアライメントして接着剤で貼り付ける工程を含む請求項3及び請求項4のいずれか一項記載の光学補償素子の製造方法。
  6. 前記透光性基板は、石英ガラス製であり、前記接着剤は、紫外線硬化樹脂である請求項3から請求項5のいずれか一項記載の光学補償素子の製造方法。
  7. 前記光学補償板のエッチング後に露出した平面を研磨する工程をさらに備える請求項1から請求項6のいずれか一項記載の光学補償素子の製造方法。
  8. 前記光学補償板のエッチング後に露出した平面を、接着剤を介して別の透明部材に接着する工程さらに備える請求項1から請求項6のいずれか一項記載の光学補償素子の製造方法。
  9. 請求項1から請求項8のいずれか一項記載の光学補償素子の製造方法によって作製した光学補償素子を有する液晶装置。
  10. 請求項9記載の液晶装置を含む光変調装置と、
    前記光変調装置を照明する照明装置と、
    前記光変調装置によって形成された画像を投射する投射レンズと、
    を備えるプロジェクタ。
JP2006052204A 2006-02-28 2006-02-28 プロジェクタ Withdrawn JP2007232870A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052204A JP2007232870A (ja) 2006-02-28 2006-02-28 プロジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052204A JP2007232870A (ja) 2006-02-28 2006-02-28 プロジェクタ

Publications (1)

Publication Number Publication Date
JP2007232870A true JP2007232870A (ja) 2007-09-13

Family

ID=38553552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052204A Withdrawn JP2007232870A (ja) 2006-02-28 2006-02-28 プロジェクタ

Country Status (1)

Country Link
JP (1) JP2007232870A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192776A (ja) * 2008-02-14 2009-08-27 Epson Toyocom Corp 撮像装置及び撮像装置の光学ローパスフィルタの製造方法
JP2010101992A (ja) * 2008-10-22 2010-05-06 Epson Toyocom Corp 光学物品の製造方法およびその光学物品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192776A (ja) * 2008-02-14 2009-08-27 Epson Toyocom Corp 撮像装置及び撮像装置の光学ローパスフィルタの製造方法
JP2010101992A (ja) * 2008-10-22 2010-05-06 Epson Toyocom Corp 光学物品の製造方法およびその光学物品

Similar Documents

Publication Publication Date Title
JP3972371B2 (ja) 位相差補償板、位相差補償器、液晶表示装置および投射型画像表示装置
JP4301327B2 (ja) 光学装置を備えるプロジェクタ
US20050285999A1 (en) Liquid crystal display device and image display apparatus
WO2008081919A9 (ja) 光学補償板、液晶表示装置、および、投射型液晶表示装置、並びに、表示装置の製造方法および調整方法
JP5541056B2 (ja) 偏光変換素子、偏光変換ユニット、投射装置、及び偏光変換素子の製造方法
WO2007105371A1 (ja) 液晶装置及びこれを備えるプロジェクタ
JP2009217218A (ja) プロジェクタ
JP2006184872A (ja) 液晶表示装置
JP2012226121A (ja) 偏光変換素子、偏光変換ユニット及び投射装置
JP2006184673A (ja) 液晶装置及び電子機器
CN101135745A (zh) 光学元件、其制造方法以及投影机
JP2007232870A (ja) プロジェクタ
JP4277922B2 (ja) 光学素子の製造方法
US20050094104A1 (en) Image displaying apparatus
JP2007286609A (ja) 液晶装置及びこれを備えるプロジェクタ
US11256140B2 (en) Liquid crystal display apparatus and display method
JP2013025064A (ja) 波長板、偏光変換素子、偏光変換ユニット及び投射装置
US20090015733A1 (en) Retardation Film and Projection Display Apparatus
JP4375450B2 (ja) 光学補償素子の製造方法
JP7392372B2 (ja) 電気光学装置および電子機器
US8054389B2 (en) Liquid crystal display apparatus having particular optical compensation layers
JP2008026538A (ja) 光学装置及びこれを備えるプロジェクタ
JP2008015300A (ja) 光学装置及びこれを備えるプロジェクタ
JP2008040383A (ja) 光学装置及びこれを備えるプロジェクタ
JPH09197110A (ja) マイクロプリズムを備えた貼り合わせ基板の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070608

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512