JP2009292187A - Power storage type regenerated power absorber - Google Patents

Power storage type regenerated power absorber Download PDF

Info

Publication number
JP2009292187A
JP2009292187A JP2008145222A JP2008145222A JP2009292187A JP 2009292187 A JP2009292187 A JP 2009292187A JP 2008145222 A JP2008145222 A JP 2008145222A JP 2008145222 A JP2008145222 A JP 2008145222A JP 2009292187 A JP2009292187 A JP 2009292187A
Authority
JP
Japan
Prior art keywords
power
storage device
voltage
discharge
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008145222A
Other languages
Japanese (ja)
Inventor
Hisashi Fujimoto
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008145222A priority Critical patent/JP2009292187A/en
Publication of JP2009292187A publication Critical patent/JP2009292187A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein an energy equivalent to an amount of voltage drop determined by a discharge current and an internal resistance at a point of time reaching the end, remains in a capacitance when discharge is stopped at the point of time when a capacitor voltage reaches a discharge end voltage in a regenerated power absorber for an electric railway. <P>SOLUTION: A charge/discharge current command Ic* computed by conventional control and the internal resistance 5 of the capacitor are multiplied by a multiplier 19, thereby calculating the amount of the voltage drop ΔVr by the internal resistance 5. This ΔVr is added to the discharge end voltage V2, thereby calculating a new discharge end voltage setting value V2'. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電鉄向け回生電力吸収装置のように、電力変換装置と2次電池や大容量キャパシタ等の蓄電デバイスで構成される電力充放電回路を電源に並列に接続し、電動機負荷等から電源側に回生される電力を一旦吸収し、吸収した電力を必要に応じて放出するシステムに関する。   The present invention connects a power charging / discharging circuit composed of a power conversion device and a power storage device such as a secondary battery or a large-capacity capacitor in parallel to a power source, such as a regenerative power absorbing device for electric railways, The present invention relates to a system that once absorbs electric power regenerated to the side and discharges the absorbed electric power as needed.

図5に、特許文献1で提案されている電力貯蔵式回生電力吸収装置の構成を示す。交流電源1から整流器2を介して電鉄負荷(電力回生機能付き電線鉄道車両)7に直流電力を供給する変電所に設けられた電鉄用直流変電システムであって、前記整流器2の直流側(き電線電圧)に電力変換器3を介して充放可能な電力貯蔵装置4を接続し、電力貯蔵装置4の充放電により電鉄負荷7で発生した回生電力を貯蔵するとともに整流器2の電力を平滑化する。また、電力貯蔵デバイスとして電気二重層キャパシタのような大容量キャパシタを適用することが提案されている。
また、特許文献2では、特許文献1で示した装置において、き電線電圧を監視し、き電線電圧が充電制御設定電圧以上にあるときはき電線側から電力貯蔵装置に充電し、き電線電圧が放電制御設定電圧以下のときには電力貯蔵装置からき電線側へ放電する、といった電力貯蔵装置の制御方法が提案されている。
図6は、上記内容を制御ブロック図(概略)で示したものである。き電線電圧Vfを検出し、充放電制御量演算回路10に入力する。充放電制御量演算回路10は、き電線電圧Vfが充電電圧設定器12の設定電圧Vb-ch以上であるときは、その電圧値に応じて充電制御量を算出し、き電線電圧Vfが放電電圧設定器11の設定電圧Vb-dis以下であるときは、その電圧値に応じて放電制御量Idchを算出する。さらに、その後段の充放電電流演算回路15で演算された充放電制御量Idchを変換回路3の電流指令値Ic*に変換する。
In FIG. 5, the structure of the electric power storage type | mold regenerative electric power absorption apparatus proposed by patent document 1 is shown. A DC substation system for electric railways provided at a substation that supplies DC power from an AC power source 1 to an electric railway load (wire railway vehicle with power regeneration function) 7 via a rectifier 2, The power storage device 4 that can be charged / discharged via the power converter 3 is connected to the electric wire voltage), and the regenerative power generated by the railway load 7 is stored and the power of the rectifier 2 is smoothed by the charge / discharge of the power storage device 4 To do. In addition, it has been proposed to apply a large-capacity capacitor such as an electric double layer capacitor as a power storage device.
Moreover, in patent document 2, in the apparatus shown in patent document 1, the feeder voltage is monitored, and when the feeder voltage is equal to or higher than the charging control setting voltage, the power storage device is charged from the feeder line side. There has been proposed a control method for a power storage device such that when the voltage is equal to or lower than the discharge control set voltage, the power storage device discharges to the feeder line side.
FIG. 6 is a control block diagram (outline) showing the above contents. The feeder voltage Vf is detected and input to the charge / discharge control amount calculation circuit 10. The charge / discharge control amount calculation circuit 10 calculates the charge control amount according to the voltage value when the feeder voltage Vf is equal to or higher than the set voltage Vb-ch of the charge voltage setter 12, and the feeder voltage Vf is discharged. When the voltage is less than or equal to the set voltage Vb-dis of the voltage setter 11, the discharge control amount Idch is calculated according to the voltage value. Further, the charge / discharge control amount Idch calculated by the subsequent charge / discharge current calculation circuit 15 is converted into a current command value Ic * of the conversion circuit 3.

一方、キャパシタ電圧Vbを検出し、キャパシタの満充電電圧V1とキャパシタの放電終止電圧V2との判別処理を行い、この判別結果を充放電制御量とともにリミット処理回路16に入力する。リミット処理回路16では、判別処理において満充電電圧V1と放電終止電圧V2の範囲内にキャパシタ電圧Vbが入っている場合には、キャパシタ特性による電流制限を行い、また判別処理で満充電もしくは放電終止の場合には、充放電電流を零にするリミット処理を行う。そして、リミット処理された電流指令に基づいて電力変換器3は充放電制御を行なう。
特許文献3では、充放電制御方法として、列車の運行情報データに基づき、電力貯蔵装置からの放電を平均的に行う方法を提案している。
特開平11−91415号公報 特開2001−260719号公報 特開2005−162076号公報
On the other hand, the capacitor voltage Vb is detected, the discrimination process between the full charge voltage V1 of the capacitor and the discharge end voltage V2 of the capacitor is performed, and this discrimination result is input to the limit processing circuit 16 together with the charge / discharge control amount. In the limit processing circuit 16, if the capacitor voltage Vb is within the range of the full charge voltage V1 and the discharge end voltage V2 in the discrimination process, the current is limited by the capacitor characteristics, and the full charge or discharge end is performed in the discrimination process. In the case of, limit processing for reducing the charge / discharge current to zero is performed. The power converter 3 performs charge / discharge control based on the current command subjected to the limit process.
Patent Document 3 proposes a method for performing average discharge from the power storage device based on train operation information data as a charge / discharge control method.
JP-A-11-91415 JP 2001-260719 A JP 2005-162076 A

特許文献1〜3で提案されているシステムで実際に充放電を行う場合、適用される前記蓄電デバイス4には内部抵抗5が存在するため、充放電電流に応じた電圧降下が発生する。その結果、観測されるキャパシタ電圧は、残存容量に依存する静電容量電圧値と放電電流により発生する降下電圧値の加算値となる。従って、キャパシタ電圧が放電終止電圧に到達した時点で放電を停止した場合、終止到達時点の放電電流と内部抵抗5によって決まる電圧降下分に相当するエネルギーが静電容量6に残存することになる。内部抵抗5が大きいほど、この残存量が増加し、その後の吸収可能エネルギーを低下させる原因となる。
この対策として、内部抵抗5の小さいキャパシタを選択する方法や、並列数を増加させて内部抵抗5を下げる方法がある。前者は内部抵抗5が小さくなるとその分静電容量6も減少するため、本来エネルギー吸収に必要となる静電容量6を得るために並列数が増加する。いずれの方法もキャパシタ群を大型化させることになる。
When actually charging / discharging in the system proposed in Patent Documents 1 to 3, since the internal storage device 5 exists in the power storage device 4 to be applied, a voltage drop corresponding to the charging / discharging current occurs. As a result, the observed capacitor voltage is an added value of the capacitance voltage value depending on the remaining capacity and the drop voltage value generated by the discharge current. Therefore, when the discharge is stopped when the capacitor voltage reaches the discharge end voltage, energy corresponding to the voltage drop determined by the discharge current and the internal resistance 5 at the end of the end remains in the capacitance 6. As the internal resistance 5 increases, the remaining amount increases, which causes a decrease in the subsequent absorbable energy.
As countermeasures, there are a method of selecting a capacitor having a small internal resistance 5 and a method of decreasing the internal resistance 5 by increasing the number of parallel connections. In the former, as the internal resistance 5 decreases, the capacitance 6 also decreases accordingly, so that the parallel number increases in order to obtain the capacitance 6 that is originally required for energy absorption. Either method increases the size of the capacitor group.

上述の課題を解決するために、第1の発明においては、電力変換装置と蓄電デバイスで構成される電力充放電回路を電源に並列に接続し、電動機負荷等から電源側に回生される電力を前記蓄電デバイスで吸収し、吸収した電力を必要に応じて前記電源に放出するシステムにおいて、吸収したエネルギーを前記蓄電デバイスの放電完了電圧レベルまで放出する制御の際に、前記蓄電デバイスの放出エネルギーと前記蓄電デバイスの内部抵抗によって生じる電圧降下分を推定し、放電完了電圧レベルを前記電圧降下分の推定値に応じて調整する。
第2の発明においては、電力変換装置と蓄電デバイスで構成される電力充放電回路を電源に並列に接続し、電動機負荷等から電源側に回生される電力を前記蓄電デバイスで吸収し、吸収した電力を必要に応じて前記電源に放出するシステムにおいて、吸収したエネルギーを放電完了電圧レベルまで放出する制御の際に、前記蓄電デバイスのエネルギー放出量が放電完了電圧レベルに到達する時点で零となるよう放出エネルギーを順次低減させる。
第3の発明においては、電力変換装置と蓄電デバイスで構成される電力充放電回路を電源に並列に接続し、電動機負荷等から電源側に回生される電力を前記蓄電デバイスで吸収し、吸収した電力を必要に応じて前記電源に放出するシステムにおいて、吸収したエネルギーを放電完了電圧レベルまで放出する制御の際に、第1の放電完了電圧レベルと第2の放電完了電圧レベルを設け、第1の放電完了電圧レベルに到達した時点で、第2の放電完了電圧レベルまで放電する場合の前記蓄電デバイスの残存エネルギーを、前記蓄電デバイスの内部抵抗によって生じる電圧降下分を考慮して推定し、所定の時間内に前記残存エネルギーを放出するための電流パターンを算出し、その電流パターンに基づいてエネルギーを放出する。
In order to solve the above-described problem, in the first invention, a power charging / discharging circuit including a power conversion device and a power storage device is connected in parallel to a power source, and power regenerated from a motor load or the like to the power source side is generated. In the system that absorbs the power by the power storage device and releases the absorbed power to the power supply as needed, when the control is performed to release the absorbed energy to the discharge completion voltage level of the power storage device, The voltage drop caused by the internal resistance of the electricity storage device is estimated, and the discharge completion voltage level is adjusted according to the estimated value of the voltage drop.
In the second invention, a power charging / discharging circuit composed of a power conversion device and a power storage device is connected in parallel to the power source, and the power regenerated from the motor load or the like to the power source side is absorbed by the power storage device and absorbed. In a system that discharges electric power to the power supply as needed, when the control is performed to release the absorbed energy to the discharge completion voltage level, the energy discharge amount of the power storage device becomes zero when the discharge completion voltage level is reached. The emission energy is gradually reduced.
In the third invention, a power charging / discharging circuit composed of a power conversion device and a power storage device is connected in parallel to the power source, and the power regenerated from the motor load or the like to the power source side is absorbed by the power storage device and absorbed. In the system for discharging electric power to the power supply as needed, a first discharge completion voltage level and a second discharge completion voltage level are provided in the control for releasing the absorbed energy to the discharge completion voltage level. When the discharge completion voltage level is reached, the remaining energy of the electricity storage device in the case of discharging to the second discharge completion voltage level is estimated in consideration of the voltage drop caused by the internal resistance of the electricity storage device. A current pattern for releasing the remaining energy is calculated within a time period of time, and energy is released based on the current pattern.

第1の発明においては、内部抵抗5による電圧降下分を本来の放電終止レベルから下方修正することで、静電容量6に蓄えられた残存容量を零まで放電することができる。
第2及び第3の発明においては、キャパシタ電圧が放電終止レベルに近づくにつれて放電電流を零まで低減することで、放電終止レベル到達時点で内部抵抗5による電圧降下は零となり、静電容量6に蓄えられた残存容量を零とすることができる。
上述のように、キャパシタを効率よく活用することが可能となり、キャパシタ群の小型化が可能となる。
In the first invention, the remaining capacity stored in the capacitance 6 can be discharged to zero by correcting the voltage drop caused by the internal resistance 5 downward from the original discharge end level.
In the second and third inventions, by reducing the discharge current to zero as the capacitor voltage approaches the discharge end level, the voltage drop due to the internal resistance 5 becomes zero when the discharge end level is reached, and the capacitance 6 The stored remaining capacity can be made zero.
As described above, the capacitors can be efficiently used, and the capacitor group can be downsized.

本発明の要点は、キャパシタなどの蓄電デバイスの放電において、内部抵抗による電圧降下分を考慮して放電完了電圧を決めたり、放電完了時点での電流が零となるように制御するなどにより、内部抵抗の影響を受けずに残存容量を零にすることである。   The main point of the present invention is that, in discharging a power storage device such as a capacitor, the discharge completion voltage is determined in consideration of the voltage drop due to the internal resistance, or the current at the time of discharge completion is controlled to be zero. The remaining capacity is made zero without being affected by the resistance.

図1に、本発明の第1の実施例を、図2にその動作例を、各々示す。ここでは、図6で示した従来制御に対して、図2の破線で示した演算処理を追加する。図1に示すように、従来制御で演算された充放電電流指令Ic*とキャパシタの内部抵抗5を乗算器19で乗算し、内部抵抗5による電圧降下分ΔVrを算出する。このΔVrと放電終止電圧V2を加算し、新たな放電終止電圧設定値V2'を算出する。算出されたV2'に基づき、キャパシタの充電状態の判別を行い、その後の放電動作を行う。
図2は、従来制御で放電終止状態を判別した場合(a)と、提案する追加処理を実施した場合(b)の放電電圧と電流の波形を示したものである。
従来制御では、キャパシタ電圧Vbが放電終止電圧V2に到達し、キャパシタ電流Icが零になると同時に、電圧がΔVr分シフトする。この値はキャパシタの静電容量の残存エネルギーで決まる電圧であり、設計上零に設定した放電終止電圧V2におけるエネルギーに対して、下記ΔJで示されるエネルギーが残留してしまうことになる。

一方、演算処理を追加すると、図2(b)に示すように、新たな放電終止電圧V2'まで放電動作を継続し、放電終了後のキャパシタ電圧Vbは従来の設定値V2となり、零まで放電することができる。
FIG. 1 shows a first embodiment of the present invention, and FIG. 2 shows an operation example thereof. Here, the arithmetic processing indicated by the broken line in FIG. 2 is added to the conventional control shown in FIG. As shown in FIG. 1, the charge / discharge current command Ic * calculated in the conventional control and the internal resistance 5 of the capacitor are multiplied by a multiplier 19 to calculate a voltage drop ΔVr due to the internal resistance 5. This ΔVr and the discharge end voltage V2 are added to calculate a new discharge end voltage set value V2 ′. Based on the calculated V2 ′, the state of charge of the capacitor is determined, and the subsequent discharge operation is performed.
FIG. 2 shows waveforms of discharge voltage and current when the discharge end state is determined by conventional control (a) and when the proposed additional processing is performed (b).
In the conventional control, the capacitor voltage Vb reaches the discharge end voltage V2, the capacitor current Ic becomes zero, and at the same time, the voltage is shifted by ΔVr. This value is a voltage determined by the residual energy of the capacitance of the capacitor, and energy indicated by ΔJ below remains with respect to the energy at the discharge end voltage V2 set to zero by design.

On the other hand, when the calculation process is added, as shown in FIG. 2 (b), the discharge operation is continued until the new discharge end voltage V2 ', and the capacitor voltage Vb after the end of discharge becomes the conventional set value V2 and discharges to zero. can do.

図3に本発明の第2の実施例を、図4にその動作例を、各々示す。放電終止電圧到達時点でキャパシタ電流を零に減衰させることにより、内部抵抗5による電圧降下ΔVrを限りなく零に近づけ、静電容量電圧Vc=キャパシタ電圧Vbとすることで放電終止判定時点で残存エネルギーを零とする方法である。
まず、キャパシタ電圧Vbと、放電終止電圧レベルより高いレベルを設定値とする判別電圧Vxを判別回路21で比較する。キャパシタ電圧Vbが判別電圧Vxに到達したことを判別したことにより、放電電流パターン演算回路22により判別電圧Vxから放電終止電圧V2まで放電するための電流パターンを演算する。
図3に示す実施例では、放電完了までの時間をTと設定し、電流がVx時点でのキャパシタ電流I0から、直線的に零に減衰する電流パターンを演算している。ここでは、最初に静電容量電圧Vcをキャパシタ電圧Vbとキャパシタ電流Icと内部抵抗Rから次式で算出する。

次に演算結果Vcから放電終止電圧V2(Vend)を減算してΔVを算出する。

より、初期キャパシタ電流I0を算出し、電流パターンI(t)を次式で算出する。
FIG. 3 shows a second embodiment of the present invention, and FIG. 4 shows an operation example thereof. By attenuating the capacitor current to zero when the end-of-discharge voltage is reached, the voltage drop ΔVr due to the internal resistance 5 becomes as close to zero as possible, and the residual energy at the end-of-discharge determination time is obtained by setting the capacitance voltage Vc = capacitor voltage Vb Is zero.
First, the determination circuit 21 compares the capacitor voltage Vb with a determination voltage Vx having a set value higher than the discharge end voltage level. When it is determined that the capacitor voltage Vb has reached the determination voltage Vx, the discharge current pattern calculation circuit 22 calculates a current pattern for discharging from the determination voltage Vx to the discharge end voltage V2.
In the embodiment shown in FIG. 3, the time until the discharge is completed is set as T, and a current pattern that linearly decays to zero is calculated from the capacitor current I0 at the time of Vx. Here, the capacitance voltage Vc is first calculated from the capacitor voltage Vb, the capacitor current Ic, and the internal resistance R by the following equation.

Next, ΔV is calculated by subtracting the discharge end voltage V2 (Vend) from the calculation result Vc.

Thus, the initial capacitor current I0 is calculated, and the current pattern I (t) is calculated by the following equation.


この電流パターンとVx到達後にスタートするタイマー25により電流指令を放電電流指令演算回路24で演算し、Vx到達後のキャパシタ電流指令Ic*とする。
図4は、前記電流パターンを設定した場合の、キャパシタ電圧Vbと電流波形Icを示したものである。前記電流パターンによりVx到達後の電流指令値は減衰し、放電終止電圧V2に到達するT時間後の電流指令は零となる。この結果、V2到達時点での内部抵抗による電圧降下量も零となり、静電容量の持つ残存エネルギーも零となる。
以上の実施例よれば、放電終止判定時点でキャパシタの残存エネルギーを零とすることが可能となる。この結果、従来方式において問題となっていたエネルギー吸収可能量の低下を対策することができ、キャパシタを有効利用できる。
尚、上記実施例には、放電終止前の電圧V2'が一段の場合の例を示したが、複数段にしても実現可能である。また、放電電流パターンは放電完了時点でキャパシタのエネルギーが零に放電する方式であれば良く、種々のパターンを適用することができる。

A current command is calculated by the discharge current command calculation circuit 24 using the current pattern and a timer 25 that starts after reaching Vx, and is set as a capacitor current command Ic * after reaching Vx.
FIG. 4 shows the capacitor voltage Vb and the current waveform Ic when the current pattern is set. The current command value after reaching Vx is attenuated by the current pattern, and the current command after T time reaching the discharge end voltage V2 becomes zero. As a result, the amount of voltage drop due to the internal resistance when V2 is reached is also zero, and the residual energy of the capacitance is zero.
According to the above embodiment, the remaining energy of the capacitor can be set to zero at the end of discharge determination. As a result, it is possible to take measures against a decrease in the amount of energy that can be absorbed, which is a problem in the conventional method, and the capacitor can be used effectively.
In the above-described embodiment, an example in which the voltage V2 ′ before the end of discharge is one stage is shown. Further, the discharge current pattern may be any system that discharges the capacitor energy to zero when the discharge is completed, and various patterns can be applied.

本発明は、大容量の蓄電装置を有効活用するための制御方式であり、電鉄向け回生電力吸収装置の他、電力用負荷平準化装置、電気自動車などへの適用が可能である。   The present invention is a control method for effectively utilizing a large-capacity power storage device, and can be applied to a power load leveling device, an electric vehicle, and the like in addition to a regenerative power absorbing device for electric railways.

本発明の第1の実施例を示す制御回路ブロック図を示す。1 is a block diagram of a control circuit showing a first embodiment of the present invention. 図1を適用した時の動作図を示す。The operation diagram when FIG. 1 is applied is shown. 本発明の第2の実施例を示す制御回路ブロック図を示す。The control circuit block diagram which shows the 2nd Example of this invention is shown. 図3を適用した時の動作図を示す。The operation | movement figure when FIG. 3 is applied is shown. 電力貯蔵式回生電力吸収装置の構成例を示す。The structural example of an electric power storage type regenerative electric power absorber is shown. 従来の制御回路ブロック図を示す。The conventional control circuit block diagram is shown.

符号の説明Explanation of symbols

1・・・交流電源 2・・・整流回路 3・・・直流−直流変換器
4・・・大容量キャパシタ 5・・・内部抵抗 6・・・静電容量
7・・・電力回生機能付き電線鉄道車両 8・・・き電線
9・・・レール 10・・・充放電制御量演算回路
11・・・放電電圧設定器 12・・・充電電圧設定器
13・・・満充電電圧設定器 14・・・放電終止電圧設定器
15・・・充放電電流演算回路 16・・・リミッタ処理回路
17・・・充電状態判定回路 18・・・内部抵抗設定器
19・・・乗算器 20・・・加算器
21・・・放電終止前電圧設定器 22・・・放電電流パターン演算回路
23・・・電流指令切替回路 24・・・放電電流指令演算回路
25・・・タイマー

DESCRIPTION OF SYMBOLS 1 ... AC power supply 2 ... Rectifier circuit 3 ... DC-DC converter 4 ... Large capacity capacitor 5 ... Internal resistance 6 ... Electrostatic capacity 7 ... Electric wire with a power regeneration function Railcar 8 ... feeder 9 ... rail 10 ... charge / discharge control amount calculation circuit 11 ... discharge voltage setter 12 ... charge voltage setter 13 ... full charge voltage setter 14. ··· End-of-discharge voltage setting device 15 ··· Charging / discharging current calculation circuit 16 ··· Limiter processing circuit 17 ··· Charging state determination circuit 18 ··· Internal resistance setting device 19 · · · 21 ... Voltage setting device before discharge end 22 ... Discharge current pattern calculation circuit 23 ... Current command switching circuit 24 ... Discharge current command calculation circuit 25 ... Timer

Claims (3)

電力変換装置と蓄電デバイスで構成される電力充放電回路を電源に並列に接続し、電動機負荷等から電源側に回生される電力を前記蓄電デバイスで吸収し、吸収した電力を必要に応じて前記電源に放出するシステムにおいて、吸収したエネルギーを前記蓄電デバイスの放電完了電圧レベルまで放出する制御の際に、前記蓄電デバイスの放出エネルギーと前記蓄電デバイスの内部抵抗によって生じる電圧降下分を推定し、放電完了電圧レベルを前記電圧降下分の推定値に応じて調整することを特徴とする電力貯蔵式回生電力吸収装置。   A power charging / discharging circuit composed of a power conversion device and a power storage device is connected in parallel to a power source, power regenerated from the motor load or the like to the power source side is absorbed by the power storage device, and the absorbed power is In the system that releases to the power source, when controlling the released energy to the discharge completion voltage level of the electricity storage device, estimate the voltage drop caused by the energy released from the electricity storage device and the internal resistance of the electricity storage device. A power storage type regenerative power absorbing device, wherein a completion voltage level is adjusted according to an estimated value of the voltage drop. 電力変換装置と蓄電デバイスで構成される電力充放電回路を電源に並列に接続し、電動機負荷等から電源側に回生される電力を前記蓄電デバイスで吸収し、吸収した電力を必要に応じて前記電源に放出するシステムにおいて、吸収したエネルギーを放電完了電圧レベルまで放出する制御の際に、前記蓄電デバイスのエネルギー放出量が放電完了電圧レベルに到達する時点でゼロとなるよう放出エネルギーを順次低減させることを特徴とする電力貯蔵式回生電力吸収装置。   A power charging / discharging circuit composed of a power conversion device and a power storage device is connected in parallel to a power source, power regenerated from the motor load or the like to the power source side is absorbed by the power storage device, and the absorbed power is In a system for releasing to a power source, when controlling the released energy to the discharge completion voltage level, the emission energy is sequentially reduced so that the amount of energy released from the electricity storage device reaches zero when reaching the discharge completion voltage level. A power storage type regenerative power absorbing device characterized by that. 電力変換装置と蓄電デバイスで構成される電力充放電回路を電源に並列に接続し、電動機負荷等から電源側に回生される電力を前記蓄電デバイスで吸収し、吸収した電力を必要に応じて前記電源に放出するシステムにおいて、吸収したエネルギーを放電完了電圧レベルまで放出する制御の際に、第1の放電完了電圧レベルと第2の放電完了電圧レベルを設け、第1の放電完了電圧レベルに到達した時点で、第2の放電完了電圧レベルまで放電する場合の前記蓄電デバイスの残存エネルギーを、前記蓄電デバイスの内部抵抗によって生じる電圧降下分を考慮して推定し、所定の時間内に前記残存エネルギーを放出するための電流パターンを算出し、その電流パターンに基づいてエネルギーを放出することを特徴とする電力貯蔵式回生電力吸収装置。

A power charging / discharging circuit composed of a power conversion device and a power storage device is connected in parallel to a power source, power regenerated from the motor load or the like to the power source side is absorbed by the power storage device, and the absorbed power is In a system for discharging to a power source, a first discharge completion voltage level and a second discharge completion voltage level are provided in the control for releasing the absorbed energy to the discharge completion voltage level, and the first discharge completion voltage level is reached. The remaining energy of the electricity storage device when discharging to the second discharge completion voltage level is estimated in consideration of the voltage drop caused by the internal resistance of the electricity storage device, and the remaining energy within a predetermined time. A power storage type regenerative power absorption device characterized by calculating a current pattern for discharging the energy and discharging energy based on the current pattern .

JP2008145222A 2008-06-03 2008-06-03 Power storage type regenerated power absorber Withdrawn JP2009292187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145222A JP2009292187A (en) 2008-06-03 2008-06-03 Power storage type regenerated power absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145222A JP2009292187A (en) 2008-06-03 2008-06-03 Power storage type regenerated power absorber

Publications (1)

Publication Number Publication Date
JP2009292187A true JP2009292187A (en) 2009-12-17

Family

ID=41540808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145222A Withdrawn JP2009292187A (en) 2008-06-03 2008-06-03 Power storage type regenerated power absorber

Country Status (1)

Country Link
JP (1) JP2009292187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016393A (en) * 2009-07-07 2011-01-27 Meidensha Corp Discharge control method in feeder voltage compensator for electric railways
JP2012161131A (en) * 2011-01-31 2012-08-23 Meidensha Corp Two-quadrant chopper control device
KR20160079538A (en) * 2014-12-26 2016-07-06 엘지전자 주식회사 System for controlling battery discharge, method for controlling the same, and cleaner including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191415A (en) * 1997-07-22 1999-04-06 Nissin Electric Co Ltd Electric railway dc transforming system
JP2001260719A (en) * 2000-03-16 2001-09-26 Railway Technical Res Inst Dc electromotive system for electric railroad
JP2004301785A (en) * 2003-03-31 2004-10-28 Yazaki Corp Dischargeable capacity estimating method and its device for battery
JP2005162076A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191415A (en) * 1997-07-22 1999-04-06 Nissin Electric Co Ltd Electric railway dc transforming system
JP2001260719A (en) * 2000-03-16 2001-09-26 Railway Technical Res Inst Dc electromotive system for electric railroad
JP2004301785A (en) * 2003-03-31 2004-10-28 Yazaki Corp Dischargeable capacity estimating method and its device for battery
JP2005162076A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016393A (en) * 2009-07-07 2011-01-27 Meidensha Corp Discharge control method in feeder voltage compensator for electric railways
JP2012161131A (en) * 2011-01-31 2012-08-23 Meidensha Corp Two-quadrant chopper control device
KR20160079538A (en) * 2014-12-26 2016-07-06 엘지전자 주식회사 System for controlling battery discharge, method for controlling the same, and cleaner including the same
KR101641264B1 (en) * 2014-12-26 2016-07-29 엘지전자 주식회사 System for controlling battery discharge, method for controlling the same, and cleaner including the same
US10117556B2 (en) 2014-12-26 2018-11-06 Lg Electronics Inc. Battery discharge control system, control method thereof, and cleaner including the same

Similar Documents

Publication Publication Date Title
CN103718449B (en) Power inverter
JP6717826B2 (en) Electric power supply and energy harvesting auxiliary system for electric vehicle and method of operating the power supply and energy harvesting auxiliary system
CN110641283B (en) Power control device
JP5401366B2 (en) Control device for hybrid vehicle
KR102657324B1 (en) Method for estimating charging required time of vehicle and reserving charging method using the same
JP6496496B2 (en) Power storage system and control method thereof
JP2007159370A (en) Bidirectional power conversion device with reverse power flow prevention function
EP1538020A2 (en) Railway regenerative power absorption control method, device thereof and power converter control device
JP2009067205A (en) Sub station using storage element, and electric railroad feeding system
JP2009089503A (en) Vehicle controller with storage device
WO2012131995A1 (en) Alternating current motor drive device
JP6239155B2 (en) Charge / discharge control device
JP2009292187A (en) Power storage type regenerated power absorber
JP4432675B2 (en) Power converter
JP5604984B2 (en) Feeding voltage control method for electric railway system
JP2009241677A (en) Control system of power storage device of dc electric railroad vehicle
EP3075596B1 (en) Station building power supply device
CN105048806A (en) Power conversion circuit
US9537333B2 (en) Voltage supply system and method for disabling operation of a DC-DC voltage converter
JP2008118761A (en) Hybrid energy storage device of electric vehicle and electric vehicle
KR101888974B1 (en) Control system for battery
JP2012070575A (en) Power regeneration device
CN116760199A (en) Hybrid energy storage method based on flywheel energy storage and related components
JP2008079436A (en) Power supply control unit
KR101337242B1 (en) Rapid charger for battery of pulse type having energy recovery capability and the method of controlling the charger

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A761 Written withdrawal of application

Effective date: 20121210

Free format text: JAPANESE INTERMEDIATE CODE: A761