JP2007227959A - Multilayer printed wiring board and its manufacturing method - Google Patents

Multilayer printed wiring board and its manufacturing method Download PDF

Info

Publication number
JP2007227959A
JP2007227959A JP2007107561A JP2007107561A JP2007227959A JP 2007227959 A JP2007227959 A JP 2007227959A JP 2007107561 A JP2007107561 A JP 2007107561A JP 2007107561 A JP2007107561 A JP 2007107561A JP 2007227959 A JP2007227959 A JP 2007227959A
Authority
JP
Japan
Prior art keywords
layer
wiring board
printed wiring
plating
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007107561A
Other languages
Japanese (ja)
Inventor
Motoo Asai
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2007107561A priority Critical patent/JP2007227959A/en
Publication of JP2007227959A publication Critical patent/JP2007227959A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the crack of an interlayer insulating layer generated at the time of heat cycle, without causing reduction in peeling strength. <P>SOLUTION: In a multilayer printed wiring board in which the interlayer insulating layer is formed on a conductor circuit of a wiring substrate, the conductor circuit consists of an electroless plated film and an electrolytic plated film, and a coarse layer is provided in at least a part of the surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多層プリント配線板とその製造方法に関し、特にはピール強度の低下を招くことなく、ヒートサイクル時におけるクラックの発生を抑制した多層プリント配線板とその製造方法に関する。   The present invention relates to a multilayer printed wiring board and a method for producing the same, and more particularly to a multilayer printed wiring board and a method for producing the same that suppress the generation of cracks during a heat cycle without causing a decrease in peel strength.

近年、多層配線基板の高密度化という要請から、いわゆるビルドアップ多層配線基板が注目されている。このビルドアップ多層配線基板は、例えば、特許文献1に開示されているような方法により製造される。即ち、コア基板上に、感光性の無電解めっき用接着剤からなる絶縁材を塗布し、これを乾燥したのち露光現像することにより、バイアホール用開口を有する層間絶縁材層を形成し、次いで、この層間絶縁材層の表面を酸化剤等による処理にて粗化したのち、その粗化面にめっきレジストを設け、その後、レジスト非形成部分に無電解めっきを施してバイアホール、導体回路を形成し、このような工程を複数回繰り返すことにより、多層化したビルドアップ配線基板が得られる。
特公平4−55555号公報
In recent years, so-called build-up multilayer wiring boards have attracted attention because of the demand for higher density of multilayer wiring boards. This build-up multilayer wiring board is manufactured, for example, by a method as disclosed in Patent Document 1. That is, an insulating material made of a photosensitive electroless plating adhesive is applied to the core substrate, and after drying and developing, an interlayer insulating material layer having openings for via holes is formed. After roughening the surface of this interlayer insulating material layer by treatment with an oxidizing agent, etc., a plating resist is provided on the roughened surface, and then electroless plating is applied to the non-resist forming portion to form via holes and conductor circuits. By forming and repeating such a process a plurality of times, a multilayer build-up wiring board can be obtained.
Japanese Patent Publication No. 4-55555

しかしながら、このような多層プリント配線板では、導体回路はめっきレジストの非形成部分に設けられ、めっきレジストは内層にそのまま残存する。そのため、かかる配線基板にICチップ等を搭載すると、ヒートサイクル時にICチップと樹脂絶縁層との熱膨張率の差により、基板が反り、めっきレジストと導体回路間の密着がないことからこれらの境界部分に応力が集中し、この境界部分に接触する層間絶縁層にクラックが発生してしまうという問題があった。   However, in such a multilayer printed wiring board, the conductor circuit is provided in a portion where the plating resist is not formed, and the plating resist remains in the inner layer as it is. Therefore, when an IC chip or the like is mounted on such a wiring board, the board warps due to the difference in thermal expansion coefficient between the IC chip and the resin insulating layer during the heat cycle, and there is no adhesion between the plating resist and the conductor circuit. There is a problem that stress is concentrated on the portion, and a crack is generated in the interlayer insulating layer in contact with the boundary portion.

本発明は、従来技術が抱える上記問題を解消するためになされたものである。その目的は、他の特性、特にピール強度の低下を招かず、ヒートサイクル時に発生する層間絶縁層のクラックを防止することにある。   The present invention has been made to solve the above-described problems of the prior art. The purpose is to prevent cracking of the interlayer insulating layer that occurs during the heat cycle without causing other properties, particularly, a decrease in peel strength.

発明者は、上記目的の実現に向け鋭意研究した結果、以下に示す内容を要旨構成とする発明に想到した。
(1) 本発明の多層プリント配線板は、配線基板の導体回路上に層間絶縁層が形成された多層プリント配線板において、前記導体回路は、無電解めっき膜と電解めっき膜からなり、その表面の少なくとも一部に粗化層を設けてなることを特徴とする。
なお、この多層プリント配線板において、導体回路は、少なくとも側面を含む表面の一部に粗化層を設けてなることが好ましく、粗化層は、銅−ニッケル−リンの合金めっきからなることが好ましい。
As a result of diligent research toward the realization of the above object, the inventor has come up with an invention having the following contents.
(1) The multilayer printed wiring board of the present invention is a multilayer printed wiring board in which an interlayer insulating layer is formed on a conductor circuit of the wiring board, wherein the conductor circuit is composed of an electroless plating film and an electrolytic plating film, A roughening layer is provided on at least a part of the structure.
In this multilayer printed wiring board, the conductor circuit is preferably provided with a roughened layer on a part of the surface including at least the side surface, and the roughened layer may be made of an alloy plating of copper-nickel-phosphorus. preferable.

(2) 本発明の多層プリント配線板の製造方法は、基板上に無電解めっきを施した後、めっきレジストを設け、電解めっきを施し、ついで、めっきレジストを除去後、エッチング処理して無電解めっき膜と電解めっき膜からなる導体回路を設け、さらに、導体回路表面の少なくとも一部に粗化層を形成した後、層間絶縁層を設けることを特徴とする。
なお、上記粗化層は、銅−ニッケル−リンの合金めっきにより形成されることが好ましい。
(2) The method for producing a multilayer printed wiring board according to the present invention is such that after electroless plating is performed on a substrate, a plating resist is provided, electrolytic plating is performed, and then the plating resist is removed, followed by etching treatment to perform electroless A conductive circuit comprising a plating film and an electrolytic plating film is provided, and a roughened layer is formed on at least a part of the surface of the conductive circuit, and then an interlayer insulating layer is provided.
The roughened layer is preferably formed by copper-nickel-phosphorus alloy plating.

以上説明したように本発明によれば、ピール強度の低下を防止しつつ、ヒートサイクル時におけるクラックの発生を防止して接続信頼性を向上させることが可能である。   As described above, according to the present invention, it is possible to improve the connection reliability by preventing the occurrence of cracks during the heat cycle while preventing the peel strength from decreasing.

本発明のプリント配線板では、導体回路が電解めっき膜と無電解めっき膜とで構成され、より内層側に無電解めっき膜が形成され、より外層側に電解めっき膜が形成されている(図18、図19の拡大図参照)。このような構成にすると、導体回路は、電解めっき膜が無電解めっき膜より柔らかく展性に富むので、ヒートサイクル時に基板に反りが発生しても、層間樹脂絶縁層の寸法変化に追従できるようになる。
また、本発明のプリント配線板では、導体回路の表面に粗化層が設けられているので、その導体回路は、層間樹脂絶縁層と強固に密着し、層間樹脂絶縁層の寸法変化により追従しやすくなっている。
In the printed wiring board of the present invention, the conductor circuit is composed of an electrolytic plating film and an electroless plating film, the electroless plating film is formed on the inner layer side, and the electrolytic plating film is formed on the outer layer side (see FIG. 18, see enlarged view of FIG. 19). With such a configuration, the conductive circuit is softer and more malleable than the electroless plating film, so that the conductor circuit can follow the dimensional change of the interlayer resin insulation layer even if the substrate warps during the heat cycle. become.
Further, in the printed wiring board of the present invention, since the roughened layer is provided on the surface of the conductor circuit, the conductor circuit closely adheres to the interlayer resin insulation layer and follows the dimensional change of the interlayer resin insulation layer. It has become easier.

その結果、本発明のプリント配線板によれば、ICチップを搭載し、−55℃〜125 ℃のヒートサイクル試験を行った場合でも、導体回路を起点とする層間樹脂絶縁層のクラックの発生を抑制でき、また剥離も見られない。
特に、導体回路の少なくとも側面に粗化層を設けることは、導体回路側面とそれに接触する層間樹脂との界面を起点として層間樹脂絶縁層に発生するクラックを抑制できる点で、有利である。
As a result, according to the printed wiring board of the present invention, even when an IC chip is mounted and a heat cycle test at −55 ° C. to 125 ° C. is performed, the generation of cracks in the interlayer resin insulation layer starting from the conductor circuit occurs. It can be suppressed and no peeling is observed.
In particular, providing a roughened layer on at least the side surface of the conductor circuit is advantageous in that cracks occurring in the interlayer resin insulating layer can be suppressed starting from the interface between the side surface of the conductor circuit and the interlayer resin in contact therewith.

さらに、本発明のプリント配線板では、導体のより内層側を電解めっき膜よりも硬い無電解めっき膜で構成しているので、ピール強度を低下させることがない。というのは、ピール強度は、導体回路の内層側の層間絶縁層と接触する側(後述する無電解めっき用接着剤を層間絶縁剤として採用した場合には、粗化面に接触する部分)の硬さが硬い程大きくなるためである。   Furthermore, in the printed wiring board of the present invention, the inner layer side of the conductor is composed of an electroless plating film that is harder than the electrolytic plating film, so that the peel strength is not reduced. This is because the peel strength is on the side in contact with the interlayer insulation layer on the inner layer side of the conductor circuit (when the later-described electroless plating adhesive is used as the interlayer insulation, the portion in contact with the roughened surface). This is because the hardness increases as the hardness increases.

このような多層プリント配線板は、本発明の製造方法によれば、容易に製造することができる。   Such a multilayer printed wiring board can be easily manufactured according to the manufacturing method of the present invention.

なお、特開平6−283860号公報には、内層のめっきレジストを除去して、無電解めっき膜からなる導体回路表面に銅−ニッケル−リンからなる粗化層を設け、層間剥離を防止する技術が開示されている。しかしながら、この公報に記載の発明は、実際にICチップを搭載してヒートサイクル試験を行った場合に発生するクラックについての認識が全くなく、また無電解めっき膜のみからなる導体回路を開示するに止まる。しかもその効果について追試を行ったところ(本願比較例参照)、−55℃〜125 ℃のヒートサイクル試験に関し、1000回程度であればクラックの発生は観られなかったが、これを超えるとクラックの発生が観察された。それゆえ、この公報に記載の発明は、本願発明とは全く異なるものである。   Japanese Patent Laid-Open No. 6-283860 discloses a technique for preventing delamination by removing an inner layer plating resist and providing a roughened layer made of copper-nickel-phosphorus on the surface of a conductive circuit made of an electroless plating film. Is disclosed. However, the invention described in this publication has no recognition of cracks that occur when an IC chip is actually mounted and a heat cycle test is performed, and discloses a conductor circuit composed only of an electroless plating film. Stop. In addition, when an additional test was conducted with respect to the effect (see the comparative example of the present application), regarding the heat cycle test at −55 ° C. to 125 ° C., generation of cracks was not observed if it was about 1000 times. Development was observed. Therefore, the invention described in this publication is completely different from the present invention.

本発明において、導体回路表面の粗化層は、エッチング処理、研磨処理、酸化処理、酸化還元処理により形成された銅の粗化面、もしくはめっき被膜により形成された粗化面であることが望ましい。   In the present invention, the roughened layer on the surface of the conductor circuit is desirably a roughened surface of copper formed by etching treatment, polishing treatment, oxidation treatment or oxidation-reduction treatment, or a roughened surface formed by plating film. .

特に、この粗化層は、銅−ニッケル−リンからなる合金層であることが望ましい。この理由は、この合金層は、針状結晶層であり、ソルダーレジスト層との密着性に優れるからである。また、この合金層上にはんだ体を形成しても電気導電率に大きな変化がなく、金属パッドの上にもはんだ体を形成できるからである。
この合金層の組成は、銅、ニッケル、リンの割合で、それぞれ90〜96wt%、1〜5wt%、0.5〜2wt%であることが望ましい。これらの組成割合のときに、針状の構造を有するからである。
In particular, the roughened layer is preferably an alloy layer made of copper-nickel-phosphorus. This is because the alloy layer is a needle-like crystal layer and has excellent adhesion to the solder resist layer. Further, even if a solder body is formed on the alloy layer, there is no significant change in electric conductivity, and the solder body can be formed on the metal pad.
The composition of the alloy layer is preferably 90 to 96 wt%, 1 to 5 wt%, and 0.5 to 2 wt% in proportions of copper, nickel, and phosphorus, respectively. This is because the composition ratio has a needle-like structure.

なお、針状結晶を形成できるCu−Ni−Pの組成を三成分系の三角図に示すと、図20のようになる。この図によれば、(Cu,Ni,P)=(100,0, 0 )、(90,10,0 )、(90,0,10 )で囲まれる範囲がよい。   The composition of Cu—Ni—P that can form needle-like crystals is shown in FIG. 20 as a ternary triangular diagram. According to this figure, a range surrounded by (Cu, Ni, P) = (100, 0, 0), (90, 10, 0), (90, 0, 10) is preferable.

また、酸化処理により粗化層を形成する場合は、亜塩素酸ナトリウム、水酸化ナトリウム、リン酸ナトリウムからなる酸化剤の溶液を用いることが望ましい。
酸化還元処理により粗化層を形成する場合は、上記酸化処理の後、水酸化ナトリウムと水素化ホウ素ナトリウムからなる還元剤の溶液に浸漬して行うことが望ましい。
Moreover, when forming a roughening layer by oxidation treatment, it is desirable to use a solution of an oxidant composed of sodium chlorite, sodium hydroxide, and sodium phosphate.
When forming a roughened layer by oxidation-reduction treatment, it is desirable to immerse in a reducing agent solution comprising sodium hydroxide and sodium borohydride after the oxidation treatment.

このようにして形成される導体回路表面の粗化層は、厚みを1〜5μmとすることが望ましい。この理由は、厚すぎると粗化層自体が損傷、剥離しやすく、薄すぎると密着性が低下するからである。   The roughened layer on the surface of the conductor circuit formed in this manner preferably has a thickness of 1 to 5 μm. This is because if the layer is too thick, the roughened layer itself is easily damaged and peeled off, and if it is too thin, the adhesiveness decreases.

本発明において、導体回路を構成する前記無電解めっき膜は、厚みを
0.1〜5μm、より好ましくは 0.5〜3μmとすることが望ましい。この理由は、厚すぎると層間樹脂絶縁層との追従性が低下し、逆に薄すぎると、ピール強度の低下を招いたり、また電解めっきを施す場合に抵抗値が大きくなって、めっき膜の厚さにバラツキが発生してしまうからである。
In the present invention, it is desirable that the electroless plating film constituting the conductor circuit has a thickness of 0.1 to 5 μm, more preferably 0.5 to 3 μm. The reason for this is that if it is too thick, the followability with the interlayer resin insulation layer will be reduced. Conversely, if it is too thin, the peel strength will be reduced, or the resistance will increase when electrolytic plating is applied. This is because the thickness varies.

また、導体回路を構成する前記電解めっき膜は、厚みを5〜30μm、より好ましくは10〜20μmとすることが望ましい。この理由は、厚すぎるとピール強度の低下を招き、薄すぎると層間樹脂絶縁層との追従性が低下するからである。   In addition, it is desirable that the electrolytic plating film constituting the conductor circuit has a thickness of 5 to 30 μm, more preferably 10 to 20 μm. This is because if the thickness is too thick, the peel strength is lowered, and if it is too thin, the followability with the interlayer resin insulating layer is lowered.

本発明では、導体回路の少なくとも側面に粗化層が形成されていることが望ましい。この理由は、ヒートサイクルにより層間樹脂絶縁層に生じるクラックは、導体回路側面と樹脂絶縁層との密着不良に起因して生じるものであり、このような構成とすることで、導体回路側面と樹脂絶縁層との界面を起点として層間樹脂絶縁層に発生するクラックを防止することができるからである。   In the present invention, it is desirable that a roughened layer is formed on at least the side surface of the conductor circuit. The reason for this is that cracks that occur in the interlayer resin insulation layer due to heat cycles are caused by poor adhesion between the side surface of the conductor circuit and the resin insulation layer. This is because cracks occurring in the interlayer resin insulation layer starting from the interface with the insulation layer can be prevented.

本発明では、上記配線基板を構成する層間樹脂絶縁層として無電解めっき用接着剤を用いることが望ましい。この無電解めっき用接着剤は、硬化処理された酸あるいは酸化剤に可溶性の耐熱性樹脂粒子が、硬化処理によって酸あるいは酸化剤に難溶性となる未硬化の耐熱性樹脂中に分散されてなるものが最適である。酸、酸化剤で処理することにより、耐熱性樹脂粒子が溶解除去されて、表面に蛸つぼ状のアンカーからなる粗化面を形成できるからである。   In the present invention, it is desirable to use an electroless plating adhesive as the interlayer resin insulating layer constituting the wiring board. This electroless plating adhesive is formed by dispersing a heat-resistant resin particle that is soluble in a cured acid or oxidant in an uncured heat-resistant resin that becomes insoluble in an acid or oxidant by the curing process. Things are optimal. This is because the heat-resistant resin particles are dissolved and removed by treatment with an acid and an oxidizing agent, and a roughened surface made of crucible-like anchors can be formed on the surface.

上記無電解めっき用接着剤において、特に硬化処理された前記耐熱性樹脂粒子としては、(1)平均粒径が10μm以下の耐熱性樹脂粉末、(2)平均粒径が2μm以下の耐熱性樹脂粉末を凝集させた凝集粒子、(3)平均粒径が2〜10μmの耐熱性粉末樹脂粉末と平均粒径が2μm以下の耐熱性樹脂粉末との混合物、(4)平均粒径が2〜10μmの耐熱性樹脂粉末の表面に平均粒径が2μm以下の耐熱性樹脂粉末または無機粉末のいずれか少なくとも1種を付着させてなる疑似粒子、(5)平均粒径0.1〜0.8μmの耐熱性樹脂粉末および平均粒径0.8μmを超え平均粒径2μm未満の耐熱性樹脂粉末との混合物、から選ばれるいずれか少なくとも1種を用いることが望ましい。これらは、より複雑なアンカーを形成できるからである。   In the above electroless plating adhesive, the heat-resistant resin particles particularly cured are (1) heat-resistant resin powder having an average particle size of 10 μm or less, and (2) heat-resistant resin having an average particle size of 2 μm or less. Aggregated particles obtained by agglomerating powder, (3) a mixture of heat-resistant powder resin powder having an average particle diameter of 2 to 10 μm and heat-resistant resin powder having an average particle diameter of 2 μm or less, and (4) an average particle diameter of 2 to 10 μm A pseudo-particle formed by adhering at least one of a heat-resistant resin powder or an inorganic powder having an average particle size of 2 μm or less to the surface of the heat-resistant resin powder, and (5) having an average particle size of 0.1 to 0.8 μm It is desirable to use at least one selected from a heat-resistant resin powder and a mixture of a heat-resistant resin powder having an average particle size of more than 0.8 μm and an average particle size of less than 2 μm. This is because more complex anchors can be formed.

次に、本発明にかかるプリント配線板を製造する一方法について説明する。
(1) まず、コア基板の表面に内層銅パターンを形成した配線基板を作製する。
このコア基板への銅パターンの形成は、銅張積層板をエッチングして行うか、あるいは、ガラスエポキシ基板やポリイミド基板、セラミック基板、金属基板などの基板に無電解めっき用接着剤層を形成し、この接着剤層表面を粗化して粗化面とし、ここに無電解めっきを施して行う方法がある。
Next, one method for producing a printed wiring board according to the present invention will be described.
(1) First, a wiring substrate having an inner layer copper pattern formed on the surface of the core substrate is manufactured.
The copper pattern is formed on the core substrate by etching a copper-clad laminate, or an adhesive layer for electroless plating is formed on a substrate such as a glass epoxy substrate, a polyimide substrate, a ceramic substrate, or a metal substrate. There is a method in which the surface of the adhesive layer is roughened to obtain a roughened surface, which is subjected to electroless plating.

さらに必要に応じて、上記配線基板の銅パターン表面に銅−ニッケル−リンからなる粗化層を形成する。
この粗化層は、無電解めっきにより形成される。この無電解めっきの液組成は、銅イオン濃度、ニッケルイオン濃度、次亜リン酸イオン濃度が、それぞれ2.2×10-2〜4.1×10-2mol/l、2.2×10-3〜4.1×10-3mol/l、0.20〜0.25mol/lであることが望ましい。
この範囲で析出する被膜の結晶構造は針状構造になるため、アンカー効果に優れるからである。この無電解めっきの浴には上記化合物に加えて錯化剤や添加剤を加えてもよい。
粗化層の形成方法としては、この他に前述した酸化(黒化)−還元処理、銅表面を粒界に沿ってエッチングして粗化面を形成する方法などがある。
Further, if necessary, a roughened layer made of copper-nickel-phosphorus is formed on the copper pattern surface of the wiring board.
This roughening layer is formed by electroless plating. The electroless plating solution composition has a copper ion concentration, a nickel ion concentration, and a hypophosphite ion concentration of 2.2 × 10 −2 to 4.1 × 10 −2 mol / l and 2.2 × 10 −3 to 4.1 × 10 respectively. -3 mol / l, preferably 0.20 to 0.25 mol / l.
This is because the crystal structure of the coating deposited in this range becomes a needle-like structure, and thus the anchor effect is excellent. In addition to the above compounds, complexing agents and additives may be added to the electroless plating bath.
Other methods for forming the roughened layer include the oxidation (blackening) -reduction treatment described above and a method of forming a roughened surface by etching the copper surface along the grain boundary.

なお、コア基板には、スルーホールが形成され、このスルーホールを介して表面と裏面の配線層を電気的に接続することができる。
また、スルーホールおよびコア基板の導体回路間には樹脂が充填されて、平滑性を確保してもよい(図1〜図4参照)。
A through hole is formed in the core substrate, and the wiring layers on the front surface and the back surface can be electrically connected through the through hole.
Moreover, resin may be filled between the through hole and the conductor circuit of the core substrate to ensure smoothness (see FIGS. 1 to 4).

(2) 次に、前記(1) で作製した配線基板の上に、層間樹脂絶縁層を形成する。特に本発明では、層間樹脂絶縁材として前述した無電解めっき用接着剤を用いることが望ましい(図5参照)。 (2) Next, an interlayer resin insulating layer is formed on the wiring board produced in (1). In particular, in the present invention, it is desirable to use the above-described adhesive for electroless plating as an interlayer resin insulating material (see FIG. 5).

(3) 前記(2) で形成した無電解めっき用接着剤層を乾燥した後、必要に応じてバイアホール形成用開口を設ける。
このとき、感光性樹脂の場合は、露光,現像してから熱硬化することにより、また、熱硬化性樹脂の場合は、熱硬化したのちレーザー加工することにより、前記接着剤層にバイアホール形成用の開口部を設ける(図6参照)。
(3) After drying the electroless plating adhesive layer formed in (2), a via hole forming opening is provided as necessary.
At this time, in the case of a photosensitive resin, a via hole is formed in the adhesive layer by exposing and developing and then thermosetting, and in the case of a thermosetting resin, by thermosetting and then laser processing. An opening is provided (see FIG. 6).

(4) 次に、硬化した前記接着剤層の表面に存在するエポキシ樹脂粒子を酸あるいは酸化剤によって溶解除去し、接着剤層表面を粗化処理する(図7参照)。
ここで、上記酸としては、リン酸、塩酸、硫酸、あるいは蟻酸や酢酸などの有機酸があるが、特に有機酸を用いることが望ましい。粗化処理した場合に、バイアホールから露出する金属導体層を腐食させにくいからである。一方、上記酸化剤としては、クロム酸、過マンガン酸塩(過マンガン酸カリウムなど)を用いることが望ましい。
(4) Next, the epoxy resin particles present on the surface of the cured adhesive layer are dissolved and removed with an acid or an oxidizing agent, and the surface of the adhesive layer is roughened (see FIG. 7).
Here, examples of the acid include phosphoric acid, hydrochloric acid, sulfuric acid, and organic acids such as formic acid and acetic acid. It is particularly preferable to use an organic acid. This is because when the roughening treatment is performed, the metal conductor layer exposed from the via hole is hardly corroded. On the other hand, as the oxidizing agent, it is desirable to use chromic acid or permanganate (such as potassium permanganate).

(5) 次に、接着剤層表面を粗化した配線基板に触媒核を付与する。
触媒核の付与には、貴金属イオンや貴金属コロイドなどを用いることが望ましく、一般的には、塩化パラジウムやパラジウムコロイドを使用する。なお、触媒核を固定するために加熱処理を行うことが望ましい。このような触媒核としてはパラジウムがよい。
(5) Next, a catalyst nucleus is imparted to the wiring board whose surface of the adhesive layer is roughened.
For imparting the catalyst nucleus, it is desirable to use a noble metal ion or a noble metal colloid. Generally, palladium chloride or a palladium colloid is used. It is desirable to perform heat treatment to fix the catalyst core. Palladium is preferable as such a catalyst nucleus.

(6) 次に、無電解めっき用接着剤表面に無電解めっきを施し、粗化面全面に無電解めっき膜を形成する(図8参照)。このとき、無電解めっき膜の厚みは0.1〜5μm、より望ましくは0.5〜3μmとする。
つぎに、無電解めっき膜上にめっきレジストを形成する(図9参照)。めっきレジスト組成物としては、特にクレゾールノボラックやフェノールノボラック型エポキシ樹脂のアクリレートとイミダゾール硬化剤からなる組成物を用いることが望ましいが、他に市販品を使用することもできる。
(6) Next, electroless plating is performed on the surface of the electroless plating adhesive to form an electroless plating film on the entire roughened surface (see FIG. 8). At this time, the thickness of the electroless plating film is 0.1 to 5 μm, and more preferably 0.5 to 3 μm.
Next, a plating resist is formed on the electroless plating film (see FIG. 9). As the plating resist composition, it is particularly desirable to use a composition comprising an acrylate of a cresol novolac or a phenol novolac type epoxy resin and an imidazole curing agent, but a commercially available product can also be used.

(7) 次に、めっきレジスト非形成部に電解めっきを施し、導体回路、ならびにバイアホールを形成する(図10参照)。このとき、電解めっき膜の厚さは、5〜30μmが望ましい。
ここで、上記無電解めっきとしては、銅めっきを用いることが望ましい。
(7) Next, electrolytic plating is performed on the plating resist non-formation portion to form a conductor circuit and a via hole (see FIG. 10). At this time, the thickness of the electrolytic plating film is desirably 5 to 30 μm.
Here, it is desirable to use copper plating as the electroless plating.

(8) さらに、めっきレジストを除去した後、硫酸と過酸化水素の混合液や過硫酸ナトリウム、過硫酸アンモニウムなどのエッチング液でめっきレジスト下の無電解めっき膜を溶解除去して、独立した導体回路とする(図11参照)。 (8) Further, after removing the plating resist, the electroless plating film under the plating resist is dissolved and removed with an etching solution such as a mixture of sulfuric acid and hydrogen peroxide, sodium persulfate, or ammonium persulfate, and an independent conductor circuit. (See FIG. 11).

(9) 次に、導体回路の表面に粗化層を形成する(図12参照)。
粗化層の形成方法としては、エッチング処理、研磨処理、酸化還元処理、めっき処理がある。
これらの処理のうち酸化還元処理は、NaOH(10g/l)、NaClO2(40g/l)、Na3PO4(6g/l)を酸化浴(黒化浴)、NaOH(10g/l)、NaBH4(5g/l)を還元浴とする。
また、銅−ニッケル−リン合金層からなる粗化層は、無電解めっき処理による析出により形成する。
この合金の無電解めっき液としては、硫酸銅1〜40g/l、硫酸ニッケル 0.1〜6.0 g/l、クエン酸10〜20g/l、次亜リン酸塩10〜100 g/l、ホウ酸10〜40g/l、界面活性剤0.01〜10g/lからなる液組成のめっき浴を用いることが望ましい。
(9) Next, a roughening layer is formed on the surface of the conductor circuit (see FIG. 12).
As a method for forming the roughened layer, there are an etching process, a polishing process, an oxidation-reduction process, and a plating process.
Among these treatments, the oxidation-reduction treatment comprises NaOH (10 g / l), NaClO 2 (40 g / l), Na 3 PO 4 (6 g / l) in an oxidation bath (blackening bath), NaOH (10 g / l), NaBH 4 (5 g / l) is used as the reducing bath.
Moreover, the roughening layer which consists of a copper-nickel-phosphorus alloy layer is formed by precipitation by an electroless-plating process.
The electroless plating solution for this alloy includes copper sulfate 1-40 g / l, nickel sulfate 0.1-6.0 g / l, citric acid 10-20 g / l, hypophosphite 10-100 g / l, boric acid 10 It is desirable to use a plating bath having a liquid composition of ˜40 g / l and a surfactant of 0.01 to 10 g / l.

(10)次に、この基板上に層間樹脂絶縁層として、無電解めっき用接着剤層を形成する(図13参照)。
(11)さらに、(3)〜(8)の工程を繰り返してさらに上層の導体回路を設ける(図14〜17参照)。なお、ここで、導体回路の表面には前記(9)と同様にして粗化層を形成してもよい。
(10) Next, an electroless plating adhesive layer is formed on this substrate as an interlayer resin insulation layer (see FIG. 13).
(11) Further, steps (3) to (8) are repeated to provide a further upper conductor circuit (see FIGS. 14 to 17). Here, a roughened layer may be formed on the surface of the conductor circuit in the same manner as in the above (9).

(12)次に、こうして得られた配線基板の表面に、ソルダーレジスト組成物を塗布し、その塗膜を乾燥した後、この塗膜に、開口部を描画したフォトマスクフィルムを載置して露光、現像処理することにより、導体回路のうちパッド部分を露出させた開口部を形成する。ここで、前記開口部の開口径は、パッドの径よりも大きくすることができ、パッドを完全に露出させてもよい。また、逆に前記開口部の開口径は、パッドの径よりも小さくすることができ、パッドの縁周をソルダーレジストで被覆することができる。この場合、パッドをソルダーレジストで抑えることができ、パッドの剥離を防止できる。 (12) Next, a solder resist composition was applied to the surface of the wiring board thus obtained, and after the coating film was dried, a photomask film having openings drawn thereon was placed on the coating film. By exposing and developing, an opening in which the pad portion of the conductor circuit is exposed is formed. Here, the opening diameter of the opening may be larger than the diameter of the pad, and the pad may be completely exposed. Conversely, the opening diameter of the opening can be made smaller than the diameter of the pad, and the periphery of the pad can be covered with a solder resist. In this case, the pad can be suppressed with a solder resist, and the peeling of the pad can be prevented.

(13)次に、前記開口部から露出した前記パッド部上に「ニッケル−金」の金属層を形成する。 (13) Next, a “nickel-gold” metal layer is formed on the pad portion exposed from the opening.

(14)次に、前記開口部から露出した前記パッド部上にはんだ体を供給する。
はんだ体の供給方法としては、はんだ転写法や印刷法を用いることができる。ここで、はんだ転写法は、プリプレグにはんだ箔を貼合し、このはんだ箔を開口部分に相当する箇所のみを残してエッチングすることによりはんだパターンを形成してはんだキャリアフィルムとし、このはんだキャリアフィルムを、基板のソルダーレジスト開口部分にフラックスを塗布した後、はんだパターンがパッドに接触するように積層し、これを加熱して転写する方法である。一方、印刷法は、パッドに相当する箇所に貫通孔を設けたメタルマスクを基板に載置し、はんだペーストを印刷して加熱処理する方法である。
(14) Next, a solder body is supplied onto the pad portion exposed from the opening.
As a method for supplying the solder body, a solder transfer method or a printing method can be used. Here, the solder transfer method is to paste a solder foil on a prepreg, and to etch the solder foil by leaving only the portion corresponding to the opening portion, thereby forming a solder carrier film, and this solder carrier film. After the flux is applied to the solder resist opening of the substrate, the solder pattern is laminated so as to contact the pad, and this is transferred by heating. On the other hand, the printing method is a method in which a metal mask provided with a through hole at a position corresponding to a pad is placed on a substrate, a solder paste is printed, and heat treatment is performed.

(実施例1)
(1)厚さ0.6mmのガラスエポキシ樹脂またはBT(ビスマレイミドトリアジン)樹脂からなる基板1の両面に18μmの銅箔8がラミネートされてなる銅張積層板を出発材料とした(図1参照)。この銅張積層板の銅箔8を常法に従いパターン状にエッチング、穴明け、無電解めっきを施すことにより、基板の両面に内層銅パターン4とスルーホール9を形成した(図2参照)。
さらに、導体回路4間およびスルーホール9内にビスフェノールF型エポキシ樹脂を充填した(図3参照)。
Example 1
(1) A copper-clad laminate in which 18 μm copper foil 8 is laminated on both surfaces of a substrate 1 made of glass epoxy resin or BT (bismaleimide triazine) resin having a thickness of 0.6 mm was used as a starting material (see FIG. 1). ). The copper foil 8 of this copper clad laminate was etched, drilled and electrolessly plated in a pattern according to a conventional method, thereby forming inner layer copper patterns 4 and through holes 9 on both surfaces of the substrate (see FIG. 2).
Further, bisphenol F-type epoxy resin was filled between the conductor circuits 4 and in the through holes 9 (see FIG. 3).

(2) 前記(1)の処理を終えた基板を水洗いし、乾燥した後、その基板を酸性脱脂してソフトエッチングし、次いで、塩化パラジウムと有機酸からなる触媒溶液で処理して、Pd触媒を付与し、この触媒を活性化した後、硫酸銅8g/l、硫酸ニッケル0.6g/l、クエン酸15g/l、次亜リン酸ナトリウム29g/l、ホウ酸31g/l、界面活性剤0.1g/l、pH=9からなる無電解めっき浴にてめっきを施し、銅導体回路4の表面にCu−Ni−P合金の厚さ2.5μmの粗化層11(凹凸層)を形成した(図4参照)。 (2) The substrate after the treatment of (1) is washed with water and dried, and then the substrate is subjected to acid degreasing and soft etching, and then treated with a catalyst solution composed of palladium chloride and an organic acid to obtain a Pd catalyst. After activating the catalyst, copper sulfate 8 g / l, nickel sulfate 0.6 g / l, citric acid 15 g / l, sodium hypophosphite 29 g / l, boric acid 31 g / l, surfactant 0.1 Plating was performed in an electroless plating bath composed of g / l, pH = 9, and a roughened layer 11 (uneven layer) having a thickness of 2.5 μm of a Cu—Ni—P alloy was formed on the surface of the copper conductor circuit 4. (See FIG. 4).

(3)DMDG(ジエチレングリコールジメチルエーテル)に溶解したクレゾールノボラック型エポキシ樹脂(日本化薬製、分子量2500)の25%アクリル化物を70重量部、ポリエーテルスルフォン(PES)30重量部、イミダゾール硬化剤(四国化成製、商品名:2E4MZ-CN)4重量部、感光性モノマーであるカプロラクトン変成トリス(アクロキシエチル)イソシアヌレート(東亜合成製、商品名:アロニックスM325)10重量部、光開始剤としてのベンゾフェノン(関東化学製)5重量部、光増感剤としてのミヒラーケトン(関東化学製)0.5重量部、さらにこの混合物に対してエポキシ樹脂粒子の平均粒径5.5μmのものを35重量部、平均粒径0.5μmのものを5重量部を混合した後、NMP(ノルマルメチルピロリドン)を添加しながら混合し、ホモディスパー攪拌機で粘度112Pa・sに調整し、続いて3本ロールで混練して感光性接着剤溶液(層間樹脂絶縁材)を得た。 (3) 70 parts by weight of 25% acrylate of cresol novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether), 30 parts by weight of polyethersulfone (PES), imidazole curing agent (Shikoku 4 parts by weight of Kasei Chemical Co., Ltd., trade name: 2E4MZ-CN), 10 parts by weight of caprolactone modified tris (acryloxyethyl) isocyanurate (trade name: Aronix M325, manufactured by Toagosei Co., Ltd.), a photosensitive monomer, benzophenone as a photoinitiator 5 parts by weight (manufactured by Kanto Chemical), 0.5 parts by weight of Michler's ketone (manufactured by Kanto Chemical) as a photosensitizer, and 35 parts by weight of an epoxy resin particle having an average particle size of 5.5 μm with respect to this mixture, After mixing 5 parts by weight of an average particle size of 0.5 μm, while adding NMP (normal methylpyrrolidone) Combined, adjusted to a viscosity 112Pa · s in a homodisper stirrer to obtain subsequently kneading the photosensitive adhesive solution 3-roll (interlayer resin insulating material).

(4)前記(3)で得た感光性接着剤溶液を、前記(2)の処理を終えた基板の両面に、ロールコータを用いて塗布し、水平状態で20分間放置してから、60℃で30分間の乾燥を行い、厚さ60μmの接着剤層2を形成した(図5参照)。
(5) 前記(4) で接着剤層2を形成した基板の両面に、バイアホールが描画されたフォトマスクフィルムを載置し、紫外線を照射して露光した。
(4) The photosensitive adhesive solution obtained in (3) above was applied to both surfaces of the substrate that had been treated in (2) above using a roll coater, left in a horizontal state for 20 minutes, and then 60 Drying was carried out at 30 ° C. for 30 minutes to form an adhesive layer 2 having a thickness of 60 μm (see FIG. 5).
(5) Photomask films on which via holes were drawn were placed on both sides of the substrate on which the adhesive layer 2 was formed in the above (4), and exposed by irradiating ultraviolet rays.

(6)露光した基板をDMTG(トリエチレングリコールジメチルエーテル)溶液でスプレー現像することにより、接着剤層に直径100μmのバイアホールとなる開口を形成した。さらに、当該基板を超高圧水銀灯にて3000mJ/cmで露光し、100℃で1時間、その後150℃で5時間にて加熱処理することにより、フォトマスクフィルムに相当する寸法精度に優れ、3個集合して形成された開口(バイアホール形成用開口6)を有する厚さ50μmの接着剤層2を形成した(図6参照)。なお、バイアホールとなる開口6には、粗化層11を部分的に露出させる。 (6) The exposed substrate was spray-developed with a DMTG (triethylene glycol dimethyl ether) solution to form an opening serving as a via hole having a diameter of 100 μm in the adhesive layer. Furthermore, the substrate is exposed at 3000 mJ / cm 2 with an ultra-high pressure mercury lamp and heat-treated at 100 ° C. for 1 hour and then at 150 ° C. for 5 hours, so that the dimensional accuracy corresponding to a photomask film is excellent. An adhesive layer 2 having a thickness of 50 μm having an opening (via hole forming opening 6) formed as a group was formed (see FIG. 6). Note that the roughened layer 11 is partially exposed in the opening 6 serving as a via hole.

(7)前記(5)(6)でバイアホール形成用開口6を形成した基板を、クロム酸に2分間浸漬し、接着剤層表面に存在するエポキシ樹脂粒子を溶解除去して、当該接着剤層の表面を粗化し、その後、中和溶液(シプレイ社製)に浸漬してから水洗した(図7参照)。
(8)前記(7)で粗面化処理(粗化深さ5μm)を行った基板に対し、パラジウム触媒(アトテック製)を付与することにより、接着剤層2およびバイアホール用開口6の表面に触媒核を付与した。
(7) The substrate on which the via hole forming opening 6 is formed in the above (5) and (6) is immersed in chromic acid for 2 minutes, and the epoxy resin particles existing on the surface of the adhesive layer are dissolved and removed. The surface of the layer was roughened, and then immersed in a neutralization solution (manufactured by Shipley Co., Ltd.) and washed with water (see FIG. 7).
(8) The surface of the adhesive layer 2 and the via hole opening 6 is formed by applying a palladium catalyst (manufactured by Atotech) to the substrate subjected to the roughening treatment (roughening depth 5 μm) in (7). Was provided with a catalyst nucleus.

(9)以下の組成の無電解銅めっき浴中に基板を浸漬して、粗面全体に厚さ3μmの無電解銅めっき膜12を形成した(図8参照)。
〔無電解めっき液〕
EDTA 150 g/l
硫酸銅 20 g/l
HCHO 30 ml/l
NaOH 40g/l
α、α’−ビピリジル 80 mg/l
PEG 0.1g/l
〔無電解めっき条件〕
70℃の液温度で30分
(9) The substrate was immersed in an electroless copper plating bath having the following composition to form an electroless copper plating film 12 having a thickness of 3 μm over the entire rough surface (see FIG. 8).
[Electroless plating solution]
EDTA 150 g / l
Copper sulfate 20 g / l
HCHO 30 ml / l
NaOH 40g / l
α, α'-bipyridyl 80 mg / l
PEG 0.1 g / l
[Electroless plating conditions]
30 minutes at a liquid temperature of 70 ° C

(10)前記(9)で形成した無電解銅めっき膜12上に市販の感光性ドライフィルムを貼り付け、マスクを載置して、100mJ/cmで露光、0.8%炭酸ナトリウムで現像処理し、厚さ15μmのめっきレジスト3を設けた(図9参照)。 (10) A commercially available photosensitive dry film is pasted on the electroless copper plating film 12 formed in the above (9), a mask is placed, exposed at 100 mJ / cm 2 , and developed with 0.8% sodium carbonate. The plating resist 3 having a thickness of 15 μm was provided (see FIG. 9).

(11)ついで、以下の条件で電解銅めっきを施し、厚さ15μmの電解銅めっき膜13を形成した(図10参照)。
〔電解めっき液〕
硫酸 180g/l
硫酸銅 80g/l
添加剤(アトテックジャパン製、商品名:カパラシドGL)
1 ml/l
〔電解めっき条件〕
電流密度 1A/dm
時間 30分
温度 室温
(11) Next, electrolytic copper plating was performed under the following conditions to form an electrolytic copper plating film 13 having a thickness of 15 μm (see FIG. 10).
[Electrolytic plating solution]
Sulfuric acid 180g / l
Copper sulfate 80g / l
Additive (product name: Kaparaside GL, manufactured by Atotech Japan)
1 ml / l
[Electrolytic plating conditions]
Current density 1A / dm 2
30 minutes
Temperature room temperature

(12)めっきレジスト3を5%KOHで剥離除去した後、そのめっきレジスト3下の無電解めっき膜12を硫酸と過酸化水素の混合液でエッチング処理して溶解除去し、無電解銅めっき膜12と電解銅めっき膜13からなる厚さ18μmの導体回路(バイアホールを含む)5を形成した(図11参照)。 (12) After stripping and removing the plating resist 3 with 5% KOH, the electroless plating film 12 under the plating resist 3 is dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide, and the electroless copper plating film A conductor circuit (including a via hole) 5 having a thickness of 18 μm was formed (see FIG. 11).

(13)導体回路5を形成した基板を、硫酸銅8g/l、硫酸ニッケル0.6g/l、クエン酸15g/l、次亜リン酸ナトリウム29g/l、ホウ酸31g/l、界面活性剤0.1g/lからなるpH=9の無電解めっき液に浸漬し、該導体回路5の表面に厚さ3μmの銅−ニッケル−リンからなる粗化層11を形成した(図12参照)。このとき、形成した粗化層11をEPMA(蛍光X線分析装置)で分析したところ、Cu:98mol%、Ni:1.5mol%、P:0.5mol%の組成比を示した。 (13) The substrate on which the conductor circuit 5 is formed is made of copper sulfate 8 g / l, nickel sulfate 0.6 g / l, citric acid 15 g / l, sodium hypophosphite 29 g / l, boric acid 31 g / l, surfactant 0.1 A roughening layer 11 made of copper-nickel-phosphorus having a thickness of 3 μm was formed on the surface of the conductor circuit 5 by dipping in an electroless plating solution of pH = 9 consisting of g / l (see FIG. 12). At this time, when the formed roughened layer 11 was analyzed by EPMA (fluorescence X-ray analyzer), the composition ratio of Cu: 98 mol%, Ni: 1.5 mol%, P: 0.5 mol% was shown.

(14)(4)〜(12)の工程を繰り返すことにより、さらに上層の導体回路を形成した配線基板を得た(図13〜17参照)。 (14) By repeating the steps (4) to (12), a wiring board on which a further upper conductor circuit was formed was obtained (see FIGS. 13 to 17).

(15)一方、DMDGに溶解させた60重量%のクレゾールノボラック型エポキシ樹脂(日本化薬製)のエポキシ基50%をアクリル化した感光性付与のオリゴマー(分子量4000)を46.67g、メチルエチルケトンに溶解させた80重量%のビスフェノールA型エポキシ樹脂(油化シェル製、エピコート1001)15.0g、イミダゾール硬化剤(四国化成製、商品名:2E4MZ-CN)1.6g、感光性モノマーである多価アクリルモノマー(日本化薬製、商品名:R604)3g、同じく多価アクリルモノマー(共栄社化学製、商品名:DPE6A)1.5g、分散系消泡剤(サンノプコ社製、商品名:S−65)0.71gを混合し、さらにこの混合物に対して光開始剤としてのベンゾフェノン(関東化学製)を2g、光増感剤としてのミヒラーケトン(関東化学製)を0.2g加えて、粘度を25℃で2.0Pa・sに調整したソルダーレジスト組成物を得た。
なお、粘度測定は、B型粘度計(東京計器、DVL-B型)で60rpmの場合はローターNo.4、6rpmの場合はローターNo.3によった。
(15) On the other hand, 46.67 g of photosensitizing oligomer (molecular weight 4000) obtained by acrylating 50% of the epoxy group of 60% by weight of cresol novolac type epoxy resin (manufactured by Nippon Kayaku) dissolved in DMDG, into methyl ethyl ketone 15.0 g of 80% by weight bisphenol A type epoxy resin (manufactured by Yuka Shell, Epicoat 1001), 1.6 g of imidazole curing agent (product name: 2E4MZ-CN), a photosensitive monomer Monovalent acrylic monomer (Nippon Kayaku, trade name: R604) 3 g, similarly polyacrylic monomer (Kyoeisha Chemical, trade name: DPE6A) 1.5 g, dispersion antifoam (San Nopco, trade name: S-) 65) 0.71 g was mixed, and 2 g of benzophenone (manufactured by Kanto Chemical) as a photoinitiator was added to this mixture, and Michler's ketone as a photosensitizer 0.2 g (manufactured by Kanto Kagaku) was added to obtain a solder resist composition having a viscosity adjusted to 2.0 Pa · s at 25 ° C.
The viscosity was measured with a B-type viscometer (Tokyo Keiki Co., Ltd., DVL-B type) with a rotor No. of 60 rpm. In the case of 4 or 6 rpm, the rotor No. 3 according.

(16)前記(14)で得られた配線基板に、ソルダーレジスト組成物を20μmの厚さで塗布した。次いで、70℃で20分間、70℃で30分間の乾燥処理を行った後、フォトマスクフィルムを載置し、1000mJ/cmの紫外線で露光し、DMTG現像処理した。さらに、80℃で1時間、100℃で1時間、120℃で1時間、150℃で3時間の条件で加熱処理し、パッド部分が開口した(開口径200μm)ソルダーレジスト層(厚み20μm)を形成した。 (16) The solder resist composition was applied to the wiring board obtained in (14) with a thickness of 20 μm. Next, after drying at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes, a photomask film was placed, exposed to 1000 mJ / cm 2 of ultraviolet light, and DMTG developed. Further, a solder resist layer (thickness 20 μm) having a pad portion opened (opening diameter 200 μm) was heat-treated at 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours. Formed.

(17)次に、ソルダーレジスト層を形成した基板を、塩化ニッケル30g/l、次亜リン酸ナトリウム10g/l、クエン酸ナトリウム10g/lからなるpH=5の無電解ニッケルめっき液に20分間浸漬して、開口部に厚さ5μmのニッケルめっき層を形成した。さらに、その基板を、シアン化金カリウム2g/l、塩化アンモニウム75g/l、クエン酸ナトリウム50g/l、次亜リン酸ナトリウム10g/lからなる無電解金めっき液に93℃の条件で23秒間浸漬して、ニッケルめっき層上に厚さ0.03μmの金めっき層を形成した。 (17) Next, the substrate on which the solder resist layer is formed is placed in an electroless nickel plating solution having a pH of 5 consisting of 30 g / l nickel chloride, 10 g / l sodium hypophosphite, and 10 g / l sodium citrate for 20 minutes. Immersion was performed to form a nickel plating layer having a thickness of 5 μm in the opening. Further, the substrate was placed in an electroless gold plating solution composed of potassium gold cyanide 2 g / l, ammonium chloride 75 g / l, sodium citrate 50 g / l, and sodium hypophosphite 10 g / l at 93 ° C. for 23 seconds. A gold plating layer having a thickness of 0.03 μm was formed on the nickel plating layer by dipping.

(18)そして、ソルダーレジスト層の開口部に、はんだペーストを印刷して200℃でリフローすることによりはんだバンプを形成し、はんだバンプを有するプリント配線板を製造した。 (18) A solder bump was formed by printing a solder paste on the opening of the solder resist layer and reflowing at 200 ° C. to produce a printed wiring board having the solder bump.

(実施例2)
導体回路表面の粗化をエッチングにより行ったこと以外は、実施例1と同様にしてはんだバンプを有するプリント配線板を製造した。このとき、エッチング液は、メック社製の「デュラボンド」なる商品名のものを使用した。
(Example 2)
A printed wiring board having solder bumps was produced in the same manner as in Example 1 except that the surface of the conductor circuit was roughened by etching. At this time, an etching solution having a trade name of “Durabond” manufactured by MEC was used.

(実施例3)
A.無電解めっき用接着剤組成物の調製
(1).クレゾールノボラック型エポキシ樹脂(日本化薬製、分子量2500)の25%アクリル化物を80wt%の濃度でDMDGに溶解させた樹脂液を35重量部、感光性モノマー(東亜合成製、アロニックスM315)3.15重量部、消泡剤(サンノプコ製、S−65)0.5
重量部、NMPを3.6重量部を攪拌混合した。
(2).ポリエーテルスルフォン(PES)12重量部、エポキシ樹脂粒子(三洋化成製、ポリマーポール)の平均粒径1.0μmのものを7.2重量部、平均粒径0.5μmのものを3.09重量部を混合した後、さらにNMP30重量部を添加し、ビーズミルで攪拌混合した。
(3).イミダゾール硬化剤(四国化成製、2E4MZ-CN)2重量部、光開始剤(チバガイギー製、イルガキュア I−907 )2重量部、光増感剤(日本化薬製、DETX-S)0.2重量部、NMP1.5重量部を攪拌混合した。これらを混合して無電解めっき用接着剤組成物を調製した。
(Example 3)
A. Preparation of adhesive composition for electroless plating (1). 2. 35 parts by weight of a resin solution prepared by dissolving 25% acrylate of cresol novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., molecular weight 2500) in DMDG at a concentration of 80 wt%, photosensitive monomer (Aronix M315, manufactured by Toagosei Co., Ltd.) 15 parts by weight, defoaming agent (manufactured by San Nopco, S-65) 0.5
Part by weight and 3.6 parts by weight of NMP were mixed with stirring.
(2). 12 parts by weight of polyethersulfone (PES), 7.2 parts by weight of epoxy resin particles (manufactured by Sanyo Chemical Co., Ltd., polymer pole) with an average particle diameter of 1.0 μm, and 3.09 weights with an average particle diameter of 0.5 μm After mixing the parts, 30 parts by weight of NMP was further added and stirred and mixed with a bead mill.
(3). Imidazole curing agent (Shikoku Kasei, 2E4MZ-CN) 2 parts, Photoinitiator (Ciba Geigy, Irgacure I-907) 2 parts, Photosensitizer (Nippon Kayaku, DETX-S) 0.2 part And 1.5 parts by weight of NMP were mixed with stirring. These were mixed to prepare an electroless plating adhesive composition.

B.下層の層間樹脂絶縁剤の調製
(1).クレゾールノボラック型エポキシ樹脂(日本化薬製、分子量2500)の25%アクリル化物を80wt%の濃度でDMDGに溶解させた樹脂液を35重量部、感光性モノマー(東亜合成製、アロニックスM315)4重量部、消泡剤(サンノプコ製、S−65)0.5重量部、NMPを3.6重量部を攪拌混合した。
(2).ポリエーテルスルフォン(PES)12重量部、エポキシ樹脂粒子(三洋化成製、ポリマーポール)の平均粒径0.5μmのものを14.49重量部、を混合した後、さらにNMP30重量部を添加し、ビーズミルで攪拌混合した。
(3).イミダゾール硬化剤(四国化成製、2E4MZ-CN)2重量部、光開始剤(チバガイギー製、イルガキュア I−907)2重量部、光増感剤(日本化薬製、DETX-S)0.2重量部、NMP1.5重量部を攪拌混合した。
これらを混合して、2層構造の層間樹脂絶縁層を構成する下層側の絶縁剤層として用いられる樹脂組成物を調製した。
B. Preparation of lower interlayer resin insulation (1). 35 parts by weight of a resin solution prepared by dissolving 25% acrylate of cresol novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., molecular weight 2500) in DMDG at a concentration of 80 wt%, photosensitive resin (Aronix M315, manufactured by Toagosei Co., Ltd.) Parts, 0.5 parts by weight of an antifoaming agent (Sanopco, S-65) and 3.6 parts by weight of NMP were mixed with stirring.
(2). After mixing 12 parts by weight of polyethersulfone (PES) and 14.49 parts by weight of epoxy resin particles (manufactured by Sanyo Kasei, polymer pole) having an average particle size of 0.5 μm, 30 parts by weight of NMP was further added, The mixture was stirred and mixed with a bead mill.
(3). Imidazole curing agent (Shikoku Chemicals, 2E4MZ-CN) 2 parts, Photoinitiator (Ciba Geigy, Irgacure I-907) 2 parts, Photosensitizer (Nippon Kayaku, DETX-S) 0.2 parts And 1.5 parts by weight of NMP were mixed with stirring.
These were mixed to prepare a resin composition to be used as an insulating layer on the lower layer side constituting an interlayer resin insulating layer having a two-layer structure.

C.樹脂充填剤の調製
(1).ビスフェノールF型エポキシモノマー(油化シェル製、分子量310,YL983U)100重量部、表面にシランカップリング剤がコーティングされた平均粒径1.6μmのSiO 球状粒子(アドマテック製、CRS 1101−CE、ここで、最大粒子の大きさは後述する内層銅パターンの厚み(15μm)以下とする)170重量部、レベリング剤(サンノプコ製、ペレノールS4)1.5重量部を3本ロールにて混練して、その混合物の粘度を23±1℃で45,000〜49,000cpsに調整した。
(2).イミダゾール硬化剤(四国化成製、2E4MZ-CN)6.5重量部。これらを混合して樹脂充填剤10の調製した。
C. Preparation of resin filler (1). 100 parts by weight of bisphenol F type epoxy monomer (manufactured by Yuka Shell, molecular weight 310, YL983U), SiO 2 having an average particle diameter of 1.6 μm and a surface coated with a silane coupling agent Spherical particles (manufactured by Admatech, CRS 1101-CE, where the maximum particle size is not more than the inner layer copper pattern thickness (15 μm) described later) 170 parts by weight, leveling agent (San Nopco, Perenol S4) 1.5 The parts by weight were kneaded with three rolls, and the viscosity of the mixture was adjusted to 45,000 to 49,000 cps at 23 ± 1 ° C.
(2). 6.5 parts by weight of imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN). These were mixed and the resin filler 10 was prepared.

D.プリント配線板の製造方法
(1)厚さ1mmのガラスエポキシ樹脂またはBT(ビスマレイミドトリアジン)樹脂からなる基板1の両面に18μmの銅箔8がラミネートされている銅張積層板を出発材料とした(図21参照)。まず、この銅張積層板をドリル削孔し、めっきレジストを形成した後、無電解めっき処理してスルーホール9を形成し、さらに、銅箔8を常法に従いパターン状にエッチングすることにより、基板1の両面に内層銅パターン4を形成した。
D. Method for manufacturing printed wiring board
(1) A copper-clad laminate in which 18 μm copper foil 8 was laminated on both surfaces of a substrate 1 made of glass epoxy resin or BT (bismaleimide triazine) resin having a thickness of 1 mm was used as a starting material (see FIG. 21). First, after drilling the copper-clad laminate and forming a plating resist, electroless plating treatment is performed to form a through hole 9, and further, the copper foil 8 is etched into a pattern according to a conventional method, Inner layer copper patterns 4 were formed on both sides of the substrate 1.

(2)内層銅パターン4およびスルーホール9を形成した基板を水洗いし、乾燥した後、酸化浴(黒化浴)として、NaOH(10g/l)、NaClO2(40g/l)、Na3PO4(6g/l)、還元浴として、NaOH(10g/l),NaBH4(6g/l)を用いた酸化−還元処理により、内層銅パターン4およびスルーホール9の表面に粗化層11を設けた(図22参照)。 (2) The substrate on which the inner layer copper pattern 4 and the through hole 9 are formed is washed with water, dried, and then used as an oxidation bath (blackening bath): NaOH (10 g / l), NaClO 2 (40 g / l), Na 3 PO 4 (6 g / l), a roughening layer 11 is formed on the surface of the inner layer copper pattern 4 and the through hole 9 by oxidation-reduction treatment using NaOH (10 g / l) and NaBH 4 (6 g / l) as a reducing bath. Provided (see FIG. 22).

(3) 樹脂充填剤10を、基板の片面にロールコータを用いて塗布することにより、導体回路4間あるいはスルーホール9内に充填し、70℃,20分間で乾燥させ、他方の面についても同様にして樹脂充填剤10を導体回路4間あるいはスルーホール9内に充填し、70℃,20分間で加熱乾燥させた(図23参照)。 (3) The resin filler 10 is applied to one side of the substrate using a roll coater to fill the space between the conductor circuits 4 or the through holes 9 and dry at 70 ° C. for 20 minutes. Similarly, the resin filler 10 was filled between the conductor circuits 4 or in the through holes 9 and dried by heating at 70 ° C. for 20 minutes (see FIG. 23).

(4)前記(3)の処理を終えた基板の片面を、#600のベルト研磨紙(三共理化学製)を用いたベルトサンダー研磨により、内層銅パターン4の表面やスルーホール9のランド表面に樹脂充填剤10が残らないように研磨し、次いで、前記ベルトサンダー研磨による傷を取り除くためのバフ研磨を行った。このような一連の研磨を基板の他方の面についても同様に行った。
次いで、100℃で1時間、120℃で3時間、150℃で1時間、180℃で7時間の加熱処理を行って樹脂充填剤10を硬化した(図24参照)。
(4) One side of the substrate after the processing of (3) above is applied to the surface of the inner layer copper pattern 4 or the land surface of the through hole 9 by belt sander polishing using # 600 belt polishing paper (manufactured by Sankyori Chemical). Polishing was performed so that the resin filler 10 did not remain, and then buffing was performed to remove scratches due to the belt sander polishing. Such a series of polishing was similarly performed on the other surface of the substrate.
Next, the resin filler 10 was cured by heat treatment at 100 ° C. for 1 hour, 120 ° C. for 3 hours, 150 ° C. for 1 hour, and 180 ° C. for 7 hours (see FIG. 24).

このようにして、スルーホール9等に充填された樹脂充填剤10の表層部および内層導体回路4上面の粗化層11を除去して基板両面を平滑化し、樹脂充填剤10と内層導体回路4の側面とが粗化層11を介して強固に密着し、またスルーホール9の内壁面と樹脂充填剤10とが粗化層11を介して強固に密着した配線基板を得た。即ち、この工程により、樹脂充填剤10の表面と内層銅パターン4の表面が同一平面となる。ここで、充填した硬化樹脂のTg点は155.6 ℃、線熱膨張係数は44.5×10−6/℃であった。 In this way, the surface layer portion of the resin filler 10 filled in the through holes 9 and the like and the roughened layer 11 on the upper surface of the inner layer conductor circuit 4 are removed to smooth both surfaces of the substrate, and the resin filler 10 and the inner layer conductor circuit 4 are smoothed. A wiring substrate was obtained in which the side surface of the through hole 9 was firmly adhered via the roughened layer 11 and the inner wall surface of the through hole 9 and the resin filler 10 were firmly adhered via the roughened layer 11. That is, by this step, the surface of the resin filler 10 and the surface of the inner layer copper pattern 4 are flush. Here, the filled cured resin had a Tg point of 155.6 ° C. and a linear thermal expansion coefficient of 44.5 × 10 −6 / ° C.

(5)前記(4)の処理で露出した内層導体回路4およびスルーホール9のランド上面に厚さ
2.5μmのCu−Ni−P合金からなる粗化層(凹凸層)11を形成し、さらに、その粗化層11の表面に厚さ0.3μmのSn層を設けた(図25参照、但し、Sn層については図示しない)。
その形成方法は以下のようである。即ち、基板を酸性脱脂してソフトエッチングし、次いで、塩化パラジウムと有機酸からなる触媒溶液で処理して、Pd触媒を付与し、この触媒を活性化した後、硫酸銅8g/l、硫酸ニッケル0.6g/l、クエン酸15g/l、次亜リン酸ナトリウム29g/l、ホウ酸31g/l、界面活性剤 0.1g/l、pH=9からなる無電解めっき浴にてめっきを施し、銅導体回路4上面およびスルーホール9のランド上面にCu−Ni−P合金の粗化層11を形成した。ついで、ホウフッ化スズ0.1mol/l、チオ尿素1.0mol/l、温度50℃、pH=1.2の条件でCu−Sn置換反応させ、粗化層11の表面に厚さ0.3μmのSn層を設けた(Sn層については図示しない)。
(5) A roughened layer (concave / convex layer) 11 made of a Cu—Ni—P alloy having a thickness of 2.5 μm is formed on the land upper surfaces of the inner conductor circuit 4 and the through hole 9 exposed by the process of (4), Further, an Sn layer having a thickness of 0.3 μm was provided on the surface of the roughened layer 11 (see FIG. 25, but the Sn layer is not shown).
The formation method is as follows. That is, the substrate is acid degreased and soft etched, then treated with a catalyst solution composed of palladium chloride and an organic acid to give a Pd catalyst. After activating this catalyst, copper sulfate 8 g / l, nickel sulfate Plating is performed in an electroless plating bath comprising 0.6 g / l, citric acid 15 g / l, sodium hypophosphite 29 g / l, boric acid 31 g / l, surfactant 0.1 g / l, pH = 9, and copper A roughened layer 11 of Cu—Ni—P alloy was formed on the upper surface of the conductor circuit 4 and the upper surface of the land of the through hole 9. Next, a Cu—Sn substitution reaction was carried out under the conditions of tin borofluoride 0.1 mol / l, thiourea 1.0 mol / l, temperature 50 ° C., pH = 1.2, and the surface of the roughened layer 11 was Sn having a thickness of 0.3 μm. A layer was provided (the Sn layer is not shown).

(6)前記(5)の基板の両面に、Bの層間樹脂絶縁剤(粘度1.5Pa・s)をロールコータで塗布し、水平状態で20分間放置してから、60℃で30分の乾燥(プリベーク)を行い、絶縁剤層2aを形成した。
さらにこの絶縁剤層2aの上にAの無電解めっき用接着剤(粘度7Pa・s)をロールコータを用いて塗布し、水平状態で20分間放置してから、60℃で30分の乾燥(プリベーク)を行い、接着剤層2bを形成した(図26参照)。
(6) B interlayer resin insulation (viscosity 1.5 Pa · s) was applied to both sides of the substrate of (5) above with a roll coater, left in a horizontal state for 20 minutes, and then at 60 ° C. for 30 minutes. Drying (pre-baking) was performed to form the insulating layer 2a.
Further, an adhesive for electroless plating (viscosity 7 Pa · s) of A is applied onto the insulating layer 2a using a roll coater, left in a horizontal state for 20 minutes, and then dried at 60 ° C. for 30 minutes ( Pre-baking) was performed to form an adhesive layer 2b (see FIG. 26).

(7)前記(6)で絶縁剤層2aおよび接着剤層2bを形成した基板の両面に、直径85μmの黒円が印刷されたフォトマスクフィルムを密着させ、超高圧水銀灯により500mJ/cmで露光した。これをDMTG溶液でスプレー現像し、さらに、当該基板を超高圧水銀灯により3000mJ/cmで露光し、100℃で1時間、その後150℃で5時間の加熱処理(ポストベーク)をすることにより、フォトマスクフィルムに相当する寸法精度に優れた直径85μmの開口(バイアホール形成用開口6)を有する厚さ35μmの層間樹脂絶縁層(2層構造)2を形成した(図27参照)。なお、バイアホールとなる開口には、スズめっき層を部分的に露出させた。 (7) A photomask film on which a black circle having a diameter of 85 μm is printed is adhered to both surfaces of the substrate on which the insulating layer 2a and the adhesive layer 2b are formed in the above (6), and is 500 mJ / cm 2 by an ultrahigh pressure mercury lamp. Exposed. This is spray-developed with a DMTG solution, and further, the substrate is exposed at 3000 mJ / cm 2 with an ultrahigh pressure mercury lamp, and subjected to a heat treatment (post-bake) at 100 ° C. for 1 hour and then at 150 ° C. for 5 hours, An interlayer resin insulation layer (two-layer structure) 2 having a thickness of 35 μm and having an opening (via hole forming opening 6) having a diameter of 85 μm and excellent in dimensional accuracy corresponding to a photomask film was formed (see FIG. 27). Note that the tin plating layer was partially exposed in the opening serving as the via hole.

(8)開口が形成された基板を、800g/lのクロム酸に70℃で19分間浸漬し、層間樹脂絶縁層2の接着剤層2bの表面に存在するエポキシ樹脂粒子を溶解除去することにより、当該層間樹脂絶縁層2の表面を粗面(深さ3μm)とし、その後、中和溶液(シプレイ社製)に浸漬してから水洗いした(図28参照)。
さらに、粗面化処理した該基板の表面に、パラジウム触媒(アトテック製)を付与することにより、層間樹脂絶縁層2の表面およびバイアホール用開口6の内壁面に触媒核を付けた。
(8) The substrate with the openings formed is immersed in 800 g / l chromic acid at 70 ° C. for 19 minutes to dissolve and remove the epoxy resin particles present on the surface of the adhesive layer 2b of the interlayer resin insulation layer 2. The surface of the interlayer resin insulation layer 2 was roughened (depth: 3 μm), and then immersed in a neutralization solution (manufactured by Shipley Co., Ltd.) and washed with water (see FIG. 28).
Furthermore, a catalyst core was attached to the surface of the interlayer resin insulating layer 2 and the inner wall surface of the via hole opening 6 by applying a palladium catalyst (manufactured by Atotech) to the surface of the roughened substrate.

(9)以下の組成の無電解銅めっき浴中に基板を浸漬して、粗面全体に厚さ0.6μmの無電解銅めっき膜12を形成した(図29参照)。
〔無電解めっき液〕
EDTA 150g/l
硫酸銅 20g/l
HCHO 30 ml/l
NaOH 40g/l
α、α’−ビピリジル 80 mg/l
PEG 0.1g/l
〔無電解めっき条件〕
70℃の液温度で30分
(9) The substrate was immersed in an electroless copper plating bath having the following composition to form an electroless copper plating film 12 having a thickness of 0.6 μm over the entire rough surface (see FIG. 29).
[Electroless plating solution]
EDTA 150g / l
Copper sulfate 20g / l
HCHO 30 ml / l
NaOH 40g / l
α, α'-bipyridyl 80 mg / l
PEG 0.1 g / l
[Electroless plating conditions]
30 minutes at a liquid temperature of 70 ° C

(10)前記(9)で形成した無電解銅めっき膜12上に市販の感光性ドライフィルムを貼り付け、マスクを載置して、100mJ/cmで露光、0.8%炭酸ナトリウムで現像処理し、厚さ15μmのめっきレジスト3を設けた(図30参照)。 (10) A commercially available photosensitive dry film is pasted on the electroless copper plating film 12 formed in the above (9), a mask is placed, exposed at 100 mJ / cm 2 and developed with 0.8% sodium carbonate. The plating resist 3 having a thickness of 15 μm was provided (see FIG. 30).

(11)ついで、レジスト非形成部分に以下の条件で電解銅めっきを施し、厚さ15μmの電解銅めっき膜13を形成した(図31参照)。
〔電解めっき液〕
硫酸 180 g/l
硫酸銅 80 g/l
添加剤(アトテックジャパン製、カパラシドGL)
1 ml/l
〔電解めっき条件〕
電流密度 1A/dm
時間 30分
温度 室温
(11) Next, electrolytic copper plating was applied to the resist non-formed portion under the following conditions to form an electrolytic copper plating film 13 having a thickness of 15 μm (see FIG. 31).
[Electrolytic plating solution]
Sulfuric acid 180 g / l
Copper sulfate 80 g / l
Additive (manufactured by Atotech Japan, Kaparaside GL)
1 ml / l
[Electrolytic plating conditions]
Current density 1A / dm 2
30 minutes
Temperature room temperature

(12)めっきレジスト3を5%KOHで剥離除去した後、そのめっきレジスト3下の無電解めっき膜12を硫酸と過酸化水素の混合液でエッチング処理して溶解除去し、無電解銅めっき膜12と電解銅めっき膜13からなる厚さ18μmの導体回路(バイアホールを含む)5を形成した。さらに、70℃で800g/lのクロム酸に3分間浸漬して、導体回路非形成部分に位置する導体回路間の無電解めっき用接着剤層の表面を1〜2μmエッチング処理し、その表面に残存するパラジウム触媒を除去した(図32参照)。 (12) After stripping and removing the plating resist 3 with 5% KOH, the electroless plating film 12 under the plating resist 3 is dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide, and the electroless copper plating film A conductor circuit (including via holes) 5 having a thickness of 18 μm composed of 12 and electrolytic copper plating film 13 was formed. Further, the surface of the adhesive layer for electroless plating between the conductor circuits located in the conductor circuit non-formed portion is etched by 1 to 2 μm at 70 ° C. for 3 minutes in 800 g / l chromic acid, and the surface is etched. The remaining palladium catalyst was removed (see FIG. 32).

(13)導体回路5を形成した基板を、硫酸銅8g/l、硫酸ニッケル0.6g/l、クエン酸15g/l、次亜リン酸ナトリウム29g/l、ホウ酸31g/l、界面活性剤0.1g/lからなるpH=9の無電解めっき液に浸漬し、該導体回路5の表面に厚さ3μmの銅−ニッケル−リンからなる粗化層11を形成した(図33参照)。このとき、形成した粗化層11をEPMA(蛍光X線分析装置)で分析したところ、Cu:98mol%、Ni:1.5mol%、P:0.5mol%の組成比であった。
さらに、ホウフッ化スズ0.1mol/l、チオ尿素1.0mol/l、温度50℃、pH=1.2の条件でCu−Sn置換反応を行い、前記粗化層11の表面に厚さ 0.3μmのSn層を設けた(Sn層については図示しない)。
(13) The substrate on which the conductor circuit 5 is formed is made of copper sulfate 8 g / l, nickel sulfate 0.6 g / l, citric acid 15 g / l, sodium hypophosphite 29 g / l, boric acid 31 g / l, surfactant 0.1 A roughening layer 11 made of copper-nickel-phosphorus having a thickness of 3 μm was formed on the surface of the conductor circuit 5 by dipping in an electroless plating solution of pH = 9 consisting of g / l (see FIG. 33). At this time, when the formed roughened layer 11 was analyzed by EPMA (fluorescence X-ray analyzer), the composition ratio was Cu: 98 mol%, Ni: 1.5 mol%, and P: 0.5 mol%.
Furthermore, a Cu—Sn substitution reaction was performed under the conditions of tin borofluoride 0.1 mol / l, thiourea 1.0 mol / l, temperature 50 ° C., pH = 1.2, and the thickness of the roughened layer 11 was 0.3 μm. The Sn layer was provided (the Sn layer is not shown).

(14)前記 (6)〜(13)の工程を繰り返すことにより、さらに上層の導体回路を形成し、多層プリント配線板を得た。但し、Sn置換は行わなかった(図34〜39参照)。 (14) By repeating the steps (6) to (13), a further upper conductor circuit was formed to obtain a multilayer printed wiring board. However, Sn substitution was not performed (see FIGS. 34 to 39).

(15)一方、DMDGに溶解させた60重量%のクレゾールノボラック型エポキシ樹脂(日本化薬製)のエポキシ基50%をアクリル化した感光性付与のオリゴマー(分子量4000)を46.67g、メチルエチルケトンに溶解させた80重量%のビスフェノールA型エポキシ樹脂(油化シェル製、エピコート1001)15.0g、イミダゾール硬化剤(四国化成製、2E4MZ-CN)1.6g、感光性モノマーである多価アクリルモノマー(日本化薬製、R604)3g、同じく多価アクリルモノマー(共栄社化学製、DPE6A)1.5g、分散系消泡剤(サンノプコ社製、S−65)0.71gを混合し、さらにこの混合物に対して光開始剤としてのベンゾフェノン(関東化学製)を2g、光増感剤としてのミヒラーケトン(関東化学製)を0.2g加えて、粘度を25℃で2.0Pa・sに調整したソルダーレジスト組成物を得た。
なお、粘度測定は、B型粘度計(東京計器、DVL-B型)で60rpmの場合はローターNo.4、6rpmの場合はローターNo.3によった。
(15) On the other hand, 46.67 g of photosensitizing oligomer (molecular weight 4000) obtained by acrylating 50% of the epoxy group of 60% by weight of cresol novolac type epoxy resin (manufactured by Nippon Kayaku) dissolved in DMDG, into methyl ethyl ketone 15.0 g of dissolved 80 wt% bisphenol A epoxy resin (manufactured by Yuka Shell, Epicoat 1001), 1.6 g of imidazole curing agent (manufactured by Shikoku Kasei, 2E4MZ-CN), polyvalent acrylic monomer as a photosensitive monomer (Nippon Kayaku Co., Ltd., R604) 3 g, 1.5 g polyvalent acrylic monomer (Kyoeisha Chemical Co., Ltd., DPE6A) and 0.71 g dispersion antifoam (Sannopco Co., S-65) were mixed, and this mixture was further mixed. 2 g of benzophenone (manufactured by Kanto Chemical) as a photoinitiator and 0.2 g of Michler ketone (manufactured by Kanto Chemical) as a photosensitizer To obtain a solder resist composition with an adjusted viscosity 2.0 Pa · s at 25 ° C..
The viscosity was measured with a B-type viscometer (Tokyo Keiki Co., Ltd., DVL-B type) with a rotor No. In the case of 4 or 6 rpm, the rotor No. 3 according.

(16)前記(14)で得られた多層配線基板の両面に、上記ソルダーレジスト組成物を20μmの厚さで塗布した。次いで、70℃で20分間、70℃で30分間の乾燥処理を行った後、円パターン(マスクパターン)が描画された厚さ5mmのフォトマスクフィルムを密着させて載置し、1000mJ/cmの紫外線で露光し、DMTG現像処理した。そしてさらに、80℃で1時間、100℃で1時間、120℃で1時間、150℃で3時間の条件で加熱処理し、はんだパッド部分(バイアホールとそのランド部分を含む)を開口した(開口径200μm)ソルダーレジスト層(厚み20μm)14を形成した。 (16) The solder resist composition was applied to both sides of the multilayer wiring board obtained in (14) with a thickness of 20 μm. Next, after drying at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes, a photomask film having a thickness of 5 mm on which a circular pattern (mask pattern) was drawn was placed in close contact, and 1000 mJ / cm 2 was placed. Were exposed to ultraviolet light and DMTG developed. Further, heat treatment was performed under conditions of 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours to open solder pad portions (including via holes and land portions thereof) ( A solder resist layer (thickness 20 μm) 14 having an opening diameter of 200 μm was formed.

(17)次に、ソルダーレジスト層14を形成した基板を、塩化ニッケル30g/l、次亜リン酸ナトリウム10g/l、クエン酸ナトリウム10g/lからなるpH=5の無電解ニッケルめっき液に20分間浸漬して、開口部に厚さ5μmのニッケルめっき層15を形成した。さらに、その基板を、シアン化金カリウム2g/l、塩化アンモニウム75g/l、クエン酸ナトリウム50g/l、次亜リン酸ナトリウム10g/lからなる無電解金めっき液に93℃の条件で23秒間浸漬して、ニッケルめっき層15上に厚さ0.03μmの金めっき層16を形成した。 (17) Next, the substrate on which the solder resist layer 14 is formed is applied to an electroless nickel plating solution having a pH of 5 and comprising 30 g / l of nickel chloride, 10 g / l of sodium hypophosphite, and 10 g / l of sodium citrate. The nickel plating layer 15 having a thickness of 5 μm was formed in the opening by dipping for 5 minutes. Further, the substrate was placed in an electroless gold plating solution composed of potassium gold cyanide 2 g / l, ammonium chloride 75 g / l, sodium citrate 50 g / l, and sodium hypophosphite 10 g / l at 93 ° C. for 23 seconds. The gold plating layer 16 having a thickness of 0.03 μm was formed on the nickel plating layer 15 by dipping.

(18)そして、ソルダーレジスト層14の開口部に、はんだペーストを印刷して200℃でリフローすることによりはんだバンプ(はんだ体)17を形成し、はんだバンプ17を有するプリント配線板を製造した(図40参照)。 (18) A solder bump (solder body) 17 was formed by printing a solder paste on the opening of the solder resist layer 14 and reflowing at 200 ° C., and a printed wiring board having the solder bump 17 was manufactured ( (See FIG. 40).

(比較例)
実施例1の(1),(2),(3),(4),(5),(6),(7),(8)の処理後、ドライフィルムフォトレジストをラミネートし、露光、現像処理することにより、めっきレジストを形成した。ついで、実施例1の(9)を実施後、(12)の工程と同様にしてめっきレジストを剥離し、実施例1の(13)の処理を行い導体回路の全表面を粗化した。さらに、層間樹脂絶縁層の形成、粗化処理、めっきレジストの形成、無電解銅めっき処理を同様に施し、めっきレジストを剥離した後、実施例1の(15),(16),(17),(18),(19)の処理により、はんだバンプを有するプリント配線板を製造した。
(Comparative example)
After the processing of (1), (2), (3), (4), (5), (6), (7), (8) of Example 1, a dry film photoresist is laminated, exposed and developed. The plating resist was formed by processing. Subsequently, after carrying out (9) of Example 1, the plating resist was peeled off in the same manner as in the process of (12), and the treatment of (13) of Example 1 was performed to roughen the entire surface of the conductor circuit. Further, the formation of the interlayer resin insulation layer, the roughening process, the formation of the plating resist, and the electroless copper plating process were similarly performed, and after the plating resist was peeled off, (15), (16), (17) of Example 1 A printed wiring board having solder bumps was manufactured by the processes of (18) and (19).

実施例、比較例で製造したプリント配線板につき、ICチップを実装し、−55℃で15分、常温10分、125℃で15分で1000回、および2000回のヒートサイクル試験を実施した。
試験の評価は、試験後のプリント配線板におけるクラックの発生を走査型電子顕微鏡で確認した。また、ピール強度も測定した。ピール強度は、JIS-C-6481に従った。
An IC chip was mounted on the printed wiring boards manufactured in Examples and Comparative Examples, and heat cycle tests were performed at -55 ° C for 15 minutes, at room temperature for 10 minutes, at 125 ° C for 15 minutes, 1000 times, and 2000 times.
In the evaluation of the test, the occurrence of cracks in the printed wiring board after the test was confirmed with a scanning electron microscope. The peel strength was also measured. The peel strength was in accordance with JIS-C-6481.

その結果、クラックは、1000回程度では、比較例、実施例1〜3とも見られなかったが、2000回では、比較例において観察された。
ピール強度は、導体回路が無電解めっき膜のみで形成されている場合に比べて同等か、それよりやや高い値が得られた。
このように、本発明では、実用的なピール強度を確保しつつ、層間樹脂絶縁層に発生するクラックを防止できるのである。
As a result, cracks were not observed in the comparative example and Examples 1 to 3 at about 1000 times, but were observed in the comparative example at 2000 times.
The peel strength was equal to or slightly higher than that in the case where the conductor circuit was formed only by the electroless plating film.
Thus, in the present invention, cracks occurring in the interlayer resin insulation layer can be prevented while ensuring a practical peel strength.

Figure 2007227959
Figure 2007227959

発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の製造工程図である。It is a manufacturing-process figure of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の構造拡大図である。It is a structure enlarged view of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の構造拡大図である。It is a structure enlarged view of the multilayer printed wiring board concerning invention. 銅−ニッケル−リンの粗化層の組成を表す三角図である。It is a triangular figure showing the composition of the roughening layer of copper-nickel-phosphorus. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention. 発明にかかる多層プリント配線板の各製造工程を示す図である。It is a figure which shows each manufacturing process of the multilayer printed wiring board concerning invention.

符号の説明Explanation of symbols

1 基板
2 層間樹脂絶縁層(無電解めっき用接着剤層)
2a 絶縁剤層
2b 接着剤層
3 めっきレジスト
4 内層導体回路(内層銅パターン)
5 外層導体回路(外層銅パターン)
6 バイアホール用開口
7 バイアホール(BVH)
8 銅箔
9 スルーホール
10 充填樹脂(樹脂充填剤)
11 粗化層
12 無電解銅めっき膜
13 電解銅めっき膜
14 ソルダーレジスト層
15 ニッケルめっき層
16 金めっき層
17 はんだバンプ
1 Substrate 2 Interlayer resin insulation layer (adhesive layer for electroless plating)
2a Insulating layer 2b Adhesive layer 3 Plating resist 4 Inner layer conductor circuit (Inner layer copper pattern)
5 Outer layer conductor circuit (outer layer copper pattern)
6 Opening for via hole 7 Via hole (BVH)
8 Copper foil 9 Through hole 10 Filling resin (resin filler)
DESCRIPTION OF SYMBOLS 11 Roughening layer 12 Electroless copper plating film 13 Electrolytic copper plating film 14 Solder resist layer 15 Nickel plating layer 16 Gold plating layer 17 Solder bump

Claims (2)

内層の導体回路が設けられた基板を覆って、層間絶縁層が形成され、その層間絶縁層上に外層の導体回路が形成されてなる多層プリント配線板において、
前記層間絶縁層の表面には粗化層が形成され、前記外層の導体回路は、前記粗化層に密着する無電解めっき膜と、その無電解めっき膜上に形成された電解めっき膜とから構成されていることを特徴とする多層プリント配線板。
In a multilayer printed wiring board in which an interlayer insulating layer is formed covering a substrate provided with an inner layer conductor circuit, and an outer layer conductor circuit is formed on the interlayer insulating layer,
A roughened layer is formed on the surface of the interlayer insulating layer, and the outer conductor circuit is composed of an electroless plated film in close contact with the roughened layer and an electrolytic plated film formed on the electroless plated film. A multilayer printed wiring board characterized by being configured.
内層の導体回路が設けられた基板を覆って層間絶縁層を形成し、その層間絶縁層の表面に粗化層を形成した後、無電解めっき処理を施して粗化層上に無電解めっき膜を形成し、その無電解めっき膜上にめっきレジストを設け、さらに電解めっき処理を施して無電解めっき膜のめっきレジスト非形成部分に電解めっき膜を形成し、ついで、めっきレジストを除去した後、エッチング処理によってめっきレジスト下の無電解めっき膜を溶解除去して、無電解めっき膜と電解めっき膜とからなる外層の導体回路を設けることを特徴とする多層プリント配線板の製造方法。 An interlayer insulating layer is formed so as to cover the substrate on which the inner-layer conductor circuit is provided, a roughened layer is formed on the surface of the interlayer insulating layer, and then an electroless plating process is performed on the roughened layer. After forming a plating resist on the electroless plating film, further performing an electroplating process to form an electroplating film on the electroless plating film non-plating resist forming portion, and then removing the plating resist, A method for producing a multilayer printed wiring board, wherein an electroless plating film under a plating resist is dissolved and removed by etching treatment to provide an outer layer conductive circuit composed of an electroless plating film and an electrolytic plating film.
JP2007107561A 1996-12-19 2007-04-16 Multilayer printed wiring board and its manufacturing method Pending JP2007227959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107561A JP2007227959A (en) 1996-12-19 2007-04-16 Multilayer printed wiring board and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35497196 1996-12-19
JP35780196 1996-12-28
JP2007107561A JP2007227959A (en) 1996-12-19 2007-04-16 Multilayer printed wiring board and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002227202A Division JP2003060342A (en) 1996-12-19 2002-08-05 Multilayer printed wiring board and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007227959A true JP2007227959A (en) 2007-09-06

Family

ID=38549372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107561A Pending JP2007227959A (en) 1996-12-19 2007-04-16 Multilayer printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007227959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645478B1 (en) * 2015-08-06 2016-08-16 두두테크 주식회사 Manufacturing method of multi-layer printed circuit board for bluetooth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645478B1 (en) * 2015-08-06 2016-08-16 두두테크 주식회사 Manufacturing method of multi-layer printed circuit board for bluetooth
WO2017023098A1 (en) * 2015-08-06 2017-02-09 두두테크 주식회사 Method for manufacturing multilayer printed circuit board for bluetooth
JP2018513568A (en) * 2015-08-06 2018-05-24 ドゥドゥ テック カンパニー リミテッドDodo Tech Co.,Ltd. Method for manufacturing a multilayer printed circuit board for Bluetooth

Similar Documents

Publication Publication Date Title
USRE43509E1 (en) Printed wiring board and method for manufacturing the same
US6242079B1 (en) Printed wiring board and method for manufacturing the same
JP3152633B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3220419B2 (en) Multilayer printed wiring board
JP3299243B2 (en) Manufacturing method of multilayer printed wiring board
JP2007227959A (en) Multilayer printed wiring board and its manufacturing method
JPH10242639A (en) Multilyer printed wiring board and its manufacturing method
JPH10190224A (en) Multilayer printed wiring board and its manufacture
JPH10242638A (en) Multilayer printed wiring board and its manufacture
JP2003152319A (en) Printed board
JP3098729B2 (en) Manufacturing method of multilayer printed wiring board
JP4334052B2 (en) Roughened surface forming resin composition and printed wiring board
JPH11214828A (en) Printed wiring of board and manufacture thereof
JP2000010276A (en) Solder resist composition and printed wiring board
JP2003060342A (en) Multilayer printed wiring board and manufacturing method therefor
JP3995794B2 (en) Electroless plating adhesive and printed wiring board
JP2003163454A (en) Build-up multilayer printed wiring board
JPH10242640A (en) Printed wiring board
JP2000124608A (en) Multilayer printed wiring board
JP2000133946A (en) Multilayer printed wiring board
JP2000294932A (en) Manufacture of multilayer printed wiring board
JPH10242622A (en) Printed wiring board, multilayer printed wiring board, and manufacture thereof
JP2000133939A (en) Multilayer printed wiring board
JP2000327934A (en) Resin composition for forming roughened surface and printed circuit board
JP2000138462A (en) Multilayer printed circuit board and manufacture thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527