JP2010058565A - Power converter and electric railroad system - Google Patents

Power converter and electric railroad system Download PDF

Info

Publication number
JP2010058565A
JP2010058565A JP2008224066A JP2008224066A JP2010058565A JP 2010058565 A JP2010058565 A JP 2010058565A JP 2008224066 A JP2008224066 A JP 2008224066A JP 2008224066 A JP2008224066 A JP 2008224066A JP 2010058565 A JP2010058565 A JP 2010058565A
Authority
JP
Japan
Prior art keywords
power
feeder
converter
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008224066A
Other languages
Japanese (ja)
Other versions
JP5509442B2 (en
Inventor
Tetsuya Kato
哲也 加藤
Tomomichi Ito
智道 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008224066A priority Critical patent/JP5509442B2/en
Publication of JP2010058565A publication Critical patent/JP2010058565A/en
Application granted granted Critical
Publication of JP5509442B2 publication Critical patent/JP5509442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently use regenerative electric power without increasing facility cost by reducing capacity of an expensive power storage device. <P>SOLUTION: The direct current power converter, which is a component of a power converter, converts direct current power in response to a direct current power feeder voltage to transfer the direct current power between the direct current power converter and the direct current power feeder. A power storage device is connected to the direct current power converter and stores power input from the power feeder via the direct current power converter, and the stored power is output to the power feeder. An AC-DC power converter connected between an alternate power supply of a power distribution system and the power storage device converts alternate current power to the direct current power. This configuration allows to efficiently store regenerative electric power and use the stored regenerative electric power as running electric power without increasing facility cost. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力貯蔵装置を有し、き電線から電力を吸収またはき電線に電力を供給する電力変換器、及びそのような電力変換器を備える電気鉄道システムに関する。   The present invention relates to a power converter that has a power storage device, absorbs power from a feeder line, or supplies power to the feeder line, and an electric railway system including such a power converter.

近年、変電所からの直流電力を電気車に供給する電気鉄道システムでは、電気車は節電などを目的として回生ブレーキを利用している。この回生ブレーキは、電気車の持つ運動エネルギーを車載のインバータにより電気エネルギーに変換して、電気車の減速を行い、この電気エネルギーは、回生電力としてき電線に放出される。き電線に放出された回生電力は、他の電気車に取り込まれて電気エネルギーから加速エネルギーに変換されることにより消費される。このように、回生電力を介して運動エネルギーと電気エネルギーとの間の相互変換を行われることにより、電気鉄道システムの省エネ化がなされている。   In recent years, in an electric railway system that supplies direct current power from a substation to an electric vehicle, the electric vehicle uses a regenerative brake for the purpose of power saving. This regenerative brake converts the kinetic energy of the electric vehicle into electric energy by an in-vehicle inverter to decelerate the electric vehicle, and this electric energy is released as regenerative power to the electric wire. The regenerative power released to the feeder is consumed by being taken into another electric vehicle and converted from electric energy to acceleration energy. Thus, energy saving of the electric railway system is made by performing mutual conversion between kinetic energy and electric energy through regenerative electric power.

このような電気鉄道システムの一例として、直流電気車が加速運転する力行モード時には、二次電池の貯蔵電力を放電させて直流電気車で消費し、直流電気車が減速運転する回生モード時には、直流電気車で発生した回生電力を二次電池に充電する電鉄用直流変電システムが提案されている(特許文献1の段落「0012」、図5等を参照)。   As an example of such an electric railway system, in the power running mode in which the DC electric vehicle is accelerated, the stored power of the secondary battery is discharged and consumed in the DC electric vehicle, and in the regenerative mode in which the DC electric vehicle is decelerated, the DC There has been proposed a DC substation system for electric railway that charges rechargeable power generated in an electric vehicle to a secondary battery (see paragraph “0012” of FIG. 5, FIG. 5 and the like).

また、交流を直流に整流する整流器と、この整流器と並列に接続され、電気二重層キャパシタとチョッパとが直列に接続された回路とを有し、この電気二重層キャパシタに充電された電荷を、電気二重層キャパシタ及び回生機能を有する電力変換部を搭載する電気車両に供給する電気車両用の充電設備が知られている(例えば、特許文献2参照)。   In addition, a rectifier that rectifies alternating current into direct current, and a circuit that is connected in parallel with the rectifier and in which an electric double layer capacitor and a chopper are connected in series, and the electric charge charged in the electric double layer capacitor, There is known a charging facility for an electric vehicle that supplies an electric vehicle including an electric double layer capacitor and a power conversion unit having a regeneration function (see, for example, Patent Document 2).

また、電気鉄道システムにおいて、き電線に電力貯蔵装置を持つ電力回生装置を設置することで、回生時のパンタ点電圧の上昇を抑制することができるのと同時に、パンタ点電圧が低下して電気車の速度を緩める必要のあるような場所では、電力貯蔵装置からの放電で、パンタ点電圧の低下を抑制することができることも知られている。   Moreover, in an electric railway system, by installing a power regeneration device having a power storage device in the feeder, it is possible to suppress an increase in the punter point voltage during regeneration. It is also known that in places where it is necessary to slow down the speed of a vehicle, a decrease in the punter point voltage can be suppressed by discharging from the power storage device.

特開平11−91415号公報JP-A-11-91415 特開2006−232102号公報JP 2006-232102 A

しかしながら、回生電力量に対して、力行電力量は大きな電力量となるために、回生電力の吸収と力行電力の供給を同一電力貯蔵装置にて対応するためには、力行電力量に見合った、大きな電力貯蔵能力が必要であり、電力貯蔵媒体が大型で高価になるという問題がある。   However, since the amount of powering power is larger than the amount of regenerative power, in order to support the absorption of regenerative power and the supply of powering power with the same power storage device, it is commensurate with the powering power amount. There is a problem that a large power storage capacity is required, and the power storage medium is large and expensive.

本発明の目的は、高価な電力貯蔵装置の容量を増やすことなく、回生エネルギー、力行エネルギーの双方エネルギーを処理できる経済性に優れた電力変換装置及び電気鉄道システムを提供することにある。   An object of the present invention is to provide an economical power conversion device and an electric railway system that can process both regenerative energy and powering energy without increasing the capacity of an expensive power storage device.

上記課題を解決するために、本発明の電力変換装置は、電力貯蔵装置を備える電力変換装置であって、き電線に接続され、き電線電圧に応じて、前記き電線から入力した電力を前記き電線電圧より低い電圧を有する直流電力に変換して前記電力貯蔵装置に出力し、又は前記き電線電圧より低い電圧を有する直流電力を前記き電線電圧を有する直流電力に変換して前記き電線に出力する直流電力変換装置と、配電系統の交流電源と接続され、交流電力を直流電力に変換する交直変換装置と、前記直流電力変換装置と前記交直変換装置との間に接続され、前記直流電力変換装置を介して前記き電線との間で電力の授受を行うとともに、前記交直変換装置を介して前記配電系統の交流電源から電力の供給を受けることにより電力を貯蔵する前記電力貯蔵装置と、前記き電線の電圧に応じて、前記直流電力変換装置を制御することにより、前記き電線と前記電力貯蔵装置との間での電力の授受の制御を行うとともに、前記配電系統の交流電源から前記電力貯蔵装置を介して前記直流き電線へ電力を出力する制御を行う制御装置と、を有する。   In order to solve the above problems, a power conversion device of the present invention is a power conversion device including a power storage device, and is connected to a feeder, and the power input from the feeder according to the feeder voltage is DC power having a voltage lower than the feeder voltage is converted and output to the power storage device, or DC power having a voltage lower than the feeder voltage is converted to DC power having the feeder voltage and the feeder A direct current power converter that outputs power to an AC power source of a distribution system, an AC / DC converter that converts AC power into DC power, and a DC power converter that is connected between the DC power converter and the AC / DC converter. The power that stores power by receiving power from the AC power supply of the power distribution system via the AC / DC converter and performing power transfer with the feeder via the power converter By controlling the direct-current power converter according to the storage device and the voltage of the feeder line, the power transmission and reception between the feeder line and the power storage device is controlled, and the distribution system And a control device that performs control to output power from the AC power source to the DC feeder via the power storage device.

本発明の電気鉄道システムは、き電線から電力を入力して走行し、回生運転時に回生電力を前記き電線に出力する電気車両と、変電装置と、電力変換装置から構成される電気鉄道システムであって、前記変電装置は、第1の交流電圧を有する第1の交流電源に接続され、第1の交流電圧を有する交流電力をき電線電圧を有する直流電力に変換して、前記き電線に出力する第1の交直電力変換装置と、前記第1の交直電力変換装置から出力される直流電力と前記き電線から出力される前記回生電力とを入力して電力を貯蔵し、前記第1の交直電力変換装置から前記き電線への出力を平滑化する第1の電力貯蔵装置と、を備え、前記電力変換装置は、前記き電線に接続され、前記き電線電圧を有する直流電力とき電線電圧より低い電圧を有する直流電力との間で直流電力を相互に変換する直流電力変換装置と、前記直流電力変換装置と接続され、前記電気車両の回生運転時に前記き電線から前記直流電力変換装置を通して回生電力を入力して貯蔵し、前記電気車両の力行運転時に、貯蔵された電力を前記直流電力変換装置を通して前記き電線に出力する第2の電力貯蔵装置と、前記第1の交流電圧より低い第2の交流電圧を有する第2の交流電源と前記第2の電力貯蔵装置とに接続され、第2の交流電圧を有する交流電力を直流電力に変換して、前記電気車両の力行運転時に、前記直流電力変換装置を通して、前記第2の電力貯蔵装置の貯蔵電力量と前記第2の電力貯蔵装置から前記き電線への出力電力量とを補充する第2の交直電力変換装置と、前記直流電力変換装置を制御することにより、前記第2の電力貯蔵装置と、前記第2の交直電力変換装置と、前記き電線との間の電力の授受を制御する制御装置と、を備える。   An electric railway system according to the present invention is an electric railway system that includes an electric vehicle that travels by inputting electric power from a feeder, and outputs regenerative electric power to the feeder during regenerative operation, a transformer, and a power converter. The transformer is connected to a first AC power source having a first AC voltage, converts AC power having the first AC voltage into DC power having a feeder voltage, Inputting the first AC / DC power converter to output, the DC power output from the first AC / DC power converter and the regenerative power output from the feeder, and storing the power, the first A first power storage device for smoothing the output from the AC / DC power converter to the feeder line, the power converter device being connected to the feeder line and having direct current power and the wire voltage. Straight with lower voltage A DC power converter that mutually converts DC power between the power and the DC power converter, and the regenerative power is input from the feeder through the DC power converter during the regenerative operation of the electric vehicle. A second power storage device for storing and outputting the stored power to the feeder through the DC power converter during powering operation of the electric vehicle; and a second AC voltage lower than the first AC voltage. A second AC power supply having the second AC power storage device, the AC power having the second AC voltage being converted into DC power, and during the power running operation of the electric vehicle, The second AC / DC power converter for replenishing the stored power amount of the second power storage device and the output power amount from the second power storage device to the feeder line, and the DC power converter are controlled. thing More comprises a second power storage device, and said second AC-DC power converter, and a control device for controlling the transfer of power between the-out wire.

本発明によれば、電気車両の回生電力の吸収、貯蔵、き電線への再出力が効率的に行われ、電力の節約、電気車両の運転コストの低減を可能とする電力変換装置及び電気鉄道システムを提供することができる。   Advantageous Effects of Invention According to the present invention, a power conversion device and an electric railway that efficiently absorb and store regenerative power of an electric vehicle, re-output it to a feeder, and save power and reduce the operating cost of the electric vehicle. A system can be provided.

また、特高電圧の送電系統に接続され、装置費用が高額な変電装置の設置間隔を長くして、変電装置の数を減らすことができるので、電気鉄道システムの設備費用を低額にすることができる。   In addition, it is possible to reduce the number of substations by increasing the installation interval of substations that are connected to an extra high voltage transmission system and are expensive. it can.

更に、電気車両の回生運転時のき電線電圧の上昇、及び、電気車両の力行運転時のき電線電圧の下降を抑制して、電気車両の安定した運行を実現することができる。   Furthermore, stable operation of the electric vehicle can be realized by suppressing an increase in the feeder voltage during the regenerative operation of the electric vehicle and a decrease in the feeder voltage during the power running operation of the electric vehicle.

以下図面を参照して、本発明の実施形態例(以下、「本例」ということもある。)について説明する。同一の構成要素については同一の参照符号を付してその説明を省略する。   Embodiments of the present invention (hereinafter sometimes referred to as “present examples”) will be described below with reference to the drawings. The same components are denoted by the same reference numerals, and the description thereof is omitted.

まず、図1に基づいて本発明の第1の実施形態例の電力変換装置について説明する。
本例の電力変換装置1は、き電線3側から説明すると、直流電力変換装置16と、電力貯蔵装置8と、交直電力変換装置17と、制御装置200とから構成されている。
直流電力変換装置16は、直流き電線3とレール4に接続され、直流き電線電圧に応じて、直流電力を変換し、直流き電線との間で直流電力の授受を行う装置である。また、電力貯蔵装置8は、直流電力変換装置16と接続され、直流き電線電圧に応じて、直流電力変換装置16を介してき電線から電力を入力して貯蔵するとともに、貯蔵した電力をき電線に出力する装置である。交直電力変換装置17は、配電系統の交流電源2と電力貯蔵装置8との間に接続され、交流電力を直流電力に変換する装置である。
First, a power converter according to a first embodiment of the present invention will be described with reference to FIG.
The power conversion device 1 of this example will be described from the feeder 3 side. The power conversion device 1 includes a DC power conversion device 16, a power storage device 8, an AC / DC power conversion device 17, and a control device 200.
The DC power converter 16 is an apparatus that is connected to the DC feeder 3 and the rail 4, converts DC power according to the DC feeder voltage, and exchanges DC power with the DC feeder. The power storage device 8 is connected to the DC power conversion device 16 and stores power by inputting power from the feeder via the DC power conversion device 16 in accordance with the DC feeder voltage and supplying the stored power to the feeder. It is the device which outputs to. The AC / DC power converter 17 is connected between the AC power supply 2 and the power storage device 8 of the distribution system, and converts AC power into DC power.

本例の電力変換装置は、き電線3とレール4との間の電圧(以下、「き電線電圧」と記す)を所定の値である直流電圧指令値に一致するように、電力貯蔵装置8の入出力電力と配電系統の交流電源から受電する電力を制御することにより、き電線電圧の変動を抑制するようにしている。ここで、配電系統の交流電源の電圧は、例えば、6.6kV〜3.3kVであり、直流き電線電圧は、例えば、700Vである。   In the power conversion device of this example, the power storage device 8 is set so that the voltage between the feeder 3 and the rail 4 (hereinafter referred to as “feeder voltage”) matches the DC voltage command value which is a predetermined value. By controlling the input / output power and the power received from the AC power supply of the distribution system, fluctuations in the feeder voltage are suppressed. Here, the voltage of the AC power source of the distribution system is, for example, 6.6 kV to 3.3 kV, and the DC feeder voltage is, for example, 700V.

次に、本例の電力変換装置1を構成する各装置について説明する。直流電力変換装置16は、き電線側から順に、フィルタリアクトル9と、コンデンサ11と、昇降圧チョッパ回路20と、昇圧リアクトル10とを有する。昇降圧チョッパ回路20は、IGBT素子11mと11nとを直列に接続して構成される。ここで、IGBT素子11mと11nは、図1に示されるIGBTと、それらのIGBTに逆並列に接続されたダイオードにより構成される回路のことをいう。   Next, each apparatus which comprises the power converter device 1 of this example is demonstrated. The DC power converter 16 includes a filter reactor 9, a capacitor 11, a step-up / down chopper circuit 20, and a boosting reactor 10 in order from the feeder line side. The step-up / step-down chopper circuit 20 is configured by connecting IGBT elements 11m and 11n in series. Here, the IGBT elements 11m and 11n refer to a circuit constituted by the IGBT shown in FIG. 1 and a diode connected in antiparallel to these IGBTs.

電力貯蔵装置8は、二次電池8により構成される。二次電池8は、例えば、ハイブリッド自動車に搭載されるリチウムイオン電池を使用しても良い。以下に電力貯蔵装置8として二次電池を使用する場合を例に本発明の各実施形態を説明するが、本発明の各実施形態において、二次電池の代わりに、電力貯蔵用のコンデンサを用いることもできる。   The power storage device 8 includes a secondary battery 8. As the secondary battery 8, for example, a lithium ion battery mounted on a hybrid vehicle may be used. In the following, each embodiment of the present invention will be described using a secondary battery as the power storage device 8 as an example. In each embodiment of the present invention, a capacitor for storing power is used instead of the secondary battery. You can also.

電力貯蔵装置8は、直流電力変換装置16と交直電力変換装置17との間に接続される。そして、二次電池8は、直流電力変換装置16側において、昇圧リアクトル10を介して、IGBT素子11mと11nとを直列に接続する端子と接続される。   The power storage device 8 is connected between the DC power conversion device 16 and the AC / DC power conversion device 17. Secondary battery 8 is connected to a terminal for connecting IGBT elements 11m and 11n in series via step-up reactor 10 on the DC power converter 16 side.

交直電力変換装置17は、配電系統2と接続される変圧器5と、変圧器5と接続され電流を遮断する遮断器6と、遮断器6と接続されかつ出力側で二次電池8に並列に接続されるダイオード整流器7とを有する。   The AC / DC power converter 17 is connected to the transformer 5 connected to the power distribution system 2, the circuit breaker 6 connected to the transformer 5 and interrupting the current, and connected to the circuit breaker 6 and in parallel to the secondary battery 8 on the output side. And a diode rectifier 7 connected to the.

そして、本発明の電機鉄道システムにおいて、電力変換装置1は、制御装置200を備え、直流電力変換装置16を制御することを通して、第2の電力貯蔵装置8と、第2の交直電力変換装置17と、き電線4との間の電力の授受を制御する。   And in the electric railway system of this invention, the power converter device 1 is provided with the control apparatus 200, and controls the direct-current power converter device 16 through the 2nd power storage device 8 and the 2nd AC / DC power converter device 17. And the transmission and reception of electric power to and from the feeder 4 are controlled.

本発明の第1の実施形態に係る電力変換装置1において、まずコンデンサ11の端子電圧が電圧センサ30により検出される。この電圧センサ30により検出された電圧値が、予め所定の値に定められた直流電圧指令値と比較される。電気車両(図示せず)の力行運転時には、電気車両は、き電線から電力を取得する。これにともなって、き電線電圧が低下し、電圧センサ30により検出された電圧値が、直流電圧指令値より小さくなる。   In the power conversion device 1 according to the first embodiment of the present invention, the terminal voltage of the capacitor 11 is first detected by the voltage sensor 30. The voltage value detected by the voltage sensor 30 is compared with a DC voltage command value that is set to a predetermined value in advance. During power running of an electric vehicle (not shown), the electric vehicle obtains electric power from the feeder. Along with this, the feeder voltage decreases, and the voltage value detected by the voltage sensor 30 becomes smaller than the DC voltage command value.

このように、電圧センサ30により検出された電圧値が、直流電圧指令値より小さい場合は、電力変換装置1は、制御装置200から出力されるゲート信号に基づき、チョッパ回路20のIGBT素子11m、11nをスイッチングし、二次電池8の出力電圧を昇圧することにより、二次電池8もしくはダイオード整流器7から得た電力をき電線側に出力する。これにより、き電線電圧の低下が、抑制される。   As described above, when the voltage value detected by the voltage sensor 30 is smaller than the DC voltage command value, the power conversion device 1 determines the IGBT element 11m of the chopper circuit 20 based on the gate signal output from the control device 200. By switching 11n and boosting the output voltage of the secondary battery 8, the electric power obtained from the secondary battery 8 or the diode rectifier 7 is output to the feeder line side. Thereby, the fall of feeder voltage is suppressed.

電気車両(図示せず)の回生運転時には、電気車両は、回生電力をき電線に放出する。これにより、き電線電圧が上昇し、コンデンサ11の端子電圧も上昇する。これに伴って、電圧センサ30により検出された電圧値が、直流電圧指令値より大きくなる。このように、電圧センサ30の検出値が、直流電圧指令値より大きい場合は、電力変換装置1は、き電線3から電力を吸収し、その電力をチョッパ回路20のスイッチングにより降圧して二次電池8に充電する。これにより、き電線電圧の上昇が、抑制される。   During regenerative operation of an electric vehicle (not shown), the electric vehicle discharges regenerative power to the feeder. Thereby, the feeder voltage rises and the terminal voltage of the capacitor 11 also rises. Along with this, the voltage value detected by the voltage sensor 30 becomes larger than the DC voltage command value. As described above, when the detection value of the voltage sensor 30 is larger than the DC voltage command value, the power conversion device 1 absorbs power from the feeder 3 and steps down the power by switching the chopper circuit 20 to perform secondary operation. Charge the battery 8. Thereby, the rise in feeder voltage is suppressed.

次に、図1を参照しながら、電力変換装置1の制御動作について、以下に説明する。電力変換装置1の制御装置200において、電圧センサ30により検出された電圧値と、予め所定の値に定められた直流電圧指令値が、減算器201に入力される。そして、減算器201は、直流電圧指令値とコンデンサ11の端子電圧との電圧偏差を算出する。   Next, the control operation of the power conversion device 1 will be described below with reference to FIG. In the control device 200 of the power conversion device 1, the voltage value detected by the voltage sensor 30 and the DC voltage command value set in advance to a predetermined value are input to the subtractor 201. Then, the subtractor 201 calculates a voltage deviation between the DC voltage command value and the terminal voltage of the capacitor 11.

この電圧偏差は、電圧制御器(AVR)202に出力される。そして、電圧制御器(AVR)202は、電圧偏差をゼロにするようPI演算を施し、二次電池8とダイオード整流器7の出力電流の和である電流指令値を算出する。   This voltage deviation is output to the voltage controller (AVR) 202. Then, the voltage controller (AVR) 202 performs a PI operation so that the voltage deviation is zero, and calculates a current command value that is the sum of the output currents of the secondary battery 8 and the diode rectifier 7.

また、この電流指令値は、リミッタ203に出力される。リミッタ203は、電流指令値の下限値を装置定格充電電流値とし、上限値を後述する除算器206の出力値として、上下限リミッタ演算を施し、その出力を新たな電流指令値として減算器207に出力する。   The current command value is output to the limiter 203. The limiter 203 performs an upper / lower limiter calculation using the lower limit value of the current command value as the device rated charging current value, the upper limit value as an output value of a divider 206, which will be described later, and the output as a new current command value. Output to.

減算器207は、この新たな電流指令値と電流センサ31の検出値との電流偏差を算出し、この電流偏差を電流制御器(ACR)208に出力する。電流制御器208は、この電流指令値と電流センサ31の検出値の偏差をゼロにするようPI演算を施し、チョッパ回路20の入力電圧Vinの指令値を算出し、PWM制御器209に出力する。   The subtractor 207 calculates a current deviation between the new current command value and the detected value of the current sensor 31, and outputs this current deviation to the current controller (ACR) 208. The current controller 208 performs a PI operation so that the deviation between the current command value and the detection value of the current sensor 31 is zero, calculates a command value of the input voltage Vin of the chopper circuit 20, and outputs the command value to the PWM controller 209. .

PWM制御器209は、電流制御器(ACR)208の出力と搬送波発生器210の出力である三角波とを入力とし、電流制御器208の出力を変調波とし、搬送波発生器210の出力を搬送波としてPWM演算を実施し、チョッパ回路20のIGBT素子11m、11nのゲート信号を出力する。それらのゲート信号はIGBT素子11m、11nのIGBTゲートに入力され、IGBT素子はゲート信号に従ってスイッチング動作を行う。   The PWM controller 209 receives the output of the current controller (ACR) 208 and the triangular wave that is the output of the carrier generator 210 as inputs, the output of the current controller 208 as a modulated wave, and the output of the carrier generator 210 as a carrier wave. PWM calculation is performed, and gate signals of the IGBT elements 11m and 11n of the chopper circuit 20 are output. These gate signals are input to the IGBT gates of the IGBT elements 11m and 11n, and the IGBT elements perform a switching operation according to the gate signals.

これにより、本例の電力変換装置1では、二次電池8とダイオード整流器7の出力電流の和を電流指令値に追従させることができる。この電流指令値はコンデンサ11の端子電圧を所定の値に一致するように算出された値である。ゆえに、電力変換装置1はコンデンサ11の端子電圧を一定にするように二次電池8もしくはダイオード整流器7の出力電流を制御することができる。   Thereby, in the power converter device 1 of this example, the sum of the output currents of the secondary battery 8 and the diode rectifier 7 can be made to follow the current command value. This current command value is a value calculated so that the terminal voltage of the capacitor 11 matches a predetermined value. Therefore, the power converter 1 can control the output current of the secondary battery 8 or the diode rectifier 7 so that the terminal voltage of the capacitor 11 is constant.

なお、定常状態においては、コンデンサ11の端子電圧は、き電線3のき電線電圧と一致している。そのため、電力変換装置1は、コンデンサ11の端子電圧を電圧センサ30を用いて検出し、二次電池8の充放電とダイオード整流器7からの電流の流れを制御するようにする。これにより、き電線電圧を所定の値に維持することができる。   In the steady state, the terminal voltage of the capacitor 11 matches the feeder voltage of the feeder 3. Therefore, the power conversion device 1 detects the terminal voltage of the capacitor 11 using the voltage sensor 30 and controls the charge / discharge of the secondary battery 8 and the current flow from the diode rectifier 7. Thereby, the feeder voltage can be maintained at a predetermined value.

次に、本例のリミッタ203の上限値算出方法について説明する。本例のリミッタ203の機能は、整流器7の出力電力を所定の値以下となるように制限することである。また、本例の電力変換装置では、交直電力変換装置17は、その設置が比較的容易である配電系統に接続され、配電系統から交流電力を受電する。   Next, a method for calculating the upper limit value of the limiter 203 in this example will be described. The function of the limiter 203 in this example is to limit the output power of the rectifier 7 so as to be a predetermined value or less. Moreover, in the power converter device of this example, the AC / DC power converter device 17 is connected to a power distribution system that is relatively easy to install, and receives AC power from the power distribution system.

しかしながら、配電設備側からの受電では、配電系統の送電容量に制約があるために、配電系統から受電してき電線に供給できる電力容量に限りがある。例えば、配電変電所の1フィーダでの送電容量は2MW程度であるが、き電線への必要供給電力は3MWを超える場合がほとんどである。このため、配電系統から供給される電力すなわち整流器の出力電力を配電系統の送電容量以下に制限し、配電系統からき電線に配電系統の送電容量以上の電力を供給することにより配電系統に障害を及ぼすことを防止することが必要となる。   However, in receiving power from the distribution facility side, there is a limit to the power capacity that can be received from the distribution system and supplied to the electric wires because the transmission capacity of the distribution system is limited. For example, the power transmission capacity of one feeder of a distribution substation is about 2 MW, but the required supply power to the feeder line is almost more than 3 MW. For this reason, the power supplied from the power distribution system, that is, the output power of the rectifier, is limited to the transmission capacity of the distribution system or less, and the power supply from the power distribution system to the power line exceeds the power transmission capacity of the power distribution system. It is necessary to prevent this.

また、ダイオード整流器7の出力電流が、電流センサ33により検出される。そして、ダイオード整流器7の出力電圧と等しい二次電池8の端子電圧が、電圧センサ32により検出される。この電流センサ33と電圧センサ32で検出された検出値が乗算器204にて乗算され、ダイオード整流器7の出力電力値が得られる。   Further, the output current of the diode rectifier 7 is detected by the current sensor 33. The terminal voltage of the secondary battery 8 equal to the output voltage of the diode rectifier 7 is detected by the voltage sensor 32. The detection values detected by the current sensor 33 and the voltage sensor 32 are multiplied by the multiplier 204, and the output power value of the diode rectifier 7 is obtained.

このダイオード整流器7の出力電力値と配電系統の容量から定められる所定の整流器出力最大値は、出力電力調整器205に入力される。出力電力調整器205は、ダイオード整流器7の出力電力を整流器出力最大値以下に保つように電力変換装置1の出力電力上限値の調整値を算出し、出力する。   A predetermined maximum rectifier output value determined from the output power value of the diode rectifier 7 and the capacity of the distribution system is input to the output power regulator 205. The output power adjuster 205 calculates and outputs an adjustment value of the output power upper limit value of the power conversion device 1 so as to keep the output power of the diode rectifier 7 below the rectifier output maximum value.

出力電力調整器205の出力は、除算器206に入力される。また、二次電池8の端子電圧も除算器206に入力される。そして、除算器206は、出力電力調整器205の出力を二次電池8の端子電圧で除算した値を算出し、リミッタ203に出力する。   The output of the output power adjuster 205 is input to the divider 206. The terminal voltage of the secondary battery 8 is also input to the divider 206. Then, the divider 206 calculates a value obtained by dividing the output of the output power adjuster 205 by the terminal voltage of the secondary battery 8 and outputs the value to the limiter 203.

以上の演算により、本例の電力変換装置1では、ダイオード整流器7の出力電力を所定の値以下に制限することができる。   With the above calculation, in the power conversion device 1 of this example, the output power of the diode rectifier 7 can be limited to a predetermined value or less.

次に、図2に基づいて、本例に用いられる出力電力調整器205の演算について説明する。まず、出力電力調整器205に整流器7の出力電力が入力され、この整流器7の出力電圧が配電系統の許容電力から決る整流器出力電力最大値と比較される(ステップS1)。このステップS1で、整流器7の出力電力が整流器出力電力最大値よりも小さいと判定された場合には、その差電力分の値を前回演算時の出力電力上限値に加算して新たな出力電力上限値に設定する(ステップS2)。そして、この新たに設定された出力電力上限値が、整流器7の定格電力を超えないように制限された後(ステップS3)、除算器206に出力される(ステップS6)。   Next, the calculation of the output power adjuster 205 used in this example will be described with reference to FIG. First, the output power of the rectifier 7 is input to the output power regulator 205, and the output voltage of the rectifier 7 is compared with the maximum value of the rectifier output power determined from the allowable power of the distribution system (step S1). If it is determined in step S1 that the output power of the rectifier 7 is smaller than the maximum value of the rectifier output power, the value of the difference power is added to the output power upper limit value in the previous calculation to obtain a new output power. The upper limit value is set (step S2). Then, after the newly set output power upper limit value is limited so as not to exceed the rated power of the rectifier 7 (step S3), it is output to the divider 206 (step S6).

また、ステップS1において、整流器7出力電力が整流器出力電力最大値よりも大きいと判定された場合(ステップS1のYES)には、その差電力分の値を前回演算時の出力電力上限値から減算し、新たな出力電力上限値とする(ステップS4)。この新たな出力電力上限値は負の値にならないように制限された後(ステップS5)、除算器206に出力される(ステップS6)。以上のステップS1〜S6の処理が完了すると最初の処理に戻る。   If it is determined in step S1 that the output power of rectifier 7 is larger than the maximum value of rectifier output power (YES in step S1), the difference power value is subtracted from the output power upper limit value at the previous calculation. Then, a new output power upper limit value is set (step S4). The new output power upper limit value is limited so as not to become a negative value (step S5), and then output to the divider 206 (step S6). When the processes in steps S1 to S6 are completed, the process returns to the first process.

次に、図3に基づいて、本発明の第2の実施形態例について説明する。本発明の第2の実施形態例の構成要素のうち、本発明の第1の実施形態例の構成要素と同一の機能を有するものについては同一の参照符号を付して説明を省略する。本発明の第2の実施形態では、第1の実施形態で使用されるダイオード整流器7の代わりに、サイリスタ、またはIGBT等の半導体装置を使用して直流電圧を制御できる他励、または自励の交流/直流半導体変換器34が使用されている。   Next, based on FIG. 3, a second embodiment of the present invention will be described. Among the constituent elements of the second embodiment of the present invention, those having the same functions as those of the first embodiment of the present invention are denoted by the same reference numerals and description thereof is omitted. In the second embodiment of the present invention, instead of the diode rectifier 7 used in the first embodiment, a separately-excited or self-excited device capable of controlling a DC voltage using a semiconductor device such as a thyristor or IGBT. An AC / DC semiconductor converter 34 is used.

この第2の実施形態例における電力変換装置1の基本的な動作は、前述の第1の実施形態例に係る電力変換装置1の動作と同様である。しかしながら、第2の実施形態例に係る電力変換装置301においては、二次電池8に並列に接続される配電系統からの電力を半導体変換器34自身が制限することにより、配電系統から流入する電力をより確実に、また可変的に制限することができる。   The basic operation of the power conversion device 1 according to the second embodiment is the same as the operation of the power conversion device 1 according to the first embodiment described above. However, in the power conversion device 301 according to the second embodiment, the power flowing from the distribution system is restricted by the semiconductor converter 34 itself that limits the power from the distribution system connected in parallel to the secondary battery 8. Can be more reliably and variably limited.

すなわち、本発明の第2の実施形態例によれば、半導体変換器34の出力電流を計測している電流センサ33と、半導体変換器34の出力電圧と等しい電圧を示す電圧センサ32の出力から、電力を算出している。この算出された電力は、半導体変換器34の通電電流を制限することにより、配電系統からの電力を制限値以下(通常1フィーダ2MW以下)に制限することが可能となる。このように、本発明の第2の実施形態例では、半導体変換器34が、配電系統から流入する電力を制限する目的で、半導体変換器34の出力電流を制限している。このため、制御装置400が備えるリミッタ213は、半導体変換器34の出力電流を監視することなく、直流電力変換器16を保護することを目的として、直流電力変換器16内を流れる電流値を制限することが可能となる。   That is, according to the second embodiment of the present invention, from the output of the current sensor 33 measuring the output current of the semiconductor converter 34 and the voltage sensor 32 indicating a voltage equal to the output voltage of the semiconductor converter 34. , Calculating power. This calculated power can limit the power from the distribution system to a limit value or less (usually 1 feeder 2 MW or less) by limiting the energization current of the semiconductor converter 34. Thus, in the second embodiment of the present invention, the semiconductor converter 34 limits the output current of the semiconductor converter 34 for the purpose of limiting the power flowing from the distribution system. Therefore, the limiter 213 provided in the control device 400 limits the value of the current flowing through the DC power converter 16 for the purpose of protecting the DC power converter 16 without monitoring the output current of the semiconductor converter 34. It becomes possible to do.

以上説明したように、本発明の第2の実施形態例の電力変換器301は、配電系統からの電力を監視することなく、入力電圧センサ30にて測定したき電線の電圧と、電圧センサ32にて測定した二次電池8の端子電圧をもとに動作点を決定することができる。   As described above, the power converter 301 according to the second embodiment of the present invention does not monitor the power from the distribution system, and the voltage of the feeder line measured by the input voltage sensor 30 and the voltage sensor 32. The operating point can be determined based on the terminal voltage of the secondary battery 8 measured in step (1).

次に、図4に基づいて、本発明に係る電力変換装置を備える電気鉄道システムの例について説明する。図4に示す電気鉄道システム500は、き電線3と、レール4と、き電線3とレール4との間を走行する電気車両501と、変電装置502と、本発明に係る電力変換装置1とを備えている。電気車両501は、き電線3から電力を入力して走行する。また、電気車両501は、ブレーキ操作時に発生する制動時のエネルギーにより発電をし、この発電した回生電力をき電線3に出力する。   Next, based on FIG. 4, the example of an electric railway system provided with the power converter device which concerns on this invention is demonstrated. An electric railway system 500 shown in FIG. 4 includes a feeder 3, a rail 4, an electric vehicle 501 that travels between the feeder 3 and the rail 4, a transformer 502, and the power converter 1 according to the present invention. It has. The electric vehicle 501 travels by inputting electric power from the feeder 3. In addition, the electric vehicle 501 generates power using the braking energy generated when the brake is operated, and outputs the generated regenerative power to the feeder 3.

変電装置502は、変圧器503と、整流器504とを有する第1の交直電力変換装置505を備える。第1の交直電力変換装置505は、第1の交流電圧を有する第1の交流電源510に接続され、第1の交流電圧を有する交流電力をき電線電圧を有する直流電力に変換して、き電線3に出力する。   The substation device 502 includes a first AC / DC power conversion device 505 having a transformer 503 and a rectifier 504. The first AC / DC power converter 505 is connected to a first AC power supply 510 having a first AC voltage, converts AC power having the first AC voltage into DC power having a feeder voltage, and Output to the electric wire 3.

また、変電装置502は、第1の交直電力変換装置505から出力された直流電力とき電線3からの回生電力とを入力して、それらの電力を第1の電力貯蔵装置506に貯蔵する。そして、変電装置502は、電力貯蔵装置506を介することにより、第1の交直電力変換装置からき電線3への出力を平滑化する。   In addition, the transformer 502 receives the DC power output from the first AC / DC power converter 505 and the regenerative power from the electric wire 3 and stores the power in the first power storage device 506. Then, the transformer 502 smoothes the output from the first AC / DC power converter to the feeder 3 via the power storage device 506.

変電装置502は、特高電圧、例えば、66kV〜22kVの交流電力を降圧して直流電力に変換し、き電線3に供給することを主要な役割としている。また、変電装置502は、き電線3に直流電力を供給する主要な役割を行う他に、チョッパ回路507を介してき電線3に接続される第1の電力貯蔵装置506を有し、き電線から回生電力を吸収して貯蔵することも行っている。   The substation device 502 has a main role of stepping down the AC power of extra high voltage, for example, 66 kV to 22 kV, converting it to DC power, and supplying it to the feeder 3. Further, the transformer 502 has a first power storage device 506 connected to the feeder 3 via the chopper circuit 507 in addition to performing the main role of supplying DC power to the feeder 3. It also absorbs and stores regenerative power.

本発明の電機鉄道システムは、本発明に係る上述の電力変換装置を備えている。本発明の第1の実施形態に係る電力変換装置を例として、本発明の電気鉄道システムについて以下に説明する。   The electric railway system of the present invention includes the above-described power conversion device according to the present invention. The electric railway system of the present invention will be described below by taking the power conversion apparatus according to the first embodiment of the present invention as an example.

本発明の電機鉄道システムが備える電力変換装置は、直流電力変換装置16と、第2の電力貯蔵装置8と、第2の交直電力変換装置17と、それらを制御する制御装置(図示せず)とを有する。直流電力変換装置16は、き電線3に接続され、き電線電圧を有する直流電力とき電線電圧より低い電圧を有する直流電力との間で直流電力を相互に変換する。   The power converter provided in the electric railway system of the present invention includes a DC power converter 16, a second power storage device 8, a second AC / DC power converter 17, and a control device (not shown) for controlling them. And have. The DC power conversion device 16 is connected to the feeder line 3 and mutually converts the DC power between the DC power having a feeder voltage and the DC power having a voltage lower than the feeder voltage.

本発明の電機鉄道システムが備える電力変換装置において、第2の電力貯蔵装置8は、直流電力変換装置16と接続され、電気車両501の回生運転時にき電線3から直流電力変換装置16を通して回生電力を入力して貯蔵し、電気車両501の力行運転時に、貯蔵された電力を直流電力変換装置16を通してき電線3に出力する。   In the power converter provided in the electric railway system of the present invention, the second power storage device 8 is connected to the DC power converter 16 and regenerative power from the feeder 3 through the DC power converter 16 during the regenerative operation of the electric vehicle 501. Is input and stored, and the stored electric power is output to the feeder 3 through the DC power converter 16 when the electric vehicle 501 is powered.

本発明の電力変換装置において、第2の交直電力変換装置17は、例えば、6.6kV〜3.3kVを有する配電系統の第2の交流電源2、と第2の電力貯蔵装置8とに接続され、第2の交流電圧を有する交流電力を直流電力に変換する。ここで、第2の交直電力変換装置17が接続される第2の交流電源の電圧は、変電装置502が接続される特高電圧を有する交流電源の第1の交流電圧、例えば、66kV〜22kVより低い。   In the power converter of the present invention, the second AC / DC converter 17 is connected to, for example, the second AC power supply 2 of the distribution system having 6.6 kV to 3.3 kV, and the second power storage device 8. The AC power having the second AC voltage is converted into DC power. Here, the voltage of the second AC power source to which the second AC / DC power converter 17 is connected is the first AC voltage of the AC power source having an extra high voltage to which the transformer 502 is connected, for example, 66 kV to 22 kV. Lower.

そして、第2の交直電力変換装置17は、電気車両501の力行運転時に、第2の電力貯蔵装置8の貯蔵電力量と、第2の電力貯蔵装置8からき電線3への出力電力量とを補充する。すなわち、電力変換装置が接続される配電系統の交流電源は、第2の電力貯蔵装置8の貯蔵電力量と第2の電力貯蔵装置8からき電線3への出力電力量とを補充している。   And the 2nd AC / DC power converter 17 carries out the power storage amount of the 2nd power storage device 8, and the output power amount to the feeder 3 from the 2nd power storage device 8 at the time of the power running operation of the electric vehicle 501. refill. That is, the AC power supply of the distribution system to which the power converter is connected supplements the stored power amount of the second power storage device 8 and the output power amount from the second power storage device 8 to the feeder 3.

本発明の電気鉄道システムにおいて、変電装置と変電装置との間に本発明の電力変換装置を設けることにより、電気車両の回生電力の吸収、貯蔵、き電線への再出力が効率的に行われ、電力の節約、電力コストの低減が可能となる。   In the electric railway system of the present invention, by providing the power conversion device of the present invention between the transformer and the transformer, the regenerative power of the electric vehicle is absorbed, stored, and re-output to the feeder line efficiently. It is possible to save power and reduce power costs.

本発明の電気鉄道システムにおいて、変電装置の間に本発明の電力変換装置を設けることにより、変電装置の設置する間隔を長くすることができる。これにより、配電系統に接続され、装置費用が低額の電力変換装置を設けることにより、特高電圧に接続され、装置費用が高額の変電装置の数を減らすことができるので、電気鉄道システム全体の設備費用を低額にすることができる。   In the electric railway system of the present invention, by providing the power conversion device of the present invention between the substations, the interval between the substations can be increased. As a result, it is possible to reduce the number of substations connected to an extra high voltage and expensive equipment by providing power conversion equipment that is connected to the power distribution system and has low equipment costs. Equipment costs can be reduced.

本発明の第1の実施形態に係る電力変換装置の全体の構成を示す図である。It is a figure which shows the whole structure of the power converter device which concerns on the 1st Embodiment of this invention. 図1の電力変換装置の出力電力調整器における処理のフローチャートを示す図である。It is a figure which shows the flowchart of the process in the output power regulator of the power converter device of FIG. 本発明の第2の実施形態に係る電力変換装置の全体の構成を示す図である。It is a figure which shows the whole structure of the power converter device which concerns on the 2nd Embodiment of this invention. 本発明の電力変換装置を備える電気鉄道システムの全体の構成を示す図である。It is a figure which shows the whole structure of an electric railway system provided with the power converter device of this invention.

符号の説明Explanation of symbols

1、301…電力変換装置、2…配電系統、3…き電線、4…レール、5、503…変圧器、6…遮断器、7、504…ダイオード整流器、8、506…二次電池、9…フィルタリアクトル、10…昇圧リアクトル、11…コンデンサ、11m、11n…IGBT素子、16…直流電力変換装置、17、18、505…交直電力変換装置、20…チョッパ回路、30…入力電圧センサ、31…電流センサ、32…電圧センサ、33…電流センサ、34…交流/直流半導体変換器、200…制御回路部、201…減算器、202…電圧制御器、203、213…リミッタ、204…乗算器、205…出力電圧調整器、206…除算器、207…減算器、208…電流制御器、209…PWM制御器、210…搬送波発生器、500…電気鉄道システム、501…電気車両、502…変電装置、507…半導体装置   DESCRIPTION OF SYMBOLS 1,301 ... Power converter device, 2 ... Distribution system, 3 ... Feed wire, 4 ... Rail, 5,503 ... Transformer, 6 ... Circuit breaker, 7, 504 ... Diode rectifier, 8, 506 ... Secondary battery, 9 DESCRIPTION OF SYMBOLS ... Filter reactor, 10 ... Boosting reactor, 11 ... Capacitor, 11m, 11n ... IGBT element, 16 ... DC power converter, 17, 18, 505 ... AC / DC power converter, 20 ... Chopper circuit, 30 ... Input voltage sensor, 31 DESCRIPTION OF SYMBOLS ... Current sensor, 32 ... Voltage sensor, 33 ... Current sensor, 34 ... AC / DC semiconductor converter, 200 ... Control circuit part, 201 ... Subtractor, 202 ... Voltage controller, 203, 213 ... Limiter, 204 ... Multiplier 205 ... Output voltage regulator, 206 ... Divider, 207 ... Subtractor, 208 ... Current controller, 209 ... PWM controller, 210 ... Carrier wave generator, 500 ... Electric railway system Temu, 501 ... electric vehicle, 502 ... power transformation device, 507 ... semiconductor device

Claims (6)

電力貯蔵装置を備える電力変換装置であって、
き電線に接続され、き電線電圧に応じて、前記き電線から入力した電力を前記き電線電圧より低い電圧を有する直流電力に変換して前記電力貯蔵装置に出力し、又は前記き電線電圧より低い電圧を有する直流電力を前記き電線電圧を有する直流電力に変換して前記き電線に出力する直流電力変換装置と、
配電系統の交流電源と接続され、交流電力を直流電力に変換する交直変換装置と、
前記直流電力変換装置と前記交直変換装置との間に接続され、前記直流電力変換装置を介して前記き電線との間で電力の授受を行うとともに、前記交直変換装置を介して前記配電系統の交流電源から電力の供給を受けることにより電力を貯蔵する前記電力貯蔵装置と、
前記き電線の電圧に応じて、前記直流電力変換装置を制御することにより、前記き電線と前記電力貯蔵装置との間での電力の授受の制御を行うとともに、前記配電系統の交流電源から前記電力貯蔵装置を介して前記き電線へ電力を出力する制御を行う制御装置と、
を有する電力変換装置。
A power conversion device including a power storage device,
In accordance with the feeder voltage, the power input from the feeder is converted into DC power having a voltage lower than the feeder voltage and output to the power storage device, or from the feeder voltage A DC power conversion device that converts DC power having a low voltage into DC power having the feeder voltage and outputs the DC power to the feeder; and
An AC / DC converter connected to an AC power source of the distribution system and converting AC power into DC power;
It is connected between the DC power converter and the AC / DC converter, and transmits and receives power to / from the feeder via the DC power converter, and the power distribution system via the AC / DC converter It said power storage device for storing electric power by receiving power from an AC power source,
By controlling the DC power conversion device according to the voltage of the feeder line, control of power transfer between the feeder line and the power storage device is performed, and from the AC power source of the distribution system, A control device that performs control to output power to the feeder via the power storage device;
A power conversion device.
前記制御装置は、前記き電線の電圧が所定の直流電圧指令値より小さい場合は、前記電力貯蔵装置に貯蔵された電力及び/又は前記交直変換装置から得た電力を前記き電線に出力し、前記き電線の電圧が前記所定の直流電圧指令値より大きい場合は、前記き電線の電力を前記電力貯蔵装置に出力して充電するように、前記直流電力変換装置を制御する、
ことを特徴とする請求項1記載の電力変換装置。
When the voltage of the feeder is smaller than a predetermined DC voltage command value, the control device outputs the power stored in the power storage device and / or the power obtained from the AC / DC converter to the feeder. When the voltage of the feeder is greater than the predetermined DC voltage command value, the DC power converter is controlled so that the power of the feeder is output and charged to the power storage device.
The power conversion device according to claim 1.
前記直流電力変換装置は、第1の半導体装置と第2の半導体装置とを直列に接続したチョッパ回路を備え、前記チョッパ回路が前記き電線と並列に接続され、前記電力貯蔵装置と前記交直変換装置が、第1の半導体装置と第2の半導体装置とを接続する端子とそれぞれ並列に接続される、
ことを特徴とする請求項1又は2記載の電力変換装置。
The DC power converter includes a chopper circuit in which a first semiconductor device and a second semiconductor device are connected in series, and the chopper circuit is connected in parallel to the feeder, and the power storage device and the AC / DC converter The device is connected in parallel with a terminal connecting the first semiconductor device and the second semiconductor device, respectively.
The power conversion device according to claim 1 or 2, wherein
前記制御装置は、前記交直変換装置から出力する出力電力の最大値を制限するように、前記直流電力変換装置を制御する、
ことを特徴とする請求項1〜3のいずれか1項記載の電力変換装置。
The control device controls the DC power converter so as to limit a maximum value of output power output from the AC / DC converter;
The power converter according to any one of claims 1 to 3, wherein
前記交直変換装置は、配電系統からの交流電力を整流して直流電力に変換する自励式または他励式の半導体変換器を備え、
前記半導体変換器は、前記交直変換装置から出力する出力電力の最大値を制限することを特徴とする請求項1〜3のいずれか1項記載の電力変換装置。
The AC / DC converter includes a self-excited or separately-excited semiconductor converter that rectifies AC power from a distribution system and converts it into DC power,
The said semiconductor converter restrict | limits the maximum value of the output electric power output from the said AC / DC converter, The power converter device of any one of Claims 1-3 characterized by the above-mentioned.
き電線から電力を入力して走行し、回生運転時に回生電力を前記き電線に出力する電気車両と、変電装置と、電力変換装置から構成される電気鉄道システムであって、
前記変電装置は、
第1の交流電圧を有する第1の交流電源に接続され、第1の交流電圧を有する交流電力をき電線電圧を有する直流電力に変換して、前記き電線に出力する第1の交直電力変換装置と、
前記第1の交直電力変換装置から出力される直流電力と前記き電線から出力される前記回生電力とを入力して電力を貯蔵し、前記第1の交直電力変換装置から前記き電線への出力を平滑化する第1の電力貯蔵装置と、を備え、
前記電力変換装置は、
前記き電線に接続され、き電線電圧を有する直流電力と前記き電線電圧より低い電圧を有する直流電力との間で直流電力を相互に変換する直流電力変換装置と、
前記直流電力変換装置と接続され、前記電気車両の回生運転時に前記き電線から前記直流電力変換装置を通して回生電力を入力して貯蔵し、前記電気車両の力行運転時に、貯蔵された電力を前記直流電力変換装置を通して前記き電線に出力する第2の電力貯蔵装置と、
前記第1の交流電圧より低い第2の交流電圧を有する第2の交流電源と前記第2の電力貯蔵装置とに接続され、第2の交流電圧を有する交流電力を直流電力に変換して、前記電気車両の力行運転時に、前記直流電力変換装置を通して、前記第2の電力貯蔵装置の貯蔵電力量と前記第2の電力貯蔵装置から前記き電線への出力電力量とを補充する第2の交直電力変換装置と、
前記直流電力変換装置を制御することにより、前記第2の電力貯蔵装置と、前記第2の交直電力変換装置と、前記き電線との間の電力の授受を制御する制御装置と、
を備える、ことを特徴とする電気鉄道システム。
An electric railway system composed of an electric vehicle that travels by inputting electric power from a feeder and outputs regenerative power to the feeder during regenerative operation, a transformer, and a power converter,
The transformer is
A first AC / DC power converter connected to a first AC power source having a first AC voltage, converting AC power having a first AC voltage into DC power having a feeder voltage, and outputting the DC power to the feeder. Equipment,
DC power output from the first AC / DC power converter and the regenerative power output from the feeder are input to store the power, and output from the first AC / DC converter to the feeder A first power storage device for smoothing,
The power converter is
A DC power converter that is connected to the feeder and converts DC power between the DC power having a feeder voltage and the DC power having a voltage lower than the feeder voltage;
The DC power conversion device is connected to the regenerative operation of the electric vehicle, the regenerative power is input from the feeder through the DC power conversion device and stored, and the stored electric power is stored in the DC power conversion operation of the electric vehicle. A second power storage device that outputs to the feeder through a power converter;
Connected to a second AC power source having a second AC voltage lower than the first AC voltage and the second power storage device, and converting AC power having the second AC voltage into DC power; A second power supply for replenishing the stored power amount of the second power storage device and the output power amount from the second power storage device to the feeder line through the DC power conversion device during the power running operation of the electric vehicle. AC / DC power converter,
By controlling the DC power conversion device, a control device for controlling power transfer between the second power storage device, the second AC / DC power conversion device, and the feeder line,
An electric railway system characterized by comprising:
JP2008224066A 2008-09-01 2008-09-01 Power converter and electric railway system Active JP5509442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224066A JP5509442B2 (en) 2008-09-01 2008-09-01 Power converter and electric railway system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224066A JP5509442B2 (en) 2008-09-01 2008-09-01 Power converter and electric railway system

Publications (2)

Publication Number Publication Date
JP2010058565A true JP2010058565A (en) 2010-03-18
JP5509442B2 JP5509442B2 (en) 2014-06-04

Family

ID=42185890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224066A Active JP5509442B2 (en) 2008-09-01 2008-09-01 Power converter and electric railway system

Country Status (1)

Country Link
JP (1) JP5509442B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095265A (en) * 2011-11-01 2013-05-20 Railway Technical Research Institute Control system of power storage device for direct current electric railway
JP2013141374A (en) * 2012-01-06 2013-07-18 Toshiba Corp Electric power supply system for electric railroad
WO2015133029A1 (en) * 2014-03-07 2015-09-11 株式会社日立製作所 Power-storing voltage stabilizer and method for controlling same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132330A (en) * 1979-03-28 1980-10-15 Japan Storage Battery Co Ltd Load regulation response device for electric railway
JPS57198127A (en) * 1981-05-29 1982-12-04 Hitachi Ltd Battery substation for electric railway
JPS57209430A (en) * 1981-06-16 1982-12-22 Mitsubishi Electric Corp Direct current control equipment
JP2004358984A (en) * 2003-06-02 2004-12-24 Railway Technical Res Inst Direct current power supply equipment for electric railroad
JP2006151093A (en) * 2004-11-26 2006-06-15 Hitachi Ltd Stationary energy storage type feeder voltage compensation device and method
JP2006232102A (en) * 2005-02-25 2006-09-07 Meidensha Corp Transportation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132330A (en) * 1979-03-28 1980-10-15 Japan Storage Battery Co Ltd Load regulation response device for electric railway
JPS57198127A (en) * 1981-05-29 1982-12-04 Hitachi Ltd Battery substation for electric railway
JPS57209430A (en) * 1981-06-16 1982-12-22 Mitsubishi Electric Corp Direct current control equipment
JP2004358984A (en) * 2003-06-02 2004-12-24 Railway Technical Res Inst Direct current power supply equipment for electric railroad
JP2006151093A (en) * 2004-11-26 2006-06-15 Hitachi Ltd Stationary energy storage type feeder voltage compensation device and method
JP2006232102A (en) * 2005-02-25 2006-09-07 Meidensha Corp Transportation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095265A (en) * 2011-11-01 2013-05-20 Railway Technical Research Institute Control system of power storage device for direct current electric railway
JP2013141374A (en) * 2012-01-06 2013-07-18 Toshiba Corp Electric power supply system for electric railroad
WO2015133029A1 (en) * 2014-03-07 2015-09-11 株式会社日立製作所 Power-storing voltage stabilizer and method for controlling same
JP2015168334A (en) * 2014-03-07 2015-09-28 株式会社日立製作所 Power storage type voltage stabilizer and control method of the same

Also Published As

Publication number Publication date
JP5509442B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
KR101715444B1 (en) Battery device and method for installing and operating same
JP3964857B2 (en) Regenerative power absorption control method for electric railways
JP5044340B2 (en) Substation and electric railway feeding system using power storage elements
RU2493090C2 (en) Elevator drive total current and power accumulation control
US9365175B2 (en) Power supply system for vehicle
JP2006151093A (en) Stationary energy storage type feeder voltage compensation device and method
JP5752562B2 (en) Control system for power storage device for DC electric railway
JP6004833B2 (en) Station building power supply
JP2006232102A (en) Transportation system
JP5318004B2 (en) Vehicle power supply system
KR20120037997A (en) Electric-vehicle propulsion power-conversion device
JP3618273B2 (en) DC feeder system for electric railway
JP2005057846A (en) Motor drive system and elevator drive system
JP4432675B2 (en) Power converter
JP5604984B2 (en) Feeding voltage control method for electric railway system
JP2011162057A (en) Control device of power converter for electric railroad
JP2006062489A (en) Power storage type regenerated power absorber and its controlling method
JP2009241677A (en) Control system of power storage device of dc electric railroad vehicle
JP5509442B2 (en) Power converter and electric railway system
JP2004289950A (en) Power supply system
WO1998025849A1 (en) Elevator control device and control device for power converter
JP5919092B2 (en) Power storage type regenerative power absorber and control method thereof
KR101065032B1 (en) Integrated power system for supplying simultaneously alternative current and direct current
JP2005205970A (en) Voltage compensation method
JP2003237431A (en) Feeder voltage compensating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5509442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350