JP5401366B2 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP5401366B2
JP5401366B2 JP2010055230A JP2010055230A JP5401366B2 JP 5401366 B2 JP5401366 B2 JP 5401366B2 JP 2010055230 A JP2010055230 A JP 2010055230A JP 2010055230 A JP2010055230 A JP 2010055230A JP 5401366 B2 JP5401366 B2 JP 5401366B2
Authority
JP
Japan
Prior art keywords
value
battery
limit value
current limit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010055230A
Other languages
Japanese (ja)
Other versions
JP2011189768A (en
Inventor
雅彦 天野
修子 山内
恒典 山本
裕 有田
正浩 長洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010055230A priority Critical patent/JP5401366B2/en
Publication of JP2011189768A publication Critical patent/JP2011189768A/en
Application granted granted Critical
Publication of JP5401366B2 publication Critical patent/JP5401366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、蓄電池を搭載したハイブリッド車両の制御装置に関する。   The present invention relates to a control device for a hybrid vehicle equipped with a storage battery.

地球温暖化など環境問題への対応策として、蓄電池を用いたハイブリッド車両の普及が進んでいる。蓄電池には鉛蓄電池,ニッケル水素電池,リチウムイオン電池などが用いられるが、特に出力密度やエネルギー密度に優れるリチウムイオン電池の採用が近年増えてきている。   As a countermeasure against environmental problems such as global warming, the spread of hybrid vehicles using storage batteries is progressing. As the storage battery, a lead storage battery, a nickel metal hydride battery, a lithium ion battery, or the like is used, but in particular, the use of a lithium ion battery that is particularly excellent in output density and energy density has been increasing.

一般に蓄電池は充放電サイクルを繰り返すことで劣化が進む。特に鉄道ハイブリッド車両のように、回生ブレーキによる大電流を長時間にわたって充電するようなシステムにおいては、劣化を考慮した適切な電流制限を設けないと、電池寿命が予想より短くなり、十分に性能が発揮できなくなったり、予想よりも早く電池を交換する必要性が出てきたりする。   In general, a storage battery deteriorates by repeating a charge / discharge cycle. Especially in systems that charge large currents due to regenerative braking over a long period of time, such as railway hybrid vehicles, the battery life will be shorter than expected and adequate performance will be achieved unless appropriate current restrictions are taken into account. It may not be possible to perform, or the battery needs to be replaced sooner than expected.

充放電電流を制限する方法としては、例えば特許文献1に記載の方法があった。電池の充電状態に応じて出力に制限を設けるというものである。また、電池の劣化を抑制する制御方法として、例えば特許文献2に記載の方法があった。電池の劣化速度が基準よりも大きいと判断した場合に、劣化抑制制御を行うというものである。   As a method for limiting the charge / discharge current, for example, there is a method described in Patent Document 1. The output is limited according to the state of charge of the battery. Moreover, as a control method for suppressing the deterioration of the battery, for example, there is a method described in Patent Document 2. When it is determined that the deterioration rate of the battery is larger than the reference, deterioration suppression control is performed.

特開2007−151216号公報JP 2007-151216 A 特開2007−323999号公報JP 2007-323999 A

電池の劣化を抑制するためには充放電電流に制限をかける必要があるが、制限をかけすぎるとハイブリッド車両として所望の燃費低減効果が発揮できなくなる。そのため、できるだけ電池性能を発揮でき、かつ目標寿命が達成できるような必要最低限の制限をかけることが望ましいが、そのような制限方法について、これまで十分な検討がなされていなかった。   In order to suppress the deterioration of the battery, it is necessary to limit the charging / discharging current. However, if the limitation is applied too much, a desired fuel consumption reduction effect cannot be exhibited as a hybrid vehicle. For this reason, it is desirable to apply the minimum necessary limit so that the battery performance can be exhibited as much as possible and the target life can be achieved. However, such a limiting method has not been sufficiently studied so far.

たとえば充電状態に応じて出力制限を設ける例では、電池の出力特性をもとにエネルギーマネジメントが容易になるような制限をかけており、劣化を抑制するような電流制限にはなっていない。また、電池の劣化速度に応じて劣化抑制制御をかける方法についても、鉄道車両のように1回の充放電の時間が長く、使用する電池容量範囲が広い用途に対して劣化抑制するような制限方法は考慮されていない。   For example, in the example in which the output restriction is provided according to the state of charge, a restriction is made to facilitate energy management based on the output characteristics of the battery, and the current restriction is not to suppress deterioration. In addition, the method of applying the deterioration suppression control according to the deterioration rate of the battery is also a restriction that suppresses the deterioration for an application in which the time for one charge / discharge is long and the battery capacity range to be used is wide like a railway vehicle. The method is not considered.

本発明の目的は、蓄電池を搭載したハイブリッド車両において、電池の目標寿命を満たしながら、かつできるだけ多くの充放電を行って燃費低減効果を発揮させるような蓄電池の制御方法を提供することにある。   An object of the present invention is to provide a storage battery control method in which, in a hybrid vehicle equipped with a storage battery, charging and discharging are performed as much as possible while exhibiting a fuel consumption reduction effect while satisfying the target life of the battery.

上記の課題を解決するため、ハイブリッド車両の制御装置において、電圧上下限で決まる電池の出力特性に基づく電流制限値よりも小さな値である、充電状態に応じた充電電流制限、及び放電電流制限を設けるようにした。   In order to solve the above problems, in the control device for a hybrid vehicle, a charge current limit and a discharge current limit corresponding to the state of charge, which are smaller than the current limit value based on the output characteristics of the battery determined by the voltage upper and lower limits, are set. I made it.

また、さらに充電電流制限値は充電状態が高いほど小さく、また放電電流制限値は充電状態が低いほど小さな値とする。   Further, the charge current limit value is smaller as the charge state is higher, and the discharge current limit value is smaller as the charge state is lower.

また、さらに1回の減速動作で充電する充電電気量に上限値を設け、充電積算値がその上限値を超えないように、充電を制御するようにした。   In addition, an upper limit value is provided for the amount of charge to be charged in one deceleration operation, and charging is controlled so that the integrated charge value does not exceed the upper limit value.

また、さらに蓄電池の劣化状態を計測し、あらかじめ想定した劣化特性と比較して、比較結果に基づいて充電電流制限値,放電電流制限値、あるいは1回の充電の上限電気量を変化させるようにした。   Further, the deterioration state of the storage battery is measured and compared with a deterioration characteristic assumed in advance, and the charge current limit value, the discharge current limit value, or the upper limit electric quantity of one charge is changed based on the comparison result. did.

本発明によれば、電池劣化の抑制を目的として、充電状態に応じた充電電流、放電電流の制限、または1回の充電動作での電気量制限を行うため、電池使用に対する劣化を抑制する効果がある。   According to the present invention, for the purpose of suppressing battery deterioration, the charging current and the discharging current are limited according to the state of charge, or the amount of electricity in one charging operation is limited. There is.

ハイブリッド車両の全体構成図。1 is an overall configuration diagram of a hybrid vehicle. バッテリーコントローラの構成図。The block diagram of a battery controller. 充電電流制限の説明図。Explanatory drawing of charging current limitation. 放電電流制限の説明図。Explanatory drawing of discharge current restriction | limiting. 想定劣化特性の説明図。Explanatory drawing of an assumed deterioration characteristic.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明を適用したハイブリッド鉄道車両とその制御装置の一例を示したものである。ハイブリッド車両は、エンジン1,発電機2,インバータ3,モータ4,DC/DCコンバータ5,バッテリー6から構成され、制御装置としてハイブリッドコントローラ11とバッテリーコントローラ12を備えている。   FIG. 1 shows an example of a hybrid railway vehicle to which the present invention is applied and its control device. The hybrid vehicle includes an engine 1, a generator 2, an inverter 3, a motor 4, a DC / DC converter 5, and a battery 6, and includes a hybrid controller 11 and a battery controller 12 as control devices.

ハイブリッドの方式としては、シリーズハイブリッドを想定している。エンジン1により発電機2を駆動して電力を発生し、その電力でモータ4を回して車輪を駆動する。なお、発電機2には、交流電力を直流電力に変換する変換器も含んでいるものとする。インバータ3は、直流電力を交流電力に変換してモータ4を駆動する。車両減速時にはモータ4を発電動作に切り換え、回生ブレーキとして動作させる。   As a hybrid system, a series hybrid is assumed. The generator 1 is driven by the engine 1 to generate electric power, and the motor 4 is rotated by the electric power to drive the wheels. The generator 2 also includes a converter that converts AC power into DC power. The inverter 3 drives the motor 4 by converting DC power into AC power. When the vehicle decelerates, the motor 4 is switched to the power generation operation to operate as a regenerative brake.

DC/DCコンバータ5は、直流電圧を変換して、バッテリー6への充電電流、あるいはバッテリー6からの放電電流を制御する。車両駆動時には必要に応じてバッテリー6から電力を供給し、出力をアシストする。その分、エンジン1の出力を低下させることができ、燃料消費量が低減できる。車両減速時には、モータ4とインバータ3から出力される回生電力をバッテリー6に充電する。   The DC / DC converter 5 converts a direct current voltage to control a charging current to the battery 6 or a discharging current from the battery 6. When the vehicle is driven, power is supplied from the battery 6 as needed to assist the output. Accordingly, the output of the engine 1 can be reduced, and the fuel consumption can be reduced. When the vehicle decelerates, the battery 6 is charged with regenerative power output from the motor 4 and the inverter 3.

バッテリー6は、電池セルを多直列,多並列に組み合わせた構成となっている。たとえばリチウムイオン電池を用いた場合、1セルの電圧が約3.6Vであり、これを例えば200個直列に接続することで、約720Vの直流電圧が得られる。電池容量が不足する場合には、直列接続したセルを複数用意し、それらを並列に接続することで大容量バッテリーを構成することができる。   The battery 6 has a configuration in which battery cells are combined in multiple series and multiple parallel. For example, when a lithium ion battery is used, the voltage of one cell is about 3.6V, and a DC voltage of about 720V can be obtained by connecting 200 cells in series, for example. When the battery capacity is insufficient, a large-capacity battery can be configured by preparing a plurality of cells connected in series and connecting them in parallel.

ハイブリッドコントローラ11は、運転士からの運転指令とバッテリーコントローラ12からの電池状態情報(充電状態,充放電可能電力,電流制限値)に基づいて、モータ4の駆動・回生トルク,エンジン1の出力,バッテリー6の充放電出力を決定し、エンジン1,発電機2,インバータ3,DC/DCコンバータ5に指令を出す。   Based on the operation command from the driver and the battery state information (charge state, chargeable / dischargeable power, current limit value) from the driver, the hybrid controller 11 drives and regenerates the motor 4, outputs the engine 1, The charge / discharge output of the battery 6 is determined, and a command is issued to the engine 1, the generator 2, the inverter 3, and the DC / DC converter 5.

次に、バッテリーコントローラ12の役割について詳しく説明する。図2はバッテリーコントローラ12の構成と信号の流れを示したものである。入力処理部21,出力処理部22,SOC算定手段23,SOH算定手段24,SOH保存手段25,電流制限値算出手段26,可能電力算出手段27から構成される。   Next, the role of the battery controller 12 will be described in detail. FIG. 2 shows the configuration of the battery controller 12 and the signal flow. The input processing unit 21, the output processing unit 22, the SOC calculation unit 23, the SOH calculation unit 24, the SOH storage unit 25, the current limit value calculation unit 26, and the possible power calculation unit 27 are configured.

まず、入力処理部21は、バッテリー6に設置された電圧,電流,温度といったセンサの情報を受け取り、A/D変換など必要な処理を行う。   First, the input processing unit 21 receives sensor information such as voltage, current, and temperature installed in the battery 6 and performs necessary processing such as A / D conversion.

SOC算出手段23は、電圧,電流,温度の情報をもとに電池の充電状態(SOC:State of Charge)を算出する。算出方法としては様々な方法が考案されている。例えば、電圧,電流と内部抵抗のデータから電池の開回路電圧(OCV:Open Circuit Voltage)を算出し、OCVとSOCの関係を示すテーブルからSOCを求める。あるいは、電流積算値と電池容量の比からSOCの変化を算出する方法などがある。   The SOC calculation means 23 calculates a state of charge (SOC) of the battery based on information on voltage, current, and temperature. Various methods have been devised as calculation methods. For example, an open circuit voltage (OCV) of a battery is calculated from data of voltage, current, and internal resistance, and SOC is obtained from a table showing the relationship between OCV and SOC. Alternatively, there is a method of calculating a change in SOC from the ratio between the integrated current value and the battery capacity.

SOH算出手段24は、電圧,電流,温度の情報をもとに電池の劣化状態(SOH:State of Health)を算出する。劣化状態は、内部抵抗上昇率や容量減少率で定義する。一般には測定がしやすい内部抵抗で推定することが多い。内部抵抗は、電圧,電流とOCVとから求めることができる。初期の内部抵抗を100%として、劣化により抵抗が上昇すると120%というように表す。   The SOH calculation means 24 calculates the state of health (SOH) of the battery based on information on voltage, current, and temperature. The deterioration state is defined by an internal resistance increase rate and a capacity decrease rate. In general, it is often estimated by an internal resistance that is easy to measure. The internal resistance can be obtained from the voltage, current and OCV. Assuming that the initial internal resistance is 100%, if the resistance increases due to deterioration, 120% is indicated.

SOH保存手段25は、SOH算出手段24が算出した劣化状態を、時間の情報とともに保存しておくためのものである。これにより、時間の経過につれて劣化がどのように進行しているかがわかる。   The SOH storage unit 25 is for storing the deterioration state calculated by the SOH calculation unit 24 together with time information. Thus, it can be seen how the deterioration progresses with time.

電流制限値算出手段26は、SOC算出手段23が算出した充電状態や、電流情報をもとに、寿命を考慮した充電あるいは放電の電流制限値を算出する。詳細は後述する。   The current limit value calculating unit 26 calculates a current limit value for charging or discharging considering the life based on the state of charge calculated by the SOC calculating unit 23 and current information. Details will be described later.

可能電力算出手段27は、その時点でバッテリー6が出せる最大の可能放電電力、あるいはバッテリー6に吸収できる最大の可能充電電力を算出する。電池に放電電流を流すと、電池電圧は、内部抵抗と電流の積で決まる電圧だけOCVから低下した値となる。充電の場合は、内部抵抗と電流の積で決まる電圧だけOCVより上昇する。電池には性能上許容される電圧の最大値,最小値が決まっており、それを超えないように電流を制限する必要がある。その時点でのOCVと内部抵抗から許容電圧を超えないような最大の放電電流、及び充電電流が計算できるので、それをもとに可能放電電力,可能充電電力が算出できる。   The possible power calculation means 27 calculates the maximum possible discharge power that can be output from the battery 6 at that time, or the maximum possible charge power that can be absorbed by the battery 6. When a discharge current is passed through the battery, the battery voltage is a value that is reduced from the OCV by a voltage determined by the product of the internal resistance and the current. In the case of charging, the voltage rises from the OCV by a voltage determined by the product of the internal resistance and current. The maximum and minimum voltages allowed for performance are determined for the battery, and it is necessary to limit the current so as not to exceed the maximum and minimum values. Since the maximum discharge current and the charging current that do not exceed the allowable voltage can be calculated from the OCV and the internal resistance at that time, the possible discharge power and the possible charge power can be calculated based on that.

なお、電池の用途によっては、流してよい最大の電流をあらかじめ定めている場合がある。上述した最大電流よりもあらかじめ定めた最大電流の方が小さければ、小さいほうの値を用いて可能電力を算出する。   Depending on the application of the battery, the maximum current that may be passed may be determined in advance. If the predetermined maximum current is smaller than the above-described maximum current, the possible power is calculated using the smaller value.

以上述べた可能電力は、電池の能力としてどこまで出せるか、あるいは吸収できるかを示す値であるが、寿命を考慮した場合にはもっと電力を制限する必要がある。電流制限値算出手段26が算出した電流制限値を用いて電力を計算すれば、寿命を考慮した最大の可能放電電力,可能充電電力が計算できる。   The possible power described above is a value indicating how far the battery can be produced or absorbed, but it is necessary to limit the power further in consideration of the lifetime. If power is calculated using the current limit value calculated by the current limit value calculating means 26, the maximum possible discharge power and possible charge power considering the life can be calculated.

出力処理部22は、SOC算出手段23が算出した充電状態、電流制限値算出手段26が算出した電流制限値、及び可能電力算出手段27が算出した可能電力について、通信手段など必要な手段を介してハイブリッドコントローラ11に伝達する。   The output processing unit 22 uses a necessary means such as a communication means for the state of charge calculated by the SOC calculation unit 23, the current limit value calculated by the current limit value calculation unit 26, and the possible power calculated by the possible power calculation unit 27. To the hybrid controller 11.

次に、電流制限値算出手段26の動作について詳しく説明する。電流制限値算出手段26は、目標とした寿命を満足するよう電池の劣化を考慮した電流制限を行うためのものである。   Next, the operation of the current limit value calculating means 26 will be described in detail. The current limit value calculating means 26 is for performing current limit in consideration of battery deterioration so as to satisfy the target life.

電池は充放電を繰り返すことより劣化が進行する。一般には充放電電流が大きいほど劣化は速く進む。そこで、劣化を抑制するためには、電池の最大・最小電圧で決まる電流値よりも小さい値に電流を制限する必要がある。あらかじめサイクル寿命試験を行って、目標寿命を達成するには電流をいくらに制限すべきかを求めておけば、寿命を考えた電流制限をかけることができる。そのようにして定めた充放電電流制限値は、上述した電池の性能上許容される最大・最小電圧で決まる許容充放電電流値よりもずっと小さな値になる。   The battery deteriorates by repeating charge and discharge. In general, the deterioration proceeds faster as the charge / discharge current increases. Therefore, in order to suppress deterioration, it is necessary to limit the current to a value smaller than the current value determined by the maximum / minimum voltage of the battery. If a cycle life test is performed in advance to determine how much current should be limited in order to achieve the target life, it is possible to limit the current considering the life. The charge / discharge current limit value thus determined is much smaller than the allowable charge / discharge current value determined by the maximum / minimum voltage allowed for the above-described battery performance.

また、一般に蓄電池は、充電状態が低いほど充電を受け入れやすく、充電状態が高いと充電電流は流しにくいという性質を持っている。劣化に関しても、充電状態が高いところでは電流を絞った方が、劣化が抑制できる。放電側も同様に、充電状態が高いほど放電電流は大電流が流せ、充電状態が低くなると放電電流の出力が低下する。充電状態が低いところでは電流を絞った方が劣化もしにくくなる。   In general, a storage battery has a property that the lower the state of charge, the easier it is to accept the charge, and the higher the state of charge, the less likely the charge current will flow. Regarding degradation, degradation can be suppressed by reducing the current when the state of charge is high. Similarly, on the discharge side, the higher the state of charge, the larger the discharge current can flow, and the lower the state of charge, the lower the output of the discharge current. When the state of charge is low, it is less likely to deteriorate if the current is reduced.

そこで、たとえば図3,図4に示すように充電状態SOCに応じて電流制限値を変えるようにする。充電電流の制限値は充電状態SOCが高いほど小さい値とし、逆に放電電流の制限値は充電状態SOCが低いほど小さい値とする。このような特性で電流制限を設けることにより、効果的に劣化の進行を抑制することができる。   Therefore, for example, as shown in FIGS. 3 and 4, the current limit value is changed according to the state of charge SOC. The limit value of the charging current is set to a smaller value as the state of charge SOC is higher. Conversely, the limit value of the discharging current is set to a lower value as the state of charge SOC is lower. By providing a current limit with such characteristics, the progress of deterioration can be effectively suppressed.

次に、鉄道のように多大な回生エネルギーを電池に充電する使い方では、1回の充放電サイクルの電気量が大きく、使用する電池の容量範囲も大きくなる。一般に、1サイクルで使用する電池の容量範囲と寿命サイクル数とが大きく関係していることが知られており、目標とする電池寿命を満足させるためには、1回の回生動作で充電する電気量に制限を設けるのが効果的である。そこで、充電動作が始まってからの充電電流値を積算し、あらかじめ定めた上限電気量に達したら充電動作を停止する(充電電流制限値=0とする)ように制限をかける。上限電気量は、事前のサイクル試験等により、目標寿命を達成するためにはどのような値にすべきか求めておくとよい。ここで、あらかじめ定めた上限電気量は、上述した電池の容量性能上許容される最大電気量よりも小さな値となる。   Next, in a method of charging a battery with a large amount of regenerative energy as in a railway, the amount of electricity in one charge / discharge cycle is large, and the capacity range of the battery to be used is also large. In general, it is known that the capacity range of the battery used in one cycle and the number of life cycles are greatly related, and in order to satisfy the target battery life, the electricity charged in one regenerative operation It is effective to limit the amount. Therefore, the charging current values after the start of the charging operation are integrated, and when the predetermined upper limit electricity amount is reached, the charging operation is stopped (the charging current limit value = 0). It is advisable to determine what value the upper limit electric quantity should be in order to achieve the target life by a prior cycle test or the like. Here, the predetermined upper limit electric quantity is a value smaller than the maximum electric quantity allowed in the capacity performance of the battery described above.

このように、1回の回生動作で充電する電気量に制限をかけることにより、鉄道用途のような大きな電気量の充放電サイクルでの電池の劣化を抑制することができる。   As described above, by limiting the amount of electricity charged in one regenerative operation, it is possible to suppress deterioration of the battery in a charge / discharge cycle with a large amount of electricity, such as for railway use.

さて、上記の実施例では、電流制限値算出手段26で用いる最大電流値や上限電気量は、サイクル試験等によりあらかじめ定めておくとしたが、実際の運用では、サイクル試験と同じ条件で電池を使用するという保証はなく、想定した劣化と実際の劣化が異なる可能性がある。そこで、あらかじめ想定した劣化特性と実際の劣化特性を比較し、最大電流値や上限電気量を変更する機能を電流制限値算出手段26に持たせることも有効である。   In the above embodiment, the maximum current value and the upper limit electric quantity used in the current limit value calculating means 26 are determined in advance by a cycle test or the like. However, in actual operation, the battery is used under the same conditions as the cycle test. There is no guarantee that it will be used, and the expected degradation may differ from the actual degradation. Therefore, it is also effective to compare the assumed deterioration characteristic with the actual deterioration characteristic and to have the current limit value calculating means 26 have a function of changing the maximum current value and the upper limit electric quantity.

想定劣化特性は、サイクル試験などの結果をもとにたとえば図5のように定めておく。図の横軸は時間(年月)、縦軸は電池の抵抗上昇率である。時間とともに電池の抵抗は上昇し、例えば抵抗200%に達した時点を電池の寿命と判定する。目標寿命を10年とすれば、10年で抵抗が200%になるような想定劣化特性となる。   The assumed deterioration characteristic is determined as shown in FIG. 5, for example, based on the result of a cycle test or the like. In the figure, the horizontal axis represents time (year and month), and the vertical axis represents the battery resistance increase rate. The resistance of the battery increases with time. For example, the time when the resistance reaches 200% is determined as the battery life. Assuming that the target life is 10 years, the expected deterioration characteristics are such that the resistance becomes 200% in 10 years.

これに対して、実際の劣化状況をSOH保存手段25からのデータを用いて図5に示すようにプロットする。実際の劣化が想定劣化特性を下回っている場合には、最大電流値や上限電気量を大きくし、充放電を積極的に行って燃費低減効果を高める。逆に実際の劣化が想定劣化特性を上回っている場合には、最大電流値や上限電気量を小さくし、劣化の進行を遅らせるようにする。   On the other hand, the actual deterioration state is plotted as shown in FIG. 5 using data from the SOH storage unit 25. When the actual deterioration is lower than the assumed deterioration characteristic, the maximum current value and the upper limit electric quantity are increased, and charging / discharging is actively performed to enhance the fuel consumption reduction effect. On the contrary, when the actual deterioration exceeds the assumed deterioration characteristic, the maximum current value and the upper limit electric quantity are reduced to delay the progress of the deterioration.

具体的には、想定劣化特性と実際の劣化との差と、それがどのくらいの時間継続しているかを積算し(図5の斜線部)、その積算値をもとに、あらかじめ設定しておいた係数に従って最大電流値や上限電気量を変化させる。   Specifically, the difference between the assumed deterioration characteristic and the actual deterioration and the amount of time it has continued are integrated (shaded area in FIG. 5) and set in advance based on the integrated value. The maximum current value and the upper limit electricity amount are changed according to the coefficient.

あるいは、図5の特性を提示する機能を持たせておき、車両メンテナンスなどのタイミングでオペレータが値を変更するようにしてもよい。   Alternatively, a function of presenting the characteristics shown in FIG. 5 may be provided, and the operator may change the value at a timing such as vehicle maintenance.

このように、想定劣化と実際の劣化の比較に応じて電流制限の上限値または上限電気量を変更することにより、実際の運用において目標寿命を満足し、かつ最大限の燃費低減効果を発揮させることができる。   In this way, by changing the upper limit value or upper limit electricity amount of the current limit according to the comparison between the assumed deterioration and the actual deterioration, the target life is satisfied in actual operation and the maximum fuel consumption reduction effect is exhibited. be able to.

上記実施例では、鉄道車両を例に挙げて説明したが、ハイブリッド自動車などにも適用可能である。さらには、シリーズハイブリッドのみならず、パラレルハイブリッドシステムにも適用可能である。   In the above embodiment, the railway vehicle is described as an example, but the present invention can also be applied to a hybrid vehicle or the like. Furthermore, it is applicable not only to series hybrids but also to parallel hybrid systems.

1 エンジン
2 発電機
3 インバータ
4 モータ
5 DC/DCコンバータ
6 バッテリー
11 ハイブリッドコントローラ
12 バッテリーコントローラ
1 Engine 2 Generator 3 Inverter 4 Motor 5 DC / DC Converter 6 Battery 11 Hybrid Controller 12 Battery Controller

Claims (1)

複数の蓄電池から構成される蓄電装置と、エンジンと、該エンジンにより駆動される発電機と、前記蓄電装置および前記発電機と電気的に接続されるインバータと、該インバータにより駆動されるモータと、を備えたハイブリッド車両において、
前記蓄電池のSOCに応じた充電電流制限値、及び放電電流制限値に基づいて前記蓄電装置の充放電を制御する制御装置を備え、
前記充電電流制限値、及び前記放電電流制限値は、前記蓄電池の性能上許容される最大電圧、及び最小電圧から決定される許容充電電流値、及び許容放電電流値よりも小さな値であり、
前記充電電流制限値は、前記蓄電池のSOCが高いほど小さい値に、前記放電電流制限値は、前記蓄電池のSOCが低いほど小さい値に設定され、
前記蓄電装置を構成する蓄電池の劣化状態を検出する劣化状態検出装置を備え、あらかじめ定めた想定劣化特性と検出した劣化状態とを比較し、前記劣化状態が前記想定劣化特性を下回っている場合に、前記充電電流制限値及び前記放電電流制限値の最大電流値を増加させ、前記劣化状態が前記想定劣化特性を上回っている場合に、前記充電電流制限値及び前記放電電流制限値の最大電流値を減少させる電流制限値変更手段を有すること特徴とするハイブリッド車両。
A power storage device comprising a plurality of storage batteries; an engine; a generator driven by the engine; an inverter electrically connected to the power storage device and the generator; a motor driven by the inverter; In a hybrid vehicle equipped with
A charge current limit value according to the SOC of the storage battery, and a control device that controls charging / discharging of the power storage device based on a discharge current limit value;
The charging current limiting value, and the discharge current limit performance acceptable maximum voltage of the battery, and the allowable charging current value determined from the minimum voltage, and Ri value smaller der than allowable discharge current value,
The charging current limit value is set to a smaller value as the SOC of the storage battery is higher, and the discharge current limit value is set to a smaller value as the SOC of the storage battery is lower.
When a deterioration state detection device that detects a deterioration state of a storage battery that constitutes the power storage device is provided, a predetermined assumed deterioration characteristic is compared with a detected deterioration state, and the deterioration state is lower than the assumed deterioration characteristic Increasing the maximum current value of the charge current limit value and the discharge current limit value, and the maximum current value of the charge current limit value and the discharge current limit value when the deterioration state exceeds the assumed deterioration characteristic A hybrid vehicle comprising current limit value changing means for reducing the current limit value .
JP2010055230A 2010-03-12 2010-03-12 Control device for hybrid vehicle Active JP5401366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055230A JP5401366B2 (en) 2010-03-12 2010-03-12 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055230A JP5401366B2 (en) 2010-03-12 2010-03-12 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2011189768A JP2011189768A (en) 2011-09-29
JP5401366B2 true JP5401366B2 (en) 2014-01-29

Family

ID=44795152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055230A Active JP5401366B2 (en) 2010-03-12 2010-03-12 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5401366B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012003131T5 (en) 2011-07-27 2014-04-10 Mitsubishi Electric Corporation Charge control device and charge control method for a secondary battery
JP5720538B2 (en) * 2011-11-15 2015-05-20 トヨタ自動車株式会社 Storage device control device
JP5842607B2 (en) * 2011-12-28 2016-01-13 トヨタ自動車株式会社 Non-aqueous secondary battery control device and control method
JP5766630B2 (en) * 2012-02-20 2015-08-19 株式会社東芝 Vehicle control unit and electric vehicle
KR20140079156A (en) 2012-12-18 2014-06-26 현대자동차주식회사 Method and system for determining torque of motor of hybrid electric vehicle
JP5764584B2 (en) * 2013-01-30 2015-08-19 古河電気工業株式会社 Charge control apparatus and method
EP2961630B1 (en) * 2013-02-27 2022-08-10 Volvo Truck Corporation Method for balancing the voltage of battery cells
CN105050875B (en) * 2013-03-14 2018-12-28 艾里逊变速箱公司 System and method for optimizing hybrid vehicle battery restricting condition for use
WO2015037068A1 (en) * 2013-09-11 2015-03-19 株式会社日立製作所 Electricity storage system
JP2015117633A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Charge control device
JP6333595B2 (en) * 2014-03-26 2018-05-30 古河電池株式会社 Storage battery system operation method and storage battery system operation device
JP6422798B2 (en) * 2015-03-05 2018-11-14 日立オートモティブシステムズ株式会社 Battery management device, battery system, and hybrid vehicle control system
JP6497807B2 (en) * 2015-05-18 2019-04-10 日野自動車株式会社 Electric car
JP6245480B2 (en) 2015-06-19 2017-12-13 トヨタ自動車株式会社 Control device for lithium ion secondary battery
JP6441188B2 (en) * 2015-09-01 2018-12-19 日立オートモティブシステムズ株式会社 Battery management device, battery system, and hybrid vehicle control system
JP6284921B2 (en) * 2015-11-28 2018-02-28 本田技研工業株式会社 Power supply system, transport equipment, and power transmission method
WO2017158960A1 (en) 2016-03-16 2017-09-21 オートモーティブエナジーサプライ株式会社 Hybrid electric vehicle, and lithium ion secondary battery selection method for hybrid electric vehicle
JP6733307B2 (en) * 2016-05-23 2020-07-29 株式会社デンソー Charge control device
CN111066195B (en) 2017-09-15 2024-02-02 松下知识产权经营株式会社 Battery management device, battery system, and battery management method
JP7069689B2 (en) * 2017-12-19 2022-05-18 株式会社Gsユアサ Charge control method of power storage element, state estimation method, life estimation method, manufacturing method of power storage system, and management device of power storage element
JP2020024120A (en) * 2018-08-06 2020-02-13 株式会社豊田自動織機 Voltage estimation device and method
JP7266427B2 (en) * 2019-03-06 2023-04-28 株式会社クボタ work vehicle
CN113829947B (en) * 2020-06-24 2023-05-12 广汽埃安新能源汽车有限公司 Method and device for controlling vehicle charging
CN112383216B (en) * 2021-01-15 2021-03-30 上海芯龙半导体技术股份有限公司 Current-limiting control circuit and switching power supply chip with same
JP7414761B2 (en) * 2021-03-23 2024-01-16 トヨタ自動車株式会社 Charging control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932675B2 (en) * 1998-06-16 2007-06-20 トヨタ自動車株式会社 Battery maximum input / output power estimation device
JP3904388B2 (en) * 2000-12-04 2007-04-11 松下電器産業株式会社 Control device for hybrid vehicle
JP3505517B2 (en) * 2001-03-23 2004-03-08 三洋電機株式会社 Battery control device for electric vehicle
JP2006174596A (en) * 2004-12-15 2006-06-29 Fuji Heavy Ind Ltd Battery warm-up controller for hybrid car
JP5054338B2 (en) * 2006-07-20 2012-10-24 本田技研工業株式会社 VEHICLE POWER SUPPLY CONTROL DEVICE AND ITS CONTROL METHOD
JP4987581B2 (en) * 2007-06-15 2012-07-25 日立ビークルエナジー株式会社 Battery control device
JP5023957B2 (en) * 2007-10-17 2012-09-12 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
DE112009001641T5 (en) * 2008-07-11 2011-05-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Battery charge / discharge control device and hybrid vehicle using same

Also Published As

Publication number Publication date
JP2011189768A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5401366B2 (en) Control device for hybrid vehicle
JP5478743B2 (en) Power regeneration power system
JP6088543B2 (en) Power storage device and charging method thereof
JP4586832B2 (en) Electric vehicle
CN105612081B (en) Accumulating system for vehicle
JP4640391B2 (en) Power supply system and vehicle equipped with the same
US9933491B2 (en) Electric storage system
Hõimoja et al. An ultrafast EV charging station demonstrator
US20130221918A1 (en) Fast charge stations for electric vehicles in areas with limited power availabilty
US9520736B2 (en) Charging control apparatus and charging control method for secondary battery
EP3245096A1 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
Mallika et al. Review on ultracapacitor-battery interface for energy management system
JP5376045B2 (en) Battery pack
JP2010104175A (en) Fault diagnosis circuit, power supply device, and fault diagnosis method
JP5977979B2 (en) Electric storage device for railway vehicles
JP6305526B2 (en) Apparatus and method for maintaining charge of secondary battery
JP2021082426A (en) Method and system for charging battery
JP6214607B2 (en) Power storage device and transportation equipment
JP2015230235A (en) Energy accumulation control device
CN103688438B (en) Accumulating system and the method for the state that differentiates power storage block
JP2016152718A (en) Charge and discharge controller, mobile and power sharing amount determination method
KR101460560B1 (en) SOC management apparatus of ultra-capacitor pack for hybrid energy storage devices, and control method of the same
JP6055703B2 (en) Power system
JP7087400B2 (en) Solar power generation system
JP2020145838A (en) Charge control device of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R151 Written notification of patent or utility model registration

Ref document number: 5401366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151