JP3618273B2 - DC feeder system for electric railway - Google Patents

DC feeder system for electric railway Download PDF

Info

Publication number
JP3618273B2
JP3618273B2 JP2000073281A JP2000073281A JP3618273B2 JP 3618273 B2 JP3618273 B2 JP 3618273B2 JP 2000073281 A JP2000073281 A JP 2000073281A JP 2000073281 A JP2000073281 A JP 2000073281A JP 3618273 B2 JP3618273 B2 JP 3618273B2
Authority
JP
Japan
Prior art keywords
storage device
voltage
feeder
power
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000073281A
Other languages
Japanese (ja)
Other versions
JP2001260719A (en
Inventor
芳文 持永
好信 中道
伸一 長谷
正 上村
秀夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Railway Technical Research Institute
Original Assignee
Meidensha Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Railway Technical Research Institute filed Critical Meidensha Corp
Priority to JP2000073281A priority Critical patent/JP3618273B2/en
Publication of JP2001260719A publication Critical patent/JP2001260719A/en
Application granted granted Critical
Publication of JP3618273B2 publication Critical patent/JP3618273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/08Electric propulsion with power supply external to the vehicle using dc motors fed from ac supply lines
    • B60L9/12Electric propulsion with power supply external to the vehicle using dc motors fed from ac supply lines with static converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電鉄用直流き電システムに係り、特に電気車からの回生電力を蓄積するエネルギー蓄積装置を設けたシステムに関する。
【0002】
【従来の技術】
電鉄用直流き電システムは、図2に概略構成を示すように、変電所1で交流電源から整流器2(順変換器)を通して得る直流電力を、き電線3およびトロリー線4を通して負荷となる直流電気車5に給電できるようにする。
【0003】
最近の直流電気車は、その減速時のエネルギーをき電線側に回生することで省エネを図る電力回生方式が多く採用されている。この回生電力は、き電線やトロリー線から他の電気車への供給電力として消費するか、変電所の回生変電設備から交流電力として回生することができる。
【0004】
回生電力を変電所の交流電源側へ回生する場合、変電所から交流電源への逆潮流の問題や回生変電設備のコストの問題がある。この問題を解消する方式として、直流側に設ける抵抗器で熱として消費するものもある。
【0005】
上記の回生電力を抵抗器で消費する方式では電気車が回生機能をもつにもかかわらず、電力回生効率を高めることができなくなる。この課題を解消する方式として、回生電力を直流側に設けた直流電力貯蔵装置に貯蔵しておき、この貯蔵電力を電気車の力行に際しての給電電力の一部として放電する方式がある(例えば、特開平11−91415号公報)。
【0006】
この方式は、図3に示す構成にされる。整流器6からき電線に直流電力を供給するにおいて、整流器6の直流側に電流制御回路(昇降圧チョッパ)7と直流電力貯蔵装置(二次電池、キャパシタ、電気二重層キャパシタ)8からなるエネルギー蓄積装置を設備し、電気車が回生状態にある場合は電流制御回路7を通して直流電力貯蔵装置8を充電し、電気車が力行状態にある場合は直流電力貯蔵装置8から電流制御回路7を通して放電させる。
【0007】
【発明が解決しようとする課題】
従来の電力貯蔵装置は、回生電力の有無によって単に直流電力貯蔵装置を充電/放電させる制御方式になるため、その利用効率および設備効率が悪くなる問題がある。
【0008】
例えば、直流電力貯蔵装置としての電池は、き電系統電圧が充電制御設定電圧1600V以上で充電を行い、放電制御設定電圧1400V以下で放電を行う構成とし、き電系統の最低電圧が1200V、最大電圧が1800Vとすると、き電系統電圧が1800〜1600Vでは充電を行い、1400〜1200Vでは放電を行う。
【0009】
この場合、電池は、その0〜1200Vに相当する電圧分は充放電に寄与することなく、単にバイアス電圧として維持するためのものになる。仮に、電池の定格電圧を1600Vとすると、その電圧利用率は、
【0010】
【数1】
(1600−1200)/1600=0.25
となり、装置の定格電圧からみて25%の電圧分しか充放電に寄与せず、残りの電圧分は単に定格電圧を確保するためであり、この電圧確保のために多数の電池を多段直並列接続で設ける構成になる。
【0011】
一方、電鉄用き電システムでは、電気車からの回生電力も大きく、電力貯蔵装置での充放電電流定格も非常に大きくなる。
【0012】
これら事情から、電流制御回路および直流電力貯蔵装置が大型で高価な設備になり、しかもその利用率が低いことから、設備効率を低下させてしまう。
【0013】
本発明の目的は、エネルギー蓄積装置の利用効率および設備効率を高めた電鉄用直流き電システムを提供することにある。
【0014】
【課題を解決するための手段】
本発明のエネルギー蓄積装置は、直流電力貯蔵装置の電圧のうち、き電線との充放電に寄与しない電圧を基にして定める電圧分だけ低くし、これに伴って昇降圧チョッパの昇降圧比を高くすることにより、装置の利用効率及び設備効率を高め、さらには昇降圧チョッパとき電線との間に、直流電力貯蔵装置から昇降圧チョッパを通してき電線側への自然放電を阻止するストッパースイッチを設け、かつ直流電力貯蔵装置の充放電制御にはき電線電圧および充放電電流を基にした制御を行うことにより、エネルギー蓄積装置の保護等も可能にするもので、以下の構成を特徴とする。
【0015】
交流電源から整流器または順変換器を介してき電線に直流電力を供給し、該整流器または順変換器の直流側に設けたエネルギー蓄積装置により、電気車からの回生電力を直流電力貯蔵装置の充電電力として回生する電鉄用直流き電システムにおいて、
前記エネルギー蓄積装置は、き電線電圧が充電制御設定電圧以上にあるときにき電線から前記直流電力貯蔵装置への充電電流を制御し、き電線電圧が放電制御設定電圧以下にあるときに前記直流電力貯蔵装置からき電線への放電電流を制御する昇降圧チョッパを備え、
前記エネルギー蓄積装置は、前記直流電力貯蔵装置の電圧のうち、き電線との充放電に寄与しない電圧を基にして定める電圧分だけ低くした構成とし、
前記昇降圧チョッパは、前記直流電力貯蔵装置の電圧からき電線への所期の充放電電圧を得る高い昇降圧比にした構成とし、
前記昇降圧チョッパとき電線との間に、前記直流電力貯蔵装置から昇降圧チョッパを通してき電線側への自然放電を阻止するストッパースイッチを設けたことを特徴とする。
【0017】
また、前記エネルギー蓄積装置は、前記昇降圧チョッパからき電線側に流れる高調波を抑止するフィルタを設けたことを特徴とする。
【0018】
また、前記エネルギー蓄積装置は、前記昇降圧チョッパの充放電電流を制御する電流制御手段を備えたことを特徴とする。
【0019】
【発明の実施の形態】
図1は、本発明の実施形態を示すエネルギー蓄積装置の主回路構成図であり、変電所では従来システムと同様に、交流電源から整流器(または順変換器)10によって定格電圧になる直流電力に変換してき電線側に供給する。
【0020】
電力貯蔵装置11は、二次電池、キャパシタまたは電気二重層キャパシタにされ、その充放電装置として昇降圧チョッパ12が接続される。
【0021】
昇降圧チョッパ12の主回路構成は、IGBTで示す半導体スイッチSW1,SW2を直列接続し、これらスイッチSW1,SW2にそれぞれ逆並列にフライホイールダイオードD1,D2を設けて上下アームを構成し、上下アームの接続点から直流リアクトルLを介して電池11との間を接続する。
【0022】
昇降圧チョッパ12による直流電力貯蔵装置11の降圧充電は、スイッチSW1,SW2の両端に印加される直流電圧に対して、スイッチSW1をチョッパ動作させ、そのオン期間にはスイッチSW1からリアクトルLを通して直流電力貯蔵装置11に充電電流を供給し、そのオフ期間にはリアクトルLの電流エネルギーを直流電力貯蔵装置11→ダイオードD2の経路で直流電力貯蔵装置11に充電電流を供給する。
【0023】
昇降圧チョッパ12を通した直流電力貯蔵装置11からの昇圧放電は、スイッチSW2をチョッパ動作させ、そのオン期間には直流電力貯蔵装置11からリアクトルLに短絡電流を流すことでリアクトルLに電流エネルギーを蓄積し、そのオフ期間にリアクトルLからダイオードD1を通してき電線側に放電する。
【0024】
昇降圧チョッパ12の高圧側には、ストッパスイッチ13を設ける。このストッパスイッチ13は、き電線側からチョッパ12への流入電流にはダイオードD3で常に導通可能にし、チョッパ12からき電線側への電流にはGTOで示す半導体スイッチSW3でオン・オフ制御可能にする。
【0025】
このストッパスイッチ13は、き電線側の電圧が直流電力貯蔵装置11の電圧よりも低くなった場合にき電線側に自然放電されるのを防止し、チョッパ13のチョッパ動作によって直流電力貯蔵装置11からき電線側に昇圧放電する場合のみその電流路を形成するためのものである。
【0026】
ストッパスイッチ13とき電線側の間には、並列接続のコンデンサ14と直列接続のリアクトル15を設ける。これらコンデンサ14とリアクトル15は、直流電力貯蔵装置11から昇降圧チョッパ12を通した充放電電流に含まれる高調波(チョッパ動作による高調波)を抑制するためのものである。この高調波抑制は、沿線の通信障害や鉄道信号機器への障害および車内ラジオ等への障害を防止する。
【0027】
リアクトル15とき電線との間には直流高速しゃ断器16を設け、さらにはしゃ断器17を設け、レール側には断路器18を設ける。しゃ断器16は、き電線系統の事故発生時に系統からエネルギー蓄積装置を高速に解列し、しゃ断器17と断路器18はシステムの運転停止時などに系統からエネルギー蓄積装置を解列するためのものである。
【0028】
電圧検出器19はき電線電圧を検出し、電流検出器としての変流器20は直流電力貯蔵装置11の充放電電流を検出するためのものである。これら検出器による検出電圧および電流は、図示省略するエネルギー蓄積制御装置に検出信号として取り込み、該制御装置は昇降圧チョッパ12のチョッパ制御と、ストッパスイッチ13のオン・オフ制御を行う。
【0029】
以上のように構成したエネルギー蓄積装置において、その利用効率および設備効率を高めるため、チョッパ12の昇降圧比を高くし、直流電力貯蔵装置11は定格電圧を低くする。
【0030】
この構成において、例えば、前記と同様に、エネルギー蓄積装置を、き電系統電圧が1600V以上で充電動作させ、1400V以下で放電動作させる場合、昇降圧チョッパ12の最大昇圧比を2.5とすると、直流電力貯蔵装置11は560〜1400Vの電圧範囲にあれば、チョッパ12により1400Vまで昇圧してき電系統へ放電することができる。
【0031】
この場合、直流電力貯蔵装置11の電圧のうち、充放電に利用されない電圧(バイアス)分は0〜560Vになり、その利用率は、
【0032】
【数2】
(1400−560)/1400=0.6
となり、直流電力貯蔵装置電圧の60%が充放電電圧に寄与することになり、利用効率を高めることができる。また、必要とする直流電力貯蔵装置電圧が低くなるため、そのコストダウンおよび小型化を図ることができ、設備効率を高めることができる。
【0033】
次に、エネルギー蓄積装置の充放電制御は、き電系統電圧が直流電力貯蔵装置を充電する電圧範囲または直流電力貯蔵装置から放電する電圧範囲にあるか否かで切り替え、この切り替えは電圧検出器19の検出信号から判定することができる。このような充放電制御は、直流電力貯蔵装置11に二次電池を使用する場合はその電圧がほぼ一定のため、なんら問題はない。
【0034】
しかし、直流電力貯蔵装置11としてキャパシタや電気二重層キャパシタを使用する場合、そのときの電圧によって充放電電流が大きく変化する。この大きな電流変化は、チョッパ12やストッパスイッチ13等に使用する半導体スイッチやダイオードに電流破壊や過熱を起こす恐れがあるし、電流性能が高い高価な素子を必要とする。また、高速遮断器16等が誤動作する恐れがある。
【0035】
例えば、直流電力貯蔵装置電圧が1000V、き電線電圧が1400Vで直流電力貯蔵装置から放電し、このときのき電系統の負荷電流が2000Aとなる場合、エネルギー蓄積装置からの放電電流は、
【0036】
【数3】
2000×(1400/1000)=2800A
となる。この電流増加は、直流電力貯蔵装置11の電圧を低くするほど大きくなる。
【0037】
そこで、本実施形態では、エネルギー蓄積装置の最大充放電電流を設定しておき、直流電力貯蔵装置11の充放電電流を電流検出器20によって検出し、この検出電流が最大充放電電流以下になるようチョッパ12の導通期間を制限する。
【0038】
次に、直流電力貯蔵装置11として二次電池とする場合、その充電は、低電流化したほうが電池寿命等の点で優れる。そこで、本実施形態では、き電線電圧を基にした直流電力貯蔵装置の充電制御に加えて、電流検出器12による検出電流を基にして充電電流を制限する。
【0039】
これら電流制御機能を設けることは、閑散線区のき電システムでのピークカット対策としても有効となる。すなわち、閑散線区では、電気車がたまにしか運転されないことから、閑散時間帯に電池を低電流充電しておき、電気車が運転される時間帯に大電流放電することにより、変電所の交流電源からみて負荷の平準化が可能となる。
【0040】
【発明の効果】
以上のとおり、本発明によれば、エネルギー蓄積装置の直流電力貯蔵装置の電圧を低くし、昇降圧チョッパの昇降圧比を高くするようにしたため、き電線への充放電に寄与しない電圧分を低くすることができ、エネルギー蓄積装置の利用効率及び設備効率を高めることができる。
【0041】
また、直流電力貯蔵装置の充放電制御にはき電線電圧および充放電電流を基にした制御を行うことにより、装置の保護等も可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す主回路構成図。
【図2】電鉄用直流き電システムの概略構成図。
【図3】エネルギー蓄積装置の概略構成図。
【符号の説明】
10…整流器
11…直流電力貯蔵装置
12…昇降圧チョッパ
13…ストッパースイッチ
14…フィルタコンデンサ
15…リアクトル
16…高速しゃ断器
19…電圧検出器
20…変流器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DC feeding system for electric railways, and more particularly to a system provided with an energy storage device that stores regenerative power from an electric vehicle.
[0002]
[Prior art]
As shown schematically in FIG. 2, the DC power feeding system for electric railways is a direct current that becomes a load through the feeder 3 and the trolley wire 4, and receives DC power obtained from the AC power source through the rectifier 2 (forward converter) at the substation 1. The electric vehicle 5 can be fed.
[0003]
In recent DC electric vehicles, a power regeneration system that saves energy by regenerating energy at the time of deceleration to the feeder side is often employed. This regenerative power can be consumed as power supplied to other electric vehicles from feeders or trolley lines, or can be regenerated as AC power from regenerative substation equipment at a substation.
[0004]
When regenerative power is regenerated to the AC power supply side of the substation, there is a problem of reverse power flow from the substation to the AC power supply and the cost of the regenerative substation equipment. As a method for solving this problem, there is a method that consumes heat as a resistor provided on the DC side.
[0005]
In the method of consuming the regenerative power with a resistor, the power regeneration efficiency cannot be increased even though the electric vehicle has a regenerative function. As a method for solving this problem, there is a method in which regenerative power is stored in a DC power storage device provided on the DC side, and this stored power is discharged as a part of power supply power when the electric vehicle is powered (for example, JP-A-11-91415).
[0006]
This method is configured as shown in FIG. In supplying DC power from the rectifier 6 to the feeder, an energy storage device comprising a current control circuit (buck-boost chopper) 7 and a DC power storage device (secondary battery, capacitor, electric double layer capacitor) 8 on the DC side of the rectifier 6. The DC power storage device 8 is charged through the current control circuit 7 when the electric vehicle is in the regenerative state, and discharged from the DC power storage device 8 through the current control circuit 7 when the electric vehicle is in the power running state.
[0007]
[Problems to be solved by the invention]
Since the conventional power storage device is a control system that simply charges / discharges the DC power storage device depending on the presence or absence of regenerative power, there is a problem that its utilization efficiency and facility efficiency deteriorate.
[0008]
For example, a battery as a DC power storage device is configured such that charging is performed at a feeding system voltage of 1600 V or more and discharging is performed at a discharging control setting voltage of 1400 V or less, and the minimum voltage of the feeding system is 1200 V and the maximum. When the voltage is 1800 V, charging is performed when the feeding system voltage is 1800 to 1600 V, and discharging is performed when the voltage is 1400 to 1200 V.
[0009]
In this case, the battery is merely for maintaining a voltage corresponding to 0 to 1200 V as a bias voltage without contributing to charging and discharging. If the rated voltage of the battery is 1600V, the voltage utilization rate is
[0010]
[Expression 1]
(1600-1200) /1600=0.25
Therefore, only 25% of the rated voltage of the device contributes to charging / discharging, and the remaining voltage is simply to secure the rated voltage. To secure this voltage, multiple batteries are connected in multiple stages in series and parallel. It becomes the structure provided in.
[0011]
On the other hand, in the electric power feeding system for electric railways, the regenerative power from the electric vehicle is large, and the charge / discharge current rating in the power storage device is very large.
[0012]
Under these circumstances, the current control circuit and the direct-current power storage device become large and expensive facilities, and the utilization rate is low, so the facility efficiency is lowered.
[0013]
An object of the present invention is to provide a DC feeding system for electric railways in which the utilization efficiency and facility efficiency of an energy storage device are improved.
[0014]
[Means for Solving the Problems]
The energy storage device of the present invention lowers the voltage of the DC power storage device by a voltage determined based on the voltage that does not contribute to charging / discharging with the feeder, and accordingly increases the step-up / step-down ratio of the step-up / step-down chopper. By improving the use efficiency and equipment efficiency of the device, and further providing a stopper switch that prevents natural discharge from the DC power storage device through the buck-boost chopper to the wire side between the buck-boost chopper and the electric wire, In addition, the charging / discharging control of the DC power storage device enables control of the energy storage device by performing control based on the feeder voltage and charging / discharging current, and has the following configuration.
[0015]
DC power is supplied from the AC power source to the feeder via the rectifier or forward converter, and the regenerative power from the electric vehicle is charged to the DC power storage device by the energy storage device provided on the DC side of the rectifier or forward converter. As a DC feeder system for electric railways
The energy storage device controls a charging current from the feeder to the DC power storage device when the feeder voltage is equal to or higher than a charge control set voltage, and the DC when the feeder voltage is equal to or lower than a discharge control set voltage. With a buck-boost chopper that controls the discharge current from the power storage device to the feeder,
The energy storage device has a configuration in which the voltage of the DC power storage device is reduced by a voltage determined based on a voltage that does not contribute to charging / discharging with the feeder,
The step-up / step-down chopper is configured to have a high step-up / step-down ratio to obtain a desired charge / discharge voltage from the voltage of the DC power storage device to the feeder line ,
A stopper switch is provided between the step-up / step-down chopper and the electric wire to prevent natural discharge from the DC power storage device through the step-up / step-down chopper to the electric wire side .
[0017]
In addition, the energy storage device is provided with a filter that suppresses harmonics flowing from the step-up / down chopper to the feeder line side.
[0018]
In addition, the energy storage device includes a current control unit that controls a charge / discharge current of the step-up / down chopper.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a main circuit configuration diagram of an energy storage device according to an embodiment of the present invention. In a substation, from an AC power source to a DC power that becomes a rated voltage by a rectifier (or forward converter) 10 as in the conventional system. Convert and supply to the electric wire side.
[0020]
The power storage device 11 is a secondary battery, a capacitor or an electric double layer capacitor, and a step-up / step-down chopper 12 is connected as a charge / discharge device.
[0021]
The main circuit configuration of the step-up / down chopper 12 is that semiconductor switches SW1 and SW2 indicated by IGBTs are connected in series, and flywheel diodes D1 and D2 are provided in reverse parallel to these switches SW1 and SW2, respectively, to constitute upper and lower arms. The battery 11 is connected through the direct current reactor L from the connection point.
[0022]
In step-down charging of the DC power storage device 11 by the step-up / step-down chopper 12, the switch SW1 is chopper-operated with respect to the DC voltage applied to both ends of the switches SW1 and SW2, and DC is passed from the switch SW1 through the reactor L during the ON period. A charging current is supplied to the power storage device 11, and the current energy of the reactor L is supplied to the DC power storage device 11 through the path of the DC power storage device 11 → the diode D2 during the off period.
[0023]
The step-up discharge from the DC power storage device 11 through the step-up / step-down chopper 12 causes the switch SW2 to perform a chopper operation, and during the ON period, a short-circuit current is passed from the DC power storage device 11 to the reactor L, whereby current energy is supplied to the reactor L. And is discharged from the reactor L through the diode D1 to the electric wire side during the OFF period.
[0024]
A stopper switch 13 is provided on the high pressure side of the step-up / down chopper 12. This stopper switch 13 always allows conduction of current flowing from the feeder side to the chopper 12 by the diode D3, and allows current flowing from the chopper 12 to the feeder side by the semiconductor switch SW3 indicated by GTO. .
[0025]
The stopper switch 13 prevents spontaneous discharge to the feeder side when the voltage on the feeder side becomes lower than the voltage of the DC power storage device 11, and the DC power storage device 11 is operated by the chopper operation of the chopper 13. This is for forming the current path only when boost discharge is performed on the side of the feeder wire.
[0026]
Between the stopper switch 13 and the wire side, a parallel-connected capacitor 14 and a series-connected reactor 15 are provided. The capacitor 14 and the reactor 15 are for suppressing harmonics (harmonics due to chopper operation) included in the charge / discharge current that has passed through the step-up / step-down chopper 12 from the DC power storage device 11. This harmonic suppression prevents communication troubles along railway lines, railway signal equipment, and in-car radio.
[0027]
A DC high-speed circuit breaker 16 is provided between the reactor 15 and the electric wire, a circuit breaker 17 is further provided, and a disconnector 18 is provided on the rail side. The circuit breaker 16 disconnects the energy storage device from the system at a high speed when an accident occurs in the feeder system, and the circuit breaker 17 and the disconnecting device 18 are used to disconnect the energy storage device from the system when the system is stopped. Is.
[0028]
The voltage detector 19 detects the feeder voltage, and the current transformer 20 as a current detector is for detecting the charge / discharge current of the DC power storage device 11. The detection voltage and current detected by these detectors are captured as detection signals in an energy storage control device (not shown), and the control device performs chopper control of the step-up / step-down chopper 12 and on / off control of the stopper switch 13.
[0029]
In the energy storage device configured as described above, in order to increase the utilization efficiency and facility efficiency, the step-up / step-down ratio of the chopper 12 is increased, and the DC power storage device 11 is decreased in rated voltage.
[0030]
In this configuration, for example, in the same manner as described above, when the energy storage device is charged at a feeding system voltage of 1600 V or more and discharged at 1400 V or less, the maximum boosting ratio of the step-up / down chopper 12 is set to 2.5. If the DC power storage device 11 is in the voltage range of 560 to 1400 V, it can be boosted to 1400 V by the chopper 12 and discharged to the power system.
[0031]
In this case, of the voltage of the DC power storage device 11, the voltage (bias) that is not used for charging / discharging is 0 to 560 V, and the usage rate is
[0032]
[Expression 2]
(1400-560) /1400=0.6
Thus, 60% of the DC power storage device voltage contributes to the charge / discharge voltage, and the utilization efficiency can be improved. Further, since the required DC power storage device voltage is lowered, the cost can be reduced and the size can be reduced, and the equipment efficiency can be increased.
[0033]
Next, the charge / discharge control of the energy storage device is switched depending on whether or not the feeding system voltage is within the voltage range for charging the DC power storage device or the voltage range for discharging from the DC power storage device. It can be determined from 19 detection signals. Such charge / discharge control has no problem when the secondary battery is used for the DC power storage device 11 because the voltage is substantially constant.
[0034]
However, when a capacitor or an electric double layer capacitor is used as the DC power storage device 11, the charging / discharging current varies greatly depending on the voltage at that time. This large current change may cause current destruction or overheating in semiconductor switches and diodes used for the chopper 12, the stopper switch 13, and the like, and requires an expensive element with high current performance. In addition, the high-speed circuit breaker 16 or the like may malfunction.
[0035]
For example, when the DC power storage device voltage is 1000 V and the feeder voltage is 1400 V, the DC power storage device is discharged, and when the load current of the feeder system is 2000 A, the discharge current from the energy storage device is
[0036]
[Equation 3]
2000 × (1400/1000) = 2800A
It becomes. This increase in current increases as the voltage of the DC power storage device 11 is lowered.
[0037]
Therefore, in the present embodiment, the maximum charging / discharging current of the energy storage device is set, the charging / discharging current of the DC power storage device 11 is detected by the current detector 20, and the detected current becomes equal to or less than the maximum charging / discharging current. The conduction period of the chopper 12 is limited.
[0038]
Next, when a secondary battery is used as the DC power storage device 11, the charging is more excellent in terms of battery life and the like when the current is reduced. Therefore, in this embodiment, in addition to the charging control of the DC power storage device based on the feeder voltage, the charging current is limited based on the current detected by the current detector 12.
[0039]
Providing these current control functions is also effective as a peak cut countermeasure in a feeder system in a quiet line area. In other words, since the electric car is operated only occasionally in the quiet line area, the battery is charged with a low current during the quiet time period, and the high current is discharged during the time when the electric car is operated, so that the AC of the substation The load can be leveled from the viewpoint of the power source.
[0040]
【The invention's effect】
As described above, according to the present invention, since the voltage of the DC power storage device of the energy storage device is lowered and the step-up / step-down ratio of the step-up / step-down chopper is increased, the voltage component that does not contribute to charging / discharging of the feeder is reduced. It is possible to improve the utilization efficiency and facility efficiency of the energy storage device.
[0041]
Further, by performing control based on the feeder voltage and charge / discharge current in the charge / discharge control of the DC power storage device, the device can be protected.
[Brief description of the drawings]
FIG. 1 is a main circuit configuration diagram showing an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a DC feeding system for electric railways.
FIG. 3 is a schematic configuration diagram of an energy storage device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Rectifier 11 ... DC power storage device 12 ... Buck-boost chopper 13 ... Stopper switch 14 ... Filter capacitor 15 ... Reactor 16 ... High-speed circuit breaker 19 ... Voltage detector 20 ... Current transformer

Claims (3)

交流電源から整流器または順変換器を介してき電線に直流電力を供給し、該整流器または順変換器の直流側に設けたエネルギー蓄積装置により、電気車からの回生電力を直流電力貯蔵装置の充電電力として回生する電鉄用直流き電システムにおいて、
前記エネルギー蓄積装置は、き電線電圧が充電制御設定電圧以上にあるときにき電線から前記直流電力貯蔵装置への充電電流を制御し、き電線電圧が放電制御設定電圧以下にあるときに前記直流電力貯蔵装置からき電線への放電電流を制御する昇降圧チョッパを備え、
前記エネルギー蓄積装置は、前記直流電力貯蔵装置の電圧のうち、き電線との充放電に寄与しない電圧を基にして定める電圧分だけ低くした構成とし、
前記昇降圧チョッパは、前記直流電力貯蔵装置の電圧からき電線への所期の充放電電圧を得る高い昇降圧比にした構成とし、
前記昇降圧チョッパとき電線との間に、前記直流電力貯蔵装置から昇降圧チョッパを通してき電線側への自然放電を阻止するストッパースイッチを設けたことを特徴とする電鉄用直流き電システム。
DC power is supplied from the AC power source to the feeder via the rectifier or forward converter, and the regenerative power from the electric vehicle is charged to the DC power storage device by the energy storage device provided on the DC side of the rectifier or forward converter. As a DC feeder system for electric railways
The energy storage device controls a charging current from the feeder to the DC power storage device when the feeder voltage is equal to or higher than a charge control set voltage, and the DC when the feeder voltage is equal to or lower than a discharge control set voltage. With a buck-boost chopper that controls the discharge current from the power storage device to the feeder,
The energy storage device has a configuration in which the voltage of the DC power storage device is reduced by a voltage determined based on a voltage that does not contribute to charging / discharging with the feeder,
The step-up / step-down chopper is configured to have a high step-up / step-down ratio to obtain a desired charge / discharge voltage from the voltage of the DC power storage device to the feeder line ,
A DC power feeding system for railways, wherein a stopper switch is provided between the step-up / step-down chopper and the electric wire to prevent a natural discharge from the DC power storage device through the step-up / step-down chopper to the electric wire side .
前記エネルギー蓄積装置は、前記昇降圧チョッパからき電線側に流れる高調波を抑止するフィルタを設けたことを特徴とする請求項1に記載の電鉄用直流き電システム。 2. The DC feeding system for railways according to claim 1, wherein the energy storage device is provided with a filter that suppresses harmonics flowing from the step-up / down chopper to the feeder line side . 前記エネルギー蓄積装置は、前記昇降圧チョッパの充放電電流を制御する電流制御手段を備えたことを特徴とする請求項1または2に記載の電鉄用直流き電システム。 The DC power feeding system for railways according to claim 1 or 2, wherein the energy storage device includes current control means for controlling a charge / discharge current of the step-up / down chopper .
JP2000073281A 2000-03-16 2000-03-16 DC feeder system for electric railway Expired - Lifetime JP3618273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000073281A JP3618273B2 (en) 2000-03-16 2000-03-16 DC feeder system for electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073281A JP3618273B2 (en) 2000-03-16 2000-03-16 DC feeder system for electric railway

Publications (2)

Publication Number Publication Date
JP2001260719A JP2001260719A (en) 2001-09-26
JP3618273B2 true JP3618273B2 (en) 2005-02-09

Family

ID=18591542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073281A Expired - Lifetime JP3618273B2 (en) 2000-03-16 2000-03-16 DC feeder system for electric railway

Country Status (1)

Country Link
JP (1) JP3618273B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117804A (en) * 2003-10-08 2005-04-28 Toshiba Corp Power conversion apparatus
JP3964857B2 (en) * 2003-12-04 2007-08-22 株式会社日立製作所 Regenerative power absorption control method for electric railways
JP4238190B2 (en) * 2004-08-26 2009-03-11 株式会社日立製作所 Power storage type regenerative power absorber and control method thereof
JP4572840B2 (en) * 2006-02-10 2010-11-04 株式会社明電舎 DC power storage device
ES2513140T3 (en) 2006-04-11 2014-10-24 Mitsubishi Denki Kabushiki Kaisha Energy storage system
KR100890951B1 (en) * 2007-04-16 2009-04-03 한국철도기술연구원 Restoration-electric power storage system of electric railway using electric double layer capacitor
CN103253155B (en) * 2008-02-29 2016-02-10 川崎重工业株式会社 Electric railway power feed system
JP2009292187A (en) * 2008-06-03 2009-12-17 Fuji Electric Systems Co Ltd Power storage type regenerated power absorber
KR100974544B1 (en) * 2008-06-16 2010-08-11 한국철도기술연구원 Restoration-electric power storage apparatus of electric railway with function of balancing multi storage module current
KR100997947B1 (en) * 2008-08-28 2010-12-21 (주)우진 Regenerative energy storage system of electric railway with function of providing information
JP5371625B2 (en) * 2009-08-18 2013-12-18 東洋電機製造株式会社 Power storage device
KR101169343B1 (en) * 2009-09-11 2012-07-30 한국철도기술연구원 Restoration-electric power storage system of DC electric railway car
JP5658450B2 (en) 2009-11-12 2015-01-28 川崎重工業株式会社 Battery system
KR101152211B1 (en) 2010-09-17 2012-06-15 한국철도기술연구원 control method of energy storage system for electric train
KR101213921B1 (en) 2010-11-03 2012-12-18 넥스콘 테크놀러지 주식회사 rapid charge of battery pack for electric vehicle
CN103568851B (en) * 2012-08-09 2016-06-29 中国北车股份有限公司 The regenerative braking energy absorption device of rail vehicle and rail vehicle
JP6324122B2 (en) * 2014-03-07 2018-05-16 株式会社日立製作所 Power storage type voltage stabilizer and control method thereof
JP6253559B2 (en) * 2014-09-30 2017-12-27 株式会社日立製作所 Power converter
CN106904092A (en) * 2017-03-27 2017-06-30 江苏万帮德和新能源科技有限公司 Charging pile and its charging method

Also Published As

Publication number Publication date
JP2001260719A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP3618273B2 (en) DC feeder system for electric railway
EP2241472B1 (en) Power storage control apparatus and method of electric vehicle
US9873335B2 (en) Electric railcar power feeding system, power feeding device, and power storage device
KR101169343B1 (en) Restoration-electric power storage system of DC electric railway car
KR101419203B1 (en) Electric-vehicle propulsion power-conversion device
JP4572840B2 (en) DC power storage device
KR100890951B1 (en) Restoration-electric power storage system of electric railway using electric double layer capacitor
JP5082450B2 (en) Power supply equipment
JP2009072003A (en) Electric railroad system
JP2009072003A5 (en)
JP2003199203A (en) Protection method for regenerated-energy accumulator and regenerated-energy accumulator
JP5902534B2 (en) Railway vehicle drive system
JP5561071B2 (en) Uninterruptible power system
CN112721958B (en) Traction auxiliary system and method suitable for power outage area and vehicle
JP5622380B2 (en) Power supply system
CN212579619U (en) Energy supply device for a rail vehicle and rail vehicle
JP2005162076A (en) Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter
JP2004056934A (en) Auxiliary power unit
JP4238190B2 (en) Power storage type regenerative power absorber and control method thereof
CN112152270A (en) Superconducting magnetic energy storage device applied to subway train regenerative braking and control method thereof
JP4978354B2 (en) DC power storage device
JP2004358984A (en) Direct current power supply equipment for electric railroad
JP2005206111A (en) Dc voltage power feed device
EP0787620B1 (en) Electric vehicle controller
KR101169342B1 (en) Restoration-electric power storage system of AC electric railway car

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3618273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term