WO2015133029A1 - Power-storing voltage stabilizer and method for controlling same - Google Patents

Power-storing voltage stabilizer and method for controlling same Download PDF

Info

Publication number
WO2015133029A1
WO2015133029A1 PCT/JP2014/082192 JP2014082192W WO2015133029A1 WO 2015133029 A1 WO2015133029 A1 WO 2015133029A1 JP 2014082192 W JP2014082192 W JP 2014082192W WO 2015133029 A1 WO2015133029 A1 WO 2015133029A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power storage
stabilization device
power
storage element
Prior art date
Application number
PCT/JP2014/082192
Other languages
French (fr)
Japanese (ja)
Inventor
智道 伊藤
洋 五十嵐
岡松 茂俊
正人 手島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2015133029A1 publication Critical patent/WO2015133029A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • H02J1/16Balancing the load in a network using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a voltage stabilizer connected to a DC feeder of an electric railway, and more particularly to a voltage stabilizer provided with a power storage means.
  • an electric train system having an electric brake that is, a regenerative car is used in the electric railway system.
  • the regenerative brake converts kinetic energy of the vehicle into electric energy by a vehicle-mounted inverter at the time of deceleration.
  • the feeder system supplies DC power from the substation to the electric vehicle through the feeder when the vehicle accelerates, and absorbs regenerative electric power from the regenerative vehicle through the feeder when the vehicle is decelerating.
  • the regenerative power is consumed as acceleration energy of the vehicle, and energy saving of the feeding system can be achieved.
  • the filter capacitor of the regenerative vehicle is charged, and the panta point voltage of the regenerative vehicle rises.
  • the brake is changed from the regenerative brake to the mechanical brake in order to protect the vehicle from overvoltage. Therefore, the ride comfort and energy saving performance deteriorate.
  • Japanese Patent Application Laid-Open No. 11-91415 discloses a power storage type voltage stabilization device which stores surplus power in a power storage element and discharges it as energy during power running of an electric vehicle.
  • Japanese Patent Laid-Open No. 2001-260719 describes a control method of a power converter that performs power control of a power storage element. In these methods, charging is performed if the feeder voltage is equal to or higher than the charge control setting voltage, and discharging is performed if the feeder voltage is equal to or lower than the discharge control setting voltage.
  • Equipment for an electric railway such as the above-mentioned electric storage type voltage stabilization device is often installed in a substation with a limited installation area such as under an overpass or along a route due to the restriction of the land owned by the introducer. Therefore, a power storage type voltage stabilization device with large rated power is constructed by a plurality of power storage type voltage stabilization devices (hereinafter referred to as single device stabilization devices), and the single device stabilization devices are distributed and arranged in the same substation. There may be a need.
  • the power converter is composed of a bidirectional chopper, a sensor for detecting the voltage and current of the circuit, and a waveform controller.
  • the waveform controller receives an output signal of the voltage / current sensor and an output signal of a battery controller that detects a charging rate of the power storage element, and outputs a drive signal of the bidirectional chopper.
  • the single-unit stabilization device power converter detects the feeder voltage by the built-in voltage sensor and detects the detection value.
  • the charge and discharge power to the power storage element is adjusted based on Therefore, the charge start time and the discharge start time of each unit stabilization device are shifted due to the detection error of the voltage sensor.
  • the difference in charge / discharge charge due to the time difference accumulates, which causes the charge rate of the power storage element for each single-unit stabilization device to diverge.
  • the present invention proposes a voltage stabilization device and its control method capable of reducing the difference in the charging rate of single-unit stabilization devices installed in the same substation.
  • the voltage stabilization device of the present invention comprises a power storage element, and a power converter provided between the feeder line and the power storage element, wherein the waveform controller of the power converter is a charge control set voltage and a discharge control.
  • the waveform controller of the power converter is a charge control set voltage and a discharge control.
  • Single-unit stabilization device that detects wire voltage higher than other single-unit stabilization devices due to detection error of voltage sensor starts charging earlier than other single-unit stabilization devices due to extra regenerative power. As a result, the charging rate is higher than that of other single unit stabilization devices. Since the control settling voltage of the unit stabilization device is corrected high by the increase of the charging rate by the settling voltage correction means of the present invention, the charging start time when the feeder voltage rises is delayed to charge between the unit stabilization devices. Rate deviation can be suppressed.
  • a controller for collecting state quantities of each unit stabilization device is not required, and therefore, a plurality of signals connecting the voltage / current sensor and battery controller provided in each unit stabilization device and the waveform controller It becomes unnecessary to lay a wire, and wiring can be simplified.
  • the power storage type voltage stabilization device 1 of the present invention is connected to the feeder wire 6 and the rail 7.
  • a rectifier 5 is connected to the feeder 6 and the rail 7.
  • the rectifier 5 is connected to the power system 3 via the transformer 4 and supplies DC power to a vehicle (not shown) at the time of acceleration of the vehicle.
  • the power storage type voltage stabilization device 1 detects a rise in feeder voltage vfeeder and charges the storage battery described later to suppress a rise in feeder voltage and detect a drop in feeder voltage that occurs during vehicle acceleration. It has a function of suppressing a drop in feeder voltage by discharging the storage battery.
  • the power storage type voltage stabilization device 1 is configured of the circuit breaker 2 and the single-unit stabilization devices 1_a and 1_b, and the single-unit stabilization devices 1_a and 1_b are connected in parallel at a connection point with the circuit breaker 2 and the rail 7.
  • the single-unit stabilizing devices 1_a and 1_b have the same configuration, and a voltage sensor provided in the single-unit stabilizing device detects a rise and a drop in the feeder voltage to charge and discharge the storage batteries respectively, and the current idc_a flowing from the feeder 6 , Change idc_b.
  • the single-machine stabilizing device 1_a will be described with reference to FIG.
  • Single-unit stabilization device 1_a is roughly configured by bidirectional chopper 80_a, storage battery 30_a, battery controller 40_a, and waveform controller 100_a.
  • the gate signals GateP_a and GateN_a which are drive signals for the IGBT assembly in the bidirectional chopper 80_a, are based on the voltage / current sensor detection value of the bidirectional chopper 80_a and the charging rate of the storage battery 30_a detected by the battery controller 40_a.
  • the charge and discharge of the storage battery 30_a are realized by calculating and outputting to the bidirectional chopper 80_a.
  • the electric power charged and discharged to the storage battery 30_a is equal to the power transferred from the wire 6 when the loss in the bidirectional chopper 80_a is ignored, and the feeder voltage can be stabilized by appropriate charging and discharging of the storage battery 30_a.
  • the bi-directional chopper 80_a includes a boost reactor 30L_a, an IGBT assembly 10_a, and a filter reactor 20L_a that prevents a ripple component generated by switching of the IGBT assembly from flowing out to the feeder 6, and a filter capacitor 20C_a.
  • the IGBT assembly 10_a is configured by a series circuit of IGBT modules 10m_a and 10n_a in which the IGBTs and diodes are connected in antiparallel.
  • Single-unit stabilizing device 1_a includes voltage sensor 50PT_a that detects the voltage of filter capacitor 20C_a, current sensor 51CT_a that detects the current of boost reactor 30L_a, and voltage sensor 52PT_a that detects the terminal voltage of storage battery 30_a. Is input to the waveform controller 100_a. The output signals of the current sensor 51CT_a and the voltage sensor 52PT_a are also input to the battery controller 40_a, and the battery controller 40_a calculates the state of charge SOC_a of the storage battery 30_a based on the output signal of the sensor and outputs the value to the waveform controller 100_a Do.
  • the charging rate SOC_a of the storage battery 30_a is calculated by the battery controller 40_a, but the charging rate may be calculated inside the waveform controller 100_a.
  • the battery controller 40 _a calculates the state of charge SOC_a using the output signals of the current sensor 51CT_a detecting the current flowing through the boost reactor and the voltage sensor 52PT_a detecting the storage battery terminal voltage, The same effect can be obtained by providing a voltage sensor and a current sensor that only 40_a uses.
  • the calculation of the waveform controller 100_a is largely performed by the voltage control command value calculation unit 1500a that calculates the voltage control command value Vabs2 during charging operation of the single-unit stabilizing device 1_a and the voltage control command value Vdisc2 during discharging operation, charging of the bidirectional chopper It is determined which operation to execute: operation, discharge operation, and suppression standby in which switching of bidirectional chopper 80_a is stopped and switching is stopped until switching of the IGBT module is stopped and operation of voltage stabilization device 1 is to be operated.
  • System control arithmetic unit 1004a a current command value calculation unit 1100a for calculating a charging current command value to the storage battery 30_a, and a voltage command value vref to be output to the storage battery 30_a side according to the current command value Current control unit 1200a, and a gate signal generation unit that generates gate signals GateP_a and GateN_a that are drive signals for the IGBT modules 10m_a and 10n_a based on the voltage command value vref. Constructed.
  • the system control computing unit 1004a receives the outputs Vabs2 and Vdisc2 of the voltage control command value calculating unit 1500a and the filter capacitor voltage vline_a as input, and calculates the charge voltage controller 1007a execution flag described later, ABS_ENABLE, the discharge voltage controller 1008a calculation implementation flag DISC_ENABLE and the gate deblocking flag GateENABLE of the IGBT assembly are calculated and output to the current command value calculator 1100a, the current controller 1200a, and the gate signal generator 1300a.
  • vline_a is Vabs2 or more
  • ABS_ENABLE is set to 1
  • vline_a is smaller than Vabs2, ABS_ENABLE is set to 0.
  • DISC_ENABLE is set to 1
  • vline_a is larger than Vdisc2, DISC_ENABLE is set to 0.
  • GateENABLE is set to 1 when both ABS_ENABLE and DISC_ENABLE are 1 and to 0 when both ABS_ENABLE and DISC_ENABLE are 0.
  • the current command value calculation unit 1100a receives the outputs Vabs2 and Vdisc2 of the voltage control command value calculation unit 1500a, the filter capacitor voltage detection value vline_a, and the outputs ABS_ENABLE and DISC_ENABLE of the system control computing unit 1004a, and sets the charge current command value of the storage battery 30_a. Calculate
  • the subtractor 1005a calculates the difference between the charging voltage command value Vabs2 and the capacitor voltage detection value vline_a, and outputs the difference to the charging voltage control computing unit 1007a. Further, the subtractor 1006a calculates the difference between the discharge-time voltage command value Vdisc2 and the capacitor voltage detection value vline_a, and outputs the difference to the discharge-time voltage control computing unit 1008a.
  • the charge-time voltage control computing unit 1007a is a proportional-integrator and performs proportional-integral operation on the output of the subtractor 1005a when the operation execution flag ABS_ENABLE is 1, and outputs zero when the ABS_ENABLE is 0. Do.
  • Discharge time voltage control computing unit 1008a is also a proportional-integrator, performs proportional-integral operation on the output of subtractor 1006a when operation execution flag DISC_ENABLE is 1, and outputs zero when DISC_ENABLE is 0. .
  • the outputs of the voltage control computing unit 1007a for charging and the voltage control computing unit 1008a for discharging are added by the adder 1011a, and are output to the current control unit 1200a as a charging current command value of the storage battery 30 — a.
  • the difference between the charge current command value and the boost reactor current detection value ibat_a is calculated by the subtractor 1012a, and the difference is output to the current control computing unit 1013a.
  • the current controller 1013a receives the difference and the flag GateENABLE output from the system control computing unit 1004a.
  • the current controller 1013a is a proportional-integrator, and if GateENABLE is 1, it performs a proportional-integral operation on the output of the subtract 1012a, and outputs the output to the adder 1015a. When GateENABLE is 0, a zero is output to the adder 1015a.
  • the terminal voltage detection value vbat_a of the storage battery 30_a is input to the low pass filter 1014a.
  • the low pass filter 1014a removes the ripple component due to switching, and outputs the output to the adder 1015a.
  • the adder 1015a calculates the sum of the output of the current controller 1013a and the output of the low pass filter 1014a, and outputs the sum to the gate signal generation unit 1300a as the output voltage command value vref of the IGBT assembly 10_a.
  • the gate signal generation unit 1300a includes a carrier wave generator 1016a that generates a carrier wave tri that is a triangular wave, and a comparator 1017a.
  • the comparator 1017a receives the voltage command values vref and tri and the flag GateENABLE output from the system control computing unit 1004a.
  • the single-machine stabilizing device 1_a can control the charging current of the storage battery 30_a so that vline_a matches Vabs2, and vline_a discharges.
  • the discharge current of storage battery 30_a can be controlled so that vline_a matches Vdisc2, and if vline_a is between Vabs2 and Vdisc2, switching of IGBT assembly 10_a is stopped and kept waiting Can.
  • Voltage control command value calculation unit 1500a of this embodiment receives charge rate SOC_a of storage battery 30_a as an input, and voltage command value Vabs2 for charge and voltage command value Vdisc2 for discharge are compared with the above charge rate in the normal operation range of the charge rate. Calculation means for correcting the voltage command value so as to increase monotonously. By this calculation, it is possible to suppress the difference between the storage battery charging rates of the single-unit stabilizing devices 1_a and 1_b whose controllers are independent, and it is possible to expect improvement of the utilization rate of the storage batteries and avoidance of shortening the life.
  • the voltage control command value calculation unit 1500a includes a voltage command value correction computing unit 1001a and adders 1002a and 1003a. By adding the correction term vref_hos calculated by the voltage command value correction computing unit 1001a to the predetermined values Vabs and Vdisc, respectively, a new charge voltage command value Vabs2 for charging and a voltage command value Vdisc2 for discharging are calculated, and the voltage command value Vdisc2 is calculated. The voltage command value is output to current command value calculator 1100a and system control calculator 1004a.
  • the charging rate SOC_a of the storage battery 30 — a is output to the subtractor 10011 a, SOC1 is subtracted, and the difference is output to the upper / lower limiter 10012 a.
  • Upper and lower limit limiter 10012a receives the output of subtractor 10011a, limits it to zero or more and ⁇ SOC or less, and outputs the limited value to multiplier 10013a.
  • the multiplier 10013a multiplies the output of the upper / lower limit limiter 10012a by a predetermined value K having a positive value to calculate a voltage command value correction term vref_hos.
  • SOC1 and ⁇ SOC are predetermined values, and SOC1 is set to the lower limit value or less of the normal operation range.
  • SOC1 is set to the lower limit value or less of the normal operation range.
  • SOC1 is 20% or less
  • SOC1 and The sum of ⁇ SOC is 80% or more.
  • the charging rate SOC_a, the voltage command value for charging Vabs2 and the voltage command value for discharging Vdisc2 have proportional characteristics as shown in FIG.
  • the purpose of this characteristic is to prevent the difference between the battery charging rates of the single-unit stabilizing devices caused by the detection error of the voltage sensors that detect the capacitor voltages of the single-unit stabilizing devices 1_a and 1_b.
  • the voltage command value correction term vref_hos be 2 to 3 times the expected detection error of the voltage sensor.
  • the predetermined constant K is selected to be set to 10% or less of the rated wire voltage. It should.
  • the graph shown in FIG. 6 shows the feeder voltage vfeeder in the immediate vicinity of the voltage stabilizer 1, the current idc_a flowing from the feeder wire 6 into the single-unit stabilizer 1_a, and the storage battery 30_a charge rate SOC_a of the single-unit stabilizer 1_a in order from the top.
  • the electric current idc_b which flows in into single unit stabilization device 1_b from the electric wire 6 and the storage battery charge rate SOC_b of single unit stabilization device 1_b are shown.
  • SOC_a and SOC_b are set equal to 50%.
  • the solid line in the graph is the operation waveform according to the present embodiment, and the waveform shown by the broken line is a waveform when the voltage command value correction calculation based on the charging rate is not performed.
  • FIG. 6 shows an operation waveform when the capacitor voltage detection voltage sensor of single-unit stabilization device 1_a detects a voltage higher than the value detected by the capacitor voltage detection voltage sensor of single-unit stabilization device 1_b. .
  • the feeder voltage rises due to the regenerative operation of the vehicle, and at time t1, the feeder voltage vfeeder reaches the in-charge voltage control command value vf2 of the single-unit stabilizing device 1_a.
  • the single-unit stabilization device 1_a receives power from the feeder wire 6 by charging the storage battery 30_a to stabilize the voltage.
  • current idc_a takes a positive value.
  • the single-machine stabilizing device 1_a continues charging until time t2 when the feeder voltage drops to a value lower than the charge-time voltage control command value, while the charging rate SOC_a of the storage battery rises.
  • the feeder voltage vfeeder decreases and becomes lower than the discharge-time voltage control command value vf3 of the single-unit stabilizing device 1_b at time t3.
  • the single-unit stabilizing device 1_b can detect a drop in the capacitor voltage to discharge the storage battery, supply power to the wire 6, and stabilize the voltage.
  • current idc_b has a negative value.
  • the single-unit stabilizing device 1_b continues discharging until time t4 when the feeder voltage rises to a value higher than the discharge-time voltage control command value, during which the charging rate SOC_b of the storage battery decreases.
  • the charge voltage control command value Vabs2 for single unit stabilization device 1_a and the discharge voltage control command value Vdisc2 are corrected high, and the charge voltage control command value for charge and discharge voltage for single device stabilization device 1_b.
  • the control command value is corrected low.
  • the difference between the in-charge voltage control command value and the in-discharge voltage control command value of single-unit stabilizing devices 1_a and 1_b becomes small, and charging / discharging for feeder voltage stabilization after time t5 becomes single-unit stabilizing device 1_a , 1_b will be allocated power.
  • the single-unit stabilizing device 1_a performs charging again from time t5 to t6 and the single-unit stabilizing device 1_b from time t7 to t8. Discharge is performed, and as a result, the difference between the battery charging rates of single-unit stabilizing devices 1_a and 1_b continues to expand.
  • the power storage type voltage stabilization device 1 of the present embodiment it is possible to suppress the difference in the charging rate among the single-unit stabilizing devices by performing the voltage control command value correction by the charging rate.
  • the correction terms of the charge voltage control command value and the discharge voltage control command value with respect to the charge rate are proportional to the charge rate, but the values referred to the table and the correction terms are power values of the charge rate, etc. If it is monotonous increase, the same effect as the present invention can be expected.
  • the voltage stabilization apparatus is equipped with a storage battery as an electric power storage element in a present Example, you may use an electric double layer capacitor and a flywheel instead of a storage battery.
  • the same effect as the present invention can be obtained by treating the normalized value of the energy stored in the capacitor as the charging rate by the energy stored when the capacitor is at the rated voltage. Since the energy stored in the capacitor is proportional to the square of the terminal voltage of the capacitor, the energy stored in the capacitor may be provided with a voltage sensor for detecting the capacitor voltage, and the energy may be calculated from the sensor output.
  • the same effect as the present invention can be obtained by treating a value obtained by standardizing the energy stored in the flywheel with the kinetic energy stored at the rated rotation speed of the flywheel as a charging rate. Since the kinetic energy stored in the flywheel is proportional to the square of the rotational speed, the energy stored in the flywheel may be provided with a sensor for detecting the rotational speed or rotational phase angle of the flywheel, and the energy may be calculated from the sensor.
  • the terminal voltage of the filter capacitor is the voltage control target in the present embodiment
  • the voltage between the P and N terminals of the single-unit stabilizing device may be the voltage control target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to prevent a difference in energy levels between power storage units when a plurality of power-storing feeder voltage stabilizers for an electric railway are placed adjacent to one another. The above power-storing feeder voltage stabilizer is provided with a means for detecting a level of energy stored in the power storage unit, and a command value of controlling a feeder voltage is monotonically increased relative to the energy level detected.

Description

電力貯蔵式電圧安定化装置およびその制御方法Power storage type voltage stabilization apparatus and control method thereof
 本発明は電気鉄道の直流き電線に接続する電圧安定化装置に関するものであり、特に上記電圧安定化装置が電力貯蔵手段を備える電圧安定化装置に関するものである。 The present invention relates to a voltage stabilizer connected to a DC feeder of an electric railway, and more particularly to a voltage stabilizer provided with a power storage means.
 近年、電気鉄道システムでは回生ブレーキを有する電気車、即ち、回生車両が使用されている。回生ブレーキは、減速時に車両の運動エネルギーを車載のインバータにより電気エネルギーに変換する。き電系統は、車両の加速時には変電所からの直流電力を、き電線を介して電気車に供給し、車両の減速時には回生車両からの回生電力を、き電線を介して吸収する。回生電力は、回生車両近くに加速車両がある場合には、その車両の加速エネルギーとして消費され、き電システムの省エネ化が図れる。
しかしながら、回生電力を消費する加速車両が近くにいない場合には、回生車両のフィルタコンデンサが充電され、回生車両のパンタ点電圧が上昇する。この場合、車両を過電圧から保護するために、ブレーキを回生ブレーキから機械ブレーキに変更する。そのため、乗り心地と省エネ性が悪化する。
In recent years, an electric train system having an electric brake, that is, a regenerative car is used in the electric railway system. The regenerative brake converts kinetic energy of the vehicle into electric energy by a vehicle-mounted inverter at the time of deceleration. The feeder system supplies DC power from the substation to the electric vehicle through the feeder when the vehicle accelerates, and absorbs regenerative electric power from the regenerative vehicle through the feeder when the vehicle is decelerating. When there is an accelerating vehicle near the regenerative vehicle, the regenerative power is consumed as acceleration energy of the vehicle, and energy saving of the feeding system can be achieved.
However, when the accelerating vehicle that consumes regenerative power is not nearby, the filter capacitor of the regenerative vehicle is charged, and the panta point voltage of the regenerative vehicle rises. In this case, the brake is changed from the regenerative brake to the mechanical brake in order to protect the vehicle from overvoltage. Therefore, the ride comfort and energy saving performance deteriorate.
 特開平11-91415号公報には、余剰電力を電力貯蔵要素に貯蔵し、電気車力行時のエネルギーとして放電する電力貯蔵式電圧安定化装置が開示されている。特開2001-260719号公報には、電力貯蔵要素の電力制御を行う電力変換器の制御方法が記載されている。これらの方法では、き電線電圧が充電制御設定電圧以上であれば充電を行い、放電制御設定電圧以下であれば放電を行う。 Japanese Patent Application Laid-Open No. 11-91415 discloses a power storage type voltage stabilization device which stores surplus power in a power storage element and discharges it as energy during power running of an electric vehicle. Japanese Patent Laid-Open No. 2001-260719 describes a control method of a power converter that performs power control of a power storage element. In these methods, charging is performed if the feeder voltage is equal to or higher than the charge control setting voltage, and discharging is performed if the feeder voltage is equal to or lower than the discharge control setting voltage.
 さらに、特許4238190号では、き電線電圧が充電制御設定電圧と放電制御設定電圧の間であれば、き電線への充放電により電力貯蔵手段の充電率を調整する電力変換器の制御手法が記載されている。 Furthermore, in patent 4238190, if the feeder voltage is between the charge control set voltage and the discharge control set voltage, a control method of the power converter is described in which the charge rate of the power storage means is adjusted by charging and discharging the feeder. It is done.
特開平11-91415号公報Japanese Patent Application Laid-Open No. 11-91415 特開2001-260719号公報JP 2001-260719 A 特許4238190号Patent 4238190
 上記電力貯蔵式電圧安定化装置のような電気鉄道向け設備は、導入者の所有する土地の制約により、高架下もしくは路線脇といった設置面積が限られた変電所に設置される場合が多い。そのため、定格電力の大きい電力貯蔵式電圧安定化装置を複数の電力貯蔵式電圧安定化装置(以降、単機安定化装置と記す)で構築し、該単機安定化装置を同一変電所内に分散配置しなければならない場合がある。 Equipment for an electric railway such as the above-mentioned electric storage type voltage stabilization device is often installed in a substation with a limited installation area such as under an overpass or along a route due to the restriction of the land owned by the introducer. Therefore, a power storage type voltage stabilization device with large rated power is constructed by a plurality of power storage type voltage stabilization devices (hereinafter referred to as single device stabilization devices), and the single device stabilization devices are distributed and arranged in the same substation. There may be a need.
 上記電力変換器は、双方向チョッパと、該回路の電圧・電流を検出するセンサと、波形制御器により構成される。該波形制御器は上記電圧・電流センサの出力信号と、電力貯蔵要素の充電率を検出するバッテリコントローラの出力信号を入力とし、上記双方向チョッパの駆動信号を出力する。
前述の単機安定化装置を単一の波形制御器で制御する場合、各単機安定化装置の備える電圧・電流センサやバッテリコントローラと波形制御器をつなぐ複数の信号線を敷設しなければならず、ノイズ対策や断線対策が必要となり、配線工事の工数増加が発生する。
The power converter is composed of a bidirectional chopper, a sensor for detecting the voltage and current of the circuit, and a waveform controller. The waveform controller receives an output signal of the voltage / current sensor and an output signal of a battery controller that detects a charging rate of the power storage element, and outputs a drive signal of the bidirectional chopper.
When controlling the above-mentioned unit stabilization device with a single waveform controller, it is necessary to lay a plurality of signal lines connecting the voltage controller and the battery controller and waveform controller provided in each unit stabilization device, Countermeasures against noise and disconnection are required, and the number of wiring works increases.
 一方、電圧安定化装置を、各々波形制御器を備える複数の単機安定化装置により構成した場合、単機安定化装置内電力変換器は各々内蔵する電圧センサによりき電線電圧を検出し、該検出値に基づいて電力貯蔵要素への充放電電力を調整する。そのため、該電圧センサの検出誤差により各単機安定化装置の充電開始時刻や放電開始時刻がずれる。その時間差による充放電電荷の差が蓄積することで、単機安定化装置毎の電力貯蔵要素の充電率が乖離する。上記充電率の乖離が大きくなると、各単機安定化装置の利用率低下の原因となり、特に電力貯蔵要素が蓄電池で構成される場合は高い充電率もしくは低い充電率にとどまる時間が長くなることにより蓄電池の劣化が進む原因となる。 On the other hand, when the voltage stabilization device is constituted by a plurality of single-unit stabilization devices each having a waveform controller, the single-unit stabilization device power converter detects the feeder voltage by the built-in voltage sensor and detects the detection value. The charge and discharge power to the power storage element is adjusted based on Therefore, the charge start time and the discharge start time of each unit stabilization device are shifted due to the detection error of the voltage sensor. The difference in charge / discharge charge due to the time difference accumulates, which causes the charge rate of the power storage element for each single-unit stabilization device to diverge. When the difference between the charging rates becomes large, the utilization rate of each unit stabilizing device decreases, and particularly when the power storage element is formed of a storage battery, the storage time is high because the time for which the high charging rate or the low charging rate remains is long. Cause deterioration of the
 上記事情を鑑みて、本発明は同一変電所内に設置される単機安定化装置の充電率乖離を低減できる電圧安定化装置およびその制御方法を提案する。 In view of the above-mentioned circumstances, the present invention proposes a voltage stabilization device and its control method capable of reducing the difference in the charging rate of single-unit stabilization devices installed in the same substation.
 本発明の電圧安定化装置は、電力貯蔵要素と、き電線と該電力貯蔵要素の間に備えられる電力変換器と、を備え、該電力変換器の波形制御器は充電制御設定電圧と放電制御設定電圧を電力貯蔵要素の充電率に対して単調増加させる整定電圧補正手段を備えることにより上記課題は達成可能である。 The voltage stabilization device of the present invention comprises a power storage element, and a power converter provided between the feeder line and the power storage element, wherein the waveform controller of the power converter is a charge control set voltage and a discharge control. The above problem can be achieved by providing settling voltage correction means that monotonously increases the set voltage with respect to the charging rate of the power storage element.
 電圧センサの検出誤差により他の単機安定化装置に比べてき電線電圧を高く検出する単機安定化装置は、余剰回生電力によるき電線電圧上昇を他の単機安定化装置に比べて早く充電を開始し、その結果他の単機安定化装置よりも充電率が高くなる。本発明の整定電圧補正手段により、充電率の増加により該単機安定化装置の制御整定電圧が高く補正されるため、き電線電圧上昇時の充電開始時刻を遅らせて、単機安定化装置間の充電率乖離を抑制することができる。 Single-unit stabilization device that detects wire voltage higher than other single-unit stabilization devices due to detection error of voltage sensor starts charging earlier than other single-unit stabilization devices due to extra regenerative power. As a result, the charging rate is higher than that of other single unit stabilization devices. Since the control settling voltage of the unit stabilization device is corrected high by the increase of the charging rate by the settling voltage correction means of the present invention, the charging start time when the feeder voltage rises is delayed to charge between the unit stabilization devices. Rate deviation can be suppressed.
 さらに、本発明によれば、各単機安定化装置の状態量を収集する制御器が不要となるため、各単機安定化装置の備える電圧・電流センサやバッテリコントローラと波形制御器をつなぐ複数の信号線の敷設が不要となり、配線工事を簡略化できる。 Furthermore, according to the present invention, a controller for collecting state quantities of each unit stabilization device is not required, and therefore, a plurality of signals connecting the voltage / current sensor and battery controller provided in each unit stabilization device and the waveform controller It becomes unnecessary to lay a wire, and wiring can be simplified.
本発明第一実施例の電力貯蔵式電圧安定化装置の説明図である。It is explanatory drawing of the electric power storage type voltage stabilization apparatus of 1st Example of this invention. 本発明第一実施例の単機安定化装置の構成説明図である。It is structure explanatory drawing of the single machine stabilization apparatus of this invention 1 Example. 本発明第一実施例の単機安定化装置の波形制御器の演算内容を示すブロック図である。It is a block diagram which shows the calculation content of the waveform controller of the single machine stabilizer of 1st Example of this invention. 本発明第一実施例の単機安定化装置の充電率による充電開始電圧および放電開始電圧の補正信号を算出する演算の説明図である。It is explanatory drawing of the calculation which calculates the correction | amendment signal of charge start voltage and discharge start voltage by the charge rate of the single machine stabilization apparatus of this invention 1 Example. 本発明第一実施例の単機安定化装置の充電率に対する充電開始電圧および放電開始電圧の変化例説明図である。It is explanatory drawing of the example of a change of the charge start voltage with respect to the charge rate of the single machine stabilizer of 1st Example of this invention, and a discharge start voltage. 本発明第一実施例の電力貯蔵式電圧安定化装置の動作説明図である。It is operation | movement explanatory drawing of the power storage type voltage stabilization apparatus of 1st Example of this invention.
 本発明の第一実施例を、図1を用いて説明する。 A first embodiment of the present invention will be described with reference to FIG.
 本発明の電力貯蔵式電圧安定化装置1は、き電線6、レール7に接続される。き電線6、レール7には、整流器5が接続される。整流器5は、変圧器4を介して電力系統3に接続し、図示しない車両に対して車両加速時に直流電力を供給する。 The power storage type voltage stabilization device 1 of the present invention is connected to the feeder wire 6 and the rail 7. A rectifier 5 is connected to the feeder 6 and the rail 7. The rectifier 5 is connected to the power system 3 via the transformer 4 and supplies DC power to a vehicle (not shown) at the time of acceleration of the vehicle.
 上記車両が減速のため回生運転を実施するとき、該車両のパンタ点電圧が上昇し、それに伴いレール7に対するき電線電圧(以降、き電線電圧と記す)が上昇する。電力貯蔵式電圧安定化装置1は、き電線電圧vfeederの上昇を検出して後述の蓄電池に充電することによりき電線電圧の上昇を抑制し、車両加速時に発生するき電線電圧の低下を検出して上記蓄電池を放電することによりき電線電圧の低下を抑制する機能を有する。 When the vehicle performs regenerative operation for deceleration, the panta point voltage of the vehicle rises, and the feeder voltage for the rail 7 (hereinafter referred to as feeder voltage) rises accordingly. The power storage type voltage stabilization device 1 detects a rise in feeder voltage vfeeder and charges the storage battery described later to suppress a rise in feeder voltage and detect a drop in feeder voltage that occurs during vehicle acceleration. It has a function of suppressing a drop in feeder voltage by discharging the storage battery.
 電力貯蔵式電圧安定化装置1は、遮断器2と単機安定化装置1_a、1_bにより構成され、単機安定化装置1_a、1_bは遮断器2およびレール7との接続点において並列接続される。 The power storage type voltage stabilization device 1 is configured of the circuit breaker 2 and the single-unit stabilization devices 1_a and 1_b, and the single-unit stabilization devices 1_a and 1_b are connected in parallel at a connection point with the circuit breaker 2 and the rail 7.
 単機安定化装置1_a、1_bは同一の構成を備え、単機安定化装置内に備える電圧センサによりき電線電圧の上昇および低下を検出して各々備える蓄電池を充放電し、き電線6から流れ込む電流idc_a、idc_bを変化させる。 The single-unit stabilizing devices 1_a and 1_b have the same configuration, and a voltage sensor provided in the single-unit stabilizing device detects a rise and a drop in the feeder voltage to charge and discharge the storage batteries respectively, and the current idc_a flowing from the feeder 6 , Change idc_b.
 単機安定化装置1_aを、図2を用いて説明する。 The single-machine stabilizing device 1_a will be described with reference to FIG.
 単機安定化装置1_aは、大きく双方向チョッパ80_a、蓄電池30_a、バッテリコントローラ40_a、そして波形制御器100_aにより構成される。波形制御器100_aが双方向チョッパ80_aの電圧・電流センサ検出値およびバッテリコントローラ40_aで検出する蓄電池30_aの充電率を元に、双方向チョッパ80_a内IGBTアセンブリの駆動信号であるゲート信号GateP_a、GateN_aを算出し、双方向チョッパ80_aに出力することで蓄電池30_aの充放電を実現する。蓄電池30_aの充放電する電力は、双方向チョッパ80_a内の損失を無視するとき電線6から授受する電力に等しく、蓄電池30_aの適切な充放電によりき電線電圧を安定化することができる。 Single-unit stabilization device 1_a is roughly configured by bidirectional chopper 80_a, storage battery 30_a, battery controller 40_a, and waveform controller 100_a. The gate signals GateP_a and GateN_a, which are drive signals for the IGBT assembly in the bidirectional chopper 80_a, are based on the voltage / current sensor detection value of the bidirectional chopper 80_a and the charging rate of the storage battery 30_a detected by the battery controller 40_a. The charge and discharge of the storage battery 30_a are realized by calculating and outputting to the bidirectional chopper 80_a. The electric power charged and discharged to the storage battery 30_a is equal to the power transferred from the wire 6 when the loss in the bidirectional chopper 80_a is ignored, and the feeder voltage can be stabilized by appropriate charging and discharging of the storage battery 30_a.
 双方向チョッパ80_aは昇圧リアクトル30L_a、IGBTアセンブリ10_a、そして該IGBTアセンブリのスイッチングにより発生するリプル成分のき電線6への流出を防ぐフィルタリアクトル20L_a、フィルタコンデンサ20C_aにより構成される。IGBTアセンブリ10_aは、IGBTとダイオードが逆並列接続されるIGBTモジュール10m_a、10n_aの直列回路により構成される。 The bi-directional chopper 80_a includes a boost reactor 30L_a, an IGBT assembly 10_a, and a filter reactor 20L_a that prevents a ripple component generated by switching of the IGBT assembly from flowing out to the feeder 6, and a filter capacitor 20C_a. The IGBT assembly 10_a is configured by a series circuit of IGBT modules 10m_a and 10n_a in which the IGBTs and diodes are connected in antiparallel.
 単機安定化装置1_aは、フィルタコンデンサ20C_aの電圧を検出する電圧センサ50PT_a、昇圧リアクトル30L_aの電流を検出する電流センサ51CT_a、蓄電池30_aの端子電圧を検出する電圧センサ52PT_aを備え、上記センサの出力信号は波形制御器100_aに入力される。電流センサ51CT_aおよび電圧センサ52PT_aの出力信号は、バッテリコントローラ40_aにも入力され、バッテリコントローラ40_aは該センサの出力信号に基づき蓄電池30_aの充電率SOC_aを算出し、その値を波形制御器100_aに出力する。 Single-unit stabilizing device 1_a includes voltage sensor 50PT_a that detects the voltage of filter capacitor 20C_a, current sensor 51CT_a that detects the current of boost reactor 30L_a, and voltage sensor 52PT_a that detects the terminal voltage of storage battery 30_a. Is input to the waveform controller 100_a. The output signals of the current sensor 51CT_a and the voltage sensor 52PT_a are also input to the battery controller 40_a, and the battery controller 40_a calculates the state of charge SOC_a of the storage battery 30_a based on the output signal of the sensor and outputs the value to the waveform controller 100_a Do.
 本実施例では、蓄電池30_aの充電率SOC_aをバッテリコントローラ40_aで算出しているが、波形制御器100_a内部で充電率を算出しても良い。また、本実施例では、バッテリコントローラ40_aが昇圧リアクトルを流れる電流を検出する電流センサ51CT_aおよび蓄電池端子電圧を検出する電圧センサ52PT_aの出力信号を用いて充電率SOC_aを算出しているが、バッテリコントローラ40_aのみが用いる電圧センサおよび電流センサを備えても同様の効果を奏す。 In the present embodiment, the charging rate SOC_a of the storage battery 30_a is calculated by the battery controller 40_a, but the charging rate may be calculated inside the waveform controller 100_a. Further, in the present embodiment, although the battery controller 40 _a calculates the state of charge SOC_a using the output signals of the current sensor 51CT_a detecting the current flowing through the boost reactor and the voltage sensor 52PT_a detecting the storage battery terminal voltage, The same effect can be obtained by providing a voltage sensor and a current sensor that only 40_a uses.
 波形制御器100_aの実施する演算を、図3を用いて説明する。 The operation performed by the waveform controller 100 — a will be described with reference to FIG.
 波形制御器100_aの演算は、大きく単機安定化装置1_aの充電運転時の電圧制御指令値Vabs2および放電運転時の電圧制御指令値Vdisc2を算出する電圧制御指令値算出部1500a、双方向チョッパの充電運転、放電運転、そしてIGBTモジュールのスイッチングを停止して電圧安定化装置1の動作すべきタイミングまで双方向チョッパ80_aのスイッチングを停止させて待機するサプレス待機、のうちどの運転を実施するかを判断するシステム制御演算器1004a、蓄電池30_aへの充電電流指令値を算出する電流指令値演算部1100a、該電流指令値に応じてIGBTアセンブリ10_aが蓄電池30_a側へ出力すべき電圧指令値vrefを算出する電流制御部1200a、そして該電圧指令値vrefを元にIGBTモジュール10m_a、10n_aの駆動信号であるゲート信号GateP_a、GateN_aを生成するゲート信号生成部により構成される。 The calculation of the waveform controller 100_a is largely performed by the voltage control command value calculation unit 1500a that calculates the voltage control command value Vabs2 during charging operation of the single-unit stabilizing device 1_a and the voltage control command value Vdisc2 during discharging operation, charging of the bidirectional chopper It is determined which operation to execute: operation, discharge operation, and suppression standby in which switching of bidirectional chopper 80_a is stopped and switching is stopped until switching of the IGBT module is stopped and operation of voltage stabilization device 1 is to be operated. System control arithmetic unit 1004a, a current command value calculation unit 1100a for calculating a charging current command value to the storage battery 30_a, and a voltage command value vref to be output to the storage battery 30_a side according to the current command value Current control unit 1200a, and a gate signal generation unit that generates gate signals GateP_a and GateN_a that are drive signals for the IGBT modules 10m_a and 10n_a based on the voltage command value vref. Constructed.
 システム制御演算器1004aは、電圧制御指令値算出部1500aの出力Vabs2、Vdisc2およびフィルタコンデンサ電圧vline_aを入力とし、後述の充電時電圧制御器1007a演算実施フラグABS_ENABLE、放電時電圧制御器1008a演算実施フラグDISC_ENABLE、そしてIGBTアセンブリのゲートデブロックフラグGateENABLEを算出し、電流指令値演算部1100a、電流制御部1200a、そしてゲート信号生成部1300aに出力する。 The system control computing unit 1004a receives the outputs Vabs2 and Vdisc2 of the voltage control command value calculating unit 1500a and the filter capacitor voltage vline_a as input, and calculates the charge voltage controller 1007a execution flag described later, ABS_ENABLE, the discharge voltage controller 1008a calculation implementation flag DISC_ENABLE and the gate deblocking flag GateENABLE of the IGBT assembly are calculated and output to the current command value calculator 1100a, the current controller 1200a, and the gate signal generator 1300a.
 具体的には、vline_aがVabs2以上の場合は、ABS_ENABLEを1に設定し、vline_aがVabs2より小さい場合はABS_ENABLEを0とする。また、vline_aがVdisc2以下の場合は、DISC_ENABLEを1に設定し、vline_aがVdisc2より大きい場合はDISC_ENABLEを0に設定する。 Specifically, when vline_a is Vabs2 or more, ABS_ENABLE is set to 1, and when vline_a is smaller than Vabs2, ABS_ENABLE is set to 0. Also, if vline_a is equal to or less than Vdisc2, DISC_ENABLE is set to 1, and if vline_a is larger than Vdisc2, DISC_ENABLE is set to 0.
 GateENABLEは、上記ABS_ENABLEとDISC_ENABLEの両方もしくはいずれか1つが1の場合は1、ABS_ENABLEとDISC_ENABLEが共に0である場合は0に設定する。 GateENABLE is set to 1 when both ABS_ENABLE and DISC_ENABLE are 1 and to 0 when both ABS_ENABLE and DISC_ENABLE are 0.
 電流指令値演算部1100aは、電圧制御指令値算出部1500aの出力Vabs2、Vdisc2、フィルタコンデンサ電圧検出値vline_a、そしてシステム制御演算器1004aの出力ABS_ENABLE、DISC_ENABLEを入力とし、蓄電池30_aの充電電流指令値を算出する。 The current command value calculation unit 1100a receives the outputs Vabs2 and Vdisc2 of the voltage control command value calculation unit 1500a, the filter capacitor voltage detection value vline_a, and the outputs ABS_ENABLE and DISC_ENABLE of the system control computing unit 1004a, and sets the charge current command value of the storage battery 30_a. Calculate
 減算器1005aは充電時電圧指令値Vabs2とコンデンサ電圧検出値vline_aの差を算出し、充電時電圧制御演算器1007aに該差を出力する。また、減算器1006aは放電時電圧指令値Vdisc2とコンデンサ電圧検出値vline_aの差を算出し、放電時電圧制御演算器1008aに該差を出力する。 The subtractor 1005a calculates the difference between the charging voltage command value Vabs2 and the capacitor voltage detection value vline_a, and outputs the difference to the charging voltage control computing unit 1007a. Further, the subtractor 1006a calculates the difference between the discharge-time voltage command value Vdisc2 and the capacitor voltage detection value vline_a, and outputs the difference to the discharge-time voltage control computing unit 1008a.
 充電時電圧制御演算器1007aは、比例・積分器であり、演算実施フラグABS_ENABLEが1の場合は減算器1005aの出力に対して比例・積分演算を実施し、ABS_ENABLEが0の場合は零を出力する。 The charge-time voltage control computing unit 1007a is a proportional-integrator and performs proportional-integral operation on the output of the subtractor 1005a when the operation execution flag ABS_ENABLE is 1, and outputs zero when the ABS_ENABLE is 0. Do.
 放電時電圧制御演算器1008aも比例・積分器であり、演算実施フラグDISC_ENABLEが1の場合は減算器1006aの出力に対して比例・積分演算を実施し、DISC_ENABLEが0の場合は零を出力する。 Discharge time voltage control computing unit 1008a is also a proportional-integrator, performs proportional-integral operation on the output of subtractor 1006a when operation execution flag DISC_ENABLE is 1, and outputs zero when DISC_ENABLE is 0. .
 充電時電圧制御演算器1007aと放電時電圧制御演算器1008aの出力は加算器1011aにより加算され、蓄電池30_aの充電電流指令値として電流制御部1200aに出力される。 The outputs of the voltage control computing unit 1007a for charging and the voltage control computing unit 1008a for discharging are added by the adder 1011a, and are output to the current control unit 1200a as a charging current command value of the storage battery 30 — a.
 電流制御部1200aでは、減算器1012aにより上記充電電流指令値と昇圧リアクトル電流検出値ibat_aとの差を算出し、該差が電流制御演算器1013aに出力される。 In the current control unit 1200a, the difference between the charge current command value and the boost reactor current detection value ibat_a is calculated by the subtractor 1012a, and the difference is output to the current control computing unit 1013a.
 電流制御器1013aは上記差とシステム制御演算器1004aより出力されたフラグGateENABLEを入力とする。電流制御器1013aは比例・積分器であり、GateENABLEが1であれば減算気1012aの出力に対して比例・積分演算を実施し、その出力を加算器1015aに出力する。GateENABLEが0の場合は、加算器1015aに零を出力する。 The current controller 1013a receives the difference and the flag GateENABLE output from the system control computing unit 1004a. The current controller 1013a is a proportional-integrator, and if GateENABLE is 1, it performs a proportional-integral operation on the output of the subtract 1012a, and outputs the output to the adder 1015a. When GateENABLE is 0, a zero is output to the adder 1015a.
 蓄電池30_aの端子電圧検出値vbat_aはローパスフィルタ1014aに入力される。ローパスフィルタ1014aはスイッチング起因のリプル成分を除去し、その出力を加算器1015aに出力する。 The terminal voltage detection value vbat_a of the storage battery 30_a is input to the low pass filter 1014a. The low pass filter 1014a removes the ripple component due to switching, and outputs the output to the adder 1015a.
 加算器1015aは電流制御器1013aの出力とローパスフィルタ1014aの出力の和を算出し、該和をIGBTアセンブリ10_aの出力電圧指令値vrefとしてゲート信号生成部1300aに出力する。 The adder 1015a calculates the sum of the output of the current controller 1013a and the output of the low pass filter 1014a, and outputs the sum to the gate signal generation unit 1300a as the output voltage command value vref of the IGBT assembly 10_a.
 ゲート信号生成部1300aは、三角波である搬送波triを生成する搬送波生成器1016aと、コンパレータ1017aを備える。コンパレータ1017aは電圧指令値vrefとtriおよびシステム制御演算器1004aの出力するフラグGateENABLEを入力とする。 The gate signal generation unit 1300a includes a carrier wave generator 1016a that generates a carrier wave tri that is a triangular wave, and a comparator 1017a. The comparator 1017a receives the voltage command values vref and tri and the flag GateENABLE output from the system control computing unit 1004a.
 フラグGateENABLEが1の場合は、電圧指令値vrefと搬送波triを大小比較してゲート信号を生成し、IGBTアセンブリ10_aに出力する。GateENABLEが0の場合は、IGBTモジュール10m_a、10n_aを共にOFFするゲート信号をIGBTアセンブリ10_aに出力する。 When the flag GateENABLE is 1, the voltage command value vref and the carrier wave tri are compared with each other to generate a gate signal, which is output to the IGBT assembly 10_a. When GateENABLE is 0, the gate signal which turns off both IGBT module 10m_a and 10n_a is output to IGBT assembly 10_a.
 以上の演算により、単機安定化装置1_aはフィルタコンデンサ電圧検出値vline_aが充電時電圧指令値Vabs2より大きくなった場合は、vline_aがVabs2に一致するよう蓄電池30_aの充電電流を制御でき、vline_aが放電時電圧指令値Vdisc2より小さくなった場合は、vline_aがVdisc2に一致するよう蓄電池30_aの放電電流を制御でき、vline_aがVabs2とVdisc2の間であればIGBTアセンブリ10_aのスイッチングを停止して待機することができる。 If the filter capacitor voltage detection value vline_a becomes larger than the charge-time voltage command value Vabs2 by the above calculation, the single-machine stabilizing device 1_a can control the charging current of the storage battery 30_a so that vline_a matches Vabs2, and vline_a discharges. When it becomes smaller than the hourly voltage command value Vdisc2, the discharge current of storage battery 30_a can be controlled so that vline_a matches Vdisc2, and if vline_a is between Vabs2 and Vdisc2, switching of IGBT assembly 10_a is stopped and kept waiting Can.
 次に、本発明の新規な点である電圧制御指令値算出部1500aについて説明する。 Next, the voltage control command value calculation unit 1500a, which is a novel point of the present invention, will be described.
 本実施例の電圧制御指令値算出部1500aは、蓄電池30_aの充電率SOC_aを入力とし、該充電率の通常運転範囲において充電時電圧指令値Vabs2と放電時電圧指令値Vdisc2が上記充電率に対して単調増加となるように電圧指令値を補正する演算手段を備える。本演算により、制御器が独立である単機安定化装置1_a、1_bの蓄電池充電率の乖離を抑制することができ、蓄電池の利用率向上や寿命短縮の回避が期待できる。 Voltage control command value calculation unit 1500a of this embodiment receives charge rate SOC_a of storage battery 30_a as an input, and voltage command value Vabs2 for charge and voltage command value Vdisc2 for discharge are compared with the above charge rate in the normal operation range of the charge rate. Calculation means for correcting the voltage command value so as to increase monotonously. By this calculation, it is possible to suppress the difference between the storage battery charging rates of the single-unit stabilizing devices 1_a and 1_b whose controllers are independent, and it is possible to expect improvement of the utilization rate of the storage batteries and avoidance of shortening the life.
 電圧制御指令値算出部1500aの具体的な演算について、説明する。 The specific calculation of the voltage control command value calculation unit 1500a will be described.
 電圧制御指令値算出部1500aは、電圧指令値補正演算器1001a、加算器1002a、1003aを備える。電圧指令値補正演算器1001aより算出された補正項vref_hosを所定の値であるVabs、Vdiscにそれぞれ加算することにより、新たな充電時電圧指令値Vabs2、放電時電圧指令値Vdisc2を算出し、該電圧指令値を電流指令値演算部1100aおよびシステム制御演算器1004aに出力する。 The voltage control command value calculation unit 1500a includes a voltage command value correction computing unit 1001a and adders 1002a and 1003a. By adding the correction term vref_hos calculated by the voltage command value correction computing unit 1001a to the predetermined values Vabs and Vdisc, respectively, a new charge voltage command value Vabs2 for charging and a voltage command value Vdisc2 for discharging are calculated, and the voltage command value Vdisc2 is calculated. The voltage command value is output to current command value calculator 1100a and system control calculator 1004a.
 電圧指令値補正演算器1001aの内部演算を、図4を用いて説明する。 The internal calculation of voltage command value correction arithmetic unit 1001a will be described using FIG.
 蓄電池30_aの充電率SOC_aは減算器10011aに出力され、SOC1が減算され、該差が上下限リミッタ10012aに出力される。 The charging rate SOC_a of the storage battery 30 — a is output to the subtractor 10011 a, SOC1 is subtracted, and the difference is output to the upper / lower limiter 10012 a.
 上下限リミッタ10012aは減算器10011aの出力を入力とし、零以上ΔSOC以下に制限し、該制限された値を乗算器10013aに出力する。乗算器10013aは上下限リミッタ10012aの出力に正の値を持つ所定の値Kを乗算して電圧指令値補正項vref_hosを算出する。 Upper and lower limit limiter 10012a receives the output of subtractor 10011a, limits it to zero or more and ΔSOC or less, and outputs the limited value to multiplier 10013a. The multiplier 10013a multiplies the output of the upper / lower limit limiter 10012a by a predetermined value K having a positive value to calculate a voltage command value correction term vref_hos.
 ここで、SOC1とΔSOCは所定の値であり、SOC1は通常運用範囲の下限値以下に設定する。蓄電池としてリチウムイオン電池を想定した場合、蓄電池の寿命を考慮して充電率の運用範囲は下限を20%以上、上限を80%以下とすることが好ましく、この場合SOC1は20%以下、SOC1とΔSOCの和は80%以上とする。 Here, SOC1 and ΔSOC are predetermined values, and SOC1 is set to the lower limit value or less of the normal operation range. When a lithium ion battery is assumed as the storage battery, it is preferable to set the lower limit to 20% or more and the upper limit to 80% or less in consideration of the life of the storage battery, in which case SOC1 is 20% or less, SOC1 and The sum of ΔSOC is 80% or more.
 本補正演算により、充電率SOC_aと充電時電圧指令値Vabs2、放電時電圧指令値Vdisc2は図5に示すような比例特性となる。本特性は、単機安定化装置1_aと1_bのコンデンサ電圧を検出する電圧センサの検出誤差に起因する各単機安定化装置の蓄電池充電率の乖離を防ぐことが目的である。充電率に対する電圧指令値の補正量が過大となると、き電線電圧の安定化範囲が蓄電池充電率により大きく変わり、電圧安定化装置の本来の機能を損なうおそれがある。そのため、電圧指令値補正項vref_hosは電圧センサの想定検出誤差の2~3倍とすることが望ましく、具体的には定格き電線電圧の10%以下に設定されるよう所定の定数Kを選定すべきである。 By this correction calculation, the charging rate SOC_a, the voltage command value for charging Vabs2 and the voltage command value for discharging Vdisc2 have proportional characteristics as shown in FIG. The purpose of this characteristic is to prevent the difference between the battery charging rates of the single-unit stabilizing devices caused by the detection error of the voltage sensors that detect the capacitor voltages of the single-unit stabilizing devices 1_a and 1_b. When the correction amount of the voltage command value with respect to the charging rate becomes excessive, the stabilization range of the feeder voltage largely changes depending on the storage battery charging rate, and the original function of the voltage stabilizing device may be impaired. Therefore, it is desirable that the voltage command value correction term vref_hos be 2 to 3 times the expected detection error of the voltage sensor. Specifically, the predetermined constant K is selected to be set to 10% or less of the rated wire voltage. It should.
 本発明の電力貯蔵式電圧安定化装置1の動作を、図6を用いて説明する。 The operation of the power storage type voltage stabilization device 1 of the present invention will be described with reference to FIG.
 図6に示すグラフは、上から順に電圧安定化装置1直近のき電線電圧vfeeder、き電線6から単機安定化装置1_aに流入する電流idc_a、単機安定化装置1_aの蓄電池30_a充電率SOC_a、き電線6から単機安定化装置1_bに流入する電流idc_b、単機安定化装置1_bの蓄電池充電率SOC_bを示す。初期条件としてSOC_a、SOC_bを50%と等しい値とした。また、グラフ中の実線は本実施例による動作波形であり、破線で示す波形は充電率による電圧指令値補正演算を実施しない場合の波形である。 The graph shown in FIG. 6 shows the feeder voltage vfeeder in the immediate vicinity of the voltage stabilizer 1, the current idc_a flowing from the feeder wire 6 into the single-unit stabilizer 1_a, and the storage battery 30_a charge rate SOC_a of the single-unit stabilizer 1_a in order from the top. The electric current idc_b which flows in into single unit stabilization device 1_b from the electric wire 6 and the storage battery charge rate SOC_b of single unit stabilization device 1_b are shown. As initial conditions, SOC_a and SOC_b are set equal to 50%. Further, the solid line in the graph is the operation waveform according to the present embodiment, and the waveform shown by the broken line is a waveform when the voltage command value correction calculation based on the charging rate is not performed.
 さらに、図6では、単機安定化装置1_aのコンデンサ電圧検出用電圧センサが、単機安定化装置1_bのコンデンサ電圧検出用電圧センサの検出する値に比べて電圧を高く検出する場合の動作波形を示す。 Further, FIG. 6 shows an operation waveform when the capacitor voltage detection voltage sensor of single-unit stabilization device 1_a detects a voltage higher than the value detected by the capacitor voltage detection voltage sensor of single-unit stabilization device 1_b. .
 車両の回生運転によりき電線電圧が上昇し、時刻t1においてき電線電圧vfeederが単機安定化装置1_aの充電時電圧制御指令値vf2に到達する。単機安定化装置1_aは蓄電池30_aへ充電をすることにより、き電線6から電力を受け取り、電圧を安定化させる。き電線6から電力を受け取るため、電流idc_aは正の値となる。 The feeder voltage rises due to the regenerative operation of the vehicle, and at time t1, the feeder voltage vfeeder reaches the in-charge voltage control command value vf2 of the single-unit stabilizing device 1_a. The single-unit stabilization device 1_a receives power from the feeder wire 6 by charging the storage battery 30_a to stabilize the voltage. In order to receive power from feeder 6, current idc_a takes a positive value.
 き電線電圧が上記充電時電圧制御指令値より低い値に下がる時刻t2まで単機安定化装置1_aは充電を続け、その間蓄電池の充電率SOC_aは上昇する。 The single-machine stabilizing device 1_a continues charging until time t2 when the feeder voltage drops to a value lower than the charge-time voltage control command value, while the charging rate SOC_a of the storage battery rises.
 車両の加速によりき電線電圧vfeederが低下し、時刻t3において単機安定化装置1_bの放電時電圧制御指令値vf3より低くなる。単機安定化装置1_bはコンデンサ電圧の低下を検出して蓄電池を放電することでき電線6へ電力を供給し、電圧を安定化させる。き電線6へ電力を供給するため、電流idc_bは負の値となる。 As the vehicle accelerates, the feeder voltage vfeeder decreases and becomes lower than the discharge-time voltage control command value vf3 of the single-unit stabilizing device 1_b at time t3. The single-unit stabilizing device 1_b can detect a drop in the capacitor voltage to discharge the storage battery, supply power to the wire 6, and stabilize the voltage. In order to supply power to feeder cable 6, current idc_b has a negative value.
 き電線電圧が上記放電時電圧制御指令値より高い値に上がる時刻t4まで単機安定化装置1_bは放電を続け、その間蓄電池の充電率SOC_bは低下する。 The single-unit stabilizing device 1_b continues discharging until time t4 when the feeder voltage rises to a value higher than the discharge-time voltage control command value, during which the charging rate SOC_b of the storage battery decreases.
 上記の充電率の変化により、単機安定化装置1_aの充電時電圧制御指令値Vabs2と放電時電圧制御指令値Vdisc2は高く補正され、単機安定化装置1_bの充電時電圧制御指令値と放電時電圧制御指令値は低く補正される。その結果、単機安定化装置1_aと1_bの充電時電圧制御指令値と放電時電圧制御指令値の差が小さくなり、時刻t5以降のき電線電圧安定化のための充放電は単機安定化装置1_a、1_bで電力分担されるようになる。 Due to the change in the charging rate described above, the charge voltage control command value Vabs2 for single unit stabilization device 1_a and the discharge voltage control command value Vdisc2 are corrected high, and the charge voltage control command value for charge and discharge voltage for single device stabilization device 1_b. The control command value is corrected low. As a result, the difference between the in-charge voltage control command value and the in-discharge voltage control command value of single-unit stabilizing devices 1_a and 1_b becomes small, and charging / discharging for feeder voltage stabilization after time t5 becomes single-unit stabilizing device 1_a , 1_b will be allocated power.
 充電時電圧制御指令値と放電時電圧制御指令値の充電率による補正を実施しない場合、時刻t5からt6において再度単機安定化装置1_aによる充電が実施され、時刻t7からt8において単機安定化装置1_bによる放電が実施され、結果として単機安定化装置1_aと1_bの蓄電池充電率の乖離が拡大し続ける。 In the case of not performing the correction based on the charge ratio of the voltage control command value for charging and the voltage control command value for discharging, the single-unit stabilizing device 1_a performs charging again from time t5 to t6 and the single-unit stabilizing device 1_b from time t7 to t8. Discharge is performed, and as a result, the difference between the battery charging rates of single-unit stabilizing devices 1_a and 1_b continues to expand.
 一方、本実施例の電力貯蔵式電圧安定化装置1では充電率による電圧制御指令値補正の実施により単機安定化装置間の充電率乖離を抑制することができる。 On the other hand, in the power storage type voltage stabilization device 1 of the present embodiment, it is possible to suppress the difference in the charging rate among the single-unit stabilizing devices by performing the voltage control command value correction by the charging rate.
 本実施例では、充電率に対する充電時電圧制御指令値および放電時電圧制御指令値の補正項を充電率に比例する値としたが、テーブル参照した値や補正項が充電率のべき乗値など、単調増加であれば本発明と同様の効果が期待できる。 In this embodiment, the correction terms of the charge voltage control command value and the discharge voltage control command value with respect to the charge rate are proportional to the charge rate, but the values referred to the table and the correction terms are power values of the charge rate, etc. If it is monotonous increase, the same effect as the present invention can be expected.
 また、本実施例では電圧安定化装置は電力貯蔵要素として蓄電池を備えるが、蓄電池の代わりに電気二重層キャパシタやフライホイールを用いても良い。 Moreover, although the voltage stabilization apparatus is equipped with a storage battery as an electric power storage element in a present Example, you may use an electric double layer capacitor and a flywheel instead of a storage battery.
 電気二重層キャパシタを電力貯蔵要素として用いる場合は、キャパシタが定格電圧のときに蓄えるエネルギーでキャパシタの蓄えるエネルギーを規格化した値を充電率として扱うことにより本発明と同様の効果を得る。キャパシタの蓄えるエネルギーはキャパシタの端子電圧の二乗に比例するため、キャパシタの蓄えるエネルギーはキャパシタ電圧を検出する電圧センサを備え、該センサ出力からエネルギーを算出すればよい。 When an electric double layer capacitor is used as a power storage element, the same effect as the present invention can be obtained by treating the normalized value of the energy stored in the capacitor as the charging rate by the energy stored when the capacitor is at the rated voltage. Since the energy stored in the capacitor is proportional to the square of the terminal voltage of the capacitor, the energy stored in the capacitor may be provided with a voltage sensor for detecting the capacitor voltage, and the energy may be calculated from the sensor output.
 フライホイールを電力貯蔵要素として用いる場合は、フライホイールが定格回転数のときに蓄える運動エネルギーでフライホイールの蓄えるエネルギーを規格化した値を充電率として扱うことにより本発明と同様の効果を得る。フライホイールの蓄える運動エネルギーは回転数の二乗に比例するため、フライホイールの蓄えるエネルギーはフライホイールの回転数もしくは回転位相角を検出するセンサを備え、該センサからエネルギーを算出すれば良い。 When a flywheel is used as an electric power storage element, the same effect as the present invention can be obtained by treating a value obtained by standardizing the energy stored in the flywheel with the kinetic energy stored at the rated rotation speed of the flywheel as a charging rate. Since the kinetic energy stored in the flywheel is proportional to the square of the rotational speed, the energy stored in the flywheel may be provided with a sensor for detecting the rotational speed or rotational phase angle of the flywheel, and the energy may be calculated from the sensor.
 また、本実施例ではフィルタコンデンサの端子電圧を電圧制御対象としていたが、単機安定化装置のP、N端子間電圧を電圧制御対象としても良い。 Further, although the terminal voltage of the filter capacitor is the voltage control target in the present embodiment, the voltage between the P and N terminals of the single-unit stabilizing device may be the voltage control target.
 本発明によれば、電力貯蔵式電圧安定化装置を複数台隣接させた場合でも、各安定化装置の充電率の乖離を防ぐことができるため、蓄電池の利用率向上や寿命劣化の回避が可能となる。 According to the present invention, even when a plurality of power storage type voltage stabilization devices are adjacent to each other, deviation of the charging rate of each stabilization device can be prevented, so that the utilization rate of storage batteries can be improved and life degradation can be avoided. It becomes.
 さらに、波形制御器間の通信が不要であるため、配線工事の工数増加を回避することが可能である。 Furthermore, since communication between the waveform controllers is unnecessary, it is possible to avoid an increase in the number of wiring works.
1・・・電圧安定化装置、2・・・遮断器、3・・・電力系統、4・・・変圧器、5・・・整流器、6・・・き電線、7・・・レール、1_a、1_b・・・単機安定化装置、80_a・・・双方向チョッパ、30_a・・・蓄電池、40_a・・・バッテリコントローラ、100_a・・・波形制御器、20L_a・・・フィルタリアクトル、20C_a・・・フィルタコンデンサ、10_a・・・IGBTアセンブリ、10m_a、10n_a・・・IGBTモジュール、30L_a・・・昇圧リアクトル、50PT_a、52PT_a・・・電圧センサ、51CT_a・・・電流センサ、1100a・・・電流指令値演算部、1200a・・・電流制御部、1300a・・・ゲート信号生成部、1004a・・・システム制御演算器、1500a・・・電圧制御指令値算出部、1001a・・・電圧指令値補正演算器、1007a、1008a・・・電圧制御演算器、1013a・・・電流制御演算器、1016a・・・搬送波生成器、1017a・・・ゲート信号算出器、10012a・・・上下限リミッタ、10013a・・・乗算器 DESCRIPTION OF SYMBOLS 1 ... Voltage stabilizer, 2 ... Circuit breaker, 3 ... electric power system, 4 ... Transformer, 5 ... Rectifier, 6 ... Feeding wire, 7 ... Rail, 1_a 1_b single unit stabilization device 80_a bi-directional chopper 30_a storage battery 40_a battery controller 100_a waveform controller 20L_a filter reactor 20C_a Filter capacitor, 10_a: IGBT assembly, 10m_a, 10n_a: IGBT module, 30L_a: boost reactor, 50PT_a, 52PT_a: voltage sensor, 51CT_a: current sensor, 1100a: current command value calculation Unit: 1200a: current control unit, 1300a: gate signal generation unit, 1004a: system control arithmetic unit, 1500a: voltage control command value calculation unit, 1001a: voltage command value correction arithmetic unit, 1007a, 1008a ... voltage control computing unit, 1013a ... current control computing unit, 1016a ... transport Wave generator, 1017a · · · gate signal calculator, 10012a ··· on the lower limiter, 10013a ··· multiplier

Claims (15)

  1. 直流き電回路に接続し、電力貯蔵要素と該き電回路と該電力貯蔵要素の間に備えられる電力変換手段と、上記き電回路の接続点におけるき電線電圧に準ずる電圧を検出する電圧検出手段と、該電力貯蔵要素の蓄えるエネルギーを検出する手段と、該電圧検出手段と該エネルギー検出手段の検出値を元に上記電力貯蔵要素の充放電電力を調整する制御手段を備える電力貯蔵式き電線電圧安定化装置であって、
    上記制御手段が電圧指令値と上記電圧検出手段検出値の差を低減するよう上記電力変換手段に電力貯蔵要素を充放電させる手段を備え、該電圧指令値が上記電力貯蔵要素のエネルギーに対して単調増加であることを特徴とする電力貯蔵式き電線電圧安定化装置。
    Voltage detection connected to a DC feeding circuit and detecting a voltage according to the feeder voltage at a connection point between the power storage element, power conversion means provided between the feeding circuit and the power storage element, and the feeding circuit And storage means for detecting the energy stored in the power storage element, and control means for adjusting the charge and discharge power of the power storage element based on the voltage detection means and the detection value of the energy detection means. It is a wire voltage stabilization device, and
    The control means comprises means for charging / discharging the power storage element to the power conversion means so as to reduce the difference between the voltage command value and the detection value of the voltage detection means, and the voltage command value is for the energy of the power storage element. An electric power storage type feeder voltage stabilization device characterized by monotonous increase.
  2. 請求項1記載の電力貯蔵式き電線電圧安定化装置であって、上記電力変換手段が双方向チョッパであることを特徴とする電力貯蔵式き電線電圧安定化装置。 A power storage type feeder stabilization system according to claim 1, wherein said power conversion means is a bi-directional chopper.
  3. 請求項1もしくは請求項2記載の電力貯蔵式き電線電圧安定化装置であって、上記電力変換手段が直流き電回路との接続点にリアクトルとコンデンサを少なくとも1つずつ備えるフィルタ回路を備え、上記き電線電圧に準ずる電圧が該コンデンサ端子電圧であることを特徴とする電力貯蔵式き電線電圧安定化装置。 The power storage type feeder line voltage stabilization device according to claim 1 or 2, wherein the power conversion means includes a filter circuit including at least one reactor and one capacitor at a connection point with the DC feeding circuit. A power storage type feeder voltage stabilization apparatus, wherein the voltage according to the feeder voltage is the capacitor terminal voltage.
  4. 請求項1乃至請求項3記載の電力貯蔵式き電線電圧安定化装置であって、上記電力貯蔵要素が蓄電池であることを特徴とする電力貯蔵式き電線安定化装置。 The power storage type feeder stabilization system according to any one of claims 1 to 3, wherein the power storage element is a storage battery.
  5. 請求項4記載の電力貯蔵式き電線電圧安定化装置であって、上記蓄電池のエネルギー検出手段が該蓄電池の充電率を算出することを特徴とする電力貯蔵式き電線電圧安定化装置。 The power storage type feeder line voltage stabilization apparatus according to claim 4, wherein the energy detection means of the storage battery calculates a charging rate of the storage battery.
  6. 請求項1乃至請求項3記載の電力貯蔵式き電線電圧安定化装置であって、上記電力貯蔵要素が電気二重層キャパシタであることを特徴とする電力貯蔵式き電線安定化装置。 The power storage type feeder stabilization device according to any one of claims 1 to 3, wherein the power storage element is an electric double layer capacitor.
  7. 請求項6記載の電力貯蔵式き電線電圧安定化装置であって、上記電気二重層キャパシタのエネルギー検出手段が該キャパシタの端子電圧を検出する電圧検出手段を備えることを特徴とする電力貯蔵式き電線電圧安定化装置。 The power storage type feeder stabilization device according to claim 6, wherein the energy detection means of the electric double layer capacitor comprises a voltage detection means for detecting a terminal voltage of the capacitor. Wire voltage stabilization device.
  8. 請求項1乃至請求項3記載の電力貯蔵式き電線電圧安定化装置であって、上記電力貯蔵要素がフライホイールであることを特徴とする電力貯蔵式き電線電圧安定化装置。 The power storage type feeder stabilization device according to any one of claims 1 to 3, wherein the power storage element is a flywheel.
  9. 請求項8記載の電力貯蔵式き電線電圧安定化装置であって、上記フライホイールのエネルギー検出手段が該フライホイールの回転数を検出する機能を備えることを特徴とする電力貯蔵式き電線電圧安定化装置。 The electric power storage type feeder line voltage stabilization device according to claim 8, wherein the energy detection means of the flywheel has a function of detecting the number of rotations of the flywheel. Device.
  10. 直流き電回路に接続し、電力貯蔵要素と該き電回路と該電力貯蔵要素の間に備えられる電力変換手段と、上記き電回路の接続点におけるき電線電圧に準ずる電圧を検出する電圧検出手段と、該電力貯蔵要素の蓄えるエネルギーを検出する手段と、該電圧検出手段と該エネルギー検出手段の検出値を元に上記電力貯蔵要素の充放電電力を調整する制御手段を備える電力貯蔵式き電線電圧安定化装置の制御方法であって、
    上記制御手段が電圧指令値と上記電圧検出手段検出値の差を低減するよう上記電力変換手段に電力貯蔵要素を充放電させる手段を備え、該電圧指令値が上記電力貯蔵要素のエネルギーに対して単調増加であることを特徴とする電力貯蔵式き電線電圧安定化装置の制御方法。
    Voltage detection connected to a DC feeding circuit and detecting a voltage according to the feeder voltage at a connection point between the power storage element, power conversion means provided between the feeding circuit and the power storage element, and the feeding circuit And storage means for detecting the energy stored in the power storage element, and control means for adjusting the charge and discharge power of the power storage element based on the voltage detection means and the detection value of the energy detection means. A control method of a wire voltage stabilization device, comprising:
    The control means comprises means for charging / discharging the power storage element to the power conversion means so as to reduce the difference between the voltage command value and the detection value of the voltage detection means, and the voltage command value is for the energy of the power storage element. A control method of a power storage type feeder line voltage stabilization device characterized by monotonous increase.
  11. 請求項10記載の電力貯蔵式き電線電圧安定化装置の制御方法であって、上記電力変換手段が双方向チョッパであることを特徴とする電力貯蔵式き電線電圧安定化装置の制御方法。 The control method of the power storage type feeder line voltage stabilization device according to claim 10, wherein the power conversion means is a bidirectional chopper.
  12. 請求項10もしくは請求項11記載の電力貯蔵式き電線電圧安定化装置の制御方法であって、上記電力変換手段が直流き電回路との接続点にリアクトルとコンデンサを少なくとも1つずつ備えるフィルタ回路を備え、上記き電線電圧に準ずる電圧が該コンデンサ端子電圧であることを特徴とする電力貯蔵式き電線電圧安定化装置の制御方法。 The control method of the power storage type feeder line voltage stabilization device according to claim 10 or 11, wherein the power conversion means comprises at least one reactor and at least one capacitor at a connection point with the DC feeding circuit. And the voltage according to the feeder voltage is the capacitor terminal voltage.
  13. 請求項10乃至請求項12記載の電力貯蔵式き電線電圧安定化装置の制御方法であって、上記電力貯蔵要素が蓄電池であり、該蓄電池の充電率を算出する手段を備え、該充電率に対して上記電圧指令値が単調増加であることを特徴とする電力貯蔵式き電線電圧安定化装置の制御方法。 The control method of the power storage type feeder line voltage stabilization device according to any one of claims 10 to 12, wherein the power storage element is a storage battery, and the power storage element comprises means for calculating a charging rate of the storage battery. In the control method of the power storage type feeder line voltage stabilization device, the voltage command value is monotonously increased.
  14. 請求項10乃至請求項12記載の電力貯蔵式き電線電圧安定化装置の制御方法であって、上記電力貯蔵要素が電気二重層キャパシタであり、該キャパシタの端子電圧を検出する手段を備え、該キャパシタの端子電圧に対して上記電圧指令値が単調増加であることを特徴とする電力貯蔵式き電線電圧安定化装置の制御方法。 The control method of the power storage type feeder line voltage stabilization device according to claim 10, wherein the power storage element is an electric double layer capacitor, and the device comprises means for detecting a terminal voltage of the capacitor. A control method of a power storage type feeder line voltage stabilization apparatus, wherein the voltage command value monotonously increases with respect to a terminal voltage of a capacitor.
  15. 請求項10乃至請求項12記載の電力貯蔵式き電線電圧安定化装置の制御方法であって、上記電力貯蔵要素がフライホイールであり、該フライホイールの回転数を検出する手段を備え、該フライホイールの回転数に対して上記電圧指令値が単調増加であることを特徴とする電力貯蔵式き電線電圧安定化装置の制御方法。 13. A control method of a power storage type feeder line voltage stabilization device according to claim 10, wherein said power storage element is a flywheel, and comprises means for detecting the number of revolutions of said flywheel. A control method of a power storage type feeder line voltage stabilization device, wherein the voltage command value monotonously increases with respect to the number of rotations of a wheel.
PCT/JP2014/082192 2014-03-07 2014-12-05 Power-storing voltage stabilizer and method for controlling same WO2015133029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014044527A JP6324122B2 (en) 2014-03-07 2014-03-07 Power storage type voltage stabilizer and control method thereof
JP2014-044527 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133029A1 true WO2015133029A1 (en) 2015-09-11

Family

ID=54054852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082192 WO2015133029A1 (en) 2014-03-07 2014-12-05 Power-storing voltage stabilizer and method for controlling same

Country Status (2)

Country Link
JP (1) JP6324122B2 (en)
WO (1) WO2015133029A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017097305A1 (en) * 2015-12-07 2017-06-15 Maersk Drilling A/S Microgrid electric power generation systems and associated methods
EP4005855A1 (en) * 2020-11-27 2022-06-01 Free2move Esolutions S.p.A. Electric vehicle battery charging system capable of being interconnected with external direct current power supply infrastructures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6825250B2 (en) * 2016-07-07 2021-02-03 株式会社デンソー In-vehicle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260719A (en) * 2000-03-16 2001-09-26 Railway Technical Res Inst Dc electromotive system for electric railroad
JP2010058565A (en) * 2008-09-01 2010-03-18 Hitachi Ltd Power converter and electric railroad system
JP2013244799A (en) * 2012-05-24 2013-12-09 Hitachi Ltd Power storage type regenerated power absorber and its controlling method
JP2013248930A (en) * 2012-05-31 2013-12-12 Hitachi Ltd Power storage type regenerative power absorber, and control device and control method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465157C2 (en) * 2008-02-29 2012-10-27 Кавасаки Дзукогио Кабусики Кайся Electric supply system for electric railway
JP5377538B2 (en) * 2011-02-14 2013-12-25 株式会社東芝 Power storage device and its installation / operation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260719A (en) * 2000-03-16 2001-09-26 Railway Technical Res Inst Dc electromotive system for electric railroad
JP2010058565A (en) * 2008-09-01 2010-03-18 Hitachi Ltd Power converter and electric railroad system
JP2013244799A (en) * 2012-05-24 2013-12-09 Hitachi Ltd Power storage type regenerated power absorber and its controlling method
JP2013248930A (en) * 2012-05-31 2013-12-12 Hitachi Ltd Power storage type regenerative power absorber, and control device and control method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017097305A1 (en) * 2015-12-07 2017-06-15 Maersk Drilling A/S Microgrid electric power generation systems and associated methods
US10559957B2 (en) 2015-12-07 2020-02-11 Maersk Drilling A/S. Microgrid electric power generation systems and associated methods
US11075520B2 (en) 2015-12-07 2021-07-27 Maersk Drilling A/S Microgrid electric power generation systems and associated methods
US11843250B2 (en) 2015-12-07 2023-12-12 Wattsup Power A/S Microgrid electric power generation systems and associated methods
EP4005855A1 (en) * 2020-11-27 2022-06-01 Free2move Esolutions S.p.A. Electric vehicle battery charging system capable of being interconnected with external direct current power supply infrastructures

Also Published As

Publication number Publication date
JP6324122B2 (en) 2018-05-16
JP2015168334A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP4541425B2 (en) DC / DC converter device
CN105365713B (en) Supply unit
JP3964857B2 (en) Regenerative power absorption control method for electric railways
US10017138B2 (en) Power supply management system and power supply management method
JP7039513B2 (en) Power system
CN107896052B (en) Conversion device, electric vehicle, and control method
JP5696585B2 (en) Vehicle power supply control device
KR20160057333A (en) Method for controlling external electric power supply system of fuel cell-mounted vehicle, and external electric power supply system
US11427179B2 (en) Power supply system
US20140015485A1 (en) Charging device for vehicle, vehicle equipped with charging device, and offset correction method for current sensor
JP2019004547A (en) Charging control device
WO2015133029A1 (en) Power-storing voltage stabilizer and method for controlling same
CN107896051B (en) Voltage conversion device, electrical apparatus, and control method
JP2011155774A (en) Control device of power storage element
JP4238190B2 (en) Power storage type regenerative power absorber and control method thereof
CN109792206B (en) Conversion device, equipment and control method
US9520733B2 (en) Charging and discharging device to increase battery temperature by controlling ripple current
US20170050532A1 (en) Drive device, transport apparatus, and energy storage control method
RU2646770C2 (en) Energy storage arrangement, energy storage system and method for operating energy storage arrangement
JP2020162251A (en) Power supply system
CN112046288B (en) Power supply system
JP2022145064A (en) Power supply system
JP6701976B2 (en) Electric vehicle
JP5919092B2 (en) Power storage type regenerative power absorber and control method thereof
JP2022144890A (en) Power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885031

Country of ref document: EP

Kind code of ref document: A1