JP2007210513A - Dc power storage device - Google Patents

Dc power storage device Download PDF

Info

Publication number
JP2007210513A
JP2007210513A JP2006033988A JP2006033988A JP2007210513A JP 2007210513 A JP2007210513 A JP 2007210513A JP 2006033988 A JP2006033988 A JP 2006033988A JP 2006033988 A JP2006033988 A JP 2006033988A JP 2007210513 A JP2007210513 A JP 2007210513A
Authority
JP
Japan
Prior art keywords
voltage
power storage
storage medium
power
external line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006033988A
Other languages
Japanese (ja)
Other versions
JP4572840B2 (en
Inventor
Tadashi Kamimura
正 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006033988A priority Critical patent/JP4572840B2/en
Priority to PCT/JP2006/324707 priority patent/WO2007091371A1/en
Priority to MYPI20083020 priority patent/MY151762A/en
Priority to KR1020087015332A priority patent/KR100991460B1/en
Priority to CN2006800516983A priority patent/CN101365606B/en
Priority to TW096104395A priority patent/TWI331431B/en
Publication of JP2007210513A publication Critical patent/JP2007210513A/en
Application granted granted Critical
Publication of JP4572840B2 publication Critical patent/JP4572840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/02Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC power storage device, capable of restricting voltage fall of external wiring, absorbing regenerated power of an electric vehicle, and preventing loss of effect of regeneration of the electric vehicle without causing large-sizing or cost increase of a DC current storage device. <P>SOLUTION: A terminal voltage (stand-by voltage) of an electric double layer capacitor EDLC is set to be close to an upper limit value in a rated voltage range of the external wiring at no-load time and normal load time of an electromotive system. When the external wiring voltage exceeds the upper limit voltage, regenerative power is absorbed by the electric double layer capacitor, while simultaneously, the electric vehicle takes regenerative current restricting action to prevent the terminal voltage of the electric double layer capacitor from exceeding the maximum voltage (prevention of loss of effect of regeneration). When the external wiring voltage becomes lower than a lowest voltage of the rated voltage range, the external wire voltage is prevented from becoming lower than the lower limit of the rated voltage range by use of discharge power from the electric double layer capacitor by pressure dropping action and pressure boosting action of a pressure adjusting chopper (restriction of voltage fall). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、直流電気鉄道の外線に並列に接続され、電気車の力行運転時に電力を供給および回生運転時の電力を吸収する直流電力貯蔵装置に係り、特に外線の電圧降下対策、電気車の回生電力吸収対策および電気車の回生失効防止対策のための電力貯蔵媒体の充放電制御方式に関する。   The present invention relates to a DC power storage device that is connected in parallel to an external line of a DC electric railway and supplies electric power during powering operation of an electric vehicle and absorbs electric power during regenerative operation. The present invention relates to a charge / discharge control method for a power storage medium for regenerative power absorption countermeasures and regenerative invalidation prevention countermeasures for electric vehicles.

直流き電系統において、閑散線区の変電所は、その間隔が比較的長い距離を有して設備される。このため、変電所から遠隔した地点に位置する電気車では、その起動時など、大きな電流が流れるときに外線の電圧降下が大きくなり、パンタ点の電圧が規定値よりも低くなってしまうことが予測される。この電圧降下を補償するため、電源送り出し変電所(DCVR)を設置したり、電気車側でノッチ抑制を行っている。   In a DC power system, substations in the secluded line are installed with a relatively long distance. For this reason, in an electric vehicle located at a point remote from the substation, the voltage drop of the outside line increases when a large current flows, such as when starting up, and the voltage at the punter point may become lower than the specified value. is expected. In order to compensate for this voltage drop, a power supply substation (DCVR) is installed or notch suppression is performed on the electric vehicle side.

また、閑散線区では、電気車が回生運転状態にあるときに、この回生エネルギーを他の電気車で力行電力として吸収する機会が少ないため、電気車側で回生失効(電気制動不能)となり易い。また、閑散地区でなくとも、電気車が回生運転状態のときに他の電気車が力行状態を終了した場合には、負荷の急激な減少による回生失効が起こる。   Also, in the secluded line area, when the electric vehicle is in a regenerative operation state, there is little opportunity to absorb this regenerative energy as powering power in other electric vehicles, so regenerative invalidation (electric braking is impossible) tends to occur on the electric vehicle side. . Even if the electric vehicle is in a regenerative operation state, even if it is not a quiet area, regenerative invalidation due to a rapid decrease in load occurs when another electric vehicle ends the power running state.

この回生失効では、電気車側は回生動作を中止し、電気ブレーキから機械ブレーキに制動切り替えを行うが、切り替え操作の移行時間による制動遅れが生じる。この制動遅れにより、電気車の定点停止の失敗、機械ブレーキを急制動することで、車輪とブレーキシューの磨耗増による寿命短縮などの問題が残る。この回生失効防止のための回生電力吸収対策としては以下の方式のものがある。   In this regeneration invalidation, the electric vehicle side stops the regenerative operation and performs braking switching from the electric brake to the mechanical brake, but a braking delay occurs due to the transition time of the switching operation. Due to this braking delay, problems such as failure to stop the electric vehicle at a fixed point and sudden braking of the mechanical brakes, shortening the service life due to increased wear of the wheels and brake shoes remain. The following methods are available as measures for absorbing regenerative power to prevent regeneration and expiration.

(1)インバータ装置による交流電源への電力回生方式
図4の(a)に示すように、電気車1が回生する直流電力を、外線側を直流電源とするインバータ装置2とインバータ用変圧器3によって電圧と周波数を制御した交流電力に変換し、交流電源側に回生する。
(1) Power regeneration method for AC power source by inverter device As shown in FIG. 4A, the inverter device 2 and the inverter transformer 3 that use the DC power regenerated by the electric vehicle 1 as the DC power source on the outside line side. Is converted into AC power with controlled voltage and frequency, and regenerated on the AC power supply side.

この方式の場合、回生電力を吸収する交流負荷が必要であること、及び変圧器、交流遮断器、インバータ装置、直流遮断器等が必要であり、装置全体が高コストになる。   In the case of this method, an AC load that absorbs regenerative power is required, and a transformer, an AC circuit breaker, an inverter device, a DC circuit breaker, and the like are necessary, and the entire device becomes expensive.

(2)チョッパによる回生抵抗装置への電力回生方式
図4の(b)に示すように、電気車1が回生する直流電力を、チョッパ装置4によって電圧制御した直流電力に変換し、これを回生抵抗装置5で熱として吸収させる。
(2) Power regeneration method for regenerative resistance device by chopper As shown in FIG. 4B, the DC power regenerated by the electric vehicle 1 is converted to DC power controlled by the chopper device 4, and this is regenerated. The resistance device 5 absorbs the heat.

この方式の場合、回生電力の全てを抵抗装置によって熱吸収させるため、回生電力は有効利用されないことや、大型の抵抗装置が必要になる。また、抵抗装置に発生する熱量の放散処理のための換気設備や放熱設備が必要であり、チョッパ等を含めると比較的高価な設備になる。   In the case of this method, since all of the regenerative power is absorbed by the resistance device, the regenerative power is not effectively used and a large resistance device is required. Further, ventilation equipment and heat radiation equipment for dissipating heat generated in the resistance device are necessary, and if a chopper or the like is included, the equipment becomes relatively expensive.

(3)直流電力貯蔵装置を利用した電力回生方式
図4の(c)に示すように、整流器6の直流側に、昇降圧チョッパ7と直流電力蓄積装置8からなる直流電力貯蔵装置を設備し、電気車1の回生運転によって外線電圧がその定格電圧範囲の上限を超えた場合は、チョッパ7により外線電圧を降圧制御し、外線からチョッパ7を通して直流電力蓄積装置8の充電電流として回生電力を吸収させる(例えば、特許文献1、特許文献2参照)。
(3) Power regeneration method using DC power storage device As shown in FIG. 4C, a DC power storage device comprising a step-up / step-down chopper 7 and a DC power storage device 8 is installed on the DC side of the rectifier 6. When the external line voltage exceeds the upper limit of the rated voltage range due to the regenerative operation of the electric vehicle 1, the external line voltage is stepped down by the chopper 7, and the regenerative power is supplied as the charging current of the DC power storage device 8 from the external line through the chopper 7. Absorb (see, for example, Patent Document 1 and Patent Document 2).

この方式は、電気車の力行運転によって外線の定格電圧範囲の下限を下回った場合は、チョッパ7により外線電圧を昇圧制御し、直流電力蓄積装置8からチョッパ7を通して外線側に電力供給を行うことで電圧降下対策にも利用できる。また、交流電源側からみた負荷の平準化を図ることもできる。   In this method, when the electric vehicle runs below the lower limit of the rated voltage range of the outside line due to power running operation, the outside line voltage is boosted and controlled by the chopper 7 and the power is supplied from the DC power storage device 8 to the outside line side through the chopper 7. It can also be used for voltage drop countermeasures. Further, it is possible to level the load as seen from the AC power supply side.

図5は、直流電力貯蔵装置の主回路構成を示す。昇降圧チョッパ7は、外線から流れ込む充電電流を制御できる向きに一端を外線に接続した半導体スイッチSW1および該半導体スイッチSW1と逆並列接続したダイオードD1からなる高圧側アームと、前記半導体スイッチSW1と電流を制御できる向きが同じで且つ半導体スイッチSW1の他端と直列接続した半導体スイッチSW2および該半導体スイッチSW2と逆並列接続したダイオードD2からなる低圧側アームと、前記半導体スイッチSW1の他端に一端を接続して他端を電気二重層キャパシタEDLCに接続したリアクトルLとからなる。   FIG. 5 shows a main circuit configuration of the DC power storage device. The step-up / step-down chopper 7 includes a semiconductor switch SW1 having one end connected to the external line in a direction in which the charging current flowing from the external line can be controlled, a high-voltage side arm including a diode D1 connected in reverse parallel to the semiconductor switch SW1, and the semiconductor switch SW1 and the current The low-voltage side arm composed of the semiconductor switch SW2 connected in series with the other end of the semiconductor switch SW1 and the diode D2 connected in reverse parallel to the semiconductor switch SW2, and one end at the other end of the semiconductor switch SW1. And a reactor L having the other end connected to the electric double layer capacitor EDLC.

この構成において、図6に示すように、電気車1の回生動作で外線電圧が定格電圧範囲の上限を超えたときに、昇降圧チョッパにより外線電圧を降圧する制御を行う。すなわち、スイッチSW1をスイッチング動作させ、そのオン期間には外線からSW1→Lを通してEDLCに充電電流を流し、そのオフ期間にはリアクトルLからEDLC→D2を通した循環電流でEDLCに充電電流を流し、回生電力をEDLCの充電電力として回生する。   In this configuration, as shown in FIG. 6, when the external line voltage exceeds the upper limit of the rated voltage range in the regenerative operation of the electric vehicle 1, control is performed to step down the external line voltage by the step-up / step-down chopper. That is, the switch SW1 is switched, and the charging current flows from the outside line through SW1 → L to the EDLC during the ON period, and the charging current flows from the reactor L to the EDLC through the EDLC → D2 during the OFF period. The regenerative power is regenerated as EDLC charging power.

また、図6に示すように、電気車1の力行動作で外線電圧が定格電圧範囲の下限を下回ったときに、昇降圧チョッパにより外線電圧を昇圧する制御を行う。すなわち、スイッチSW2をチョッパ動作させ、そのオン期間にはEDLCからL→SW2を通してEDLCに短絡電流を流してリアクトルLに電磁エネルギーとして蓄積し、そのオフ期間にはEDLCからリアクトルL→D1の経路で外線に放電電流を流し、外線の電圧降下を抑制する。   In addition, as shown in FIG. 6, when the outside line voltage falls below the lower limit of the rated voltage range in the power running operation of the electric vehicle 1, the outside line voltage is controlled to be boosted by the step-up / down chopper. That is, the switch SW2 is operated as a chopper, a short-circuit current flows from the EDLC to the EDLC through the L → SW2 during the ON period, and the electromagnetic energy is accumulated in the reactor L, and during the OFF period, the electromagnetic energy is stored in the path from the EDLC to the reactor L → D1. A discharge current is passed through the outside line to suppress the voltage drop across the outside line.

なお、直流電力蓄積装置8には、電気二重層キャパシタのほかに蓄電池が使用される。この蓄電池を用いる場合は、長時間のエネルギー蓄積および蓄積量に優れるが、急速充放電特性で劣り、立ち上がりの速い回生電力等の充電に遅れが生じることや、電気車の始動・加速時等の負荷急変に追従した放電に遅れが生じ、外線電圧の急変や回生失効を招く恐れがある。一方、電気二重層キャパシタを用いる場合は、急速充放電性能に優れ、電気車からの回生電力吸収や、負荷急変に応動できる。
特開2000−233669 特開2001−260718
The DC power storage device 8 uses a storage battery in addition to the electric double layer capacitor. When this storage battery is used, it is excellent in long-term energy accumulation and accumulation amount, but it is inferior in quick charge / discharge characteristics, delay in charging such as regenerative power with fast start-up, electric car start / acceleration etc. There is a delay in the discharge following the sudden load change, which may cause a sudden change in external line voltage and regenerative expiration. On the other hand, when an electric double layer capacitor is used, it has excellent rapid charge / discharge performance and can respond to regenerative power absorption from an electric vehicle and sudden load change.
JP 2000-233669 A JP 2001-260718 A

(第1の課題)
電気二重層キャパシタと昇降圧チョッパで構成する直流電力貯蔵装置を利用して、外線の電圧降下抑制を図る場合、図5の構成では、電気二重層キャパシタの端子電圧(待機電圧)を外線電圧の定格電圧範囲の下限電圧よりも低い値としておき、電気二重層キャパシタからリアクトルL→ダイオードD1の経路による外線側への放電を防止する。また、外線の電圧降下発生に際して、電気二重層キャパシタから供給できる電力量(蓄積電力量)の最大化を図るため、電気二重層キャパシタの端子電圧を外線電圧の定格電圧範囲の下限電圧に近い値まで高めておく。
(First issue)
When a DC power storage device composed of an electric double layer capacitor and a step-up / down chopper is used to suppress the voltage drop of the external line, in the configuration of FIG. 5, the terminal voltage (standby voltage) of the electric double layer capacitor is set to the external line voltage. A value lower than the lower limit voltage of the rated voltage range is set to prevent discharge from the electric double layer capacitor to the outside line through the reactor L → diode D1. Also, in order to maximize the amount of electric power that can be supplied from the electric double layer capacitor (accumulated electric energy) when an external voltage drop occurs, the terminal voltage of the electric double layer capacitor is close to the lower limit voltage of the rated voltage range of the external line voltage. Keep it up.

例えば、1500V系統では、外線電圧が1200V(外線電圧の定格電圧範囲の下限)以下で電気二重層キャパシタから電力供給する場合、電気二重層キャパシタの端子電圧(待機電圧)を1200V以下とし、この電気二重層キャパシタから昇降圧チョッパによる昇圧制御で外線電圧の電圧降下を抑制する。   For example, in the 1500V system, when power is supplied from an electric double layer capacitor at an external voltage of 1200V (lower limit of the rated voltage range of the external voltage), the terminal voltage (standby voltage) of the electric double layer capacitor is set to 1200V or less. The voltage drop of the outside line voltage is suppressed by the boost control by the buck-boost chopper from the double layer capacitor.

上記のように、図5の構成では、電気二重層キャパシタの端子電圧は、外線電圧の定格電圧範囲の下限電圧よりも低くするため、電気二重層キャパシタの蓄積電力量が制限される。この蓄積電力量を高めるには、電気二重層キャパシタの並列台数を多くすると共に昇降圧チョッパの可制御電流容量を高めることが考えられるが、これでは直流電力貯蔵装置の大型化およびコスト高を招く。   As described above, in the configuration of FIG. 5, the terminal voltage of the electric double layer capacitor is set lower than the lower limit voltage of the rated voltage range of the external line voltage, so that the stored electric energy of the electric double layer capacitor is limited. To increase the amount of stored electric power, it is conceivable to increase the number of electric double layer capacitors in parallel and increase the controllable current capacity of the buck-boost chopper, but this leads to an increase in the size and cost of the DC power storage device. .

(第2の課題)
直流電力貯蔵装置を利用して電圧降下抑制と回生電力吸収を行う場合、特許文献1、特許文献2では、外線電圧が低下したときに昇降圧チョッパにより電気二重層キャパシタEDLC端子電圧を昇圧制御して電圧降下を抑制し、外線電圧が上昇したときに昇降圧チョッパにより外線電圧を降圧制御して回生電力を吸収する。この場合、電圧降下対策と回生電力吸収対策の両方に対応可能にするためには、電気二重層キャパシタの端子電圧(待機電圧)は、電圧降下抑制のための放電動作時と回生電力吸収のための充電動作時とで同じ電圧範囲にされるが、電圧降下対策時には電気二重層キャパシタの端子電圧が高い満充電の方がより多くの電圧降下を抑制でき、回生電力吸収時には電気二重層キャパシタの端子電圧が低い充電電力量が少ない方がより多くの回生電力を吸収できる。これらから、同じ電圧範囲で供給する放電電力量と吸収する充電電力量とを利用するため、電圧降下対策と回生電力吸収対策の両機能を同時に対応可能な電力量は前記満充電時の電力量や最低充電時の電力量に比べて少なくなり、両機能を同時に満足できない。
(Second problem)
In the case of performing voltage drop suppression and regenerative power absorption using a DC power storage device, in Patent Document 1 and Patent Document 2, when the external line voltage is lowered, the electric double layer capacitor EDLC terminal voltage is boosted and controlled by the buck-boost chopper. The voltage drop is suppressed, and when the external line voltage rises, the external line voltage is stepped down by the step-up / down chopper to absorb the regenerative power. In this case, in order to be able to cope with both voltage drop countermeasures and regenerative power absorption countermeasures, the terminal voltage (standby voltage) of the electric double layer capacitor is used during discharge operation for suppressing voltage drop and for regenerative power absorption. Although the same voltage range is used during charging operation, full voltage charging with a high terminal voltage of the electric double layer capacitor can suppress more voltage drops when voltage drop countermeasures are taken, and the electric double layer capacitor can be suppressed during regenerative power absorption. More regenerative power can be absorbed when the terminal voltage is lower and the charging power is lower. From these, in order to use the amount of discharge power supplied and the amount of charge power to be absorbed in the same voltage range, the amount of power that can simultaneously support both functions of voltage drop countermeasures and regenerative power absorption countermeasures is the amount of power at the time of full charge. And it is less than the amount of power at the time of the minimum charge, and both functions cannot be satisfied simultaneously.

このため、電圧降下対策と回生電力吸収対策の両機能に対応可能にした充放電電力量を確保するには、上記の第1の課題と同様に、電気二重層キャパシタの並列台数を多くすると共に昇降圧チョッパの可制御電流容量を高めることになり、直流電力貯蔵装置の大型化およびコスト高になる。   For this reason, in order to secure the charge / discharge power amount that can cope with both functions of the voltage drop countermeasure and the regenerative power absorption countermeasure, as in the first problem, the number of electric double layer capacitors is increased in parallel. This increases the controllable current capacity of the step-up / down chopper, which increases the size and cost of the DC power storage device.

なお、充放電電力量を高めるため、電圧降下対策用として端子電圧(待機電圧)を低くした直流電力貯蔵装置と、回生電力吸収対策用として端子電圧を高くした直流電力貯蔵装置との2台の装置構成とすることも考えられるが、これでは設備の大型化およびコスト高の課題を解消できるものでない。   In order to increase the amount of charge and discharge power, two DC power storage devices with a low terminal voltage (standby voltage) as a countermeasure for voltage drop and two DC power storage devices with a high terminal voltage as a countermeasure for regenerative power absorption Although it is conceivable to adopt an apparatus configuration, this cannot solve the problems of increasing the size and cost of the equipment.

(第3の課題)
直流電力貯蔵装置を利用して回生電力の吸収を行う場合、特許文献1、特許文献2では電気二重層キャパシタなどの電力貯蔵媒体が満充電の場合、回生電力の吸収ができず、電気車が回生運転を行うと回生失効が起こる。このため、回生電力吸収用抵抗装置の設置が必要になってしまう。また、力行運転する電気車があらわれるまで電力貯蔵媒体は満充電のままであるため、電気車の回生運転が連続した場合には連続して回生失効が起こってしまう。
(Third issue)
In the case of absorbing regenerative power using a DC power storage device, in Patent Document 1 and Patent Document 2, if a power storage medium such as an electric double layer capacitor is fully charged, the regenerative power cannot be absorbed and the electric vehicle is When regenerative operation is performed, regenerative invalidation occurs. For this reason, it becomes necessary to install a resistance device for absorbing regenerative power. In addition, since the electric power storage medium remains fully charged until an electric vehicle that is in power running appears, if the regenerative operation of the electric vehicle continues, regenerative invalidation occurs continuously.

本発明の目的は、直流電力貯蔵装置の大型化およびコスト高を招くことなく、従来装置と比べて外線への供給電力量と吸収電力量との和を増やし、より多くの外線の電圧降下抑制、電気車の回生電力吸収との対応を可能にするとともに、電気車の回生失効防止を可能にした直流電力貯蔵装置を提供することにある。   The purpose of the present invention is to increase the sum of the amount of power supplied to the outside line and the amount of absorbed power and to suppress more voltage drops on the outside line without increasing the size and cost of the DC power storage device. Another object of the present invention is to provide a DC power storage device that can cope with regenerative power absorption of an electric vehicle and can prevent regenerative expiration of the electric vehicle.

本発明は、前記の課題を解決するため、電気二重層キャパシタなどの電力貯蔵媒体と外線との間に昇降圧チョッパなどの直流/直流変換装置を設けた直流電力貯蔵装置とし、無負荷時には外線の定格電圧範囲の上限電圧を越える整流器無負荷電圧まで外線電圧が上昇するので、前記上限電圧を越えたときに、直流/直流変換装置の導通制御で外線と電力貯蔵媒体の間を導通させることで、電力貯蔵媒体の端子電圧を整流器無負荷電圧まで充電し、
回生電力吸収対策には外線電圧(昇降圧チョッパと外線とを接続する端子の電圧、以下同じ)が上限電圧を越えたときに、直流/直流変換装置の導通制御で外線と電力貯蔵媒体の間を導通させ、回生運転の電気車からの回生電力を電力貯蔵媒体の充電電力として吸収させると共に、回生運転を行う電気車のパンタ点電圧の上昇には、電気車がもつ回生電流絞り込み機能を利用して電気車の回生失効を防止し、
電圧降下対策には外線電圧が下限電圧を下回ったときに電力貯蔵媒体の端子電圧を降圧制御または昇圧制御を行い、電力貯蔵媒体から外線に放電させることで外線電圧をその下限電圧に保持するもので、以下の構成を特徴とする。
In order to solve the above-described problems, the present invention provides a DC power storage device in which a DC / DC converter such as a step-up / step-down chopper is provided between a power storage medium such as an electric double layer capacitor and an external line, and the external line is not loaded Since the outside line voltage rises to the rectifier no-load voltage exceeding the upper limit voltage of the rated voltage range, the conduction between the outside line and the power storage medium is controlled by the conduction control of the DC / DC converter when the upper limit voltage is exceeded. Then, charge the terminal voltage of the power storage medium to the rectifier no-load voltage,
In order to absorb regenerative power, when the external line voltage (the voltage at the terminal connecting the buck-boost chopper and the external line, the same shall apply hereinafter) exceeds the upper limit voltage, the continuity control of the DC / DC converter device controls the connection between the external line and the power storage medium. Is used to absorb the regenerative power from the electric vehicle in regenerative operation as the charging power of the power storage medium, and to increase the pant point voltage of the electric vehicle that performs regenerative operation, use the regenerative current narrowing function of the electric vehicle To prevent the regeneration of electric cars from being revoked,
For voltage drop countermeasures, when the external line voltage falls below the lower limit voltage, the terminal voltage of the power storage medium is stepped down or boosted, and the external line voltage is held at the lower limit voltage by discharging from the power storage medium to the external line. Thus, it is characterized by the following configuration.

(1)電力貯蔵媒体と直流電気鉄道の外線との間に直流/直流変換装置を設けた直流電力貯蔵装置であって、
前記直流/直流変換装置は、
外線電圧が外線の定格電圧範囲の上限電圧を越えたとき、外線と前記電力貯蔵媒体との間を導通することで該電力貯蔵媒体を充放電し、外線電圧が前記上限電圧を下回ったとき、外線と前記電力貯蔵媒体との間を遮断する回生電力制御手段と、
外線電圧が外線の定格電圧範囲の下限電圧を下回り、且つ前記電力貯蔵媒体の端子電圧が前記外線電圧より高いとき、該電力貯蔵媒体の端子電圧を降圧させながら該電力貯蔵媒体から外線側に放電し、外線電圧が前記下限電圧を下回り、且つ前記電力貯蔵媒体の端子電圧が前記外線電圧より低いとき、該電力貯蔵媒体の端子電圧を昇圧させながら該電力貯蔵媒体から外線側に放電する電圧降下抑制手段と、
を備えたことを特徴とする。
(1) A DC power storage device in which a DC / DC converter is provided between a power storage medium and an outside line of a DC electric railway,
The DC / DC converter is
When the outside line voltage exceeds the upper limit voltage of the rated voltage range of the outside line, the power storage medium is charged / discharged by conducting between the outside line and the power storage medium, and when the outside line voltage falls below the upper limit voltage, Regenerative power control means for cutting off between the external line and the power storage medium;
When the external line voltage is lower than the lower limit voltage of the rated voltage range of the external line and the terminal voltage of the power storage medium is higher than the external line voltage, the power storage medium is discharged from the power storage medium to the outside line while stepping down the terminal voltage. When the external line voltage is lower than the lower limit voltage and the terminal voltage of the power storage medium is lower than the external line voltage, a voltage drop that discharges from the power storage medium to the external line side while boosting the terminal voltage of the power storage medium Suppression means;
It is provided with.

(2)前記回生電力吸収手段は、電気車からの回生電力の吸収によって前記上限電圧を越え、前記電力貯蔵媒体と外線との導通で外線電圧が上昇したとき、電気車がもつ回生電流絞り込み機能による回生電流絞り込み動作との協働によって、前記電力貯蔵媒体の端子電圧を該端子電圧の最大電圧以下に抑制することを特徴とする。   (2) The regenerative power absorbing means has a function of narrowing the regenerative current of the electric vehicle when the external voltage exceeds the upper limit voltage due to absorption of the regenerative power from the electric vehicle and the external line voltage increases due to conduction between the power storage medium and the external line. The terminal voltage of the power storage medium is suppressed to be equal to or lower than the maximum voltage of the terminal voltage by cooperating with the regenerative current narrowing-down operation.

(3)前記直流/直流変換装置は、外線の無負荷時には、外線と前記電力貯蔵媒体との間を導通し、該電力貯蔵媒体の端子電圧を整流器の無負荷電圧まで充電することを特徴とする。   (3) The DC / DC converter is characterized in that when an external line is not loaded, the external line and the power storage medium are electrically connected, and the terminal voltage of the power storage medium is charged to the no-load voltage of the rectifier. To do.

(4)前記直流/直流変換装置は、外線が前記下限電圧以上で前記電力貯蔵媒体の端子電圧が外線の上限電圧以下のとき、前記端子電圧が外線電圧より低い場合には外線電圧を降圧させながら外線側から該電力貯蔵媒体に充電し、前記端子電圧が外線電圧より高い場合には外線電圧を昇圧させながら外線側から該電力貯蔵媒体に充電する手段を備えたことを特徴とする。   (4) The DC / DC converter reduces the external line voltage when the external line is equal to or higher than the lower limit voltage and the terminal voltage of the power storage medium is equal to or lower than the upper limit voltage of the external line. The power storage medium is charged from the outside line side, and when the terminal voltage is higher than the outside line voltage, the power storage medium is charged from the outside line side while boosting the outside line voltage.

(5)前記直流/直流変換装置は、前記電力貯蔵媒体の端子電圧が外線電圧よりも高い場合、該電力貯蔵媒体から外線側への放電電流を制御または遮断する放電制御スイッチを備えたことを特徴とする。   (5) The DC / DC converter includes a discharge control switch that controls or cuts off a discharge current from the power storage medium to the outside line when the terminal voltage of the power storage medium is higher than the outside line voltage. Features.

(6)前記直流/直流変換装置の主回路は、
外線から流れ込む充電電流を制御できる向きに一端を外線に接続した半導体スイッチSW1および該半導体スイッチSW1と逆並列接続したダイオードD1からなる高圧側アームと、前記半導体スイッチSW1と電流を制御できる向きが同じで且つ半導体スイッチSW1の他端と直列接続した半導体スイッチSW2および該半導体スイッチSW2と逆並列接続したダイオードD2からなる低圧側アームと、前記半導体スイッチSW1の他端に一端を接続したリアクトルLとからなる昇降圧チョッパと、
前記リアクトルLの他端と前記電力貯蔵媒体との間に接続し、該電力貯蔵媒体からの放電電流を制御できる向きの半導体スイッチSW3および該半導体スイッチSW3と逆並列接続したダイオードD3からなる放電制御スイッチと、
を備えたことを特徴とする。
(6) The main circuit of the DC / DC converter is as follows:
The semiconductor switch SW1 having one end connected to the external line in a direction in which the charging current flowing from the external line can be controlled, and the high-voltage side arm composed of the diode D1 connected in reverse parallel to the semiconductor switch SW1, and the semiconductor switch SW1 have the same direction in which the current can be controlled. And a low-voltage side arm comprising a semiconductor switch SW2 connected in series with the other end of the semiconductor switch SW1, a diode D2 connected in reverse parallel to the semiconductor switch SW2, and a reactor L having one end connected to the other end of the semiconductor switch SW1. A buck-boost chopper,
Discharge control comprising a semiconductor switch SW3 connected between the other end of the reactor L and the power storage medium and capable of controlling a discharge current from the power storage medium, and a diode D3 connected in reverse parallel to the semiconductor switch SW3 A switch,
It is provided with.

以上のとおり、本発明によれば、外線電圧が定格電圧範囲の上限電圧を越えたときは回生電力を吸収し、外線電圧が定格電圧範囲の下限電圧を下回ったときは電圧降下を抑制することができる。   As described above, according to the present invention, regenerative power is absorbed when the outside line voltage exceeds the upper limit voltage of the rated voltage range, and voltage drop is suppressed when the outside line voltage falls below the lower limit voltage of the rated voltage range. Can do.

しかも、従来装置に比べて、電気二重層キャパシタは広い電圧範囲で充放電を可能としたため、従来装置の満充電と同等以上の電気二重層キャパシタの電力蓄積量としながらも回生電力の吸収が可能であるため、電圧降下対策と回生電力吸収対策の両機能を満足しつつ、かつ電気二重層キャパシタの端子電圧が整流器の無負荷電圧以上となった場合には力行車両が存在しなくとも、外線全体の電圧平衡を取りながら電気二重層キャパシタの端子電圧は自然低下し、さらに回生運転を行う電気車が連続して電気二重層キャパシタの端子電圧が上昇し続けた場合でも電気車の電流絞り込み制御により回生失効が起こらない。   In addition, compared to conventional devices, electric double layer capacitors can be charged and discharged over a wide voltage range, so regenerative power can be absorbed while the amount of power stored in the electric double layer capacitor is equal to or greater than the full charge of conventional devices. Therefore, if both the functions of voltage drop countermeasures and regenerative power absorption countermeasures are satisfied and the terminal voltage of the electric double layer capacitor exceeds the no-load voltage of the rectifier, even if there is no power running vehicle, The electric double layer capacitor terminal voltage naturally drops while maintaining the overall voltage balance, and even if the electric vehicle performing regenerative operation continues to rise, the electric double layer capacitor terminal voltage continues to be controlled. Due to this, regenerative revocation does not occur.

また、直流電力貯蔵装置の大型化およびコスト高を招くことなく、電圧降下抑制のために供給できる電力量を大幅に高めることができる。   In addition, the amount of power that can be supplied for suppressing voltage drop can be significantly increased without increasing the size and cost of the DC power storage device.

図1は、本発明の実施形態を示す回路構成図であり、主回路構成が図5と異なる部分は、リアクトルLの他端と前記電力貯蔵媒体との間に接続し、該電力貯蔵媒体からの放電電流を制御できる向きの半導体スイッチSW3および該半導体スイッチSW3と逆並列接続したダイオードD3からなる放電制御スイッチ9を設けた点にある。   FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention. The main circuit configuration different from FIG. 5 is connected between the other end of a reactor L and the power storage medium, and the power storage medium Is provided with a discharge control switch 9 comprising a semiconductor switch SW3 in a direction capable of controlling the discharge current and a diode D3 connected in antiparallel with the semiconductor switch SW3.

制御装置10は、昇降圧チョッパ7の昇降圧制御機能に加えて、放電制御スイッチ9のスイッチングおよび導通/遮断制御機能を設け、各種電圧条件設定と電圧検出信号の監視の基に、以下の制御手段を設ける。   The control device 10 is provided with a switching and conduction / cutoff control function of the discharge control switch 9 in addition to the step-up / step-down control function of the step-up / step-down chopper 7, and the following control is performed based on various voltage condition settings and voltage detection signal monitoring. Means are provided.

なお、本実施形態の説明と図面は、き電変電所の整流器の直流側、電力貯蔵装置のき電線出力側、き電線、架線およびトロリ線を総称して外線と呼称して説明する。   In the description and drawings of the present embodiment, the DC side of the rectifier of the feeder substation, the feeder output side of the power storage device, the feeder, the overhead wire, and the trolley wire will be collectively referred to as an external line.

(a)電気二重層キャパシタは、その充電電圧上限を、電気車からの回生電力によって外線に発生すると想定される最大電圧以上のものを使用し、外線の無負荷時には外線の定格電圧範囲の上限を超える整流器の無負荷電圧まで充電されている。   (A) Use an electric double layer capacitor whose maximum charging voltage is higher than the maximum voltage expected to be generated on the external line due to regenerative power from the electric vehicle, and when the external line is not loaded, the upper limit of the rated voltage range of the external line The rectifier is charged to a no-load voltage exceeding.

(b)回生電力吸収対策と回生失効防止対策は、外線電圧が定格電圧範囲の上限電圧を越えたとき、外線と前記電気二重層キャパシタとの間を導通させるために、スイッチSW1とSW3をオン(導通)制御し、回生電力を電気二重層キャパシタへの充電電力として吸収させ、この電力吸収によって外線電圧の急激な電圧上昇による電気車の回生失効を防止すると共に、電気二重層キャパシタへの充電によって吸収した回生電力を電気二重層キャパシタから力行運転を行う電気車への放電によって回生電力を有効利用できるようにする。   (B) Regenerative power absorption countermeasures and regenerative invalidation prevention countermeasures are implemented by turning on the switches SW1 and SW3 in order to conduct between the external line and the electric double layer capacitor when the external line voltage exceeds the upper limit voltage of the rated voltage range. (Conduction) control and regenerative power is absorbed as charging power to the electric double layer capacitor, and this power absorption prevents regenerative invalidation of the electric vehicle due to a sudden rise in external line voltage and charging to the electric double layer capacitor The regenerative power absorbed by the electric double layer capacitor can be effectively used by discharging from the electric double layer capacitor to the electric vehicle that performs power running.

この電力吸収による外線電圧の上昇が継続し、さらに外線電圧が上昇した場合には、電気車がもつ回生電流絞り込み機能による回生電流絞り込み動作との協働によって、電気二重層キャパシタの端子電圧と外線電圧がその最大電圧を超えないように協調されると共に、この状態においても電気車の回生電流絞り込み制御によって回生失効を起こさないようにする。   When the external line voltage continues to rise due to this power absorption and further increases, the terminal voltage and the external line of the electric double layer capacitor are cooperated with the regenerative current narrowing operation by the regenerative current narrowing function of the electric vehicle. The voltage is coordinated so as not to exceed the maximum voltage, and even in this state, regenerative current narrowing control of the electric vehicle prevents regenerative invalidation.

(c)電圧降下対策は、外線電圧が定格電圧範囲の下限電圧を下回ったとき、外線電圧より電気二重層キャパシタの端子電圧が高い場合には、放電制御スイッチ9の半導体スイッチSW3をスイッチング動作させ、前記電気二重層キャパシタの端子電圧を降圧制御して電気二重層キャパシタから外線側に放電させ、この放電によって外線電圧をその定格電圧範囲の下限電圧以上に保持する。さらに、この放電で電気二重層キャパシタの端子電圧が外線電圧よりも低くなったときに半導体スイッチSW3をオン(導通)制御および昇降圧チョッパ7の半導体スイッチSW2をスイッチング動作に切り替えて、前記電気二重層キャパシタの端子電圧を昇圧制御して放電を継続させ、外線電圧をその定格電圧範囲の下限電圧以上に保持する。   (C) As a countermeasure for voltage drop, when the external line voltage is lower than the lower limit voltage of the rated voltage range and the terminal voltage of the electric double layer capacitor is higher than the external line voltage, the semiconductor switch SW3 of the discharge control switch 9 is switched. The terminal voltage of the electric double layer capacitor is stepped down to discharge from the electric double layer capacitor to the outside line side, and this discharge keeps the outside line voltage at or above the lower limit voltage of the rated voltage range. Further, when the terminal voltage of the electric double layer capacitor becomes lower than the external voltage due to this discharge, the semiconductor switch SW3 is turned on (conduction) and the semiconductor switch SW2 of the step-up / down chopper 7 is switched to the switching operation. The terminal voltage of the multi-layer capacitor is boosted to continue the discharge, and the outside line voltage is maintained at or above the lower limit voltage of the rated voltage range.

なお、電気車による回生電流の絞り込みは、既存の電気車に装備されるものであり、電気車のパンタ点電圧を監視し、この電圧が規定値以上のときにはそれに応じて回生電流を100%から0%に絞り込むことにより、過剰にパンタ点電圧が上昇するのを防止する。一般的には、DC1500V系の電気車では、図2に示すように、パンタ点電圧がDC1600V以下では絞り率1.0(絞り量0%)、DC1800V以上で絞り率0(絞り量100%)とし、1600V〜1800Vの間は電圧に比例して直線的に絞り率を0に向けて下げ、回生電流を抑制する。この回生電流の絞り込みによる余剰の制動エネルギーは機械ブレーキにより吸収される。   In addition, the narrowing down of the regenerative current by the electric vehicle is equipped with an existing electric vehicle, and the punter point voltage of the electric vehicle is monitored. When this voltage exceeds a specified value, the regenerative current is reduced from 100% accordingly. By narrowing down to 0%, it is possible to prevent an excessive increase in the punter point voltage. Generally, in a DC1500V electric vehicle, as shown in FIG. 2, when the punter voltage is DC1600V or less, the aperture ratio is 1.0 (diaphragm amount 0%), and when DC1800V or more, the aperture ratio is 0 (diaphragm amount 100%). In the range from 1600V to 1800V, the aperture ratio is linearly reduced to 0 in proportion to the voltage to suppress the regenerative current. Excess braking energy due to the narrowing of the regenerative current is absorbed by the mechanical brake.

以下、電圧降下対策、回生電力吸収対策および回生失効防止対策のための制御動作を1500V系統に適用した場合の具体例を詳細に説明する。   Hereinafter, a specific example in the case of applying the control operation for the voltage drop countermeasure, the regenerative power absorption countermeasure, and the regeneration invalidation prevention countermeasure to the 1500 V system will be described in detail.

(1)き電系統の運転条件
外線の定格電圧範囲をDC1600V(上限)〜1200V(下限)とし、整流器6の無負荷電圧をDC1620Vとする。電気二重層キャパシタEDLCの充電最大電圧をDC1800Vとする。
(1) Operating condition of feeder system The rated voltage range of the outside line is DC 1600V (upper limit) to 1200V (lower limit), and the no-load voltage of the rectifier 6 is DC 1620V. The charging maximum voltage of the electric double layer capacitor EDLC is set to DC 1800V.

(2)無負荷時
制御装置10は、外線電圧が1600V以上で昇降圧チョッパ7の半導体スイッチSW1をオン(導通)制御し、電気二重層キャパシタEDLCが1600V未満の場合、き電変電所の整流器6から電気二重層キャパシタEDLCを充電し、その充電電圧は整流器6の無負荷電圧の1620Vまで充電される。
(2) At no load The control device 10 controls the semiconductor switch SW1 of the step-up / step-down chopper 7 to be on (conductive) when the external voltage is 1600 V or more, and when the electric double layer capacitor EDLC is less than 1600 V, the rectifier of the feeder substation The electric double layer capacitor EDLC is charged from 6, and the charging voltage is charged to 1620 V, which is the no-load voltage of the rectifier 6.

(3)通常負荷時
制御装置10は、電気車が力行運転されて外線電圧が整流器無負荷電圧の1620Vより低下した場合、整流器6からの給電と並列に、電気二重層キャパシタEDLCからの電力供給を外線電圧と電気二重層キャパシタEDLCの端子電圧が平衡状態なので放電制御スイッチ9のオン(導通)制御で行う。ただし、外線電圧が1600Vを下回る時点(ただし、1200V以上)で放電制御スイッチ9をオフ制御し、外線の定格電圧範囲内では整流器6のみから力行電力を供給する。
(3) During normal load The control device 10 supplies power from the electric double layer capacitor EDLC in parallel with the power supply from the rectifier 6 when the electric vehicle is powered and the external line voltage drops below 1620 V of the rectifier no-load voltage. Since the external line voltage and the terminal voltage of the electric double layer capacitor EDLC are in an equilibrium state, the discharge control switch 9 is turned on (conductive). However, the discharge control switch 9 is turned off when the outside line voltage falls below 1600V (but 1200V or more), and power running power is supplied only from the rectifier 6 within the rated voltage range of the outside line.

(4)回生電力吸収対策と回生失効防止対策
図3に示すように、電気車からの回生電力によって外線電圧が上昇し、外線電圧がその定格電圧範囲の上限となる1600Vを越えたとき(時刻t1)、制御装置10は昇降圧チョッパ7の半導体スイッチSW1のオン(導通)制御と半導体スイッチSW3のオン制御を行う。このとき、電気二重層キャパシタEDLCの端子電圧も1600Vであるため、半導体スイッチSW1のオン制御により外線側から電気二重層キャパシタEDLCへ充電電流を流し、その充電で回生電力を吸収する。
(4) Regenerative power absorption countermeasure and regenerative invalidation prevention countermeasure As shown in FIG. 3, when the external line voltage rises due to the regenerative power from the electric vehicle and the external line voltage exceeds 1600 V, which is the upper limit of the rated voltage range (time t <b> 1), the control device 10 performs the on (conduction) control of the semiconductor switch SW <b> 1 of the buck-boost chopper 7 and the on control of the semiconductor switch SW <b> 3. At this time, since the terminal voltage of the electric double layer capacitor EDLC is also 1600 V, a charging current is caused to flow from the outside line side to the electric double layer capacitor EDLC by ON control of the semiconductor switch SW1, and regenerative power is absorbed by the charging.

このとき、電気車の回生電力で電気二重層キャパシタEDLCの端子電圧が上昇すると共に、電気車のパンタ点電圧も上昇し、このパンタ点電圧の上昇に伴って電気車の電流絞り込み機能により回生電流も減少する。また、電気車の回生運転が終了したとき(外線電圧の上昇が終了し、整流器無負荷電圧の1620Vに向け電圧が下がったとき、図3の波形A)に、今度は半導体スイッチSW3のオン制御によって、外線が周囲の区間の外線電圧と電圧平衡を保とうとするため、電気二重層キャパシタEDLCの端子電圧が自然低下し、その後無負荷であれば整流器無負荷電圧の1620Vに落ち着く。前記上限電圧を越えているときに、力行運転する電気車が存在する場合には、整流器無負荷電圧までは電気二重層キャパシタEDLCから電気車への電力供給となり、無負荷電圧以下では整流器と電気二重層キャパシタEDLCが並列に電気車への電力供給を行い、外線電圧は力行運転する電気車によって上限電圧以下に落ち着く(図3の波形B)。   At this time, the terminal voltage of the electric double layer capacitor EDLC rises due to the regenerative power of the electric car, and the punter point voltage of the electric car also rises. Also decreases. In addition, when the regenerative operation of the electric vehicle ends (when the increase in the external line voltage ends and the voltage decreases toward the rectifier no-load voltage 1620V, the waveform A in FIG. 3), the semiconductor switch SW3 is now turned on. Therefore, the external line tries to maintain a voltage balance with the external line voltage in the surrounding section, so that the terminal voltage of the electric double layer capacitor EDLC naturally decreases, and then settles to 1620 V of the rectifier no-load voltage if there is no load. If there is an electric vehicle that is in power running when the upper limit voltage is exceeded, electric power is supplied from the electric double layer capacitor EDLC to the electric vehicle up to the rectifier no-load voltage. The double layer capacitor EDLC supplies electric power to the electric vehicle in parallel, and the outside line voltage is settled below the upper limit voltage by the electric vehicle that is powered running (waveform B in FIG. 3).

また、電気二重層キャパシタの端子電圧が外線の定格電圧上限(1600V)以下になったときは半導体スイッチSW3のオフ(遮断)制御によって電気二重層キャパシタEDLCからの放電を停止し、電気車には整流器6からの電力供給のみになる。   Also, when the terminal voltage of the electric double layer capacitor becomes lower than the rated voltage upper limit (1600V) of the external line, the discharge from the electric double layer capacitor EDLC is stopped by the off (cutoff) control of the semiconductor switch SW3. Only power is supplied from the rectifier 6.

電気車の回生動作が継続し、電気二重層キャパシタEDLCの端子電圧が最大電圧1800Vに達したとき(時刻t2)、電気車からの回生電流は電流絞り込み動作によって零になり、外線電圧も定格電圧上限(1600V)を越えて一時的に1800Vになるが、回生電流が零であるためそれ以上の電圧上昇はなく、回生失効を防止する。   When the regenerative operation of the electric vehicle continues and the terminal voltage of the electric double layer capacitor EDLC reaches the maximum voltage of 1800V (time t2), the regenerative current from the electric vehicle becomes zero by the current narrowing operation, and the outside line voltage is also the rated voltage Although it exceeds the upper limit (1600V) and temporarily becomes 1800V, since the regenerative current is zero, there is no further increase in voltage and regenerative invalidation is prevented.

したがって、回生電力吸収対策および回生失効防止対策では、外線電圧は一時的に定格電圧上限(1600V)を越えることもあるが最終的には整流器無負荷電圧または定格電圧上限以下に落ち着き、電気二重層キャパシタEDLCの端子電圧は1600V〜1800Vの範囲に制御される。   Therefore, in the regenerative power absorption measure and regenerative invalidation preventive measure, the outside line voltage may temporarily exceed the rated voltage upper limit (1600V), but eventually settles below the rectifier no-load voltage or the rated voltage upper limit, and the electric double layer The terminal voltage of the capacitor EDLC is controlled in the range of 1600V to 1800V.

(5)電圧降下対策
図3に示すように、電気車が力行運転し、外線電圧が定格電圧範囲の下限(1200V)を下回ったとき(時刻t3)、制御装置10は、半導体スイッチSW3をスイッチング制御することで、電気二重層キャパシタEDLCの端子電圧を降圧制御して電気二重層キャパシタEDLCからリアクトルLおよびダイオードD1を通して放電を開始し、整流器6側からの電力供給と協働して電圧降下を抑制する。この電圧降下抑制で、外線電圧が下限1200V以上に戻ったとき(時刻t4:図3の波形C)、制御装置10は半導体スイッチSW3をオフ制御して電気二重層キャパシタEDLCからの放電を停止させ、昇降圧チョッパを昇圧制御に切り替えて電気二重層キャパシタEDLCを充電し(図3の波形C’)、1600Vまでの充電で制御を停止する。
(5) Voltage drop countermeasures As shown in FIG. 3, when the electric vehicle is in power running and the outside line voltage falls below the lower limit (1200V) of the rated voltage range (time t3), the control device 10 switches the semiconductor switch SW3. By controlling, the terminal voltage of the electric double layer capacitor EDLC is stepped down to start discharging from the electric double layer capacitor EDLC through the reactor L and the diode D1, and the voltage drop is reduced in cooperation with the power supply from the rectifier 6 side. Suppress. When the voltage drop suppresses the outside line voltage to return to the lower limit of 1200 V or more (time t4: waveform C in FIG. 3), the control device 10 controls the semiconductor switch SW3 to be off to stop the discharge from the electric double layer capacitor EDLC. Then, the step-up / step-down chopper is switched to boost control to charge the electric double layer capacitor EDLC (waveform C ′ in FIG. 3), and the control is stopped by charging up to 1600V.

また、外線電圧が下限電圧1200V以上に戻らず、電圧降下抑制の継続で、電気二重層キャパシタEDLCの端子電圧が外線電圧よりも低くなったとき(時刻t5)、制御装置10は半導体スイッチSW3をオン(導通)制御に、昇降圧チョッパ7の半導体スイッチSW2をスイッチング動作に切り替え、前記端子電圧を昇圧制御することで放電を継続させ、整流器6側からの電力供給と協働して、外線電圧の電圧降下抑制を行う。この放電で、電気二重層キャパシタEDLCの端子電圧は下限電圧(1200V)以下に低下していく。この電圧降下抑制で、外線電圧が下限1200V以上に戻ったとき(時刻t6:図3の波形D)、制御装置10は、昇降圧チョッパ7の降圧制御で電気二重層キャパシタEDLCを充電し(図3の波形D’)、1600Vまでの充電で降圧制御を停止する。   Further, when the external line voltage does not return to the lower limit voltage of 1200 V or higher and the voltage drop is continuously suppressed, and the terminal voltage of the electric double layer capacitor EDLC becomes lower than the external line voltage (time t5), the control device 10 switches the semiconductor switch SW3. For the on (conduction) control, the semiconductor switch SW2 of the step-up / step-down chopper 7 is switched to a switching operation, the discharge is continued by boosting the terminal voltage, and the external line voltage is cooperated with the power supply from the rectifier 6 side. The voltage drop is suppressed. With this discharge, the terminal voltage of the electric double layer capacitor EDLC is lowered to the lower limit voltage (1200 V) or less. When the external voltage returns to the lower limit of 1200 V or more due to this voltage drop suppression (time t6: waveform D in FIG. 3), the control device 10 charges the electric double layer capacitor EDLC by the step-down control of the step-up / down chopper 7 (FIG. No. 3 waveform D ′) The step-down control is stopped by charging up to 1600V.

また、外線の電圧降下が継続し、電気二重層キャパシタEDLCの放電でその端子電圧が最低電圧500Vにまで達したとき(時刻t7)、制御装置10は昇降圧チョッパの制御を停止する。電気車の力行運転が終了し(時刻t8)、外線電圧が1200V以上に戻ったとき(時刻t9:図3の波形E)、電気二重層キャパシタEDLCを充電する(図3の波形E’)。   When the voltage drop of the outer line continues and the terminal voltage reaches the minimum voltage of 500 V due to the discharge of the electric double layer capacitor EDLC (time t7), the control device 10 stops the control of the step-up / step-down chopper. When the power running of the electric vehicle ends (time t8) and the outside line voltage returns to 1200 V or more (time t9: waveform E in FIG. 3), the electric double layer capacitor EDLC is charged (waveform E ′ in FIG. 3).

したがって、電気二重層キャパシタEDLCの端子電圧は500V〜1600Vの範囲に制御される。   Therefore, the terminal voltage of the electric double layer capacitor EDLC is controlled in the range of 500V to 1600V.

すなわち、電気二重層キャパシタEDLCは、電圧降下対策時に、従来装置に比べて、広い電圧範囲(500V〜1600V)で充放電が可能となり、電気二重層キャパシタEDLCが従来装置のそれと同じ容量(並列台数を多くすることなく)であっても電圧降下抑制のために供給できる電力量を大幅に高めることができる。   That is, the electric double layer capacitor EDLC can be charged / discharged in a wider voltage range (500V to 1600V) than the conventional device when voltage drop countermeasures are taken, and the electric double layer capacitor EDLC has the same capacity (the number of parallel devices) as that of the conventional device. Even without increasing the power), the amount of power that can be supplied to suppress the voltage drop can be greatly increased.

なお、実施形態では、昇降圧チョッパと放電制御スイッチで直流/直流変換装置を構成する場合で説明したが、電気二重層キャパシタEDLCと外線との間の電力の充放電を可能にした、他の充放電回路構成にした直流/直流変換装置を使用して同等の作用効果を得ることができる。   In the embodiment, the case where the DC / DC converter is configured by the step-up / step-down chopper and the discharge control switch has been described. However, the charging / discharging of the electric power between the electric double layer capacitor EDLC and the external line is enabled. An equivalent effect can be obtained by using a DC / DC converter having a charge / discharge circuit configuration.

また、実施形態では、外線の無負荷時および通常負荷時に、電気二重層キャパシタの端子電圧を外線の定格電圧範囲の上限電圧近くになるよう充放電制御しておく場合を示したが、電気二重層キャパシタの端子電圧を外線の定格電圧範囲の下限電圧と上限電圧の範囲内に充放電しておくことでもよい。   In the embodiment, the case where the charge / discharge control is performed so that the terminal voltage of the electric double layer capacitor is close to the upper limit voltage of the rated voltage range of the external line at the time of no load and normal load of the external line is shown. The terminal voltage of the multilayer capacitor may be charged and discharged within the range of the lower limit voltage and the upper limit voltage of the rated voltage range of the external line.

例えば、電気二重層キャパシタの端子電圧を下限電圧と上限電圧の中間値としておき、この状態から電圧降下対策と回生電力吸収対策の両機能を満足しつつ、かつ電気二重層キャパシタの端子電圧が整流器の無負荷電圧以上となった場合には力行車両が存在しなくとも、外線全体の電圧平衡を取りながら電気二重層キャパシタの端子電圧を自然低下させ、さらに回生電気車が連続して電気二重層キャパシタが上昇し続けた場合には電気車の電流絞り制御により回生失効を起こさないようにする。   For example, the terminal voltage of the electric double layer capacitor is set to an intermediate value between the lower limit voltage and the upper limit voltage, and from this state, both the voltage drop countermeasure and the regenerative power absorption countermeasure are satisfied, and the terminal voltage of the electric double layer capacitor is a rectifier. Even if there is no power running vehicle, the terminal voltage of the electric double layer capacitor is reduced naturally while balancing the voltage of the entire outside line, and the regenerative electric vehicle continues to be an electric double layer. When the capacitor continues to rise, regenerative invalidation is prevented by current throttle control of the electric vehicle.

また、実施形態では、電力貯蔵媒体として電気二重層キャパシタを使用する場合を示したが、ハイブリッドキャパシタ、大容量キャパシタ、蓄電池を使用しても、同等の作用効果を得ることができる。さらに、半導体スイッチを任意の電圧で制御する例を示したが、この任意の電圧に不感帯を設けることで、半導体スイッチのチャタリングを防止できることは勿論のことである。   Moreover, although the case where an electric double layer capacitor was used as an electric power storage medium was shown in embodiment, even if it uses a hybrid capacitor, a large capacity capacitor, and a storage battery, an equivalent effect can be obtained. Furthermore, although the example which controls a semiconductor switch by arbitrary voltages was shown, it cannot be overemphasized that chattering of a semiconductor switch can be prevented by providing a dead zone in this arbitrary voltage.

本発明の実施形態を示す直流電力貯蔵装置の回路構成図。The circuit block diagram of the direct-current power storage device which shows embodiment of this invention. 電気車の回生電流絞り込み特性の例を示す図。The figure which shows the example of the regeneration electric current narrowing characteristic of an electric vehicle. 実施形態における電気車の回生失効防止と電圧低下抑制の動作波形図。The operation | movement waveform diagram of the regeneration invalidation prevention of an electric vehicle and voltage drop suppression in embodiment. 従来の電力回生方式を示す図。The figure which shows the conventional electric power regeneration system. 従来の直流電力貯蔵装置の主回路構成図。The main circuit block diagram of the conventional DC power storage device. 電気車の回生失効防止と電圧低下抑制の動作波形図。Operation waveform diagram of regeneration invalidation prevention and voltage drop suppression of electric vehicle.

符号の説明Explanation of symbols

1 電気車
6 整流器
7 昇降圧チョッパ
8 電気二重層キャパシタ
9 放電制御スイッチ
SW1〜SW3 半導体スイッチ
D1〜D3 ダイオード
L リアクトル
DESCRIPTION OF SYMBOLS 1 Electric vehicle 6 Rectifier 7 Buck-boost chopper 8 Electric double layer capacitor 9 Discharge control switch SW1-SW3 Semiconductor switch D1-D3 Diode L Reactor

Claims (6)

電力貯蔵媒体と直流電気鉄道の外線との間に直流/直流変換装置を設けた直流電力貯蔵装置であって、
前記直流/直流変換装置は、
外線電圧が外線の定格電圧範囲の上限電圧を越えたとき、外線と前記電力貯蔵媒体との間を導通することで該電力貯蔵媒体を充放電し、外線電圧が前記上限電圧を下回ったとき、外線と前記電力貯蔵媒体との間を遮断する回生電力制御手段と、
外線電圧が外線の定格電圧範囲の下限電圧を下回り、且つ前記電力貯蔵媒体の端子電圧が前記外線電圧より高いとき、該電力貯蔵媒体の端子電圧を降圧させながら該電力貯蔵媒体から外線側に放電し、外線電圧が前記下限電圧を下回り、且つ前記電力貯蔵媒体の端子電圧が前記外線電圧より低いとき、該電力貯蔵媒体の端子電圧を昇圧させながら該電力貯蔵媒体から外線側に放電する電圧降下抑制手段と、
を備えたことを特徴とする直流電力貯蔵装置。
A DC power storage device provided with a DC / DC converter between the power storage medium and the outside line of the DC electric railway,
The DC / DC converter is
When the outside line voltage exceeds the upper limit voltage of the rated voltage range of the outside line, the power storage medium is charged / discharged by conducting between the outside line and the power storage medium, and when the outside line voltage falls below the upper limit voltage, Regenerative power control means for cutting off between the external line and the power storage medium;
When the external line voltage is lower than the lower limit voltage of the rated voltage range of the external line and the terminal voltage of the power storage medium is higher than the external line voltage, the power storage medium is discharged from the power storage medium to the outside line while stepping down the terminal voltage. When the external line voltage is lower than the lower limit voltage and the terminal voltage of the power storage medium is lower than the external line voltage, a voltage drop that discharges from the power storage medium to the external line side while boosting the terminal voltage of the power storage medium Suppression means;
A direct-current power storage device comprising:
前記回生電力吸収手段は、電気車からの回生電力の吸収によって前記上限電圧を越え、前記電力貯蔵媒体と外線との導通で外線電圧が上昇したとき、電気車がもつ回生電流絞り込み機能による回生電流絞り込み動作との協働によって、前記電力貯蔵媒体の端子電圧を該端子電圧の最大電圧以下に抑制することを特徴とする請求項1に記載の直流電力貯蔵装置。   The regenerative power absorbing means exceeds the upper limit voltage due to absorption of regenerative power from the electric vehicle, and when the external line voltage rises due to conduction between the power storage medium and the external line, the regenerative current by the regenerative current narrowing function of the electric vehicle The DC power storage device according to claim 1, wherein the terminal voltage of the power storage medium is suppressed to be equal to or lower than a maximum voltage of the terminal voltage in cooperation with the narrowing-down operation. 前記直流/直流変換装置は、外線の無負荷時には、外線と前記電力貯蔵媒体との間を導通し、該電力貯蔵媒体の端子電圧を整流器の無負荷電圧まで充電することを特徴とする請求項1または2に記載の直流電力貯蔵装置。   The DC / DC converter is configured to conduct between the external line and the power storage medium when no external line is loaded, and charge the terminal voltage of the power storage medium to the no-load voltage of the rectifier. The direct-current power storage device according to 1 or 2. 前記直流/直流変換装置は、外線が前記下限電圧以上で前記電力貯蔵媒体の端子電圧が外線の上限電圧以下のとき、前記端子電圧が外線電圧より低い場合には外線電圧を降圧させながら外線側から該電力貯蔵媒体に充電し、前記端子電圧が外線電圧より高い場合には外線電圧を昇圧させながら外線側から該電力貯蔵媒体に充電する手段を備えたことを特徴とする請求項1乃至3記載の直流電力貯蔵装置。   In the DC / DC converter, when the external line is equal to or higher than the lower limit voltage and the terminal voltage of the power storage medium is equal to or lower than the upper limit voltage of the external line, when the terminal voltage is lower than the external line voltage, The power storage medium is charged from the outside line, and when the terminal voltage is higher than the outside line voltage, the power storage medium is charged from the outside line side while boosting the outside line voltage. The direct-current power storage device described. 前記直流/直流変換装置は、前記電力貯蔵媒体の端子電圧が外線電圧よりも高い場合、該電力貯蔵媒体から外線側への放電電流を制御または遮断する放電制御スイッチを備えたことを特徴とする請求項1乃至4記載の直流電力貯蔵装置。   The DC / DC converter includes a discharge control switch that controls or cuts off a discharge current from the power storage medium to the outside line when a terminal voltage of the power storage medium is higher than an outside line voltage. The direct-current power storage device according to claim 1. 前記直流/直流変換装置の主回路は、
外線から流れ込む充電電流を制御できる向きに一端を外線に接続した半導体スイッチSW1および該半導体スイッチSW1と逆並列接続したダイオードD1からなる高圧側アームと、前記半導体スイッチSW1と電流を制御できる向きが同じで且つ半導体スイッチSW1の他端と直列接続した半導体スイッチSW2および該半導体スイッチSW2と逆並列接続したダイオードD2からなる低圧側アームと、前記半導体スイッチSW1の他端に一端を接続したリアクトルLとからなる昇降圧チョッパと、
前記リアクトルLの他端と前記電力貯蔵媒体との間に接続し、該電力貯蔵媒体からの放電電流を制御できる向きの半導体スイッチSW3および該半導体スイッチSW3と逆並列接続したダイオードD3からなる放電制御スイッチと、
を備えたことを特徴とする請求項1乃至5記載の直流電力貯蔵装置。
The main circuit of the DC / DC converter is
The semiconductor switch SW1 having one end connected to the external line in a direction in which the charging current flowing from the external line can be controlled, and the high-voltage side arm composed of the diode D1 connected in reverse parallel to the semiconductor switch SW1, and the semiconductor switch SW1 have the same direction in which the current can be controlled. And a low-voltage side arm comprising a semiconductor switch SW2 connected in series with the other end of the semiconductor switch SW1, a diode D2 connected in reverse parallel to the semiconductor switch SW2, and a reactor L having one end connected to the other end of the semiconductor switch SW1. A buck-boost chopper,
Discharge control comprising a semiconductor switch SW3 connected between the other end of the reactor L and the power storage medium and capable of controlling a discharge current from the power storage medium, and a diode D3 connected in reverse parallel to the semiconductor switch SW3 A switch,
The DC power storage device according to claim 1, further comprising:
JP2006033988A 2006-02-10 2006-02-10 DC power storage device Active JP4572840B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006033988A JP4572840B2 (en) 2006-02-10 2006-02-10 DC power storage device
PCT/JP2006/324707 WO2007091371A1 (en) 2006-02-10 2006-12-12 Dc power storage device
MYPI20083020 MY151762A (en) 2006-02-10 2006-12-12 Direct-current power storage apparatus
KR1020087015332A KR100991460B1 (en) 2006-02-10 2006-12-12 Dc power storage device
CN2006800516983A CN101365606B (en) 2006-02-10 2006-12-12 DC power storage device
TW096104395A TWI331431B (en) 2006-02-10 2007-02-07 Direct-current power storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033988A JP4572840B2 (en) 2006-02-10 2006-02-10 DC power storage device

Publications (2)

Publication Number Publication Date
JP2007210513A true JP2007210513A (en) 2007-08-23
JP4572840B2 JP4572840B2 (en) 2010-11-04

Family

ID=38344978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033988A Active JP4572840B2 (en) 2006-02-10 2006-02-10 DC power storage device

Country Status (6)

Country Link
JP (1) JP4572840B2 (en)
KR (1) KR100991460B1 (en)
CN (1) CN101365606B (en)
MY (1) MY151762A (en)
TW (1) TWI331431B (en)
WO (1) WO2007091371A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027763A (en) * 2007-07-17 2009-02-05 Meidensha Corp Dc power storage unit
JP2009067205A (en) * 2007-09-12 2009-04-02 Toshiba Corp Sub station using storage element, and electric railroad feeding system
JP2010011711A (en) * 2008-06-30 2010-01-14 Kawasaki Heavy Ind Ltd Microgrid using electric railroad system
JP2010252617A (en) * 2009-03-24 2010-11-04 Meidensha Corp Charging control method in feeder voltage compensator for electric railways
JP2011051507A (en) * 2009-09-03 2011-03-17 Meidensha Corp Power storage device of direct current electric railway

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040348A (en) * 2008-08-06 2010-02-18 Kawasaki Heavy Ind Ltd Opening/closing method of dc power supply and device for the same
US8525495B2 (en) * 2009-06-03 2013-09-03 Lincoln Global, Inc. Input current generator for buck-boost circuit control
CN102193608A (en) * 2010-03-03 2011-09-21 广达电脑股份有限公司 Adjustable current-limiting averaging circuit, and peripheral device and computer system using same
KR100973142B1 (en) * 2010-04-01 2010-07-29 이대교 Power compensating device for electric load on vehicle using edlc and method therefor
CN103052527B (en) * 2010-08-02 2015-02-11 松下电器产业株式会社 Vehicle power source device
EP2700534B1 (en) * 2011-04-22 2018-04-18 Mitsubishi Electric Corporation Charging apparatus
WO2014068815A1 (en) * 2012-10-31 2014-05-08 株式会社 東芝 Power management device and power management system
CN104648166A (en) * 2014-12-12 2015-05-27 江苏大学 Vehicle-mounted composite power supply regenerative braking energy recovery system and method
DE102015012415B4 (en) * 2015-09-25 2021-06-10 Audi Ag Prediction of a voltage drop in a motor vehicle
DE102019210641B4 (en) * 2019-07-18 2021-03-04 Siemens Mobility GmbH Vehicle for operation on a trackside DC voltage network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251403A (en) * 1985-04-26 1986-11-08 Toshiba Corp Power converter for controlling electric railcar
JP2000233669A (en) * 1999-02-18 2000-08-29 Meidensha Corp Power feeding system for dc feeder line
JP2001260719A (en) * 2000-03-16 2001-09-26 Railway Technical Res Inst Dc electromotive system for electric railroad
JP2005162076A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075121A (en) * 1992-12-02 1993-08-11 郭福库 Power supply mode with equivalent drawing transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251403A (en) * 1985-04-26 1986-11-08 Toshiba Corp Power converter for controlling electric railcar
JP2000233669A (en) * 1999-02-18 2000-08-29 Meidensha Corp Power feeding system for dc feeder line
JP2001260719A (en) * 2000-03-16 2001-09-26 Railway Technical Res Inst Dc electromotive system for electric railroad
JP2005162076A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027763A (en) * 2007-07-17 2009-02-05 Meidensha Corp Dc power storage unit
JP2009067205A (en) * 2007-09-12 2009-04-02 Toshiba Corp Sub station using storage element, and electric railroad feeding system
JP2010011711A (en) * 2008-06-30 2010-01-14 Kawasaki Heavy Ind Ltd Microgrid using electric railroad system
JP2010252617A (en) * 2009-03-24 2010-11-04 Meidensha Corp Charging control method in feeder voltage compensator for electric railways
JP2011051507A (en) * 2009-09-03 2011-03-17 Meidensha Corp Power storage device of direct current electric railway

Also Published As

Publication number Publication date
MY151762A (en) 2014-06-30
WO2007091371A1 (en) 2007-08-16
JP4572840B2 (en) 2010-11-04
KR100991460B1 (en) 2010-11-04
TWI331431B (en) 2010-10-01
TW200737643A (en) 2007-10-01
KR20080072068A (en) 2008-08-05
CN101365606A (en) 2009-02-11
CN101365606B (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4572840B2 (en) DC power storage device
EP2241472B1 (en) Power storage control apparatus and method of electric vehicle
JP3964857B2 (en) Regenerative power absorption control method for electric railways
JP4848729B2 (en) DC electric railway power storage device
JP3618273B2 (en) DC feeder system for electric railway
JP4978354B2 (en) DC power storage device
JP2009089503A (en) Vehicle controller with storage device
JP2000233669A (en) Power feeding system for dc feeder line
JP2004358984A (en) Direct current power supply equipment for electric railroad
CN112152270A (en) Superconducting magnetic energy storage device applied to subway train regenerative braking and control method thereof
JP5777669B2 (en) Electric vehicle control device
JP6829069B2 (en) Circuit system for railroad vehicles
JP2008074180A (en) Power storage system
JP2010000810A (en) Feeder system of dc feeding network
JP6259778B2 (en) Railway vehicle drive system
JP3263974B2 (en) Momentary power failure prevention circuit of auxiliary power supply for electric vehicle
JP6240023B2 (en) Power converter and railway vehicle equipped with the same
CA2978837C (en) Power storage device
JP2010058565A (en) Power converter and electric railroad system
JP2011168152A (en) Power storage system for electric railway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Ref document number: 4572840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3