JPH10190224A - Multilayer printed wiring board and its manufacture - Google Patents
Multilayer printed wiring board and its manufactureInfo
- Publication number
- JPH10190224A JPH10190224A JP35795996A JP35795996A JPH10190224A JP H10190224 A JPH10190224 A JP H10190224A JP 35795996 A JP35795996 A JP 35795996A JP 35795996 A JP35795996 A JP 35795996A JP H10190224 A JPH10190224 A JP H10190224A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- plating film
- via hole
- electroless plating
- conductor circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多層プリント配線
板とその製造方法に関し、特にはピール強度の低下を招
くことなく、ヒートサイクル時におけるクラックの発生
を抑制した多層プリント配線板とその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer printed wiring board and a method of manufacturing the same, and more particularly, to a multilayer printed wiring board which suppresses cracks during a heat cycle without causing a decrease in peel strength, and a method of manufacturing the same. About.
【0002】[0002]
【従来の技術】近年、多層配線基板の高密度化という要
請から、いわゆるビルドアップ多層配線基板が注目され
ている。このビルドアップ多層配線基板は、例えば特公
平4−55555 号公報に開示されているような方法により
製造される。即ち、コア基板上に、感光性の無電解めっ
き用接着剤からなる絶縁材を塗布し、これを乾燥したの
ち露光現像することにより、バイアホール用開口を有す
る層間絶縁材層を形成する。次いで、この層間絶縁材層
の表面を酸化剤等による処理にて粗化したのち、その粗
化面にめっきレジストを設け、その後、レジスト非形成
部分に無電解めっきを施してバイアホールを含む導体回
路パターンを形成する。そして、このような工程を複数
回繰り返すことにより、多層化したビルドアップ配線基
板が得られるのである。2. Description of the Related Art In recent years, so-called build-up multilayer wiring boards have been receiving attention due to a demand for higher density of the multilayer wiring boards. This build-up multilayer wiring board is manufactured by a method disclosed in, for example, Japanese Patent Publication No. 4-55555. That is, an insulating material made of a photosensitive adhesive for electroless plating is applied on the core substrate, dried, exposed and developed to form an interlayer insulating material layer having a via hole opening. Next, after roughening the surface of the interlayer insulating material layer by treatment with an oxidizing agent or the like, a plating resist is provided on the roughened surface, and then electroless plating is performed on a portion where no resist is formed, thereby forming a conductor including via holes. Form a circuit pattern. By repeating such a process a plurality of times, a multilayered build-up wiring board can be obtained.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな多層プリント配線板では、導体回路はめっきレジス
トの非形成部分に設けられ、めっきレジストは内層にそ
のまま残存する。ICチップ等を搭載すると、ヒートサ
イクル時にICチップと樹脂絶縁層との熱膨張率の差に
より、基板が反り、めっきレジストと導体回路間の密着
がないことから、これらの境界部分に応力が集中してこ
の境界部分に接触する層間絶縁層にクラックが発生して
しまう。However, in such a multilayer printed wiring board, the conductor circuit is provided in a portion where no plating resist is formed, and the plating resist remains as it is in the inner layer. When an IC chip or the like is mounted, the substrate is warped due to the difference in the coefficient of thermal expansion between the IC chip and the resin insulating layer during a heat cycle, and there is no close contact between the plating resist and the conductor circuit. As a result, cracks occur in the interlayer insulating layer in contact with the boundary.
【0004】このような問題を解決するためには、めっ
きレジストを除去し、その後導体回路表面に粗化層を設
けておく方法がある。例えば、特開平6−283860
号公報記載の技術によれば、内層のめっきレジストを除
去して、無電解めっき膜からなる導体回路表面に銅−ニ
ッケル−リンからなる粗化層を設け、層間剥離を防止す
る技術が開示されている。しかしながら、バイアホール
に接触している層間樹脂絶縁層にクラックが発生する場
合が見られ、このようバイアホールと接触する部分のク
ラックを抑制する方法が必要であった。[0004] In order to solve such a problem, there is a method of removing a plating resist and thereafter providing a roughened layer on the surface of a conductor circuit. For example, JP-A-6-283860
According to the technology described in Japanese Patent Application Laid-Open Publication No. H11-163, a technology is disclosed in which a plating resist of an inner layer is removed, a roughened layer made of copper-nickel-phosphorus is provided on the surface of a conductor circuit made of an electroless plated film, and delamination is prevented. ing. However, cracks may be generated in the interlayer resin insulating layer in contact with the via holes, and a method for suppressing such cracks in the portions in contact with the via holes has been required.
【0005】また、このようなクラックを抑制する場合
でも、下層導体回路とバイアホールの接続を確保する必
要があった。本願発明は、他の特性、特にバイアホール
と下層導体回路の密着を維持したまま、ヒートサイクル
時に発生する層間絶縁層のクラックを防止することにあ
る。[0005] Even when such cracks are suppressed, it is necessary to ensure the connection between the lower conductor circuit and the via hole. It is an object of the present invention to prevent cracks in an interlayer insulating layer that occur during a heat cycle while maintaining other characteristics, particularly adhesion between via holes and a lower conductor circuit.
【0006】[0006]
【課題を解決するための手段】本発明の要旨構成は以下
のとおりである。 下層導体回路が設けられた基板上に層間絶縁層が形成
され、その層間絶縁層上に上層導体回路が形成されてな
り、上層導体回路と下層導体回路がバイアホールで接続
した多層プリント配線板において、前記バイアホール
は、無電解めっき膜と電解めっき膜からなり、該下層導
体回路は、バイアホールと接続する部分の表面には粗化
層が形成されてなることを特徴とする多層プリント配線
板。 前記粗化層は、銅−ニッケル−リンの合金めっきから
なる。 基板上に下層導体回路を形成し、ついでこの下層導体
回路表面を粗化処理し、次に基板上に層間絶縁層を設
け、この層間絶縁層にバイアホール用の孔を形成し、さ
らに、層間絶縁層上に無電解めっきを施した後、めっき
レジストを設け、電解めっきを施し、めっきレジストを
除去後、エッチング処理して無電解めっき膜と電解めっ
き膜からなる上層導体回路およびバイアホールを形成す
ることを特徴とする多層プリント配線板の製造方法。 前記粗化層は、銅−ニッケル−リンの合金めっきによ
り形成される。The gist of the present invention is as follows. In a multilayer printed wiring board in which an interlayer insulating layer is formed on a substrate provided with a lower layer conductor circuit, an upper layer conductor circuit is formed on the interlayer insulation layer, and the upper layer conductor circuit and the lower layer conductor circuit are connected by via holes. Wherein the via hole comprises an electroless plating film and an electrolytic plating film, and the lower conductive circuit has a roughened layer formed on a surface of a portion connected to the via hole. . The roughening layer is made of copper-nickel-phosphorus alloy plating. A lower conductor circuit is formed on a substrate, the surface of the lower conductor circuit is roughened, then an interlayer insulating layer is provided on the substrate, a hole for a via hole is formed in the interlayer insulating layer. After applying electroless plating on the insulating layer, providing a plating resist, applying electrolytic plating, removing the plating resist, and etching to form an upper conductor circuit and a via hole composed of an electroless plating film and an electrolytic plating film A method for manufacturing a multilayer printed wiring board. The roughened layer is formed by copper-nickel-phosphorus alloy plating.
【0007】バイアホールが電解めっき膜と無電解めっ
き膜が構成され、より内層側に、無電解めっき膜が形成
され、より外層側に電解めっき膜が形成されている(図
18、図19の拡大図参照)。電解めっき膜は無電解め
っき膜より柔らかく展性に富み、このため、ヒートサイ
クル時に基板にそりが発生しても、層間樹脂絶縁層の寸
法変化にバイアホールが追従でき、またバイアホールの
内層側はより硬い無電解めっき膜で形成されており、こ
の無電解めっき膜が下層導体回路と粗化層を介して密着
するため、ヒートサイクル時に下層導体回路との剥離が
生じないのである。The via holes are formed of an electrolytic plating film and an electroless plating film, an electroless plating film is formed on the inner layer side, and an electrolytic plating film is formed on the outer layer side (see FIGS. 18 and 19). (See enlarged view). The electrolytic plating film is softer and more malleable than the electroless plating film, so that even if the substrate warps during a heat cycle, the via hole can follow the dimensional change of the interlayer resin insulating layer, and the inner layer side of the via hole Is formed of a harder electroless plating film, and the electroless plating film adheres to the lower conductor circuit via the roughened layer, so that there is no separation from the lower conductor circuit during a heat cycle.
【0008】なお、粗化層がくい込む金属層は、硬い方
がよい。ひきはがしの力が加わった場合に、金属層での
破壊が生じにくいからである。バイアホールが電解めっ
き膜のみで構成されている場合は、粗化層を介して下層
導体回路と密着していても電解めっき膜自体が柔らかく
ヒートサイクルにより剥離しやすい。また、バイアホー
ルが無電解めっき膜のみで構成されている場合は、層間
樹脂絶縁層の寸法変化に対応できず、バイアホール上の
層間樹脂絶縁層にクラックが発生してしまう。It is preferable that the metal layer into which the roughened layer enters is hard. This is because breakage in the metal layer hardly occurs when a force of peeling is applied. When the via hole is composed of only the electrolytic plating film, the electrolytic plating film itself is soft and easily peeled off by a heat cycle even when the via hole is in close contact with the lower conductor circuit via the roughened layer. Further, when the via hole is formed only of the electroless plating film, it cannot cope with a dimensional change of the interlayer resin insulating layer, and a crack occurs in the interlayer resin insulating layer on the via hole.
【0009】このように、本願発明では、バイアホール
が電解めっき膜と無電解めっき膜で構成され、そのバイ
アホールが下層導体回路と粗化層を介して接続した構成
を採用するため、バイアホール上の層間樹脂絶縁層のク
ラック発生とバイアホールと下層導体回路との剥離を同
時に防止できるのである。本願発明では、バイアホール
表面には粗化層が設けられていてもよい。層間樹脂絶縁
層と強固に密着し、層間樹脂絶縁層の寸法変化に導体回
路がより追従しやすくなる。As described above, in the present invention, the via hole is formed by the electrolytic plating film and the electroless plating film, and the via hole is connected to the lower conductive circuit via the roughened layer. Cracking of the upper interlayer resin insulation layer and separation of the via hole from the lower conductive circuit can be prevented at the same time. In the present invention, a roughened layer may be provided on the surface of the via hole. It adheres firmly to the interlayer resin insulation layer, and the conductor circuit more easily follows the dimensional change of the interlayer resin insulation layer.
【0010】このため、ICチップを搭載し、−55℃
〜125℃のヒートサイクル試験を行った場合でも導体
回路を起点とする層間樹脂絶縁層のクラックの発生を抑
制でき、また剥離も見られない。For this reason, an IC chip is mounted and the temperature is -55 ° C.
Even when a heat cycle test of up to 125 ° C. is performed, the occurrence of cracks in the interlayer resin insulating layer starting from the conductor circuit can be suppressed, and no peeling is observed.
【0011】本願発明では、バイアホールが接続する下
層導体回路は、無電解めっき膜と電解めっき膜からなる
ことが望ましい。また、より内層側に無電解めっき膜
が、より外層側には電解めっき膜が設けられている。下
層導体回路の内層側は層間樹脂絶縁層と密着することに
なるため、ピール強度確保のためにより硬い無電解めっ
き膜が望ましく、逆側はバイアホールと接続するため寸
法変化に対する追従性に優れる電解めっき膜が望まし
い。なお、層間樹脂絶縁層が粗化されている場合、この
粗化層にくい込むめっき膜は硬い方がよい。この理由
は、ひき剥がしの力が加わった場合に、めっき膜の部分
で破壊が生じにくいからである。In the present invention, the lower conductor circuit connected to the via hole is preferably composed of an electroless plating film and an electrolytic plating film. Further, an electroless plating film is provided on the inner layer side, and an electrolytic plating film is provided on the outer layer side. Since the inner layer side of the lower conductor circuit comes into close contact with the interlayer resin insulation layer, a harder electroless plating film is desirable to secure the peel strength, and the opposite side is connected to the via hole so that the electrolytic layer which is excellent in follow-up to dimensional change is connected. Plating film is desirable. When the interlayer resin insulating layer is roughened, it is preferable that the plating film which is hard to be roughened is harder. The reason for this is that when a peeling force is applied, destruction is less likely to occur at the plating film portion.
【0012】本願発明における粗化面は、バイアホール
と接続する部分のみならず、下層導体回路全面に形成さ
れていてもよい。層間絶縁層との密着に優れるからであ
る。本願発明における前記粗化層は、エッチング処理、
研磨処理、酸化処理、酸化還元処理により形成された銅
の粗化面又もしくはめっき被膜により形成された粗化面
であることが望ましい。特に粗化層は、銅−ニッケル−
リンからなる合金層であることが望ましい。The roughened surface in the present invention may be formed not only at the portion connected to the via hole but also over the entire lower conductor circuit. This is because the adhesion to the interlayer insulating layer is excellent. The roughening layer in the present invention is an etching process,
It is desirable that the surface be a roughened surface of copper formed by polishing treatment, oxidation treatment, or oxidation-reduction treatment or a roughened surface formed by plating film. Particularly, the roughened layer is made of copper-nickel-
It is desirable that the alloy layer is made of phosphorus.
【0013】前記合金層の組成は、銅、ニッケル、リン
の割合で、それぞれ90〜96wt%、1〜5wt%、 0.5〜2
wt%であることが望ましい。これらの組成割合のとき
に、針状の構造を有するからである。The composition of the alloy layer is 90 to 96 wt%, 1 to 5 wt%, 0.5 to 2 wt% in terms of copper, nickel and phosphorus, respectively.
Desirably, it is wt%. This is because these compositions have a needle-like structure at these composition ratios.
【0014】なお、針状結晶を形成できるCu−Ni−
Pの組成を三成分系の三角図(図18)に示す。(C
u,Ni,P)=(100,0,0)、(90,10,
0)、(90,0,10)で囲まれる範囲がよい。It should be noted that Cu-Ni-
The composition of P is shown in a ternary triangular diagram (FIG. 18). (C
u, Ni, P) = (100,0,0), (90,10,
0) and (90, 0, 10).
【0015】前記酸化処理は、亜塩素酸ナトリウム、水
酸化ナトリウム、リン酸ナトリウムからなる酸化剤の溶
液が望ましい。また、酸化還元処理は、上記酸化処理の
後、水酸化ナトリウムと水素化ホウ素ナトリウムの溶液
に浸漬して行う。The oxidizing treatment is desirably a solution of an oxidizing agent comprising sodium chlorite, sodium hydroxide and sodium phosphate. Further, the oxidation-reduction treatment is performed by immersing the substrate in a solution of sodium hydroxide and sodium borohydride after the oxidation treatment.
【0016】前記粗化層は、1〜5μmがよい。厚すぎ
ると粗化層自体が損傷、剥離しやすく、薄すぎると密着
性が低下するからである。The thickness of the roughened layer is preferably 1 to 5 μm. If the thickness is too large, the roughened layer itself is easily damaged and peeled off, and if the thickness is too small, the adhesiveness is reduced.
【0017】前記無電解めっき膜の厚さは、1〜5μm
がよい。厚すぎると層間樹脂絶縁層との追従性が低下
し、逆に薄すぎるとピール強度の低下を招き、また電解
めっきを施す場合、抵抗値が大きくなり、めっき膜の厚
さにバラツキが発生してしまうからである。The thickness of the electroless plating film is 1 to 5 μm.
Is good. If it is too thick, the ability to follow the interlayer resin insulation layer will be reduced, and if it is too thin, the peel strength will decrease.If electrolytic plating is performed, the resistance will increase, and the thickness of the plating film will vary. It is because.
【0018】また、前記電解めっき膜の厚さは、10〜
20μmがよい。厚すぎるとピール強度の低下を招き、
薄すぎると層間樹脂絶縁層との追従性が低下するからで
ある。The thickness of the electrolytic plating film is 10 to
20 μm is preferred. If it is too thick, the peel strength will decrease,
This is because if it is too thin, the ability to follow the interlayer resin insulating layer is reduced.
【0019】本願発明では、少なくとも側面に粗化層が
形成されていることが望ましい。ヒートサイクルにより
層間樹脂絶縁層に生じるクラックは、導体回路側面と樹
脂絶縁層との密着不良に起因するからである。In the present invention, it is desirable that a roughened layer is formed on at least the side surface. This is because cracks generated in the interlayer resin insulation layer due to the heat cycle are caused by poor adhesion between the side surfaces of the conductor circuit and the resin insulation layer.
【0020】本発明では、上記配線基板を構成する層間
樹脂絶縁層として無電解めっき用接着剤を用いることが
望ましい。この無電解めっき用接着剤は、硬化処理され
た酸あるいは酸化剤に可溶性の耐熱性樹脂粒子が、酸あ
るいは酸化剤に難溶性の未硬化の耐熱性樹脂中に分散さ
れてなるものが最適である。酸、酸化剤で処理すること
により、耐熱性樹脂粒子が溶解除去されて、表面に蛸つ
ぼ状のアンカーからなる粗化面を形成できる。In the present invention, it is desirable to use an adhesive for electroless plating as an interlayer resin insulating layer constituting the wiring board. The most suitable adhesive for electroless plating is one in which heat-resistant resin particles soluble in a cured acid or oxidizing agent are dispersed in an uncured heat-resistant resin hardly soluble in an acid or oxidizing agent. is there. By treating with an acid or an oxidizing agent, the heat-resistant resin particles are dissolved and removed, and a roughened surface composed of an octopus-shaped anchor can be formed on the surface.
【0021】上記無電解めっき用接着剤において、特に
硬化処理された前記耐熱性樹脂粒子としては、平均粒
径が10μm以下の耐熱性樹脂粉末、平均粒径が2μm
以下の耐熱性樹脂粉末を凝集させた凝集粒子、平均粒
径が10μm以下の耐熱性粉末樹脂粉末と平均粒径が2μ
m以下の耐熱性樹脂粉末との混合物、平均粒径が2〜
10μmの耐熱性樹脂粉末の表面に平均粒径が2μm以下
の耐熱性樹脂粉末または無機粉末のいずれか少なくとも
1種を付着させてなる疑似粒子、から選ばれるいずれか
少なくとも1種を用いることが望ましい。これらは、よ
り複雑なアンカーを形成できるからである。In the above-mentioned adhesive for electroless plating, the heat-resistant resin particles which have been particularly subjected to the curing treatment include a heat-resistant resin powder having an average particle diameter of 10 μm or less, and an average particle diameter of 2 μm.
Aggregated particles obtained by aggregating the following heat-resistant resin powder, a heat-resistant powder resin powder having an average particle size of 10 μm or less and an average particle size of 2 μm
m and a mixture with a heat-resistant resin powder having a mean particle size of 2 or less.
It is desirable to use at least one selected from pseudo particles obtained by adhering at least one of a heat-resistant resin powder or an inorganic powder having an average particle diameter of 2 μm or less to the surface of a 10 μm heat-resistant resin powder. . This is because they can form more complex anchors.
【0022】次に、本発明にかかるプリント配線板を製
造する一方法について説明する。 (1)まず、コア基板の表面に内層銅パターンを形成し
た配線基板を作製する。このコア基板への銅パターンの
形成は、銅張積層板をエッチングして行うか、あるい
は、ガラスエポキシ基板やポリイミド基板、セラミック
基板、金属基板などの基板に無電解めっき用接着剤層を
形成し、この接着剤層表面を粗化して粗化面とし、ここ
に無電解めっきするか、もしくは全面無電解めっき、め
っきレジスト形成、電解めっき後、めっきレジスト除
去、エッチング処理し、電解めっき膜と無電解めっき膜
からなる導体回路を形成する方法がある。Next, one method of manufacturing a printed wiring board according to the present invention will be described. (1) First, a wiring board having an inner layer copper pattern formed on the surface of a core board is manufactured. The copper pattern is formed on the core substrate by etching a copper-clad laminate, or by forming an adhesive layer for electroless plating on a substrate such as a glass epoxy substrate, a polyimide substrate, a ceramic substrate, or a metal substrate. The surface of the adhesive layer is roughened to a roughened surface, and the surface is subjected to electroless plating, or the entire surface is subjected to electroless plating, plating resist formation, electrolytic plating, plating resist removal, etching treatment, and electroplating. There is a method of forming a conductor circuit made of an electrolytic plating film.
【0023】さらに、上記配線基板の下層導体回路表面
に銅−ニッケル−リンからなる粗化層を形成する。粗化
層は、無電解めっきにより形成される。めっき液組成と
しては、銅イオン濃度、ニッケルイオン濃度、次亜リン
酸イオン濃度は、それぞれ2.2×10-2〜4.1×1
0-2mol/l、2.2×10-3〜4.1×10-3mo
l/l、0.20〜0.25mol/lであることが望
ましい。この範囲で析出する被膜の結晶構造は針状構造
になるため、アンカー効果に優れるからである。無電解
めっき浴には上記化合物に加えて錯化剤や添加剤を加え
てもよい。Further, a roughened layer made of copper-nickel-phosphorus is formed on the lower conductive circuit surface of the wiring board. The roughened layer is formed by electroless plating. As the plating solution composition, the copper ion concentration, the nickel ion concentration, and the hypophosphite ion concentration were 2.2 × 10 −2 to 4.1 × 1 respectively.
0 -2 mol / l, 2.2 × 10 -3 to 4.1 × 10 -3 mo
1 / l, and preferably 0.20 to 0.25 mol / l. This is because the crystalline structure of the film deposited in this range has a needle-like structure, and thus has an excellent anchor effect. A complexing agent or an additive may be added to the electroless plating bath in addition to the above compounds.
【0024】粗化層の形成方法としては、この他に前述
した酸化−還元処理、銅表面を粒界に沿ってエッチング
して粗化面を形成する方法などがある。なお、コア基板
には、スルーホールが形成され、このスルーホールを介
して表面と裏面の配線層を電気的に接続することができ
る。また、スルーホールおよびコア基板の導体回路間に
は樹脂が充填されて、平滑性を確保してもよい(図1〜
図4)。Other methods of forming the roughened layer include the above-described oxidation-reduction treatment and a method of forming a roughened surface by etching the copper surface along grain boundaries. Note that a through hole is formed in the core substrate, and the wiring layer on the front surface and the back surface can be electrically connected through the through hole. In addition, resin may be filled between the through-holes and the conductor circuits of the core substrate to ensure smoothness (FIGS. 1 to 1).
(Fig. 4).
【0025】(2)次に、前記(1)で作製した配線基
板の上に、層間樹脂絶縁層を形成する。特に本発明で
は、層間樹脂絶縁材として前述した無電解めっき用接着
剤を用いることが望ましい(図5)。(2) Next, an interlayer resin insulating layer is formed on the wiring board manufactured in the above (1). In particular, in the present invention, it is desirable to use the above-described adhesive for electroless plating as an interlayer resin insulating material (FIG. 5).
【0026】(3)形成した無電解めっき用接着剤層を
乾燥した後、必要に応じてバイアホール形成用開口を設
ける。感光性樹脂の場合は、露光,現像してから熱硬化
することにより、また、熱硬化性樹脂の場合は、熱硬化
したのちレーザー加工することにより、前記接着剤層に
バイアホール形成用の開口部を設ける(図6)。(3) After the formed adhesive layer for electroless plating is dried, openings for forming via holes are provided as necessary. In the case of a photosensitive resin, it is exposed and developed and then thermally cured. In the case of a thermosetting resin, it is thermally cured and then subjected to laser processing, so that an opening for forming a via hole is formed in the adhesive layer. Parts are provided (FIG. 6).
【0027】(4)次に、硬化した前記接着剤層の表面
に存在するエポキシ樹脂粒子を酸あるいは酸化剤によっ
て溶解除去し、接着剤層表面を粗化処理する(図7)。
ここで、上記酸としては、リン酸、塩酸、硫酸、あるい
は蟻酸や酢酸などの有機酸があるが、特に有機酸を用い
ることが望ましい。粗化処理した場合に、バイアホール
から露出する金属導体層を腐食させにくいからである。
一方、上記酸化剤としては、クロム酸、過マンガン酸塩
(過マンガン酸カリウムなど)を用いることが望まし
い。(4) Next, the epoxy resin particles present on the surface of the cured adhesive layer are dissolved and removed with an acid or an oxidizing agent to roughen the surface of the adhesive layer (FIG. 7).
Here, examples of the acid include phosphoric acid, hydrochloric acid, sulfuric acid, and organic acids such as formic acid and acetic acid, and it is particularly preferable to use an organic acid. This is because when the roughening treatment is performed, the metal conductor layer exposed from the via hole is hardly corroded.
On the other hand, it is desirable to use chromic acid and permanganate (such as potassium permanganate) as the oxidizing agent.
【0028】(5)次に、接着剤層表面を粗化した配線
基板に触媒核を付与する。触媒核の付与には、貴金属イ
オンや貴金属コロイドなどを用いることが望ましく、一
般的には、塩化パラジウムやパラジウムコロイドを使用
する。なお、触媒核を固定するために加熱処理を行うこ
とが望ましい。このような触媒核としてはパラジウムが
よい。(5) Next, a catalyst nucleus is applied to the wiring board whose surface of the adhesive layer is roughened. It is desirable to use a noble metal ion or a noble metal colloid for providing the catalyst nucleus, and generally, palladium chloride or a palladium colloid is used. Note that it is desirable to perform a heat treatment to fix the catalyst core. Palladium is preferred as such a catalyst core.
【0029】(6)次に、無電解めっき用接着剤表面に
無電解めっきを施し、粗化面全面に無電解めっき膜を形
成する(図8)。無電解めっき膜の厚みは1〜5μm、
より望ましくは2〜3μmである。つぎに、無電解めっ
き膜上にめっきレジストを形成する(図9)。めっきレ
ジスト組成物としては、特にクレゾールノボラックやフ
ェノールノボラック型エポキシ樹脂のアクリレートとイ
ミダゾール硬化剤からなる組成物を用いることが望まし
いが、他に市販品を使用することもできる。(6) Next, electroless plating is applied to the surface of the adhesive for electroless plating to form an electroless plating film on the entire roughened surface (FIG. 8). The thickness of the electroless plating film is 1 to 5 μm,
More preferably, it is 2-3 μm. Next, a plating resist is formed on the electroless plating film (FIG. 9). As the plating resist composition, it is particularly desirable to use a composition comprising an acrylate of a cresol novolak or a phenol novolak type epoxy resin and an imidazole curing agent, but other commercially available products can also be used.
【0030】(7)次に、めっきレジスト非形成部に電
解めっきを施し、導体回路、ならびにバイアホールを形
成する(図10)。ここで、上記無電解めっきとして
は、銅めっきを用いることが望ましい。(7) Next, electrolytic plating is applied to the portion where the plating resist is not formed to form a conductor circuit and a via hole (FIG. 10). Here, it is desirable to use copper plating as the electroless plating.
【0031】(8)さらに、めっきレジストを除去した
後、硫酸と過酸化水素の混合液や過硫酸ナトリウム、過
硫酸アンモニウムなどのエッチング液で無電解めっき膜
を溶解除去して、独立した導体回路とする(図11)。(8) After removing the plating resist, the electroless plating film is dissolved and removed with a mixed solution of sulfuric acid and hydrogen peroxide or an etching solution such as sodium persulfate and ammonium persulfate to form an independent conductor circuit. (FIG. 11).
【0032】(9)次に導体回路の表面に粗化層を形成
する(図12)。粗化層の形成方法としては、エッチン
グ処理、研磨処理、酸化還元処理、めっき処理がある。
酸化還元処理は、NaOH(10g/l)、NaClO
2 (40g/l)、Na3 PO4 (6g/l)を酸化浴
(黒化浴)、NaOH(10g/l)、NaBH4 (5
g/l)を還元浴とする。また、銅−ニッケル−リン合
金層による粗化層を形成する場合は無電解めっきにより
析出させる。(9) Next, a roughened layer is formed on the surface of the conductor circuit (FIG. 12). Examples of the method of forming the roughened layer include an etching process, a polishing process, an oxidation-reduction process, and a plating process.
The oxidation-reduction treatment includes NaOH (10 g / l), NaClO
2 (40 g / l) and Na 3 PO 4 (6 g / l) in an oxidation bath (blackening bath), NaOH (10 g / l), NaBH 4 (5 g / l).
g / l) is used as a reducing bath. When forming a roughened layer of a copper-nickel-phosphorus alloy layer, it is deposited by electroless plating.
【0033】この合金の無電解めっき液としては、硫酸
銅1〜40g/l、硫酸ニッケル0.1〜6.0g/
l、クエン酸10〜20g/l、次亜リン酸塩10〜1
00g/l、ホウ酸10〜40g/l、界面活性剤0.
01〜10g/lからなる液組成のめっき浴を用いるこ
とが望ましい。The electroless plating solution of this alloy includes copper sulfate 1 to 40 g / l and nickel sulfate 0.1 to 6.0 g / l.
l, citric acid 10-20 g / l, hypophosphite 10-1
00g / l, boric acid 10-40g / l, surfactant 0.
It is desirable to use a plating bath having a liquid composition of from 01 to 10 g / l.
【0034】(10)次に、この基板上に層間樹脂絶縁
層として、無電解めっき用接着剤層を形成する(図1
3)。(11)さらに、(3)〜(8)の工程を繰り返
してさらに上層の導体回路を設ける(図14〜17)。(10) Next, an adhesive layer for electroless plating is formed on this substrate as an interlayer resin insulating layer (FIG. 1).
3). (11) Further, the steps (3) to (8) are repeated to provide a further upper layer conductor circuit (FIGS. 14 to 17).
【0035】(12)次に、ソルダーレジスト組成物の
塗膜を乾燥し、この塗膜に、開口部を描画したフォトマ
スクフィルムを載置して露光、現像処理することによ
り、導体回路のうちパッド部分を露出させた開口部を形
成する。ここで、前記開口部の開口径は、パッドの径よ
りも大きくすることができ、パッドを完全に露出させて
もよい。(12) Next, the coating film of the solder resist composition is dried, and a photomask film having an opening formed thereon is placed on the coating film and exposed and developed to thereby form a conductive circuit. An opening exposing the pad portion is formed. Here, the opening diameter of the opening may be larger than the diameter of the pad, and the pad may be completely exposed.
【0036】(11)次に、前記開口部から露出した前
記パッド部上に「ニッケル−金」の金属層を形成する。(11) Next, a metal layer of "nickel-gold" is formed on the pad portion exposed from the opening.
【0037】(12)次に、前記開口部から露出した前
記パッド部上にはんだ体を供給する。はんだ体の供給方
法としては、はんだ転写法や印刷法を用いることができ
る。ここで、はんだ転写法は、プリプレグにはんだ箔を
貼合し、このはんだ箔を開口部分に相当する箇所のみを
残してエッチングすることによりはんだパターンを形成
してはんだキャリアフィルムとし、このはんだキャリア
フィルムを、基板のソルダーレジスト開口部分にフラッ
クスを塗布した後、はんだパターンがパッドに接触する
ように積層し、これを加熱して転写する方法である。一
方、印刷法は、パッドに相当する箇所に貫通孔を設けた
メタルマスクを基板に載置し、はんだペーストを印刷し
て加熱処理する方法である。(12) Next, a solder body is supplied onto the pad portion exposed from the opening. As a method of supplying the solder body, a solder transfer method or a printing method can be used. Here, in the solder transfer method, a solder foil is bonded to a prepreg, and the solder foil is etched leaving only a portion corresponding to an opening portion to form a solder pattern to form a solder carrier film. Is applied to a solder resist opening portion of a substrate, and then laminated such that a solder pattern is in contact with a pad, which is heated and transferred. On the other hand, the printing method is a method in which a metal mask having a through-hole provided at a position corresponding to a pad is placed on a substrate, and a solder paste is printed and heated.
【0038】[0038]
(実施例1) (1)厚さ0.6mmのガラスエポキシ樹脂またはBT
(ビスマレイミドトリアジン)樹脂からなる基板1の両
面に18μmの銅箔がラミネートされてなる銅張積層板を
出発材料とした。この銅張積層板の銅箔を常法に従いパ
ターン状にエッチング、穴明け、無電解めっきを施すこ
とにより、基板の両面に下層導体回路2とスルーホール
を形成した。さらに、下層導体回路間、スルーホール内
にビスフェノールF型エポキシ樹脂を充填した。(Example 1) (1) 0.6 mm thick glass epoxy resin or BT
A starting material was a copper-clad laminate in which 18 μm copper foil was laminated on both sides of a substrate 1 made of (bismaleimide triazine) resin. The copper foil of this copper-clad laminate was etched in a pattern according to a conventional method, drilled, and subjected to electroless plating to form a lower conductor circuit 2 and through holes on both surfaces of the substrate. Further, bisphenol F type epoxy resin was filled between the lower conductor circuits and in the through holes.
【0039】(2)前記(1)で内層銅パターンを形成
した基板を水洗いし、乾燥した後、その基板を酸性脱脂
してソフトエッチングし、次いで、塩化パラジウムと有
機酸からなる触媒溶液で処理して、Pd触媒を付与し、
この触媒を活性化した後、硫酸銅8g/l、硫酸ニッケ
ル 0.6g/l、クエン酸15g/l、次亜リン酸ナトリウ
ム29g/l、ホウ酸31g/l、界面活性剤 0.1g/l、
pH=9からなる無電解めっき浴にてめっきを施し、銅
導体回路の全表面にCu−Ni−P合金の厚さ 2.5μmの粗
化層5(凹凸層)を形成した。(2) The substrate on which the inner layer copper pattern is formed in the above (1) is washed with water and dried, and then the substrate is acid-degreased and soft-etched, and then treated with a catalyst solution comprising palladium chloride and an organic acid. To provide a Pd catalyst,
After activating this catalyst, copper sulfate 8 g / l, nickel sulfate 0.6 g / l, citric acid 15 g / l, sodium hypophosphite 29 g / l, boric acid 31 g / l, surfactant 0.1 g / l,
Plating was performed in an electroless plating bath having a pH of 9 to form a roughened layer 5 (uneven layer) of Cu-Ni-P alloy having a thickness of 2.5 µm on the entire surface of the copper conductor circuit.
【0040】(3)DMDG(ジエチレングリコールジ
メチルエーテル)に溶解したクレゾールノボラック型エ
ポキシ樹脂(日本化薬製、分子量2500)の25%アクリル
化物を70重量部、ポリエーテルスルフォン(PES)30
重量部、イミダゾール硬化剤(四国化成製、商品名:2E
4MZ-CN)4重量部、感光性モノマーであるカプロラクト
ン変成トリス(アクロキシエチル)イソシアヌレート
(東亜合成製、商品名:アロニックスM325 )10重量
部、光開始剤としてのベンゾフェノン(関東化学製)5
重量部、光増感剤としてのミヒラーケトン(関東化学
製)0.5 重量部、さらにこの混合物に対してエポキシ樹
脂粒子の平均粒径 5.5μmのものを35重量部、平均粒径
0.5μmのものを5重量部を混合した後、NMP(ノル
マルメチルピロリドン)を添加しながら混合し、ホモデ
ィスパー攪拌機で粘度12Pa・sに調整し、続いて3本ロ
ールで混練して感光性接着剤溶液(層間樹脂絶縁材)を
得る。(3) 70 parts by weight of a 25% acrylate of a cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether), polyether sulfone (PES) 30
Parts by weight, imidazole curing agent (Shikoku Chemicals, trade name: 2E
4MZ-CN) 4 parts by weight, caprolactone-modified tris (acryloxyethyl) isocyanurate (trade name: Aronix M325) manufactured by Toagosei Co., Ltd., a photosensitive monomer, benzophenone (Kanto Chemical) 5 as a photoinitiator
Parts by weight, 0.5 parts by weight of Michler's ketone (manufactured by Kanto Kagaku) as a photosensitizer, and 35 parts by weight of an epoxy resin particle having an average particle size of 5.5 μm with respect to this mixture.
After mixing 5 parts by weight of 0.5 μm, they are mixed while adding NMP (normal methylpyrrolidone), adjusted to a viscosity of 12 Pa · s with a homodisper stirrer, and then kneaded with three rolls to form a photosensitive adhesive. An agent solution (interlayer resin insulating material) is obtained.
【0041】(4)前記(3)で得た感光性接着剤溶液
を、前記(2)の処理を終えた基板の両面に、ロールコ
ータを用いて塗布し、水平状態で20分間放置してから、
60℃で30分間の乾燥を行い、厚さ60μmの接着剤層6を
形成した。 (5)前記(4)で接着剤層6を形成した基板の両面
に、バイアホールが描画されたフォトマスクフィルムを
載置し、紫外線を照射して露光した。(4) The photosensitive adhesive solution obtained in the above (3) is applied to both surfaces of the substrate after the treatment in the above (2) using a roll coater, and left in a horizontal state for 20 minutes. From
Drying was performed at 60 ° C. for 30 minutes to form an adhesive layer 6 having a thickness of 60 μm. (5) A photomask film having via holes drawn thereon was placed on both surfaces of the substrate on which the adhesive layer 6 was formed in (4) above, and was exposed to ultraviolet light.
【0042】(6)露光した基板をDMTG(トリエチ
レングリジメチルエーテル)溶液でスプレー現像するこ
とにより、接着剤層に 100μmφのバイアホールとなる
開口を形成した。さらに、当該基板を超高圧水銀灯にて
3000mJ/cm2 で露光し、 100℃で1時間、その後 150℃
で5時間にて加熱処理することにより、フォトマスクフ
ィルムに相当する寸法精度に優れ、開口(バイアホール
形成用開口)を有する厚さ50μmの接着剤層を形成し
た。なお、バイアホールとなる開口には、粗化層を部分
的に露出させる。(6) The exposed substrate was spray-developed with a DMTG (triethylene glydimethyl ether) solution to form an opening serving as a 100 μmφ via hole in the adhesive layer. Furthermore, the substrate is super-high pressure mercury lamp
Exposure at 3000mJ / cm 2 , 1 hour at 100 ℃, then 150 ℃
By performing the heat treatment for 5 hours, a 50 μm-thick adhesive layer having an opening (opening for forming a via hole) having excellent dimensional accuracy equivalent to a photomask film was formed. Note that the roughened layer is partially exposed in the opening serving as the via hole.
【0043】(7)前記(5)(6)でバイアホール形
成用開口を形成した基板を、クロム酸に2分間浸漬し、
接着剤層表面に存在するエポキシ樹脂粒子を溶解除去し
て、当該接着剤層の表面を粗化し、その後、中和溶液
(シプレイ社製)に浸漬してから水洗した。 (8)前記(7)で粗面化処理(粗化深さ5μm)を行
った基板に対し、パラジウム触媒(アトテック製)を付
与することにより、接着剤層およびバイアホール用開口
の表面に触媒核を付与した。(7) The substrate on which the opening for forming a via hole is formed in (5) and (6) is immersed in chromic acid for 2 minutes.
The surface of the adhesive layer was roughened by dissolving and removing the epoxy resin particles present on the surface of the adhesive layer, and then immersed in a neutralizing solution (manufactured by Shipley) and then washed with water. (8) By applying a palladium catalyst (manufactured by Atotech) to the substrate that has been subjected to the surface roughening treatment (roughening depth: 5 μm) in the above (7), a catalyst is formed on the surface of the adhesive layer and the opening for the via hole. A nucleus was provided.
【0044】(9)以下の組成の無電解銅めっき浴中に
基板を浸漬して、粗面全体に厚さ3μmの無電解銅めっ
き膜3を形成した。 無電解めっき液 EDTA 150 g/l 硫酸銅 20 g/l HCHO 30ml/l NaOH 40 g/l α、α’−ビピリジル 80mg/l PEG 0.1g/l 無電解めっき条件 70℃の液温度で30分(9) The substrate was immersed in an electroless copper plating bath having the following composition to form an electroless copper plating film 3 having a thickness of 3 μm on the entire rough surface. Electroless plating solution EDTA 150 g / l Copper sulfate 20 g / l HCHO 30 ml / l NaOH 40 g / l α, α'-bipyridyl 80 mg / l PEG 0.1 g / l Electroless plating conditions 30 at a liquid temperature of 70 ° C. Minute
【0045】(10)市販の感光性ドライフィルムを無
電解銅めっき膜に張り付け、マスクを載置して、100
mJ/cm2 で露光、0.8%炭酸ナトリウムで現像処
理し、厚さ15μmのめっきレジスト7を設けた。(10) A commercially available photosensitive dry film is stuck on the electroless copper plating film, and a mask is placed on the film.
Exposure at mJ / cm 2 and development processing with 0.8% sodium carbonate provided a plating resist 7 having a thickness of 15 μm.
【0046】(11)ついで、以下の条件で電解銅めっ
きを施し、厚さ15μmの電解銅めっき膜4を形成し
た。 電解めっき液 硫酸銅 180 g/l 硫酸銅 80 g/l 添加剤(アドテックジャパン製 商品名カパラシドG
L)1ml/l 電解めっき条件 電流密度 1A/dm2 時間 30分 温度 室温(11) Then, electrolytic copper plating was performed under the following conditions to form an electrolytic copper plating film 4 having a thickness of 15 μm. Electrolytic plating solution Copper sulfate 180 g / l Copper sulfate 80 g / l Additive (trade name: Capalaside G, manufactured by Adtech Japan)
L) 1 ml / l electroplating conditions Current density 1 A / dm 2 hours 30 minutes Temperature Room temperature
【0047】(12)めっきレジスト7を5%KOHで
剥離除去した後、硫酸と過酸化水素混合液でエッッチン
グを行い、無電解めっき膜3を溶解除去して無電解銅め
っき膜と電解銅めっき膜4からなる厚さ18μmの導体
回路(バイアホールを含む)を形成した。(12) After stripping and removing the plating resist 7 with 5% KOH, etching is performed with a mixed solution of sulfuric acid and hydrogen peroxide, and the electroless plating film 3 is dissolved and removed to form an electroless copper plating film and an electrolytic copper plating. An 18 μm-thick conductor circuit (including a via hole) made of the film 4 was formed.
【0048】(13)導体回路を形成した基板を、硫酸
銅8g/l、硫酸ニッケル 0.6g/l、クエン酸15g/
l、次亜リン酸ナトリウム29g/l、ホウ酸31g/l、
界面活性剤 0.1g/lからなるpH=9の無電解めっき
液に浸漬し、該導体回路の表面に厚さ3μmの銅−ニッ
ケル−リンからなる粗化層5を形成した。粗化層5をE
PMA(蛍光X線分析装置)で分析したところ、Cu9
8mol%、Ni1.5mol%、P0.5mol%の
組成比を示した。(13) The substrate on which the conductor circuit was formed was coated with copper sulfate 8 g / l, nickel sulfate 0.6 g / l, and citric acid 15 g / l.
1, sodium hypophosphite 29 g / l, boric acid 31 g / l,
The surface was immersed in an electroless plating solution having a pH of 9 containing 0.1 g / l of a surfactant to form a roughened layer 5 made of copper-nickel-phosphorus having a thickness of 3 μm on the surface of the conductor circuit. The roughened layer 5 is
Analysis by PMA (X-ray fluorescence analyzer) revealed that Cu9
The composition ratio was 8 mol%, Ni 1.5 mol%, and P 0.5 mol%.
【0049】(14)(4)〜(12)の工程を繰り返
すことにより、さらに上層の導体回路を形成した。(14) By repeating the steps (4) to (12), a conductor circuit in a further upper layer was formed.
【0050】(15)一方、DMDGに溶解させた60重
量%のクレゾールノボラック型エポキシ樹脂(日本化薬
製)のエポキシ基50%をアクリル化した感光性付与のオ
リゴマー(分子量4000)を 46.67g、メチルエチルケト
ンに溶解させた80重量%のビスフェノールA型エポキシ
樹脂(油化シェル製、エピコート1001)15.0g、イミダ
ゾール硬化剤(四国化成製、商品名:2E4MZ-CN)1.6
g、感光性モノマーである多価アクリルモノマー(日本
化薬製、商品名:R604 )3g、同じく多価アクリルモ
ノマー(共栄社化学製、商品名:DPE6A ) 1.5g、分散
系消泡剤(サンノプコ社製、商品名:S−65)0.71gを
混合し、さらにこの混合物に対して光開始剤としてのベ
ンゾフェノン(関東化学製)を2g、光増感剤としての
ミヒラーケトン(関東化学製)を0.2 g加えて、粘度を
25℃で 2.0Pa・sに調整したソルダーレジスト組成物を
得た。なお、粘度測定は、B型粘度計(東京計器、 DVL
-B型)で 60rpmの場合はローターNo.4、6rpm の場合は
ローターNo.3によった。(15) On the other hand, 46.67 g of a photosensitizing oligomer (molecular weight 4000) in which 60% by weight of a cresol novolak type epoxy resin (manufactured by Nippon Kayaku) dissolved in DMDG was acrylated with 50% of epoxy groups, 15.0 g of 80% by weight bisphenol A epoxy resin (manufactured by Yuka Shell, Epicoat 1001) dissolved in methyl ethyl ketone, 1.6 imidazole curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN) 1.6
g, 3 g of a polyacrylic monomer which is a photosensitive monomer (trade name: R604, manufactured by Nippon Kayaku Co., Ltd.), 1.5 g of a polyacrylic monomer (trade name: DPE6A, manufactured by Kyoeisha Chemical Co., Ltd.) (Trade name: S-65), 0.71 g, and 2 g of benzophenone (Kanto Chemical) as a photoinitiator and 0.2 g of Michler's ketone (Kanto Chemical) as a photosensitizer. In addition, the viscosity
A solder resist composition adjusted to 2.0 Pa · s at 25 ° C. was obtained. The viscosity was measured using a B-type viscometer (Tokyo Keiki, DVL
-B type) in case of 60rpm, rotor No.4 and in case of 6rpm, rotor No.3.
【0051】(16)基板にソルダーレジスト組成物を
20μmの厚さで塗布した。 (17)次いで、70℃で20分間、70℃で30分間の乾燥処
理を行った後、1000mJ/cm2 の紫外線で露光し、DMTG現
像処理した。さらに、80℃で1時間、 100℃で1時間、
120℃で1時間、 150℃で3時間の条件で加熱処理し、
パッド部分が開口した(開口径 200μm)ソルダーレジ
スト層(厚み20μm)を形成した。(16) Solder resist composition on substrate
It was applied in a thickness of 20 μm. (17) Next, after drying at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes, the substrate was exposed to ultraviolet light of 1000 mJ / cm 2 and developed by DMTG. In addition, 1 hour at 80 ° C, 1 hour at 100 ° C,
Heat treatment at 120 ° C for 1 hour, 150 ° C for 3 hours,
A solder resist layer (thickness: 20 μm) having a pad portion opened (opening diameter: 200 μm) was formed.
【0052】(18)次に、ソルダーレジスト層を形成
した基板を、塩化ニッケル30g/l、次亜リン酸ナトリ
ウム10g/l、クエン酸ナトリウム10g/lからなるp
H=5の無電解ニッケルめっき液に20分間浸漬して、開
口部に厚さ5μmのニッケルめっき層13を形成した。さ
らに、その基板を、シアン化金カリウム2g/l、塩化
アンモニウム75g/l、クエン酸ナトリウム50g/l、
次亜リン酸ナトリウム10g/lからなる無電解金めっき
液に93℃の条件で23秒間浸漬して、ニッケルめっき層13
上に厚さ0.03μmの金めっき層を形成した。(18) Next, the substrate on which the solder resist layer was formed was treated with a nickel chloride 30 g / l, sodium hypophosphite 10 g / l, sodium citrate 10 g / l
It was immersed in an electroless nickel plating solution of H = 5 for 20 minutes to form a nickel plating layer 13 having a thickness of 5 μm at the opening. Further, the substrate was treated with potassium gold cyanide 2 g / l, ammonium chloride 75 g / l, sodium citrate 50 g / l,
The nickel plating layer 13 was immersed in an electroless gold plating solution containing 10 g / l of sodium hypophosphite at 93 ° C. for 23 seconds.
A gold plating layer having a thickness of 0.03 μm was formed thereon.
【0053】(19)そして、ソルダーレジスト層の開
口部に、はんだペーストを印刷して 200℃でリフローす
ることによりはんだバンプを形成し、はんだバンプを有
するプリント配線板を製造した。(19) Solder paste was printed on the opening of the solder resist layer and reflowed at 200 ° C. to form solder bumps, thereby producing a printed wiring board having solder bumps.
【0054】(実施例2)基本的に実施例1と同様であ
るが、粗化をエッチングにより行った。エッチング液
は、メック社製の「デュラボンド」なる商品名のものを
使用した。Example 2 Basically the same as Example 1, but roughening was performed by etching. An etching solution having a trade name of "Durabond" manufactured by Mec Co. was used.
【0055】(比較例)実施例1の(1)、(2)、
(3)、(4)、(5)、(6)、(7)、(8)の処
理後、ドライフィムフォトレジストをラミネートすると
ともに、露光、現像処理により、めっきレジストを形成
した。ついで、実施例1の(9)を実施後、(12)の
工程と同様にしてめっきレジストを剥離し、(13)の
処理を行い導体回路の全表面を粗化し、さらに、同様に
層間樹脂絶縁層、粗化、めっきレジストの形成、無電解
銅めっきを施し、めっきレジストの剥離後、実施例1
の、(15)、(16)、(17)、(18)、(1
9)の処理により、はんだバンプを有するプリント配線
板を製造した。(Comparative Example) (1), (2),
After the processes (3), (4), (5), (6), (7), and (8), a dry film photoresist was laminated, and a plating resist was formed by exposure and development. Then, after performing (9) of Example 1, the plating resist is peeled off in the same manner as in the process of (12), and the process of (13) is performed to roughen the entire surface of the conductor circuit. Example 1 After insulating layer, roughening, formation of plating resist, electroless copper plating, and peeling of plating resist, Example 1
(15), (16), (17), (18), (1
By the process of 9), a printed wiring board having solder bumps was manufactured.
【0056】実施例、比較例で製造されたプリント配線
板につき、ICチップを実装し、−55℃で15分、常
温10分、125℃で15分でヒートサイクル試験を1
000回、および2000回実施した。実施例、比較例
についてバイアホール上における層間樹脂絶縁層のクラ
ックの発生を走査型電子顕微鏡で確認した。また、同様
にバイアホールと下層導体回路との剥離の有無を確認し
た。An IC chip was mounted on each of the printed wiring boards manufactured in Examples and Comparative Examples, and a heat cycle test was performed at -55 ° C. for 15 minutes, at room temperature for 10 minutes, and at 125 ° C. for 15 minutes.
000 times and 2000 times. In Examples and Comparative Examples, the occurrence of cracks in the interlayer resin insulating layer on the via holes was confirmed with a scanning electron microscope. Similarly, the presence or absence of separation between the via hole and the lower conductor circuit was confirmed.
【0057】[0057]
【表1】 [Table 1]
【0058】[0058]
【発明の効果】以上説明したように本発明のプリント配
線板によれば、ヒートサイクル時におけるバイアホール
上の層間樹脂絶縁層に発生するクラックおよびバイアホ
ールの下層導体回路との剥離を同時に抑制して接続信頼
性を向上させることが可能である。As described above, according to the printed wiring board of the present invention, cracks generated in the interlayer resin insulating layer on the via holes during the heat cycle and peeling of the via holes from the lower conductive circuit are simultaneously suppressed. Thus, connection reliability can be improved.
【図1】〜FIG. 1
【図17】発明にかかる多層プリント配線板の製造工程
図である。FIG. 17 is a manufacturing process diagram of the multilayer printed wiring board according to the present invention.
【図18】発明にかかる多層プリント配線板の構造拡大
図である。FIG. 18 is an enlarged structural view of a multilayer printed wiring board according to the present invention.
【図19】発明にかかる多層プリント配線板の構造拡大
図である。FIG. 19 is an enlarged structural view of a multilayer printed wiring board according to the present invention.
【図20】銅−ニッケル−リンの粗化層の組成を表す三
角図FIG. 20 is a triangular diagram showing the composition of a roughened layer of copper-nickel-phosphorus.
1 基板 2 下層導体回路 3 無電解銅めっき膜 4 電解銅めっき膜 5 粗化層 6 層間樹脂絶縁層(無電解めっき用接着剤層) 7 めっきレジスト 20 上層導体回路 DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower conductor circuit 3 Electroless copper plating film 4 Electrolytic copper plating film 5 Roughened layer 6 Interlayer resin insulation layer (adhesive layer for electroless plating) 7 Plating resist 20 Upper conductor circuit
Claims (4)
絶縁層が形成され、その層間絶縁層上に上層導体回路が
形成されてなり、上層導体回路と下層導体回路がバイア
ホールで接続した多層プリント配線板において、 前記バイアホールは、無電解めっき膜と電解めっき膜か
らなり、 該下層導体回路は、少なくともバイアホールと接続する
部分の表面に粗化層が形成されてなることを特徴とする
多層プリント配線板。An interlayer insulating layer is formed on a substrate provided with a lower conductive circuit, and an upper conductive circuit is formed on the interlayer insulating layer. The upper conductive circuit and the lower conductive circuit are connected by a via hole. In the multilayer printed wiring board, the via hole includes an electroless plating film and an electrolytic plating film, and the lower conductive circuit is characterized in that a roughened layer is formed on at least a surface connected to the via hole. Multi-layer printed wiring board.
金めっきからなる請求項1に記載の多層プリント配線
板。2. The multilayer printed wiring board according to claim 1, wherein the roughening layer is made of copper-nickel-phosphorus alloy plating.
この下層導体回路表面のうち、少なくともバイアホール
と接続する部分の表面に粗化処理を施し、次に基板上に
層間絶縁層を設け、この層間絶縁層にバイアホール用の
孔を形成し、 さらに、層間絶縁層上に無電解めっきを施した後、めっ
きレジストを設け、電解めっきを施し、めっきレジスト
を除去後、エッチング処理して無電解めっき膜と電解め
っき膜からなる上層導体回路およびバイアホールを形成
することを特徴とする多層プリント配線板の製造方法。3. A lower conductor circuit is formed on a substrate, a roughening process is performed on at least a portion of the surface of the lower conductor circuit connected to the via hole, and then an interlayer insulating layer is provided on the substrate. Then, a hole for a via hole is formed in the interlayer insulating layer, and further, after performing electroless plating on the interlayer insulating layer, providing a plating resist, performing electrolytic plating, removing the plating resist, and etching. A method for manufacturing a multilayer printed wiring board, comprising forming an upper conductive circuit and a via hole comprising an electroless plating film and an electrolytic plating film.
金めっきにより形成される請求項3に記載の多層プリン
ト配線板の製造方法。4. The method according to claim 3, wherein the roughening layer is formed by copper-nickel-phosphorus alloy plating.
Priority Applications (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35795996A JPH10190224A (en) | 1996-12-27 | 1996-12-27 | Multilayer printed wiring board and its manufacture |
PCT/JP1997/004684 WO1998027798A1 (en) | 1996-12-19 | 1997-12-18 | Printed wiring board and method for manufacturing the same |
EP08002134A EP1921902B1 (en) | 1996-12-19 | 1997-12-18 | Multilayered printed circuit board |
CNB2004101000753A CN100435605C (en) | 1996-12-19 | 1997-12-18 | Printed wiring board and method for manufacturing the same |
US09/319,258 US6835895B1 (en) | 1996-12-19 | 1997-12-18 | Printed wiring board and method for manufacturing the same |
EP97949144A EP0952762B1 (en) | 1996-12-19 | 1997-12-18 | Printed wiring board and method for manufacturing the same |
CNB971814473A CN1265691C (en) | 1996-12-19 | 1997-12-18 | Printed wiring board and method for manufacturing the same |
DE69740139T DE69740139D1 (en) | 1996-12-19 | 1997-12-18 | Multi-layer printed circuit board |
MYPI97006160A MY125599A (en) | 1996-12-19 | 1997-12-18 | Printed circuit boards and method of producing the same |
MYPI20043243A MY128039A (en) | 1996-12-19 | 1997-12-18 | Printed circuit boards and method of producing the same |
US11/595,000 USRE43509E1 (en) | 1996-12-19 | 1997-12-18 | Printed wiring board and method for manufacturing the same |
KR1019990705543A KR20000057687A (en) | 1996-12-19 | 1997-12-18 | Printed wiring board and method for manufacturing the same |
US10/351,501 US6930255B2 (en) | 1996-12-19 | 2003-01-27 | Printed circuit boards and method of producing the same |
US11/203,427 US7449791B2 (en) | 1996-12-19 | 2005-08-15 | Printed circuit boards and method of producing the same |
US11/522,961 US7712212B2 (en) | 1996-12-19 | 2006-09-19 | Method for manufacturing printed wiring board |
US11/522,960 US7615162B2 (en) | 1996-12-19 | 2006-09-19 | Printed wiring board and method for manufacturing the same |
US11/523,000 US7385146B2 (en) | 1996-12-19 | 2006-09-19 | Printed wiring board and method for manufacturing the same |
US11/522,999 US7388159B2 (en) | 1996-12-19 | 2006-09-19 | Printed wiring board and method for manufacturing the same |
US11/522,938 US7585541B2 (en) | 1996-12-19 | 2006-09-19 | Printed wiring board and method for manufacturing the same |
US11/522,956 US7361849B2 (en) | 1996-12-19 | 2006-09-19 | Printed wiring board and method for manufacturing the same |
US11/522,940 US7371976B2 (en) | 1996-12-19 | 2006-09-19 | Printed wiring board and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35795996A JPH10190224A (en) | 1996-12-27 | 1996-12-27 | Multilayer printed wiring board and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10190224A true JPH10190224A (en) | 1998-07-21 |
Family
ID=18456829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35795996A Pending JPH10190224A (en) | 1996-12-19 | 1996-12-27 | Multilayer printed wiring board and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10190224A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008192938A (en) * | 2007-02-06 | 2008-08-21 | Kyocera Corp | Wiring board, package structure, and manufacturing method of wiring board |
US7504719B2 (en) * | 1998-09-28 | 2009-03-17 | Ibiden Co., Ltd. | Printed wiring board having a roughened surface formed on a metal layer, and method for producing the same |
JP2009182310A (en) * | 2008-02-01 | 2009-08-13 | Toppan Printing Co Ltd | Multilayer printed wiring board, and manufacturing method thereof |
KR101442423B1 (en) * | 2013-08-14 | 2014-09-17 | 삼성전기주식회사 | Method for manufacturing electronic component embedding substrate and electronic component embedding substrate |
US9402318B2 (en) | 2013-08-23 | 2016-07-26 | Ibiden Co., Ltd. | Printed wiring board |
-
1996
- 1996-12-27 JP JP35795996A patent/JPH10190224A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7504719B2 (en) * | 1998-09-28 | 2009-03-17 | Ibiden Co., Ltd. | Printed wiring board having a roughened surface formed on a metal layer, and method for producing the same |
US8533943B2 (en) | 1998-09-28 | 2013-09-17 | Ibiden Co., Ltd. | Printed wiring board and method for producing the same |
JP2008192938A (en) * | 2007-02-06 | 2008-08-21 | Kyocera Corp | Wiring board, package structure, and manufacturing method of wiring board |
JP2009182310A (en) * | 2008-02-01 | 2009-08-13 | Toppan Printing Co Ltd | Multilayer printed wiring board, and manufacturing method thereof |
KR101442423B1 (en) * | 2013-08-14 | 2014-09-17 | 삼성전기주식회사 | Method for manufacturing electronic component embedding substrate and electronic component embedding substrate |
US9402318B2 (en) | 2013-08-23 | 2016-07-26 | Ibiden Co., Ltd. | Printed wiring board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7449791B2 (en) | Printed circuit boards and method of producing the same | |
JP3152633B2 (en) | Multilayer printed wiring board and method of manufacturing the same | |
JPH10190224A (en) | Multilayer printed wiring board and its manufacture | |
JP3220419B2 (en) | Multilayer printed wiring board | |
JPH10261869A (en) | Multilayer printed wiring board | |
JP4159136B2 (en) | Multilayer printed wiring board | |
JP2001102751A (en) | Multilayer printed wiring board and manufacturing method thereof | |
JP3259906B2 (en) | Adhesive for electroless plating and printed wiring board | |
JP3299243B2 (en) | Manufacturing method of multilayer printed wiring board | |
JPH10242639A (en) | Multilyer printed wiring board and its manufacturing method | |
JP2003152319A (en) | Printed board | |
JP2000133946A (en) | Multilayer printed wiring board | |
JPH10242638A (en) | Multilayer printed wiring board and its manufacture | |
JP2000124608A (en) | Multilayer printed wiring board | |
JPH1117336A (en) | Multilayer printed wiring board and its manufacture | |
JP2003163454A (en) | Build-up multilayer printed wiring board | |
JP2000133939A (en) | Multilayer printed wiring board | |
JP2007227959A (en) | Multilayer printed wiring board and its manufacturing method | |
JPH11214828A (en) | Printed wiring of board and manufacture thereof | |
JP3995794B2 (en) | Electroless plating adhesive and printed wiring board | |
JPH10242622A (en) | Printed wiring board, multilayer printed wiring board, and manufacture thereof | |
JP2000133940A (en) | Multilayer printed wiring board | |
JP2000124618A (en) | Manufacture of multilayer printed wiring board | |
JP2003060342A (en) | Multilayer printed wiring board and manufacturing method therefor | |
JPH1168315A (en) | Manufacture of multilayer printed wiring board |