JP2007218130A - 気体圧縮機 - Google Patents

気体圧縮機 Download PDF

Info

Publication number
JP2007218130A
JP2007218130A JP2006037640A JP2006037640A JP2007218130A JP 2007218130 A JP2007218130 A JP 2007218130A JP 2006037640 A JP2006037640 A JP 2006037640A JP 2006037640 A JP2006037640 A JP 2006037640A JP 2007218130 A JP2007218130 A JP 2007218130A
Authority
JP
Japan
Prior art keywords
vane
back pressure
chamber
rotor
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006037640A
Other languages
English (en)
Inventor
Hiroshi Iijima
博史 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Compressor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Compressor Inc filed Critical Calsonic Compressor Inc
Priority to JP2006037640A priority Critical patent/JP2007218130A/ja
Publication of JP2007218130A publication Critical patent/JP2007218130A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Abstract

【課題】圧縮室を構成するための適切な付勢力でベーンの先端をシリンダ室の内周壁面に押し付けることができ、かつ全体として付勢力を低減できる気体圧縮機の提供。
【解決手段】ベーン31と、ベーン溝32と、ベーン31を内周壁面23に向けて付勢する付勢力をシリンダ室19の外方からベーン背圧室33に導入可能な背圧空間とを備え、内周壁面23と外周面27との間隔がロータ26の回転方向で見て連続的に変化するように設定され、内周壁面23に当接されたベーン31の先端31aがロータ26の回転に伴って内周壁面23を摺動することによりシリンダ室19の内方に気体を圧縮する圧縮室36が構成される気体圧縮機10である。背圧空間は、ベーン31のベーン溝32からの突出量がロータ26の回転に伴って最小値から最大値に至る範囲でのみベーン背圧室33に通じるべくシリンダ室19に面する単一の連通凹所50を介してベーン背圧室33に通じている。
【選択図】図2

Description

本発明は、シリンダ室内で回転するロータから出入可能に保持されたベーンの先端がシリンダ室の内周壁面を摺動することによりシリンダ室内に気体を圧縮する圧縮室を構成する気体圧縮機に関し、特に、ベーンを付勢する付勢力が背圧空間からベーン背圧室へと導入される気体圧縮機に関する。
従来の気体圧縮機では、気体を圧縮する圧縮室をシリンダ室の内方に構成すべく内周壁面を有するシリンダ室と、シリンダ室の内方に回転自在に収容されるロータとを備えるものがある。ロータは、シリンダ室の内周壁面に対向する外周面を有し、その外周面に一端が開口するスリット状のベーン溝が設けられている。ベーン溝は、ベーンを後端側から出入自在に保持し、この後端およびシリンダ室と協働してベーン背圧室を規定しており、ベーン背圧室には、ベーンをシリンダ室の内周壁面へ向けて付勢する付勢力が導入される。このものでは、ロータの外周面とシリンダ室の内周壁面との間隔がロータの回転方向で見て連続的に変化するように設定されており、ベーン背圧室からの付勢力を後端側から受けたベーンの先端がシリンダ室の内周壁面に当接され、ロータの回転に伴ってベーン溝から出入するベーンの先端が内周壁面を摺動し、この摺動によりシリンダ室の内方に容積が増減する圧縮室が構成される(例えば、特許文献1参照。)。ベーンへの付勢力は、例えば、圧縮室での圧縮により高圧とされた気体の圧力を利用することが考えられており、この圧力はシリンダ室の外方に設けられた背圧空間からベーン背圧室に導入される。
この気体圧縮機では、シリンダ室の内周壁面を摺動するベーンの先端で気体を閉じ込めることにより圧縮室が構成されているので、圧縮室の圧力により押し戻されることのない押圧力でベーンの先端を内周壁面に押し付ける必要があるが、圧縮室の圧力は一定ではなく気体の圧縮に伴って上昇し圧縮が完了する位置で最大となる。このため、圧縮室の圧力の変動に応じて、ベーン背圧室からの付勢力を変更することがベーンの付勢力およびロータの動力等を効率良く利用する観点から望ましい。
このことから、圧縮室の圧力が最も高くなる位置、すなわちロータの外周面とシリンダ室の内周壁面とが最も近づく個所の内周壁面をベーンの先端が摺動する位置では、背圧空間からベーン背圧室に圧力が導入された場合よりベーン背圧室の圧力を高くするために、背圧空間からベーン背圧室に圧力を導入することを廃止し、他の方法によりベーン背圧室の圧力を高くすることが考えられている。圧力を高める方法として、例えば、背圧空間よりも高圧の圧力をベーン背圧室に導入したり、ベーン背圧室を封鎖しベーンのベーン溝への進入に伴うベーン背圧室の容積の縮小を利用してベーン背圧室の圧力を高めたりすることが挙げられる。これにより、圧縮室の圧力が最大となっても、圧縮室の圧力に押し戻されることなくベーンの先端をシリンダ室の内周壁面に押し付けることが可能とされ、かつそれ以外の個所では背圧空間からの圧力によりベーンの先端をシリンダ室の内周壁面に摺動させることができる。
特開2002−250289号公報(第2−5頁、図4)
しかしながら、一般に上記した気体圧縮機では、ロータにその回転方向で見て等間隔に複数のベーン溝が設けられ、各ベーン溝がベーンを保持しているので、ロータには複数のベーン背圧室が等間隔で規定されている。気体圧縮機では、圧縮室の容積が最も小さくなる位置を除いて各ベーン背圧室と背圧空間とが通じるように構成されているので、各ベーン背圧室は背圧空間を介して互いに連通する。また、気体圧縮機では、ロータの回転に伴うベーンの出入りにより各ベーン背圧室の容積が一定の周期で変動するが、複数のベーン背圧室が等間隔に位置されていると、複数のベーン背圧室の容積の総和がロータの回転による各ベーン背圧室の容積の変動に拘わらず一定のものとなる。このように、背圧空間を介して互いに通じる各ベーン背圧室の容積の総和が一定であると、各ベーン背圧室および背圧空間の容積の総和が一定となり、各ベーン背圧室の容積の変動に拘わらず各ベーン背圧室の圧力と背圧空間の圧力とが均一化する。このため、各ベーンは、各ベーン背圧室に背圧空間から圧力が導入される範囲においては、常に一定の付勢力をベーン背圧室から受けることとなる。背圧空間の圧力は、背圧空間が各ベーン背圧室に圧力を導入している範囲内でも圧力が変動する圧縮室の最も高い圧力によりベーンが押し戻されることのない圧力に設定する必要があるので、広い範囲に渡り過剰な付勢力をベーンに付与することとなり、ベーンの付勢力およびロータの動力等の利用効率が低下してしまう。
そこで、本発明の目的は、圧縮室を構成するための適切な付勢力でベーンの先端をシリンダ室の内周壁面に押し付けることができ、かつ全体として付勢力を低減することができる気体圧縮機を提供することにある。
上記した課題を解決するために、請求項1に記載の気体圧縮機は、内周壁面を有するシリンダ室と、該シリンダ室に回転自在に収容され前記内周壁面に対向する外周面を有するロータと、該ロータに設けられ先端が前記内周壁面に対向するベーンと、該ベーンを後端側から出入可能に受け入れるべく前記ロータに設けられ該ロータの前記外周面に一端が開口するスリット状を呈し該後端および前記シリンダ室と協働してベーン背圧室を規定するベーン溝と、前記ベーンを前記内周壁面に向けて付勢する付勢力を前記シリンダ室の外方から前記ベーン背圧室に導入可能な背圧空間とを備え、前記内周壁面と前記外周面との間隔が前記ロータの回転方向で見て連続的に変化するように設定され、前記内周壁面に当接された前記ベーンの前記先端が前記ロータの回転に伴って前記内周壁面を摺動することにより前記シリンダ室の内方に気体を圧縮する圧縮室が構成される気体圧縮機であって、前記背圧空間は、前記ベーンの前記ベーン溝からの突出量が前記ロータの回転に伴って最小値から最大値に至る範囲でのみ前記ベーン背圧室に通じるべく前記シリンダ室に面する単一の連通凹所を介して前記ベーン背圧室に通じていることを特徴とする。
請求項2に記載の気体圧縮機は、請求項1に記載の気体圧縮機であって、前記シリンダ室には、前記ベーン溝からの前記ベーンの突出量が前記ロータの回転に伴って減少する範囲内の最も前記ベーン溝の内方に入る位置で、前記ベーン背圧室と前記背圧空間とを連通可能な連通孔が設けられていることを特徴とする。
請求項3に記載の気体圧縮機は、請求項1または請求項2に記載の気体圧縮機であって、前記ロータには、前記ベーン溝を含む複数の該ベーン溝が設けられ、複数の該ベーン溝には、それぞれに前記ベーンが保持され、複数の前記ベーン溝は、前記ロータの回転方向で見て等間隔に設定されていることを特徴とする。
請求項4に記載の気体圧縮機は、請求項1ないし請求項3のいずれか1項に記載の気体圧縮機であって、前記シリンダ室は、断面が楕円形状を呈する筒状のシリンダ本体と、該シリンダ本体の両開放端を閉鎖する一対の端板とにより構成され、前記ロータは、前記シリンダ室と同心位置に回転軸線を有しかつ前記シリンダ室を2つの対向空間に区画し、前記圧縮室は、前記各対向空間で気体を取り入れて圧縮する圧縮行程を行い、前記連通凹所は、二つの前記端板の少なくともいずれか一方で各対向空間に対応すべく対を為して設けられていることを特徴とする。
請求項1に記載の気体圧縮機では、背圧空間が、ベーンのベーン溝からの突出量が増加する範囲内に位置するベーン背圧室にのみ通じる単一の連通凹所を介して、ベーン背圧室に付勢力を導入しているので、従来の気体圧縮機に比較して、ロータの回転方向で見てベーン背圧室と背圧空間とが連通する範囲が狭くなっている。このため、ロータに等間隔に複数のベーン背圧室が構成された場合であっても、各ベーン背圧室の圧力が背圧空間を介して均一化することを防止することができる。
請求項2ないし請求項4に記載の気体圧縮機では、圧縮室の圧力が最大となる位置に連通孔が設けられているので、ベーンがベーン溝から最も突出した位置から閉じ込みが開始されるベーン背圧室の圧力を背圧空間に逃がすことができ、ベーン背圧室の圧力が必要以上に高くなることを防止することができる。
本発明に係る気体圧縮機によれば、背圧空間がベーンのベーン溝からの突出量が増加する範囲内に位置するベーン背圧室にのみ通じる単一の連通凹所を介してベーン背圧室に付勢力を導入しているので、従来の気体圧縮機に比較して、ロータの回転方向で見てベーン背圧室と背圧空間とが連通する範囲が狭くなっている。このため、ロータに等間隔に複数のベーン背圧室が構成された場合であっても、各ベーン背圧室の圧力が背圧空間を介して均一化することを防止することができる。これにより、各ベーン背圧室では、ベーンのベーン溝からの突出量の増加による容積の増加に伴って圧力が低下し、かつ容積の減少に伴って圧力が増加するので、圧縮室を構成するための適切な付勢力でベーンの先端をシリンダ室の内周壁面に押し付けても全体として付勢力を低減することができる。
本発明を図1ないし図4に示した実施例に沿って詳細に説明する。
図1は、ガスヒートポンプ(GHP)に採用された気体圧縮機10を模式的に示す断面図であり、図2は、図1のI―I線に沿って得られた模式的な断面図である。
気体圧縮機10は、冷却媒体の気化熱を利用して冷却を行なう冷房システムとして機能を有するGHPで冷媒ガスを圧縮するために用いられ、GHPの凝縮器、蒸発器等(図示せず。)と共に冷却媒体の循環経路を構成する。気体圧縮機10は、ガスエンジン(図示せず。)から回転動力を受けて動作し、蒸発器から取り入れた気体状態の冷却媒体すなわち冷媒ガスを圧縮し、この圧縮した冷媒ガスを凝縮器へ排出する。
気体圧縮機10は、ハウジング11と、圧縮機構12と、伝達機構13とを備える。ハウジング11は、ハウジング本体14とフロントハウジング15とを有する。ハウジング本体14は、一端開放の円筒形状を呈しており、その開放端がフロントハウジング15により閉鎖されている。ハウジング11には、圧縮機構12が収容されている。
圧縮機構12には、ガスエンジン(図示せず。)の回転動力が伝達機構13を介して伝達される。伝達機構13は、フロントハウジング15に形成された突起部15aに設けられており、プーリ16を有する。プーリ16は、突起部15aの外周を取り巻いて配置された環状ボールベアリングからなる転がり軸受17を介して突起部15aに取り付けられている。プーリ16は、後述する圧縮機構12の回転軸18に接続され、転がり軸受17により回転軸18と共に回転可能とされている。プーリ16には、ベルト(図示せず。)が巻き掛けられており、ベルトを介して伝えられたガスエンジン(図示せず。)からの回転動力を回転軸18に伝達することができる。
圧縮機構12は、冷媒ガスが圧縮されるシリンダ室19(図2参照。)を有する。シリンダ室19は、内周の断面が楕円形状を呈する筒状のシリンダ本体20と、その両開放端に取り付けられたフロントサイドブロック21およびリアサイドブロック22とにより規定されている。シリンダ室19は、シリンダ本体20により構成される内周壁面23と、両サイドブロック21、22により構成されるフロント側端壁面24およびリア側端壁面25とからなる内壁面を有する。フロントサイドブロック21は、フロントハウジング15に当接して配置されている。シリンダ室19の内方には、ロータ26が収容されている。ロータ26は、断面が円形の円柱形状を呈し(図2参照。)、シリンダ室19の中心軸線に等しい回転軸線を有する回転軸18が設けられている。ロータ26は、その外周面27がシリンダ本体20の内周壁面23に対向されており、断面が楕円形状のシリンダ本体20とその短径部で当接し、シリンダ室19を互いに向き合う2つの対向空間28(図2参照。)に区画している。このため、シリンダ本体20の内周壁面23とロータ26の外周面27との間隔は、断面で見て、連続する2つの曲線により規定され連続的に増減する。回転軸18は、両サイドブロック21、22に設けられた軸受部21a、22aに回転可能に軸支されており、先端側がフロントハウジング15を貫通し、上記したプーリ16に接続されている。回転軸18は、プーリ16を介してガスエンジン(図示せず。)から伝達された回転動力によりロータ26を回転させる。圧縮機構12は、後述するように、供給された潤滑油により円滑な作動が可能とされているが、この潤滑油は、ハウジング11の外方へ延在する回転軸18に沿ってハウジング11のフロントハウジング15の外方へ漏れでる虞があり、この潤滑油の漏洩を防止するためにシール機構29が設けられている。シール機構29は、フロントハウジング15とフロントサイドブロック21との間で回転軸18を取り巻く軸周連通空間30で回転軸18を取り巻いて配置されており、回転軸18の回転を妨げることなく潤滑油が回転軸18に沿って軸周連通空間30からフロントハウジング15の外方に漏れることを防止することができる。
ロータ26には、図2に示すように、複数のベーン31が設けられている。各ベーン31は、ロータ26の回転軸線方向に沿うロータ26の幅寸法に略等しい板部材であり、先端31aがシリンダ本体20の内周壁面23に対向して配置される。各ベーン31は、その後端31b側からベーン溝32に出入可能に保持されている。
各ベーン溝32は、ロータ26の幅方向に沿って延在するスリット状の溝であり、一端がロータ26の外周面27に開口し、両側端がロータ26の両側面26a、26b(図1参照。)に開口している。各ベーン溝32は、ロータ26の半径方向を基準にしてロータ26の回転方向(矢印X参照。)側に傾斜する方向に沿ってベーン31が出入可能であるように設定されている。各ベーン溝32は、フロントサイドブロック21のフロント側端壁面24と、リアサイドブロック22のリア側端壁面25と、ベーン31の後端31bと協働してベーン背圧室33を規定する。各ベーン背圧室33は、それぞれが対応するベーン31をシリンダ本体20の内周壁面23へ向けて付勢する付勢力が導入される空間であり、本実施例では、後述するように、付勢力として吐出室34の圧力すなわち吐出室34の下方の油溜め部35に貯留された潤滑油が供給される。この潤滑油は、連通凹所50、51(図1参照。)から供給される。連通凹所50、51は、各サイドブロック21、22に回転軸18を取り巻くように形成され、それぞれが各ベーン溝32すなわちベーン背圧室33に側端側から連通可能である。
各ベーン31は、それぞれが各ベーン背圧室33に供給される潤滑油の圧力を受けシリンダ室19の内周壁面23に先端31aが当接することにより、シリンダ室19をロータ26の回転方向に沿って複数のチャンバ(36)に区画する。各ベーン31は、ロータ26が回転することにより、シリンダ本体20の内周壁面23とロータ26の外周面27との間隔の変化に応じて各ベーン溝32から出入し、すなわち内周壁面23の短径部において全体が各ベーン溝32の内方に収容され、かつ内周壁面23の長径部近傍において各ベーン溝32からの突出量が最も大きくなるように各ベーン溝32から出入し、先端31aが内周壁面23を摺動する。これにより、複数のチャンバ(36)は、それぞれがロータ26の回転に伴って容積が増減する圧縮室36として機能する。各圧縮室36は、2つの対向空間28のそれぞれで容積が増減する。また、各ベーン31がロータ26の回転に伴って各ベーン溝32から出入することから、各ベーン背圧室33の容積は、ロータ26の回転に伴って2つの対向空間28のそれぞれで増減、すなわち最小値から最大値を経て再び最小値へと推移する。
各圧縮室36は、図1に示すように、吸入ポート37を介して蒸発器(図示せず。)から冷媒ガスを取り入れることが可能とされている。吸入ポート37は、フロントハウジング15に設けられ、ハウジング11の外方で蒸発器(図示せず。)に接続され、ハウジング11の内方で吸入室38に通じている。吸入室38は、互いに当接するフロントハウジング15とフロントサイドブロック21との間に形成されている。吸入室38は、吸入孔39を介してシリンダ室19に通じている。
吸入孔39は、シリンダ室19の2つの対向空間28(図2参照。)に対応すべく対を為して設けられ、それぞれ各圧縮室36が容積を増加させる位置で各対向空間28に通じ、両対向空間28のそれぞれで各圧縮室36に冷媒ガスを供給することができる。
各圧縮室36は、図2に示すように、取り入れた冷媒ガスを圧縮し、圧縮した冷媒ガスを吐出空間40に吐出する。吐出空間40は、2つの対抗空間27に対応して対を為して設けられ、シリンダ本体20の外周の一部が切り欠かれた切欠部41と、シリンダ本体20を収容するハウジング本体14とにより規定されている。
シリンダ本体20には、各切欠部41に通じる一対の吐出孔42と吐出通路43とが設けられている。各吐出孔42は、楕円形状のシリンダ室19の短径部近傍位置でシリンダ本体20を貫通する貫通孔であり、各吐出空間40とシリンダ室19とを連通させている。吐出通路43は、各吐出空間40から吐出室34(図1参照。)に通じる通路である。
各吐出空間40には、吐出孔42を開閉する吐出弁機構44が設けられている。各吐出弁機構44は、各圧縮室36から吐出空間40への冷媒ガスの流出を許し、且つ吐出空間40から各圧縮室36への冷媒ガスの流入を阻止する逆止弁として機能する。
冷媒ガスが吐出される吐出室34は、図1に示すように、圧縮機構12のリアサイドブロック22およびハウジング本体14により、ハウジング11の内方に規定される。吐出室34には、サイクロンブロック45が設けられている。サイクロンブロック45は、吐出通路43を経て吐出室34に吐出される冷媒ガスの通路の一部を形成するようにリアサイドブロック22に取り付けられ、内方を通過する冷媒ガスからそこに含まれる潤滑油を分離する。
また、サイクロンブロック45は、リアサイドブロック22との間に軸端連通空間46を形成している。軸端連通空間46は、回転軸18の後端側に位置され回転軸18よりも大きな径の円板状の空間であり(図3参照。)、後述するように背圧空間の一部を構成する。サイクロンブロック45により冷媒ガスから分離された潤滑油は、吐出室34の下方すなわちハウジング本体14の底部に形成された油溜め部35に貯留される。潤滑油が取り除かれた吐出室34の冷媒ガスは、ハウジング本体14に設けられた吐出ポート48から凝縮器(図示せず。)に送られる。
油溜め部35の潤滑油は、吐出室34の圧力により油供給路47を経て圧縮機構12に供給される。油供給路47は、各サイドブロック21、22およびシリンダ本体20に形成されており、油溜め部35と各サイドブロック21、22の軸受部21a、軸受部22aとを通じさせている。油溜め部35の潤滑油は、圧縮機構12の各摺動個所の摺動、例えば、軸受部21aおよび軸受部22aと回転軸18との摺動を円滑にするために軸受部21a、軸受部22aに供給され、その一部が軸受部21a、軸受部22aに沿って連通凹所50、51に供給され、他の一部が軸受部21a、軸受部22aに沿って軸周連通空間30および軸端連通空間46に供給される。連通凹所50、51の潤滑油は、各ベーン背圧室33に連通することにより各ベーン背圧室33に導入され、各ベーン31を各ベーン溝32から出入させるべく各ベーン31を付勢する。
本発明に係る気体圧縮機10では、連通凹所50、51が従来の気体圧縮機と異なる構成とされている。図3は、シリンダ本体20側から見たリアサイドブロック22の模式的な部分斜視図であり、図5は、連通凹所50、51と各ベーン背圧室33との接続関係を説明するための模式的な断面図である。連通凹所50、51は、シリンダ本体20を介して対向する両サイドブロック21、22のそれぞれに正対する位置で回転軸18に沿う深さ寸法以外は等しく形成されているので、リアサイドブロック22の連通凹所51について詳細に説明し、フロントサイドブロック21の連通凹所50についてはその詳細な説明を省略する。なお、連通凹所50および連通凹所51の深さ寸法は、背圧空間における潤滑油の保有量、または各ベーン背圧室33への潤滑油の供給量を考慮して適宜設定すればよく、互いに等しく設定されていてもよい。
連通凹所51は、本実施例では、対を為す対向空間28(図2参照。)に対応すべく対を為して設けられている。これは、前述したように、各圧縮室36は、2つの対向空間28のそれぞれで容積が増減することから、2つの対向空間28のそれぞれで、吸入した冷媒ガスを圧縮して吐出する圧縮工程を1回行うこととなり、1回の圧縮工程で各ベーン31のベーン溝32からの突出量が最小値から最大値を経て再び最小値となることによる。
各連通凹所51は、リアサイドブロック22の軸受部22aに連続するようにリア側端壁面25に設けられた凹所であり、リアサイドブロック22の軸受部22aからリアサイドブロック22の半径方向に向けた所定の幅で、かつロータ26の回転方向で見て所定の範囲で延在している。ここで、所定の範囲は、ロータ26の回転方向で見て、ロータ26の回転に伴い各ベーン溝32からの突出量が最小値から最大値に至る範囲の各ベーン31に対応する各ベーン背圧室33と通じることが可能な長さ寸法である(図2参照。)。また、所定の幅は、各ベーン溝32の基端部分32aと通じることが可能な寸法であればよく、連通凹所51から各ベーン背圧室33への潤滑油の供給量を考慮して適宜設定される。このため、各連通凹所51は、1回の圧縮工程すなわち各対向空間28で見て、各ベーン31のベーン溝32からの突出量が最小値から最大値に至る範囲で連続して各ベーン背圧室33に連通可能であり、かつその他の範囲では各ベーン背圧室33に連通することのない単一の凹所である(図2参照。)。
各連通凹所51には、それぞれに凹所連通孔52が設けられている。各凹所連通孔52は、ロータ26の回転軸線方向に沿ってリアサイドブロック22を貫通する貫通孔であり、それぞれが対応する連通凹所51を軸端連通空間46に連通させている。
また、リアサイドブロック22には、端壁連通孔53が設けられている。端壁連通孔53は、連通凹所51と同様に、対向空間28に対応すべく対を為して設けられており、ロータ26の回転軸線方向に沿ってリアサイドブロック22を貫通する貫通孔である。各端壁連通孔53の一端は、ロータ26の回転方向で見て、各ベーン31の各ベーン溝32からの突出量が最大値から最小値に至る範囲内で最小値となる位置に対応する各ベーン背圧室33と通じる位置でリアサイドブロック22のリア側端壁面25に開口している(図2参照。)。各端壁連通孔53の他端は、軸端連通空間46に通じている。
連通凹所50は、前述したように、基本的には連通凹所51と同様の構成であり、フロントサイドブロック21の軸受部21aに連続するようにリア側端壁面25に対を為して設けられた凹所である(図2参照。)。一対の連通凹所50には、それぞれに凹所連通孔54が設けられている。各凹所連通孔54は、ロータ26の回転軸線方向に沿ってフロントサイドブロック21を貫通する貫通孔であり、それぞれが対応する連通凹所50と軸周連通空間30とを連通している(図1参照。)。
また、フロントサイドブロック21には、端壁連通孔55が設けられている(図2参照。)。端壁連通孔55は、端壁連通孔53と同様に、一端がフロントサイドブロック21のフロント側端壁面24に開口し、他端が軸周連通空間30に通じている。
このように、連通凹所50および連通凹所51と、凹所連通孔54および凹所連通孔52と、端壁連通孔55および端壁連通孔53とは、ロータ26の回転軸線方向で見ると一致する位置および大きさ寸法に設定されており、連通凹所50と連通凹所51とは、ロータ26の回転に伴って、一方はフロント側端壁面24側から各ベーン背圧室33に他方はリア側端壁面25側から同時に連通し、かつ同時に連通が断たれることとなる。このため、軸周連通空間30と軸端連通空間46とは、図5に示すように、各ベーン背圧室33、両連通凹所50、51および両凹所連通孔54、52を介して通じており、互いの圧力は等しくなる。また、軸周連通空間30、軸端連通空間46、および両凹所連通孔54、52は、シリンダ室19の外方に設けられ、両連通凹所50、51を介して各ベーン背圧室33に通じる背圧空間として機能する。
気体圧縮機10は、図1に示すように、圧縮機構12が作動することにより、蒸発器(図示せず。)から冷媒ガスを取り入れ、取り入れた冷媒ガスを圧縮し、圧縮した冷媒ガスを吐出室34に吐出し、この冷媒ガスを凝縮器(図示せず。)へと排出する。この際、各圧縮室36は、各対向空間28のそれぞれで1回の圧縮工程を行なう。各ベーン31は、各ベーン背圧室33に供給された潤滑油の圧力により付勢されており、各ベーン背圧室33には、連通凹所50および連通凹所51から潤滑油が供給されている。この各ベーン背圧室33の圧力すなわち各ベーン31への付勢力は、1回の圧縮工程で見て、従来の気体圧縮機に比較して、必要な付勢力を確保しつつ全体に低減されている。このことについて以下に詳細に説明する。
図4には、気体圧縮機10における各ベーン背圧室33の圧力の推移を実線で示す線分で表し、従来の気体圧縮機の各ベーン背圧室の圧力の推移を破線で示す線分で表している。図4の横軸に示すロータ回転角度とは、ある一つのベーン31のベーン溝32からの突出量が最小値であるときのロータ26の回転姿勢を0(°)とし、そこからロータ26が回転方向(矢印X参照。)に180(°)回転するまで、すなわち各圧縮室36の1回の圧縮工程において各ベーン31の各ベーン溝32からの突出量が、最小値から最大値を経て再び最小値となる範囲を示している。
各ベーン31は、前述したように、先端31aがシリンダ本体20の内周壁面23を摺動することにより各圧縮室36を構成しているので、各圧縮室36の圧力により押し戻されることのない付勢力を各ベーン背圧室33から受ける必要がある。このため、各ベーン背圧室33の圧力は、各ベーン31の各ベーン溝32からの突出量が増加するときには、各圧縮室36が吸入過程であり圧力が低いことから小さな値で十分であり、各ベーン31の各ベーン溝32からの突出量が減少するときには、各圧縮室36が圧縮過程であり圧力が増加していくことから増加される必要がある。さらに、各ベーン31の各ベーン溝32からの突出量が最大値から最小値に至る範囲で、各ベーン31の各ベーン溝32からの突出量が最小値となる近傍位置に対応するベーン背圧室33では、1回の圧縮工程において最も高い圧力が必要とされる。
ところが、従来の気体圧縮機では、図4に破線で示すように、殆どベーン背圧室の圧力に変動が生じていないことから、最も高い圧縮室の圧力に応じた必要な付勢力の確保はされているが、その他の範囲においては過剰な付勢力をベーンに付与している。これに対し、本発明の気体圧縮機10では、圧縮室36の圧力が低下する範囲では各ベーン背圧室33の圧力が低減されている。
先ず、各ベーン31は、ロータ26の回転姿勢が0(°)から90(°)を少し超える位置(符号P参照。)までは各ベーン31の各ベーン溝32からの突出量が増加するので、これに伴う各ベーン背圧室33の容積の増加により各ベーン背圧室33の圧力が減少する。これは、連通凹所50および連通凹所51が、各ベーン31の各ベーン溝32からの突出量が増加する範囲でのみ各ベーン背圧室33に通じる構成とされているので、各ベーン背圧室33および両連通凹所50、51と、ここに潤滑油を供給する背圧空間としての両端壁連通孔55、53、軸周連通空間30および軸端連通空間46との容積の総和は、各ベーン背圧室33の容積の増加に伴って増加することとなる(図5参照。)。このため、各ベーン背圧室33の圧力が減少する。この減少に伴って最も低くなる各ベーン背圧室33の圧力は、各ベーン31が各ベーン溝32からの突出量が最も大きくなる位置で、各ベーン31の先端31aをシリンダ本体20の内周壁面23に適切な付勢力で押し付けることができる圧力に設定されている。
これに対し、従来の気体圧縮機では、各ベーン31の各ベーン溝32からの突出量が減少する範囲でも各ベーン背圧室に通じる構成であるので、ベーン31のベーン溝32からの突出量の増加分が、他のベーン31のベーン溝32からの突出量の減少分により相殺されることとなり、各ベーン背圧室および背圧空間の容積の総和が略一定であるので、各ベーン背圧室の圧力が減少しない。
気体圧縮機10では、ロータ26の回転姿勢が符号Pから符号Q(図4参照。)に至る範囲で、各ベーン31の各ベーン溝32からの突出量が減少しかつ各ベーン背圧室33と連通凹所50、51とが通じていないことから、閉鎖空間とされた各ベーン背圧室33の容積が縮小するので、各ベーン背圧室33内の潤滑油が圧縮され各ベーン背圧室33の圧力は増加する。この範囲では、各圧縮室36の圧力が増加するが各ベーン背圧室33の圧力も増加するので、各ベーン31の先端31aをシリンダ本体20の内周壁面23に適切な付勢力で押し付けることができる。
ここで、各ベーン背圧室33は、連通凹所50、51との連通が断たれた位置が各ベーン31の各ベーン溝32からの突出量が最大の位置であり、最大容積から最小容積までの変位量で潤滑油を圧縮すると、図4に二点鎖線で示すように、圧力が必要以上に高くなってしまう。ところが、気体圧縮機10には、端壁連通孔55および端壁連通孔53が設けられているので、このような圧力の上昇を防止することができる。これは、容積の縮小により圧力が高められた潤滑油は、端壁連通孔55を経て軸周連通空間30へ逃げ、かつ端壁連通孔53を経て軸端連通空間46へ逃げることによる。なお、端壁連通孔55および端壁連通孔53の孔径は、各ベーン背圧室33の圧力の低減を招くことなく各ベーン背圧室33の潤滑油を軸周連通空間30および軸端連通空間46に逃がすことができる大きさ寸法に設定されている。
このように、気体圧縮機10では、各圧縮室36の圧力が最も大きくなる位置であっても、各ベーン背圧室33が従来の気体圧縮機と同様の高い圧力とされており、各圧縮室36の圧力に押し戻されることのない付勢力を各ベーン31に付与することができる。また、各圧縮室36の圧力が低いときには、従来の気体圧縮機に比較して各ベーン背圧室33の圧力が大幅に低減されており、各ベーン31への付勢力の利用効率を高めることができる。さらに、従来の気体圧縮機に比較して、全体で見るすなわち各圧縮工程毎で見るとシリンダ本体20の内周壁面23への各ベーン31の先端31aの押し付け力が低減されることから、ロータ26への回転動力を効率よく利用することができ、気体圧縮機10の仕事率を高めることができる。
よって、気体圧縮機10では、各圧縮室36を構成するための適切な付勢力で各ベーン31の先端31aをシリンダ室の内周壁面すなわちシリンダ本体20の内周壁面23に押し付けることができ、かつ従来の気体圧縮機に比較して全体として付勢力を低減することができる。
なお、上記した実施例では、背圧空間が軸周連通空間30、軸端連通空間46、および両凹所連通孔54、52により構成されていたが、シリンダ室19の外方に設けられ、かつ両連通凹所50、51を介して各ベーン背圧室33に通じるものであればよく、上記した実施例に限定されるものではない。
また、上記した実施例では、気体圧縮機10は、GHPに採用されていたが、例えば、車両用空調システムに採用してもよく、上記した実施例に限定されるものではない。
上記した実施例では、内方が楕円形状を呈する筒状のシリンダ本体20の軸線上に回転軸線を持つようにロータ26が設けられた同心ロータ式の圧縮機に適用した例を示したが、例えば、内方が円形状を呈する筒状のシリンダの内側に、そのシリンダの軸線とは異なる回転軸線を持つようにロータが配置される偏心ロータ式の圧縮機に適用しても良く、上記した実施例に限定されるものではない。
本発明に係る気体圧縮機の模式的な断面図である。 図1のI―I線に沿って得られた模式的な断面図である。 回転軸に沿ってシリンダ本体側から見たリアサイドブロックの模式的な斜視図である。 ロータの回転角度とベーン背圧室の圧力との関係を示すグラフであり、実線が本発明の気体圧縮機であり、破線が従来の気体圧縮機である。 連通凹所と各ベーン背圧室との接続関係を説明するための模式的な断面図である。
符号の説明
10 気体圧縮機
19 シリンダ室
20 シリンダ本体
21 フロントサイドブロック
22 リアサイドブロック
23 (シリンダ室の)内周壁面
26 ロータ
27 外周面
28 対向空間
30 (背圧空間としての)軸周連通空間
31 ベーン
31a 先端
32 ベーン溝
33 ベーン背圧室
46 (背圧空間としての)軸端連通空間
50、51 連通凹所
53、55(連通孔としての)端壁連通孔

Claims (4)

  1. 内周壁面を有するシリンダ室と、該シリンダ室に回転自在に収容され前記内周壁面に対向する外周面を有するロータと、該ロータに設けられ先端が前記内周壁面に対向するベーンと、該ベーンを後端側から出入可能に受け入れるべく前記ロータに設けられ該ロータの前記外周面に一端が開口するスリット状を呈し該後端および前記シリンダ室と協働してベーン背圧室を規定するベーン溝と、前記ベーンを前記内周壁面に向けて付勢する付勢力を前記シリンダ室の外方から前記ベーン背圧室に導入可能な背圧空間とを備え、
    前記内周壁面と前記外周面との間隔が前記ロータの回転方向で見て連続的に変化するように設定され、前記内周壁面に当接された前記ベーンの前記先端が前記ロータの回転に伴って前記内周壁面を摺動することにより前記シリンダ室の内方に気体を圧縮する圧縮室が構成される気体圧縮機であって、
    前記背圧空間は、前記ベーンの前記ベーン溝からの突出量が前記ロータの回転に伴って最小値から最大値に至る範囲でのみ前記ベーン背圧室に通じるべく前記シリンダ室に面する単一の連通凹所を介して前記ベーン背圧室に通じていることを特徴とする気体圧縮機。
  2. 前記シリンダ室には、前記ベーン溝からの前記ベーンの突出量が前記ロータの回転に伴って減少する範囲内の最も前記ベーン溝の内方に入る位置で、前記ベーン背圧室と前記背圧空間とを連通可能な連通孔が設けられていることを特徴とする請求項1に記載の気体圧縮機。
  3. 前記ロータには、前記ベーン溝を含む複数の該ベーン溝が設けられ、複数の該ベーン溝には、それぞれに前記ベーンが保持され、複数の前記ベーン溝は、前記ロータの回転方向で見て等間隔に設定されていることを特徴とする請求項1または請求項2に記載の気体圧縮機。
  4. 前記シリンダ室は、断面が楕円形状を呈する筒状のシリンダ本体と、該シリンダ本体の両開放端を閉鎖する一対の端板とにより構成され、前記ロータは、前記シリンダ室と同心位置に回転軸線を有しかつ前記シリンダ室を2つの対向空間に区画し、前記圧縮室は、前記各対向空間で気体を取り入れて圧縮する圧縮行程を行い、前記連通凹所は、二つの前記端板の少なくともいずれか一方で各対向空間に対応すべく対を為して設けられていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の気体圧縮機。

JP2006037640A 2006-02-15 2006-02-15 気体圧縮機 Pending JP2007218130A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037640A JP2007218130A (ja) 2006-02-15 2006-02-15 気体圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037640A JP2007218130A (ja) 2006-02-15 2006-02-15 気体圧縮機

Publications (1)

Publication Number Publication Date
JP2007218130A true JP2007218130A (ja) 2007-08-30

Family

ID=38495696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037640A Pending JP2007218130A (ja) 2006-02-15 2006-02-15 気体圧縮機

Country Status (1)

Country Link
JP (1) JP2007218130A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125961A (ja) * 2012-12-26 2014-07-07 Calsonic Kansei Corp 気体圧縮機
JP2014125962A (ja) * 2012-12-26 2014-07-07 Calsonic Kansei Corp 気体圧縮機
JP2014141962A (ja) * 2012-12-26 2014-08-07 Calsonic Kansei Corp 気体圧縮機
CN115111161A (zh) * 2022-07-30 2022-09-27 西安丁杰动力科技有限公司 一种活塞式转子压缩机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102792A (ja) * 1981-12-16 1983-06-18 Ricoh Co Ltd インク媒体
JPS615389A (ja) * 1984-06-19 1986-01-11 Casio Comput Co Ltd 識別カ−ド
JP2000265983A (ja) * 1999-03-12 2000-09-26 Seiko Seiki Co Ltd 気体圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102792A (ja) * 1981-12-16 1983-06-18 Ricoh Co Ltd インク媒体
JPS615389A (ja) * 1984-06-19 1986-01-11 Casio Comput Co Ltd 識別カ−ド
JP2000265983A (ja) * 1999-03-12 2000-09-26 Seiko Seiki Co Ltd 気体圧縮機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125961A (ja) * 2012-12-26 2014-07-07 Calsonic Kansei Corp 気体圧縮機
JP2014125962A (ja) * 2012-12-26 2014-07-07 Calsonic Kansei Corp 気体圧縮機
JP2014141962A (ja) * 2012-12-26 2014-08-07 Calsonic Kansei Corp 気体圧縮機
CN115111161A (zh) * 2022-07-30 2022-09-27 西安丁杰动力科技有限公司 一种活塞式转子压缩机
CN115111161B (zh) * 2022-07-30 2024-02-02 西安丁杰动力科技有限公司 一种活塞式转子压缩机

Similar Documents

Publication Publication Date Title
US5931650A (en) Hermetic electric scroll compressor having a lubricating passage in the orbiting scroll
JP4989154B2 (ja) 気体圧縮機
KR20200064608A (ko) 전동식 컴프레서 장치
US6375441B1 (en) Back pressure groove structure of variable displacement vane pump
KR101214672B1 (ko) 베인 로터리형 압축기
KR20180095391A (ko) 로터리 압축기
KR900008489B1 (ko) 베인형 컴프레서
JP2007218130A (ja) 気体圧縮機
JP2014185596A (ja) ベーン型圧縮機
JP3933492B2 (ja) スクロール型圧縮機
KR102491634B1 (ko) 배압유로 로터리 압축기
JP2006226117A (ja) 気体圧縮機
CN210565070U (zh) 涡旋压缩机的压缩机构和涡旋压缩机
JP2007192096A (ja) 回転式気体圧縮機
KR0152379B1 (ko) 가변용량형 베인형 압축기
KR100830943B1 (ko) 스크롤 압축기의 급유구조
JP2007327376A (ja) 気体圧縮機
EP1805419B1 (en) Rotary compressor
JP2006226116A (ja) 気体圧縮機
JP2007100604A (ja) 気体圧縮機
KR102031851B1 (ko) 전동식 압축기
JP4421359B2 (ja) 気体圧縮機
CN111065824B (zh) 旋转式压缩机
JP4185723B2 (ja) 気体圧縮機
JP4459661B2 (ja) 気体圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080908

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090610

A977 Report on retrieval

Effective date: 20101105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A02