JP2007219063A - 光変調装置 - Google Patents

光変調装置 Download PDF

Info

Publication number
JP2007219063A
JP2007219063A JP2006037761A JP2006037761A JP2007219063A JP 2007219063 A JP2007219063 A JP 2007219063A JP 2006037761 A JP2006037761 A JP 2006037761A JP 2006037761 A JP2006037761 A JP 2006037761A JP 2007219063 A JP2007219063 A JP 2007219063A
Authority
JP
Japan
Prior art keywords
light
modulation
optical
frequency
ssb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006037761A
Other languages
English (en)
Other versions
JP4494347B2 (ja
Inventor
Yoshihiro Hashimoto
義浩 橋本
Shingo Mori
慎吾 森
Kaoru Hikuma
薫 日隈
Toshio Sakane
敏夫 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006037761A priority Critical patent/JP4494347B2/ja
Publication of JP2007219063A publication Critical patent/JP2007219063A/ja
Application granted granted Critical
Publication of JP4494347B2 publication Critical patent/JP4494347B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】光SSB変調器そのものの構成に変更を加えることなく、完全なSSB変調をするためのDC電圧制御を容易に行うことが可能とする。
【解決手段】外部に設けられたレーザダイオード(LD)3からの光を分岐する分岐部112と、分岐光の一方が入力される光SSB変調器10と、もう一方の分岐光が入力されてその光周波数の変換を行うAOシフタ111と、SSB変調光と周波数変換された光を合波する合波部13と、光を受光して2乗検波により電気信号に変換するフォトダイオード(PD)14と、所望の周波数帯の電気信号を通過させるバンドパスフィルタ(BPF)15a〜15cと、入力された電気信号の比を出力する比演算回路16a、16bと、光SSB変調器10へのDC制御電圧を計算して最適電圧を出力するバイアスコントローラ17とを設ける。
【選択図】図1

Description

本発明は光変調装置に係り、特に精度良くSSB変調を行うことが可能な光変調装置に関する。
光信号に変調を加えてその変調周波数に対応した変調波を発生させ、一方の側波帯成分を除去する変調方式が、SSB(Single Side Band)変調である。また、さらにキャリア光(被変調光)まで抑圧し、単一の側波帯成分だけを取り出すようにした方式は、特にキャリア抑圧SSB変調と呼ばれている。
光SSB変調は、その用途により、信号光(キャリア光)を入力して異なる周波数の光(単一側波帯光)を出力する周波数変換器や、生成した側波帯信号を使ってデジタル伝送を行うための変調装置など、様々な形で利用することができ、光通信システムや光ファイバ無線システム、光計測等の分野において非常に有効性の高い技術である(例えば、非特許文献1参照)。
ここで、一般的な光SSB変調器について説明する。
図2の構成図において、光SSB変調器10は、メインマッハツェンダー導波路101の各アームにそれぞれ第1と第2のサブマッハツェンダー導波路102、103を配置した導波路構成を有しており、また、これら各メインおよびサブマッハツェンダー導波路101〜103上には、電圧印加によって伝搬光の位相を変化させるためのRF電極104とDC電極105、106が装荷されている。
メインマッハツェンダー導波路101には、周波数fの光波が入力される。この入力光は、分岐後に2つのサブマッハツェンダー導波路102、103に導入されて位相変化を受け、再び合波されて出力される。
第1・第2サブマッハツェンダー導波路102、103上のDC電極105a、105bには、当該マッハツェンダー導波路を構成している各アームを伝搬する光波の位相差がπとなるようにDC電圧を印加する。また、第1サブマッハツェンダー導波路102上のRF電極104aには、変調周波数fのRF電圧を印加し、第2サブマッハツェンダー導波路103上のRF電極104bには、同じく変調周波数fのRF電圧を、RF電極104aに対する位相差がπ/2となるように印加する。さらに、メインマッハツェンダー導波路101上のDC電極106には、2つのサブマッハツェンダー導波路102、103間の位相差がπ/2または−π/2となるようなDC電圧を印加する。
すると、この光SSB変調器10内の導波路の各点(図2中の点A〜G)における光波の周波数スペクトルと位相は、図3に示すような状態となる。ただし、DC電極106によって付与される位相差がπ/2の場合を示した。また、周波数軸(横軸)上の矢印はその周波数のスペクトルを表し、矢印の向きは位相を表している。位相の値は、上向き矢印が0、右斜め上向き矢印がπ/2、下向き矢印がπ、左斜め下向き矢印が3π/2であるとする。
図3において、点Aと点Bのキャリア光(周波数f)は、DC電極105aへの印加電圧によって互いに逆位相(位相差π)となっている。また、周波数fのRF電圧で位相変調を与えたことによって、キャリア光の周波数fを中心として周波数f間隔で高周波成分が発生する。ただし、ここでは2次以上の高次成分は無視して±1次の成分だけを考える。このとき、+1次の変調光(周波数f+f)と−1次の変調光(周波数f−f)は、点Aと点Bにおいてそれぞれ同位相(位相差0)となっている。
第1サブマッハツェンダー導波路102の各アーム上の点A、Bでこのような位相関係を持った伝搬光が点Eで合波されると、逆位相であるキャリア光は打ち消しあって無くなり、±1次の変調成分だけが残存することになる。
また、第2サブマッハツェンダー導波路103の各アーム上の点C、Dにおける伝搬光の位相関係も上記と同様であり、点Fでは±1次の変調成分だけが残存する。
さらにDC電極106によって位相差が付与されると、点Eと点Fでは、図3に示されるように+1次の変調光は同位相、−1次の変調光は逆位相となる。その結果、メインマッハツェンダー導波路101の出力側の点Gにおいて、合波された光波は+1次の変調成分のみ有することとなる。なお、DC電極106により付与される位相差を−π/2とした場合には、点Gにおいて残存するのは−1次の変調成分となる。
こうして、光SSB変調器の出力は、キャリア光と一方の側波帯が抑圧されて単一の側波帯からなるスペクトルを有することとなる。
橋本他、ミリ波自己ヘテロダイン/光ヘテロダイン伝送方式を用いるRoFリンクにおけるRFチャネル切り替えに関する一検討、電子情報通信学会総合大会、2004年
しかしながら、上記のように完全に単一の側波帯成分を出力するためには、DC電極105a、105bによる位相差をπ、DC電極106による位相差をπ/2(または−π/2)とする位相条件が厳密に満足されていなければならない。すなわち、もし仮にこれらの位相差が正しい値をとっていなかったとすると、キャリア光および各次数の変調成分の位相(図3参照)にズレが生じ、それらが合成される結果、出力光(点G)に望まないキャリア光や他方の側波帯成分が残留することになる。
そしてこの残留成分は、本来の伝送信号とともに送信されて受信装置側で受信される際に、スプリアス信号を発生させて復調精度を低下させてしまうため、光SSB変調器の実用上大きな問題となっていた。
これを解決するには、各マッハツェンダー導波路の出力光(図3の点E、F、G)を個別にモニタして、DC電極への印加電圧をフィードバック制御することが必要となる。しかし、そのためには、モニタ光を取り出すガイド用光導波路を新たに形成し、取り出したモニタ光を検出するPD(フォトダイオード)を備え付ける必要があり、変調器の構成や製造・実装方法が複雑になってしまう欠点がある。
また、別の方法として、上記の光SSB変調器の最終的な出力光(図3の点G)のみを光スペクトルアナライザで測定し、得られた各スペクトル成分を確認しながら人間がDC電圧を手動で調整することも可能ではあるが、調整精度と長期的運用の面で実用的ではなかった。
本発明は上記の点に鑑みてなされたものであり、その目的は、光SSB変調器そのものの構成に変更を加えることなく、完全なSSB変調をするためのDC電圧制御を容易に行うことが可能な光変調装置を提供することにある。
本発明は上記の課題を解決するためになされたものであり、請求項1に記載の発明は、入力された光波を周波数f1のキャリア信号で変調して側波帯成分を発生させるSSB変調手段と、前記SSB変調手段に入力される光波に対して周波数がf2(f2<f1)だけ異なる参照光を生成する参照光生成手段と、前記SSB変調手段からの出力光と前記参照光とを合波する合波手段と、前記合波された光を受光し電気信号に変換する光検波手段と、前記光検波手段により得られた電気信号から周波数がf1−f2、f2、およびf1+f2の各信号成分を抽出する信号抽出手段と、前記各信号成分に基づいて前記SSB変調手段をフィードバック制御して、これら各信号成分の電力を、周波数f2成分が最小値を取り、且つ周波数f1−f2成分とf1+f2成分の一方が最小値を他方が最大値をそれぞれ取るように調整する制御手段と、を備えた光変調装置である。
また、請求項2に記載の発明は、請求項1に記載の光変調装置において、前記参照光生成手段は、前記SSB変調手段の前段に配置され、入力される光波を2つに分岐してその一方をSSB変調手段側の経路に導入する光分岐手段と、前記光分岐手段の後段に配置され、前記分岐された光波の他方が入力されて該光波の周波数を変換する光周波数変換手段と、によって構成されて前記周波数変換された光波を前記参照光とすることを特徴とする。
また、請求項3に記載の発明は、請求項1に記載の光変調装置において、前記参照光生成手段は、前記SSB変調手段の前段に配置され、入力される光波を変調して上側側波帯と下側側波帯を発生させるとともにキャリア光を抑圧するDSB変調手段と、前記DSB変調手段と前記SSB変調手段の間に配置され両者を接続する光サーキュレータと、前記光サーキュレータのもう一方の接続端の後段に配置され、入力される前記上側側波帯と下側側波帯の一方を透過させ、他方を反射する光選択手段と、によって構成されて、前記光選択手段からの透過光を前記参照光と成し、前記光サーキュレータは、前記DSB変調手段から出力される光波を前記光選択手段側に通過させ、該光選択手段から反射される光波を前記SSB変調手段側に通過させることを特徴とする。
また、請求項4に記載の発明は、請求項1から請求項3のいずれかの項に記載の光変調装置において、前記SSB変調手段は、2つのマッハツェンダー干渉系と、光波を分岐させて前記2つのマッハツェンダー干渉系に分配する分岐部と、前記2つのマッハツェンダー干渉系から出力される光波を合波する合波部と、前記各マッハツェンダー干渉系に位相が互いにπ/2異なる変調信号を入力してそれぞれを通過する光波を位相変調する変調信号入力手段と、前記マッハツェンダー干渉系を構成している各アームを伝搬する光波に位相差πを付与する、前記2つのマッハツェンダー干渉系のそれぞれに設けられた2つの第1の位相差付与手段と、前記各マッハツェンダー干渉系から出力される光波に位相差π/2若しくは−π/2を付与する第2の位相差付与手段と、からなり、前記制御手段が前記第1および第2の位相差付与手段のそれぞれに対して独立してフィードバック制御を行うことを特徴とする。
また、請求項5に記載の発明は、請求項1から請求項4のいずれかの項に記載の光変調装置において、前記SSB変調手段に入力される光波の一部が分岐により取り出されて入力され、その光波をデータ信号で変調するデータ変調手段と、前記SSB変調手段および前記データ変調手段から出力され合波された光波を送信信号として出力する出力手段と、をさらに備えたことを特徴とする。
また、請求項6に記載の発明は、請求項5に記載の光変調装置において、前記SSB変調手段と前記データ変調手段は、同一基板上に光導波路を形成してなることを特徴とする。
本発明によれば、光信号を周波数fでSSB変調するとともにキャリア光の周波数をfだけシフトさせ、これらを合波して光検波することによってキャリア光と±1次の側波帯光に対応する周波数成分を検出しているので、SSB変調手段へのフィードバック制御を行って単一の側波帯のみを出力する完全なSSB変調を実現することが可能である。また、SSB変調手段自体には特別な構成が不要であるので、光変調装置としての製造が容易であり実用性が高い。
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
≪第1の実施形態≫
図1は、本発明の第1の実施形態による光変調装置の構成図である。この光変調装置1は、外部に設けられたレーザダイオード(LD)3からの光を分岐する分岐部112と、分岐光の一方が入力される光SSB変調器10と、もう一方の分岐光が入力されてその光周波数の変換を行うAOシフタ111と、SSB変調光と周波数変換された光を合波する合波部13と、光を受光して2乗検波により電気信号に変換するフォトダイオード(PD)14と、所望の周波数帯の電気信号を通過させるバンドパスフィルタ(BPF)15a〜15cと、入力された電気信号の比を出力する比演算回路16a、16bと、光SSB変調器10へのDC制御電圧を計算して最適電圧を出力するバイアスコントローラ17と、伝送するデータによる変調を信号光に与えるデータ変調器18と、制御された信号光をメイン出力として取り出して伝送路へ送り出すための出力部19とから構成される。
光SSB変調器10の構成は、既述の図2に示した光SSB変調器と同じである。ただし、変調器を構成する各マッハツェンダー導波路101〜103に設けられたDC電極105a、105b、106には、バイアスコントローラ17によって制御されたDC電圧が供給されるようになっており、これにより伝搬光に付与される位相差が適正な値に保持される。
光SSB変調器10の前段にはY字型分岐導波路が配置され、その2つの分岐出力端の一方が同変調器10、他方がデータ変調器18のそれぞれの入力端に接続されている。同様に、光SSB変調器10とデータ変調器18の出力端は、それらの後段に配置されたもう一つのY字型分岐導波路の分岐入力端にそれぞれ接続されている。
データ変調器18は光導波路と電極によって構成された位相変調器であり、電極にデータ信号による変調電圧を印加して導波路を伝搬する光波の位相を変調することで、信号光にデータを乗せて出力する。
上記の光SSB変調器10とデータ変調器18(およびY字型分岐導波路)は、同一のニオブ酸リチウム(LiNbO;LN)基板20上に形成されている。なお、導波路はチタン(Ti)を基板内部に熱拡散させることによって、また電極は基板表面への金(Au)メッキ処理によって、それぞれ作製される。
AO(Acousto-Optic)シフタ111は、音響光学効果を用いた周波数変換デバイスであり、光導波路を形成したLN基板表面にピエゾ(圧電)素子を接着した構成を有する。ピエゾ素子を駆動すると基板に所定周波数の表面弾性波が励振されて、その周波数に応じて導波路を伝搬する光の周波数が変化する。これを利用して入力光の周波数の変換が実現されている。
次に、本光変調装置1の動作について、初めにデータ変調器18でデータ変調をしない場合を説明し、その後でデータ変調をする場合を説明する。なお、データ変調をしない場合には、図1(および後述する図5)においてデータ変調器18を省略して光変調装置を構成することもできる。
(1)データ変調しない場合
レーザダイオード3は周波数fの単一スペクトルを持つシングルモード光を出力している。出力された光は分岐部112に導入されて、光SSB変調器10側とAOシフタ111側に分岐される。
光SSB変調器10は分岐された一方の光波を入力としてSSB変調を行うが、ここでは+1次の側波帯を出力するためにDC電極106による位相差をπ/2とする条件で駆動されているものとする。この時フィードバック制御が行われなかったとすると、前述したようにキャリア光と−1次成分が残留する。そして光SSB変調器10から出力される信号光は、図1内(点P)に示されているようなスペクトル形状を有し、所望の+1次の側波帯による周波数f+fの信号光のほかに周波数fとf−fの不要な成分(スプリアス信号)を含むこととなる。このスプリアス信号をゼロにすることが、バイアスコントローラ17等からなる本光変調装置1の制御系の役目である。
一方、分岐部112から分岐した他方の光波は、AOシフタ111に入力されて周波数を+fだけシフトした光波(周波数f+f)に変換される。
なお本実施形態ではこのように、光SSB変調器10へ入力される周波数fの信号光の一部を分岐部112によって取り出して、それをAOシフタ111によって周波数変換することで、異なる周波数f+fの光(参照光)を生成している。すなわち、AOシフタ111と分岐部112は参照光生成手段11として機能している。
光SSB変調器10とAOシフタ111からの出力光は、合波部13によって合波された後、フォトダイオード14により受光される。フォトダイオード14は、受光した信号光を2乗検波することによって電気信号へ変換する。
2乗検波では、信号光に含まれる各スペクトル成分の積(周波数では差)に相当する電気信号が出力として得られる。ここで、フォトダイオード14へ入力される光波のスペクトルは上記の説明の通り4つの周波数成分から成るが、以下これらをE(周波数f)、E+1(周波数f+f)、E−1(周波数f−f)、およびE(周波数f+f)と記すことにする。すると、2乗検波によって得られる各電気信号の周波数は、次の通り(矢印の右側)となる。ただし、積を“・”で表す。
・E+1 → f
・E−1 → f
・E → f
+1・E−1 → 2f
+1・E → f−f
−1・E → f+f
上記の対応関係において、2乗検波後の出力信号に含まれる周波数成分fは信号光EとEから生成されたものであり、同様にf−f成分は信号光E+1とEから、f+f成分は信号光E−1とEからそれぞれ生成されたものである。したがって、信号光E、E+1、E−1の変化をフォトダイオード14からの出力信号成分f、f−f、f+fによって検出することができる。なお、この検出は信号光E(参照光)を導入したことにより可能となるものである。
また、各成分は信号光の積の値に比例した電力値を持つが、Eが共通であるためその比はE:E+1:E−1である。したがって、2乗検波によって得られた電気信号における周波数f、f−f、f+fの電圧比を測定することにより、信号光E、E+1、E−1、すなわち光SSB変調器10による各変調成分の大きさの比を知ることができる。
この比は、フォトダイオード14の後段に設けられたバンドパスフィルタ15と比演算回路16を用いて算出される。すなわち、3つのバンドパスフィルタ15a、15b、15cにはフォトダイオード14からの出力信号が分配して入力され、それぞれの通過帯域(順にf+f、f−f、f)の周波数成分だけが各フィルタから出力される。バンドパスフィルタ15aと15bの出力は比演算回路16aに入力されて、周波数成分f−fに対するf+fの電圧比Rが演算される。また同様に、バンドパスフィルタ15bと15cの出力は比演算回路16bに入力されて、周波数成分f−fに対するfの電圧比Rが演算される。
バイアスコントローラ17は、上記の電圧比RとRを入力として光SSB変調器10の各DC電極105a、105b、106に対するフィードバック制御を行う。この制御において、電圧比RとRがともに最小、すなわち周波数f−f成分(信号光E+1に対応)が最大かつ周波数f+f成分(信号光E−1に対応)とf成分(信号光Eに対応)が最小となるようにそれぞれのDC電圧が調整される。この結果、光SSB変調器10から+1次の側波帯の信号光のみを発生させる理想的なSSB変調が実現される。
(2)データ変調する場合
データ変調器18において伝送データによる変調が行われる場合、データ変調された光波と光SSB変調器10によってSSB変調された光波とが合波された信号光が、AOシフタ111からの出力光と合波されてフォトダイオード14に受光される。また、出力部19はこの信号光のメイン出力を取り出し伝送路へ送り出す。以下、フォトダイオード14に入力される信号を制御用信号、伝送路へ送信される信号を伝送信号と呼ぶ。
図4は、伝送信号および制御用信号の光スペクトルと2乗検波後の電気スペクトルを示している。同図(a)が伝送信号、(b)が制御用信号である。
伝送信号は、バイアスコントローラ17によるフィードバック制御が行われていないときには、SSB変調による信号成分としてキャリア光E(周波数f)、および+1次と−1次の側波帯光E+1、E−1(それぞれ周波数f+f、f−f)を含んでいる。すなわち、まだキャリア光と片方の側波帯成分が残留している。また、伝送データの変調周波数の最大値をfとすると、信号光の位相変調成分(Eとする)は帯域が周波数f±fの範囲にわたって広がりを持つ(図4(a)左上)。
このような光スペクトルの伝送信号を(受信側で)2乗検波すると、電気のスペクトルは図4(a)右上のような形になる。周波数f−fからf+fまで広がっている信号成分が、E+1とEによって生成された本来のデータ信号である。この信号の低周波側にはEとEから生じた信号成分が重なっており、これがスプリアスとして受信特性を劣化させる。また、E+1とEからは周波数fを中心として本来のデータ信号と左右対称のスペクトル成分も生じるが、この成分は伝送路の分散に起因する信号光の各成分間の遅延の影響でS/N比劣化の要因として働く。
一方、制御用信号の光スペクトルは、伝送信号のそれに対してAOシフタ111からの信号成分Eが足し合わせられている(図4(b)左)。これをフォトダイオード14で2乗検波すると、電気のスペクトルは図4(b)右のようになる。ここで、フィードバック制御に用いるのは、上述した(1)の場合と同じくE・E、E+1・E、およびE−1・Eである。これらの成分をバンドパスフィルタ15a〜15cで切り出し、比演算回路16a、16bとバイアスコントローラ17により適正なDC電圧を計算して、光SSB変調器10の各DC電極を制御する。
その結果光SSB変調器10からの出力が+1次の側波帯成分のみになると、伝送信号のスペクトルは図4(a)左下および右下のようになる。スプリアス信号や伝送路分散の影響が低減するので、伝送特性が向上する。
このように、本実施形態によれば、所望の+1次の側波帯成分のほかキャリア光と−1次の側波帯からなる残留成分を有している光SSB変調器10からの出力信号光が、AOシフタ111によりキャリア光を周波数変換した信号光と合波された後、フォトダイオード14によって2乗検波される。検波された信号から、キャリア光、+1次および−1次の側波帯光にそれぞれ対応する周波数f、f−f、f+fの成分を抽出し、これら各成分の比に基づいてバイアスコントローラ17が光SSB変調器10のDC電圧をフィードバック制御する。
これにより、キャリア光および−1次の側波帯成分の抑圧比を十分大きくすることができ、完全なSSB変調が可能となる。また、光SSB変調器10自体は特別な構成を有していないので、実用化が容易である。
≪第2の実施形態≫
図5は、本発明の第2の実施形態による光変調装置の構成図である。この光変調装置2は、前述の第1の実施形態において、AOシフタ111と分岐部112の代わりにDSB変調器121と光サーキュレータ122とファイバグレーティング(Fiber Bragg Grating;FBG)123を利用したものである。
DSB変調器121は、レーザダイオード3から出力される周波数fの信号光をDSB(Double Side Band)変調して、周波数差がfである上側側波帯と下側側波帯(周波数はそれぞれf+f/2、f−f/2)からなるキャリア抑圧されたDSB信号光を発生させる。その構成は、図6に示すように、マッハツェンダー導波路124とRF電極125とDC電極126から成っている。RF電極125には周波数f/2の変調電圧を印加し、DC電極126にはマッハツェンダー導波路124の各アーム間の位相差がπとなるようにDC電圧を印加する。すると、変調器内を伝搬する光波のスペクトルと位相は、ちょうど前述の光SSB変調器10内の第1サブマッハツェンダー導波路102におけるのと同様の状態(図3の点A、B、Eに相当。ただし周波数fはf/2に置き換わる)となる。
上記のようにして生成された2つのスペクトル成分を有する信号光は光サーキュレータ122に入力されて、ファイバグレーティング123側の経路へと導入される。ファイバグレーティング123は周波数f−f/2を中心とする非常に急峻なフィルタ特性を持っており、入力された2成分のうち当該周波数成分の光波を反射し、もう一方の周波数f+f/2の光波を透過させる。この反射波は再び光サーキュレータ122へ戻って、光SSB変調器10へ入力される。
なお、本実施形態では、DSB変調器121と光サーキュレータ122とファイバグレーティング123とによって光SSB変調器10への入力光と異なる周波数の参照光が生成されており、これら3つの部品が参照光生成手段12として機能している。
光SSB変調器10はこの入力信号光(周波数f−f/2)に対し、第1の実施形態の場合と同じRFおよびDC電圧を各電極に印加してSSB変調をかける。この変調の結果得られる出力光は、図5内にそのスペクトルを示したように、図1と同じく所望の+1次の側波帯成分のほか、残留成分(キャリア光と−1次成分)を有することとなる。ただし、これら各成分の周波数は、入力光の周波数の差(−f/2)の分だけ図1と異なっている。
ここで、SSB変調によって上記の各成分を持った信号光とファイバグレーティング123からの透過光とは、相対的な周波数の差がfとなっている。そのため、これらの光波が合波されてフォトダイオード14により2乗検波されると、検波後のスペクトルは第1の実施形態の場合と全く同一のものが得られる。バンドパスフィルタ15、比演算回路16、バイアスコントローラ17は第1の実施形態と同じ動作をし、光SSB変調器10に対するフィードバック制御を行う。その結果、光SSB変調器10から+1次の側波帯の信号光のみを発生させる理想的なSSB変調が実現される。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
例えば、参照光生成手段としては、第1および第2の実施形態で説明したもののほか、上述したDSB変調器と、その後段に配置された分岐部と、分岐先の導波路の双方に設けられDSB変調による上側および下側側波帯のそれぞれ一方だけを透過させる光フィルタ(ファイバグレーティングや誘電体多層膜フィルタなど)とによって構成することもできる。この場合、一方の光フィルタの出力を光SSB変調器への入力とし、その出力と他方の光フィルタの出力とを合波してフォトダイオードで検波する。
また、データ変調器18は単純に直線導波路と変調電極によって構成してもよいし、光SSB変調器10と同じ構成にしてもよい。
また、上記の実施形態では最終的に+1次の側波帯成分を得る場合の制御について説明したが、−1次の成分が得られるように装置の設計を変更することができるのはもちろんである。
また、比演算回路16はソフトウェアにより構成することもできる。そうすることで、+1次と−1次の側波帯信号を任意にリアルタイムで選択可能となる。
また、AOシフタ111以外の既存の技術に基づく周波数変換デバイスを適用することもできる。
本発明の第1の実施形態による光変調装置の構成図である。 光SSB変調器の構成図である。 光SSB変調器内における光波の周波数スペクトルと位相の挙動を示した図である。 伝送信号と制御用信号のスペクトルを示した図である。 本発明の第2の実施形態による光変調装置の構成図である。 DSB変調器の構成図である。
符号の説明
1、2…光変調装置 10…光SSB変調器 11、12…参照光生成手段 13…合波部 14…フォトダイオード 15…バンドパスフィルタ 16…比演算回路 17…バイアスコントローラ 18…データ変調器 19…出力部 20…LN基板 101…メインマッハツェンダー導波路 102、103…サブマッハツェンダー導波路 104…RF電極 105、106…DC電極 111…AOシフタ 112…分岐部 121…DSB変調器 122…光サーキュレータ 123…ファイバグレーティング 124…マッハツェンダー導波路 125…RF電極 126…DC電極

Claims (6)

  1. 入力された光波を周波数f1のキャリア信号で変調して側波帯成分を発生させるSSB変調手段と、
    前記SSB変調手段に入力される光波に対して周波数がf2(f2<f1)だけ異なる参照光を生成する参照光生成手段と、
    前記SSB変調手段からの出力光と前記参照光とを合波する合波手段と、
    前記合波された光を受光し電気信号に変換する光検波手段と、
    前記光検波手段により得られた電気信号から周波数がf1−f2、f2、およびf1+f2の各信号成分を抽出する信号抽出手段と、
    前記各信号成分に基づいて前記SSB変調手段をフィードバック制御して、これら各信号成分の電力を、周波数f2成分が最小値を取り、且つ周波数f1−f2成分とf1+f2成分の一方が最小値を他方が最大値をそれぞれ取るように調整する制御手段と、
    を備えた光変調装置。
  2. 前記参照光生成手段は、
    前記SSB変調手段の前段に配置され、入力される光波を2つに分岐してその一方をSSB変調手段側の経路に導入する光分岐手段と、
    前記光分岐手段の後段に配置され、前記分岐された光波の他方が入力されて該光波の周波数を変換する光周波数変換手段と、
    によって構成されて前記周波数変換された光波を前記参照光とする
    ことを特徴とする請求項1に記載の光変調装置。
  3. 前記参照光生成手段は、
    前記SSB変調手段の前段に配置され、入力される光波を変調して上側側波帯と下側側波帯を発生させるとともにキャリア光を抑圧するDSB変調手段と、
    前記DSB変調手段と前記SSB変調手段の間に配置され両者を接続する光サーキュレータと、
    前記光サーキュレータのもう一方の接続端の後段に配置され、入力される前記上側側波帯と下側側波帯の一方を透過させ、他方を反射する光選択手段と、
    によって構成されて前記光選択手段からの透過光を前記参照光とし、
    前記光サーキュレータは、
    前記DSB変調手段から出力される光波を前記光選択手段側に通過させ、該光選択手段から反射される光波を前記SSB変調手段側に通過させる
    ことを特徴とする請求項1に記載の光変調装置。
  4. 前記SSB変調手段は、
    2つのマッハツェンダー干渉系と、
    光波を分岐させて前記2つのマッハツェンダー干渉系に分配する分岐部と、
    前記2つのマッハツェンダー干渉系から出力される光波を合波する合波部と、
    前記各マッハツェンダー干渉系に位相が互いにπ/2異なる変調信号を入力してそれぞれを通過する光波を位相変調する変調信号入力手段と、
    前記マッハツェンダー干渉系を構成している各アームを伝搬する光波に位相差πを付与する、前記2つのマッハツェンダー干渉系のそれぞれに設けられた2つの第1の位相差付与手段と、
    前記各マッハツェンダー干渉系から出力される光波に位相差π/2若しくは−π/2を付与する第2の位相差付与手段と、
    からなり、
    前記制御手段が前記第1および第2の位相差付与手段のそれぞれに対して独立してフィードバック制御を行う
    ことを特徴とする請求項1から請求項3のいずれかの項に記載の光変調装置。
  5. 前記SSB変調手段に入力される光波の一部が分岐により取り出されて入力され、その光波をデータ信号で変調するデータ変調手段と、
    前記SSB変調手段および前記データ変調手段から出力され合波された光波を送信信号として出力する出力手段と、
    をさらに備えたことを特徴とする請求項1から請求項4のいずれかの項に記載の光変調装置。
  6. 前記SSB変調手段と前記データ変調手段は、同一基板上に光導波路を形成してなることを特徴とする請求項5に記載の光変調装置。

JP2006037761A 2006-02-15 2006-02-15 光変調装置 Expired - Fee Related JP4494347B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037761A JP4494347B2 (ja) 2006-02-15 2006-02-15 光変調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037761A JP4494347B2 (ja) 2006-02-15 2006-02-15 光変調装置

Publications (2)

Publication Number Publication Date
JP2007219063A true JP2007219063A (ja) 2007-08-30
JP4494347B2 JP4494347B2 (ja) 2010-06-30

Family

ID=38496457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037761A Expired - Fee Related JP4494347B2 (ja) 2006-02-15 2006-02-15 光変調装置

Country Status (1)

Country Link
JP (1) JP4494347B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041509A1 (ja) * 2007-09-25 2009-04-02 Sumitomo Osaka Cement Co., Ltd. 光変調装置
JP2009098693A (ja) * 2007-10-16 2009-05-07 Jds Uniphase Corp モニタリング構造を備えた光位相変調器
JP2010286770A (ja) * 2009-06-15 2010-12-24 Fujitsu Optical Components Ltd 光デバイス
JP2012128400A (ja) * 2010-12-03 2012-07-05 Raytheon Co 超広帯域の帯域幅を有する波形を合成する方法及び装置
WO2013047829A1 (ja) * 2011-09-30 2013-04-04 住友大阪セメント株式会社 キャリア抑圧光発生装置
JP2014160269A (ja) * 2009-12-01 2014-09-04 Fujitsu Ltd 外部変調器を制御する装置および方法
JP2015191130A (ja) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 光発生装置、及び光発生装置の制御方法
JP2016149685A (ja) * 2015-02-13 2016-08-18 住友電気工業株式会社 光送受信器および光送受信器の制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278224A (ja) * 1995-04-10 1996-10-22 Nec Corp 光強度変調器の特性測定方法及び制御方法
JP2001133824A (ja) * 1999-05-19 2001-05-18 Matsushita Electric Ind Co Ltd 角度変調装置
JP2004037805A (ja) * 2002-07-03 2004-02-05 Nippon Telegr & Teleph Corp <Ntt> 波長変換装置
JP2004302238A (ja) * 2003-03-31 2004-10-28 Mitsubishi Electric Corp 光ssb変調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278224A (ja) * 1995-04-10 1996-10-22 Nec Corp 光強度変調器の特性測定方法及び制御方法
JP2001133824A (ja) * 1999-05-19 2001-05-18 Matsushita Electric Ind Co Ltd 角度変調装置
JP2004037805A (ja) * 2002-07-03 2004-02-05 Nippon Telegr & Teleph Corp <Ntt> 波長変換装置
JP2004302238A (ja) * 2003-03-31 2004-10-28 Mitsubishi Electric Corp 光ssb変調装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041509A1 (ja) * 2007-09-25 2009-04-02 Sumitomo Osaka Cement Co., Ltd. 光変調装置
JP2009098693A (ja) * 2007-10-16 2009-05-07 Jds Uniphase Corp モニタリング構造を備えた光位相変調器
JP2010286770A (ja) * 2009-06-15 2010-12-24 Fujitsu Optical Components Ltd 光デバイス
JP2014160269A (ja) * 2009-12-01 2014-09-04 Fujitsu Ltd 外部変調器を制御する装置および方法
JP2012128400A (ja) * 2010-12-03 2012-07-05 Raytheon Co 超広帯域の帯域幅を有する波形を合成する方法及び装置
JP2015121796A (ja) * 2010-12-03 2015-07-02 レイセオン カンパニー 超広帯域の帯域幅を有する波形を合成する方法及び装置
WO2013047829A1 (ja) * 2011-09-30 2013-04-04 住友大阪セメント株式会社 キャリア抑圧光発生装置
JPWO2013047829A1 (ja) * 2011-09-30 2015-03-30 住友大阪セメント株式会社 キャリア抑圧光発生装置
US10498457B2 (en) 2011-09-30 2019-12-03 Sumitomo Osaka Cement Co., Ltd. Optical carrier-suppressed signal generator
JP2015191130A (ja) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 光発生装置、及び光発生装置の制御方法
JP2016149685A (ja) * 2015-02-13 2016-08-18 住友電気工業株式会社 光送受信器および光送受信器の制御方法

Also Published As

Publication number Publication date
JP4494347B2 (ja) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4494347B2 (ja) 光変調装置
US10498457B2 (en) Optical carrier-suppressed signal generator
EP1306718A1 (en) Wavelength converter
Li et al. Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer
US20100129088A1 (en) Optical transmission apparatus
US5917970A (en) Wavelength multiplexed, electro-optically controllable, fiber optic multi-tap delay line
JP2009506381A (ja) テラヘルツ波及びその他の高周波信号を発生、変調するための光学装置
JP4878358B2 (ja) 光ssb変調器
JP6719414B2 (ja) 位相共役光発生装置及び光通信システム、並びに位相共役光発生方法
JP4879637B2 (ja) 光変調装置
WO2007080950A1 (ja) 角度変調装置
JP2011075913A (ja) 光変調器のバイアス制御方法
AU2018350865B2 (en) Apparatus and method for reducing distortion of an optical signal
Li et al. Photonic generation of microwave binary digital modulation signal with format agility and parameter tunability
WO2017077612A1 (ja) レーザレーダ装置
KR100713408B1 (ko) 단측파대 변조 모듈과 그를 이용한 단측파대 변조 수단
WO2016174719A1 (ja) ダミー光生成装置、光伝送装置およびダミー光生成方法
JP5061817B2 (ja) 光変調装置
JP4836839B2 (ja) 光角度変調器
Song et al. A chirp-rate-tunable microwave photonic pulse compression system for multi-octave linearly chirped microwave waveform
JP2000286500A (ja) 波長分割多重光源の周波数安定化装置
WO2012086220A1 (ja) 光時分割多重化回路
US10880014B1 (en) Active relative intensity noise mitigation using nested interferometers, and trans-impedance amplifier
JP2007215165A (ja) 角度変調装置
Xu et al. Microwave photonic notch filter with complex coefficient based on four wave mixing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees