JP2008118761A - Hybrid energy storage device of electric vehicle and electric vehicle - Google Patents

Hybrid energy storage device of electric vehicle and electric vehicle Download PDF

Info

Publication number
JP2008118761A
JP2008118761A JP2006298662A JP2006298662A JP2008118761A JP 2008118761 A JP2008118761 A JP 2008118761A JP 2006298662 A JP2006298662 A JP 2006298662A JP 2006298662 A JP2006298662 A JP 2006298662A JP 2008118761 A JP2008118761 A JP 2008118761A
Authority
JP
Japan
Prior art keywords
power
storage device
double layer
layer capacitor
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006298662A
Other languages
Japanese (ja)
Other versions
JP3960557B1 (en
Inventor
Takao Rokuto
孝雄 六藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2006298662A priority Critical patent/JP3960557B1/en
Application granted granted Critical
Publication of JP3960557B1 publication Critical patent/JP3960557B1/en
Publication of JP2008118761A publication Critical patent/JP2008118761A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To input/output the power of an energy storage device to/from a diver becoming the load in accordance with operation of a train through a simple arrangement without using a reversible converter, and to control storage of power between a secondary battery and a capacitor. <P>SOLUTION: The energy storage device 1 having a regenerative brake function in AC motor control through an inverter or DC motor control through a chopper and connecting the energy storage device in parallel between the current collector and the train controller of an electric vehicle running between respective stations of a predetermined route length in accordance with predetermined running characteristics is constituted by connecting an electric double layer capacitor 3 and a secondary battery 2 in parallel. The electric double layer capacitor 3 has an equivalent internal resistance Rc not larger than one half of the equivalent internal resistance Rb of the secondary battery 2, and has a capacity Cc capable of storing at least the maximum power out of respective powers required for running between respective stations. The secondary battery 2 has a capacity Cb capable of storing the power required for running the predetermined route length. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蓄電装置に地上電源装置からの電力を蓄電した後、走行に要する電力を蓄電装置から駆動制御装置に供給して安定に運転走行するための電気車両のハイブッリド蓄電装置及び電気車両に関するものである。   The present invention relates to a hybrid power storage device and an electric vehicle for an electric vehicle for storing power from a ground power supply device in a power storage device and then supplying the power required for traveling from the power storage device to a drive control device to drive stably. Is.

列車に電力を供給する直流き電変電所は、通常交流電力を整流器で直流に変換してき電線を介して列車に直流を供給する。直流き電変電所と列車との距離が長くなるに連れて、き電線抵抗が増えてこの抵抗による電圧降下が大きくなり、列車集電部での電圧は低下する。列車集電部での電圧低下の値が大きい場合には列車走行特性に影響するので電圧補償が求められる。この対策として通常、き電変電所の変圧器のタップを選択して出力電圧を高くすることや、き電線抵抗を低減するためにき電線を太くすることや、変電所間隔を短くすること等各種の対策が行なわれている。   A DC feeder substation that supplies electric power to a train normally converts AC power into DC with a rectifier and supplies DC to the train via electric wires. As the distance between the DC feeder substation and the train increases, the feeder resistance increases, the voltage drop due to this resistance increases, and the voltage at the train collector decreases. When the value of the voltage drop at the train current collector is large, the train running characteristics are affected, so voltage compensation is required. As countermeasures, it is common to select transformer taps in feeder substations to increase output voltage, to increase feeders to reduce feeder resistance, to shorten substation spacing, etc. Various measures are being taken.

最近は電気二重層キャパシタ等を蓄電部に利用したき電電圧補償装置を地上側もしくは列車側に設置して電圧降下対策と列車制動時の回生電力の吸収をして回生失効対策をすることも合わせて研究されている(例えば、特許文献1、2参照)。更に最近は蓄電装置の蓄電部を構成する二次電池として、鉛蓄電池や特にリチウムイオン電池の性能改善が見られ、このような二次電池からなる蓄電装置に充電された電力を使い、架線給電に依存しない列車やバス等の車両走行が研究されている(例えば、特許文献3参照)。
特開2001−359244号公報 特開2003−18702号公報 特開2006−54958号公報
Recently, a feeder voltage compensation device using an electric double layer capacitor or the like for the power storage unit can be installed on the ground side or on the train side to take measures against voltage drops and absorb regenerative power during train braking to take measures against regeneration and revocation. It is being studied together (for example, see Patent Documents 1 and 2). More recently, the performance of lead-acid batteries and especially lithium-ion batteries has been improved as secondary batteries that constitute the electricity storage unit of electricity storage devices. Vehicle travel such as trains and buses that do not depend on the vehicle has been studied (for example, see Patent Document 3).
JP 2001-359244 A JP 2003-18702 A JP 2006-54958 A

電気車両の走行、特に鉄車輸を使用する列車の走行において、消費電力は、駅出発後の加速する時が大である。駅間走行では、走行抵抗に対して列車速度を維持するために要する電力が必要であるが、この電力は在来線のように駅間走行距離が比較的短い路線ではあまり大きくはない。また、次駅での停止のための制動運転では、列車の運動エネルギーが大で、これを再利用するには短時間に回生された電力を蓄電できる装置が必要である。   In the running of electric vehicles, particularly in the running of trains using railway transportation, power consumption is often accelerated after departure from the station. In traveling between stations, electric power required to maintain the train speed with respect to running resistance is required, but this electric power is not so large on a route having a relatively short distance between stations like a conventional line. Further, in the braking operation for stopping at the next station, the train has a large kinetic energy, and in order to reuse it, a device capable of storing the electric power regenerated in a short time is required.

二次電池、特にリチウムイオン電池は、単位重量あたりの蓄電量に優れ長時間での充放電に優れた特性を有している。しかし、最高速度が90km/h程度の列車においては、加速時間や制動時間が30秒程度であり、リチウムイオン電池の充放電特性は、このような短時間での加速や減速に適したものではなく発熱が大きくなる。電気二重層キャパシタは、短時間での加速や減速に適した充放電特性を有しているが、列車の駆動電源として単独で電気二重層キャパシタを使用することを考えると、単位重量あたりの蓄電量が十分に確保できない。   Secondary batteries, particularly lithium ion batteries, have excellent power storage capacity per unit weight and excellent charge / discharge characteristics over a long period of time. However, in a train with a maximum speed of about 90 km / h, the acceleration time and braking time are about 30 seconds, and the charge / discharge characteristics of the lithium ion battery are not suitable for acceleration and deceleration in such a short time. There is no heat generation. Electric double layer capacitors have charge / discharge characteristics suitable for acceleration and deceleration in a short time, but considering the use of an electric double layer capacitor alone as a driving power source for trains, it is possible to store electricity per unit weight. A sufficient amount cannot be secured.

二次電池とキャパシタは、蓄電する機能においては同じであるが、前者は出力電圧を一定に維持する特性を有し、逆にキャパシタは蓄電された電気量に応じて出力電圧が決まる特性を有する。したがって、この両者を接続して蓄電装置を構成するには、この間に電力を入出力することのできる可逆変換器が必要であると一般にいわれている。しかし、列車運転に合わせて蓄電装置の電力を負荷となる駆動装置との間で入出力し、尚且つ、可逆変換器を使い両者の蓄電電力を制御することはたやすくない。   The secondary battery and the capacitor are the same in the function of storing electricity, but the former has the characteristic of maintaining the output voltage constant, and conversely, the capacitor has the characteristic of determining the output voltage according to the stored amount of electricity. . Therefore, it is generally said that a reversible converter capable of inputting / outputting electric power during this time is required to connect the two to form a power storage device. However, it is not easy to input and output the power of the power storage device to and from the drive device serving as a load in accordance with the train operation, and to control both the stored power using a reversible converter.

本発明は、上記課題を解決するものであって、可逆変換器を使うことなく簡単な構成により列車運転に合わせて蓄電装置の電力を負荷となる駆動装置との間で入出力し、尚且つ二次電池とキャパシタ間の蓄電電力を制御可能とするものである。   The present invention solves the above-mentioned problem, and inputs and outputs the power of the power storage device to and from the drive device serving as a load in accordance with the train operation with a simple configuration without using a reversible converter, and The stored electric power between the secondary battery and the capacitor can be controlled.

そのために本発明は、インバータによる交流電動機制御やチョッパ装置による直流電動機制御等での回生制動機能を有し、き電変電所等の地上電源装置からの電力を集電する集電装置と列車制御装置との間に並列に蓄電装置を接続して前記蓄電装置に蓄電し、力行時には前記蓄電した電力を放電してき電線を介さないで前記列車制御装置の駆動電力に利用し、前記列車制御装置からの回生電力を前記蓄電装置に充電して所定の路線長の各駅間を所定の走行特性に従って走行する電気車両のハイブリッド蓄電装置であって、前記蓄電装置は、電気二重層キャパシタと二次電池とを並列接続して構成し、前記電気二重層キャパシタは、前記二次電池の等価内部抵抗の2分の1以下の等価内部抵抗と、前記各駅間走行に要する各電力のうち、少なくとも最大の電力が蓄電可能な容量とを有すると共に、前記二次電池は、前記所定の路線長の走行に要する電力が蓄電可能な容量を有することを特徴とし、前記所定の路線長は、前記集電する集電装置に前記き電変電所等の地上電源装置から電力を集電可能になった路線長であることを特徴とする。   Therefore, the present invention has a regenerative braking function in an AC motor control by an inverter and a DC motor control by a chopper device, and collects power from a ground power supply device such as a feeder substation and a train control. A power storage device is connected in parallel with the device to store the power in the power storage device, and during power running, the stored power is discharged and used as driving power for the train control device without passing through an electric wire. The regenerative power of the electric vehicle is charged to the power storage device and travels between stations of a predetermined route length according to predetermined travel characteristics, the power storage device comprising an electric double layer capacitor, a secondary battery, Are connected in parallel, and the electric double layer capacitor has less equivalent of an equivalent internal resistance equal to or less than one half of an equivalent internal resistance of the secondary battery and power required for traveling between the stations. And the secondary battery has a capacity capable of storing electric power required for traveling for the predetermined route length, and the predetermined route length is It is characterized by the length of the line that can collect power from the ground power supply device such as the feeding substation to the current collecting device.

また、インバータによる交流電動機制御やチョッパ装置による直流電動機制御等での回生制動機能を有し、所定の路線長の各駅間を所定の走行特性に従って走行する電気車両として、電気二重層キャパシタと二次電池とを並列接続して蓄電装置を構成し、前記電気二重層キャパシタは、前記二次電池の等価内部抵抗の2分の1以下の等価内部抵抗と、前記各駅間走行に要する各電力のうち、少なくとも最大の電力が蓄電可能な容量とを有すると共に、前記二次電池は、前記所定の路線長の走行に要する電力が蓄電可能な容量を有し、き電変電所等の地上電源装置からの電力を集電する集電装置と列車制御装置との間に並列に前記蓄電装置を接続して前記蓄電装置に蓄電し、力行時には前記蓄電した電力を放電してき電線を介さないで前記列車制御装置の駆動電力に利用し、前記列車制御装置からの回生電力を前記蓄電装置に充電することを特徴とする。   In addition, as an electric vehicle that has a regenerative braking function such as an AC motor control by an inverter and a DC motor control by a chopper device, and travels between stations of a predetermined route length according to a predetermined travel characteristic, an electric double layer capacitor and a secondary A battery is connected in parallel to form a power storage device, and the electric double layer capacitor includes an equivalent internal resistance equal to or less than half of an equivalent internal resistance of the secondary battery, and each electric power required for traveling between the stations. The secondary battery has a capacity capable of storing the electric power required to travel the predetermined route length, and has a capacity capable of storing the maximum electric power, from a ground power supply device such as a feeder substation. The power storage device is connected in parallel between the current collector that collects the power of the train and the train control device, and the power is stored in the power storage device. During power running, the stored power is discharged and the train is not passed through the electric wire. Using the driving power of the control device, characterized by charging the regenerative power from the train control device to the power storage device.

列車の走行に適する駆動電源の特性としては、加速運転と制動運転での短時間充放電に適し、しかも路線長にわたり走行運転に適する蓄電量の多い蓄電装置が必要となる。本発明は、この両者の特性を得る為に夫々の特性に優れている二次電池と電気二重層キャパシタとを組み合わせてハイブリッド蓄電装置を構成している。そして、本発明によれば両者の蓄電量と内部抵抗に基づく充放電特性に着目して、路線長と駅間走行に要する電力に見合った容量及び等価内部抵抗に最適化するので、両者間の電力の授受を適切に行なうことができ、架線レス電気車両として、駆動制御装置による力行時の電圧を安定化しまた制動時には回生電力を蓄電してこの電力を駆動電力として有効に利用することができる。   As a characteristic of the drive power source suitable for traveling on a train, a power storage device having a large amount of power storage suitable for short-time charging / discharging during acceleration operation and braking operation and suitable for traveling operation over a route length is required. In the present invention, in order to obtain both characteristics, a hybrid battery is configured by combining a secondary battery and an electric double layer capacitor, which are excellent in each characteristic. And according to the present invention, focusing on the charge / discharge characteristics based on the amount of electricity stored and the internal resistance of both, the capacity and the equivalent internal resistance corresponding to the power required for the route length and travel between stations are optimized. Power can be exchanged appropriately, and as an overhead wire-less electric vehicle, the voltage during power running by the drive control device can be stabilized, and regenerative power can be stored during braking, and this power can be used effectively as drive power .

本発明によれば、キャパシタの静電容量は、次駅までの力行電力を蓄電するに足る容量を最小限とし、その内部抵抗は二次電池の内部抵抗の2分の1以下にすることで充放電される電流を適切に分担させる。したがって複雑な電力制御となるDC−DCコンバータをこの両者間に設けることなく、電力変換損失を少なくして応答性の優れたキャパシタと蓄電量の大きい二次電池の利点を蓄電装置として活用することができる。   According to the present invention, the capacitance of the capacitor is minimized so that the power running power to the next station can be stored, and the internal resistance is less than half of the internal resistance of the secondary battery. Appropriately share the charge / discharge current. Therefore, without providing a DC-DC converter for complex power control between them, it is possible to reduce the power conversion loss and utilize the advantages of a capacitor with excellent responsiveness and a secondary battery with a large amount of charge as a power storage device. Can do.

以下、本発明の実施の形態を説明する。図1は本発明に係るハイブリッド蓄電装置を搭載した電気車両の実施の形態を説明する簡易等価回路構成を示す図、図2はハイブリッド蓄電装置の入出力特性を説明する図である。図中、1はハイブリッド蓄電装置、2は二次電池、3は電気二重層キャパシタ、4は電流源、5はDC−DCコンバータ、6は負荷、Sw1、Sw2はスイッチを示している。Rc、Ccはハイブリッド蓄電装置1を構成する電気二重層キャパシタ3の等価内部抵抗と静電容量を示し、また、RbとCbは同じくこのハイブリッド蓄電装置1を構成する二次電池2の等価内部抵抗と蓄電量について等価な回路を示している。この二次電池2の等価回路については特開2001−307780号公報の「二次電池の等価回路、この回路を利用した二次電池の蓄電量検出方法及び二次電池とキャパシタとからなるハイブリッド電源装置」で説明しているので詳細の説明は省略する。   Embodiments of the present invention will be described below. FIG. 1 is a diagram showing a simple equivalent circuit configuration for explaining an embodiment of an electric vehicle equipped with a hybrid power storage device according to the present invention, and FIG. 2 is a diagram for explaining input / output characteristics of the hybrid power storage device. In the figure, 1 is a hybrid power storage device, 2 is a secondary battery, 3 is an electric double layer capacitor, 4 is a current source, 5 is a DC-DC converter, 6 is a load, and Sw1 and Sw2 are switches. Rc and Cc represent the equivalent internal resistance and capacitance of the electric double layer capacitor 3 constituting the hybrid power storage device 1, and Rb and Cb are equivalent internal resistances of the secondary battery 2 constituting the hybrid power storage device 1. And an equivalent circuit with respect to the storage amount. The equivalent circuit of the secondary battery 2 is disclosed in Japanese Patent Application Laid-Open No. 2001-307780 “Equivalent circuit of a secondary battery, a method for detecting a storage amount of a secondary battery using this circuit, and a hybrid power source comprising a secondary battery and a capacitor. Since it is described in “Apparatus”, detailed description is omitted.

図1において、図1に示す本実施形態のハイブリッド蓄電装置1において、電気二重層キャパシタ3は、静電容量Ccを列車の次駅までの走行に必要な電力量で決め、図示の例は電圧DC615Vで70Fとするものである。等価内部抵抗Rcは、0.05Ωで二次電池2の等価内部抵抗Rbの50%以下、つまり2分の1以下とする。二次電池2は、電圧DC615Vで、静電容量Cbを700Fとし、路線長での走行に必要な蓄電量37kWhとする。この組電池の等価内部抵抗Rbは0.1Ωである。このように、電気二重層キャパシタ3の等価内部抵抗Rcは、二次電池2の等価内部抵抗Rbの2分の1以下とし、それぞれの内部抵抗だけでその条件を満たすことができない場合に接続する付加抵抗を含めて以下、等価内部抵抗という。   In FIG. 1, in the hybrid power storage device 1 of the present embodiment shown in FIG. 1, the electric double layer capacitor 3 determines the capacitance Cc based on the amount of electric power required for traveling to the next station of the train. DC615V is 70F. The equivalent internal resistance Rc is 0.05Ω and is 50% or less of the equivalent internal resistance Rb of the secondary battery 2, that is, half or less. The secondary battery 2 has a voltage of DC 615 V, an electrostatic capacity Cb of 700 F, and a storage amount of 37 kWh necessary for traveling on the route length. The assembled battery has an equivalent internal resistance Rb of 0.1Ω. As described above, the equivalent internal resistance Rc of the electric double layer capacitor 3 is set to be equal to or less than half of the equivalent internal resistance Rb of the secondary battery 2 and is connected when the internal resistance alone cannot satisfy the condition. In the following, the additional internal resistance is referred to as equivalent internal resistance.

図1において、電気二重層キャパシタ3に流れる電流をIcとし、二次電池2に流れる電流をIbとすると、充放電電流Iは、
〔数1〕
I=Ic+Ib
充放電電流が一定であるときは、
〔数2〕
I=K(一定値で例えば400A)
充放電電流が無いときは、
〔数3〕
I=0
蓄電装置の電圧Eは、
〔数4〕
E=Ic・Rc+(1/Cc)・∫Icdt
=Ib・Rb+(1/Cb)・∫Ibdt
の関係式が成り立つ。これらの式において具体的に充放電電流、蓄電容量、等価内部抵抗を決めている。このハイブリッド蓄電装置1の充電は、地上電源で行なわれ、図1に示す本実施形態では電流源4とスイッチSW1にて充電を行う地上電源を示している。ハイブリッド蓄電装置1からの放電は、DC−DCコンバータ5で負荷6が必要とする電圧に変換され、スイッチSW2がオンされて行なわれる。
In FIG. 1, when the current flowing through the electric double layer capacitor 3 is Ic and the current flowing through the secondary battery 2 is Ib, the charge / discharge current I is
[Equation 1]
I = Ic + Ib
When the charge / discharge current is constant,
[Equation 2]
I = K (a constant value, for example, 400 A)
When there is no charge / discharge current,
[Equation 3]
I = 0
The voltage E of the power storage device is
[Equation 4]
E = Ic · Rc + (1 / Cc) · ∫Icdt
= Ib · Rb + (1 / Cb) · ∫Ibdt
The following relational expression holds. In these equations, the charge / discharge current, the storage capacity, and the equivalent internal resistance are specifically determined. Charging of the hybrid power storage device 1 is performed by a ground power source, and in the present embodiment shown in FIG. 1, a ground power source that is charged by the current source 4 and the switch SW1 is shown. The discharge from the hybrid power storage device 1 is converted into a voltage required by the load 6 by the DC-DC converter 5, and the switch SW2 is turned on.

この回路構成で10秒間電流源から400Aの入力電流で充電した後10秒間休止し、10秒間負荷に400Aの負荷電流で放電して休止するようにハイブリッド蓄電装置1を充放電制御したときの特性を図2に示す。図2においては、時間軸10秒時点から20秒時点までの間に電流源4からDC400Aの電流で充電が行われ、充電を開始した10秒時点では、二次電池2と電気二重層キャパシタ3がほぼ同じ電圧の充電状態から等価内部抵抗Rb、Rcの比に応じ入力電流の約70%が電気二重層キャパシタ3に、30%が二次電池2にそれぞれ分担して流れる。   Charging / discharging control of the hybrid power storage device 1 is performed so that the circuit configuration is charged for 10 seconds from the current source with the input current of 400 A and then paused for 10 seconds, and the load is discharged for 10 seconds with the load current of 400 A. Is shown in FIG. In FIG. 2, charging is performed with a current of DC400A from the current source 4 from the time point 10 seconds to the time point 20 seconds, and at the time point 10 seconds when the charging is started, the secondary battery 2 and the electric double layer capacitor 3 are charged. From the charged state of approximately the same voltage, approximately 70% of the input current flows to the electric double layer capacitor 3 and 30% to the secondary battery 2 in accordance with the ratio of the equivalent internal resistances Rb and Rc.

電気二重層キャパシタ3は二次電池2に比べて大きな充電電流が分担して流れるため、電圧の上昇率が大きくなる。電気二重層キャパシタ3の電圧と二次電池2の電圧の上昇速度の差に応じ徐々に電気二重層キャパシタ3に分担して流れる電流が小さくなり、20秒時点ではこの電流分担は反転している。20秒時点で電流源4からの充電電流がなくなると、この時点で二次電池2の電圧に比べて電気二重層キャパシタ3の電圧が大きくなっているため、それらの電圧の差に応じて電気二重層キャパシタ3から二次電池2に電流が流れ、電圧の差がなくなる方向に蓄電量の配分が調整される。   Since the electric double layer capacitor 3 flows with a larger charge current than that of the secondary battery 2, the voltage increase rate is increased. In accordance with the difference between the rising speed of the voltage of the electric double layer capacitor 3 and the voltage of the secondary battery 2, the current that flows in the electric double layer capacitor 3 gradually decreases, and this current sharing is reversed at 20 seconds. . When the charging current from the current source 4 disappears at the time of 20 seconds, the voltage of the electric double layer capacitor 3 is larger than the voltage of the secondary battery 2 at this time. The current flows from the double layer capacitor 3 to the secondary battery 2, and the distribution of the charged amount is adjusted so that the voltage difference is eliminated.

次に、30秒時点より負荷にDC400Aで放電すると、初め負荷電流のうち電気二重層キャパシタ3の電圧と二次電池2の電圧との差に応じて80%が電気二重層キャパシタ3より、残り20%が二次電池2よりそれぞれ供給される。この比率は放電するのに伴い電気二重層キャパシタ3の電圧が大きく低下するため図2に示しているように反転している。この放電が40秒時点で終わると、それ以降は二次電池2より電気二重層キャパシタ3に両者の電圧差に応じて再充電がされる。   Next, when the load is discharged at DC400A from 30 seconds, 80% of the load current is left from the electric double layer capacitor 3 according to the difference between the voltage of the electric double layer capacitor 3 and the voltage of the secondary battery 2. 20% is supplied from the secondary battery 2 respectively. This ratio is reversed as shown in FIG. 2 because the voltage of the electric double layer capacitor 3 greatly decreases as the battery discharges. When this discharge ends at 40 seconds, the secondary battery 2 recharges the electric double layer capacitor 3 in accordance with the voltage difference between them.

以上説明したように電気二重層キャパシタ3と二次電池2とを並列に接続することにより、この電気二重層キャパシタ3と二次電池2とからなる両蓄電デバイス間で蓄電容量と等価内部抵抗に基づく電流の分担、授受が行なわれて外部からの充放電電流を分担することができる。次にこの原理を利用した列車でのハイブリッド蓄電装置について述べる。   As described above, by connecting the electric double layer capacitor 3 and the secondary battery 2 in parallel, the electric storage capacity and the equivalent internal resistance are reduced between the electric storage devices including the electric double layer capacitor 3 and the secondary battery 2. Current sharing and transmission / reception can be performed to share external charge / discharge current. Next, a hybrid power storage device for trains using this principle will be described.

図3はキャパシタ蓄電装置を使用した列車インバータ駆動回路の構成を示す図、図4はハイブリッド蓄電装置を使用した列車インバータ駆動回路の構成を示す図、図5は図3に示すキャパシタ蓄電装置での走行特性について説明する図、図6は図4に示すハイブリッド蓄電装置での走行特性について説明する図であり、列車は重量が30トンで駅間750mを走行する例を示している。   3 is a diagram showing a configuration of a train inverter drive circuit using a capacitor power storage device, FIG. 4 is a diagram showing a configuration of a train inverter drive circuit using a hybrid power storage device, and FIG. 5 is a diagram of the capacitor power storage device shown in FIG. FIG. 6 is a diagram for explaining travel characteristics, and FIG. 6 is a diagram for explaining travel characteristics in the hybrid power storage device shown in FIG. 4, and shows an example in which a train has a weight of 30 tons and travels between 750 m between stations.

図3に示す列車インバータ駆動回路では、地上電源装置から電線路11を介して電力を車両に供給し、車両では可逆変換器(コンバータ)12でキャパシタ蓄電装置を構成する電気二重層キャパシタ3を充放電する。図4に示す列車インバータ駆動回路では、二次電池2と電気二重層キャパシタ3を並列接続してハイブリッド蓄電装置1を構成する。二次電池2は車両の全走行に適した電力を蓄電することができる容量Cbを有する。電気二重層キャパシタ3はこの車両が駅出発から次駅での停止までの内、少なくとも、力行走行に要する電気量を蓄電することができる容量Ccを有する。ここで、この電気二重層キャパシタ3の力行走行に要する容量Ccについて説明する。   In the train inverter drive circuit shown in FIG. 3, electric power is supplied to the vehicle from the ground power supply device via the electric wire 11, and the electric double layer capacitor 3 constituting the capacitor power storage device is charged by the reversible converter (converter) 12 in the vehicle. Discharge. In the train inverter drive circuit shown in FIG. 4, the secondary battery 2 and the electric double layer capacitor 3 are connected in parallel to constitute the hybrid power storage device 1. The secondary battery 2 has a capacity Cb that can store electric power suitable for the entire traveling of the vehicle. The electric double layer capacitor 3 has a capacity Cc that can store at least the amount of electricity required for powering during the period from the departure from the station to the stop at the next station. Here, the capacity Cc required for power running of the electric double layer capacitor 3 will be described.

蓄電装置として電気二重層キャパシタ3のみで構成した図3に示す例の場合には、可逆コンバータ12より電気二重層キャパシタ3の定格電圧まで充電し、放電時にはこの定格電圧の50%程度まで利用することが一般的である。即ちインバータ13を通して負荷14に所定の電力を放電するためには、電圧が低下するにつれて放電する電流量が増大しコンバータ12の電流耐量の制限が生じるが、電圧半減まで放電すれば電気二重層キャパシタ3の蓄電量の75%まで利用したことになる。   In the case of the example shown in FIG. 3 configured by only the electric double layer capacitor 3 as the power storage device, the reversible converter 12 is charged to the rated voltage of the electric double layer capacitor 3 and is used up to about 50% of the rated voltage at the time of discharging. It is common. That is, in order to discharge predetermined power to the load 14 through the inverter 13, the amount of current to be discharged increases as the voltage decreases, and the current withstand capability of the converter 12 is limited. That is, up to 75% of the amount of electricity stored in 3 is used.

そこで、図3に示すキャパシタ蓄電装置を使用した列車インバータ駆動回路において、力行走行に要する電気量を蓄電することができる容量とは、例えば車両走行にて力行区間で電気二重層キャパシタ3の電圧が50%まで低下する状態とする。図4に示すハイブリッド蓄電装置を使用した列車インバータ駆動回路においても、この図3と同様の電気二重層キャパシタ3を二次電池2と並列接続してハイブリッド蓄電装置1を構成する。このことにより、図3も図4も列車に積載された蓄電装置の初期充電が電線路11よりなされた後、列車はこの蓄電量のみで電線路無しでも駅出発から次駅での停止まで所定の走行特性で走行することができる。すなわち、二次電池2は、所定の路線長の各駅間を所定の走行特性に従って走行するのに必要な蓄電容量を有し、電気二重層キャパシタ3は、各駅間走行に要する各電力のうち、少なくとも最大の電力が蓄電可能な容量を有する。二次電池2の蓄電容量を超える路線長では途中に蓄電装置の充電を行う電線路を設ける。このことで、再充電しながら全路線区間を走行することができる。   Therefore, in the train inverter drive circuit using the capacitor power storage device shown in FIG. 3, the capacity capable of storing the amount of electricity required for power running is, for example, the voltage of the electric double layer capacitor 3 in the power running section during vehicle travel. The state is reduced to 50%. Also in the train inverter drive circuit using the hybrid power storage device shown in FIG. 4, the hybrid power storage device 1 is configured by connecting the electric double layer capacitor 3 similar to FIG. 3 in parallel with the secondary battery 2. 3 and 4, after the initial charging of the power storage device loaded in the train is performed from the electric wire 11, the train is predetermined from the departure from the station to the stop at the next station even if there is no electric wire only with this electric storage amount. It is possible to travel with the travel characteristics. That is, the secondary battery 2 has a storage capacity necessary for traveling between stations of a predetermined route length according to predetermined traveling characteristics, and the electric double layer capacitor 3 includes the electric power required for traveling between the stations, It has a capacity capable of storing at least the maximum electric power. In the route length exceeding the storage capacity of the secondary battery 2, an electric wire path for charging the power storage device is provided on the way. This makes it possible to travel through the entire route section while recharging.

次駅までの走行に必要な容量を有するキャパシタ蓄電装置を使用した走行特性について図5にて説明する。キャパシタ容量は70Fで初期にDC615Vまで充電されている。列車が加速して次駅まで走行するにつれて電圧は降下し、DC−DCコンバータの最低動作電圧DC300V付近まで低下する。これ以降は駅停止のための回生制動が作用して、電気二重層キャパシタ3には回生電力による充電電流が流れるので、電圧は上昇している。このような電圧が半減する、つまり蓄電量が75%まで利用される電気二重層キャパシタ3の容量が次駅までの走行に必要な容量である。   Driving characteristics using a capacitor power storage device having a capacity necessary for driving to the next station will be described with reference to FIG. Capacitor capacity is 70F and is initially charged to DC615V. As the train accelerates and travels to the next station, the voltage drops and drops to near the minimum operating voltage DC300V of the DC-DC converter. After this, regenerative braking for stopping the station acts, and a charging current by regenerative power flows through the electric double layer capacitor 3, so that the voltage rises. Such a voltage is halved, that is, the capacity of the electric double layer capacitor 3 that is used up to 75% is the capacity necessary for traveling to the next station.

次駅までの走行に必要な容量の電気二重層キャパシタ3に対し、走行路線長にわたって走行に必要な十分な容量を有する二次電池2を並列接続して構成されるハイブリッド蓄電装置を使用した走行特性について図6にて説明する。図6では電気二重層キャパシタ3の等価内部抵抗を二次電池2の等価内部抵抗の50%以下に小さくしており、このことにより、列車加速時(時間軸0.00〜10.00)の電流の約50%が電気二重層キャパシタ3で分担される。等速区間(時間軸10.00〜50.00)での走行で列車の速度を維持するための電流は二次電池2より供給され、この内一部の電流は電気二重層キャパシタ3に充電されるが、ほとんどが電動機の駆動電力として供給される。駅停止のため減速を開始(時間軸50.00〜)して回生電力が発生すると、電気二重層キャパシタ3が主に電流分担して二次電池2の分担が減少する。列車が停止した以降は、電気二重層キャパシタ3から二次電池2に電流が移転して、時間軸85.00では電気二重層キャパシタ3の電圧がほぼ初期のDC615Vに回復している。   Travel using a hybrid power storage device configured by connecting in parallel a secondary battery 2 having a sufficient capacity necessary for traveling over the length of the traveling route to the electric double layer capacitor 3 having a capacity necessary for traveling to the next station The characteristics will be described with reference to FIG. In FIG. 6, the equivalent internal resistance of the electric double layer capacitor 3 is reduced to 50% or less of the equivalent internal resistance of the secondary battery 2, and as a result, during train acceleration (time axis 0.00-10.00) About 50% of the current is shared by the electric double layer capacitor 3. Current for maintaining the speed of the train during traveling in the constant speed section (time axis 10.00 to 50.00) is supplied from the secondary battery 2, and a part of the current is charged in the electric double layer capacitor 3. However, most is supplied as drive power for the electric motor. When regenerative power is generated by starting deceleration (time axis 50.00-) due to the stop of the station, the electric double layer capacitor 3 mainly shares current and the sharing of the secondary battery 2 decreases. After the train stops, the current is transferred from the electric double layer capacitor 3 to the secondary battery 2, and the voltage of the electric double layer capacitor 3 is restored to the initial DC 615V on the time axis 85.00.

上記のように本発明に係るハイブリッド蓄電装置を搭載した電気車両では、インバータによる交流電動機制御やチョッパ装置による直流電動機制御等での回生制動機能を有し、電流源4で示すき電変電所等の地上電源装置からの電力を集電する集電装置とDC−DCコンバータ5、負荷6で示す列車制御装置との間に並列にハイブリッド蓄電装置1を接続してこれに蓄電する。そして、力行時には蓄電した電力を放電してき電線を介さないで列車制御装置の駆動電力に利用し、列車制御装置からの回生電力をハイブリッド蓄電装置1に充電して所定の路線長の各駅間を所定の走行特性に従って走行する。ハイブリッド蓄電装置1は、電気二重層キャパシタ3と二次電池2とを並列接続して構成し、このハイブリッド蓄電装置を使用した列車運転では、電気二重層キャパシタ3の容量Ccと等価内部抵抗Rcを二次電池2の夫々の定数Cb、Rbに対して適切に決め最適化することにより、DC−DCコンバータを使用しなくても両者間で特性に合わせて充放電電流を分担することができる。この分担において、力行加速運転時には、電気二重層キャパシタ3より電流Icが約50%分担されて、短時間で出力電流が大となるときの二次電池2の負担を軽減している。力行等速運転では、電力量は少ないが二次電池2より電力が供給され、制動運転時には、電気二重層キャパシタ3が主に回生電力を蓄電し、停止時間には電気二重層キャパシタ3に二次電池2より電力が移されて初期状態に回復して次の駅間走行に蓄電電力が備えられている。   As described above, the electric vehicle equipped with the hybrid power storage device according to the present invention has a regenerative braking function for AC motor control by an inverter, DC motor control by a chopper device, and the like, and a feeder substation indicated by a current source 4 The hybrid power storage device 1 is connected in parallel between the current collector for collecting power from the ground power supply device, the DC-DC converter 5 and the train control device indicated by the load 6 to store power therein. And during power running, the stored power is discharged and used as driving power for the train control device without going through the electric wires, and the regenerative power from the train control device is charged into the hybrid power storage device 1 so that a predetermined distance between the stations is predetermined. Travel according to the travel characteristics. The hybrid power storage device 1 is configured by connecting an electric double layer capacitor 3 and a secondary battery 2 in parallel. In a train operation using the hybrid power storage device, the capacitance Cc and the equivalent internal resistance Rc of the electric double layer capacitor 3 are set. By appropriately determining and optimizing the constants Cb and Rb of the secondary battery 2, the charge / discharge current can be shared between the two according to the characteristics without using a DC-DC converter. In this sharing, during the power running acceleration operation, the current Ic is shared by the electric double layer capacitor 3 by about 50%, and the burden on the secondary battery 2 when the output current becomes large in a short time is reduced. In the power running at constant speed operation, the amount of power is small, but power is supplied from the secondary battery 2, and during the braking operation, the electric double layer capacitor 3 mainly stores regenerative power, and the electric double layer capacitor 3 stores two power during the stop time. Electric power is transferred from the secondary battery 2 to recover to the initial state, and stored electric power is provided for the next inter-station travel.

次に、上記のように電気二重層キャパシタ3が力行走行に要する容量Ccか、例えば図3及び図5で説明した車両走行にて力行区間で電気二重層キャパシタ3の電圧が50%まで低下する容量の設計値になっているか否かを評価する支援システムの例を示す。図7は電気二重層キャパシタの設計評価支援システムの実施の形態を説明する図、図8は電気二重層キャパシタと負荷回路の概要を説明する図、図9はキャパシタデータの構成例を説明する図、図10は負荷データの構成例を説明する図、図11は解析データ及び評価データの構成例を説明する図である。図7において、21はキャパシタデータ、22は負荷データ、23はキャパシタ電流演算部、24はキャパシタ充放電演算部、25は評価データ生成処理部、26は解析データ格納・出力部を示す。   Next, as described above, the electric double layer capacitor 3 has the capacity Cc required for power running or, for example, the voltage of the electric double layer capacitor 3 is reduced to 50% in the power running section in the vehicle running described with reference to FIGS. An example of a support system for evaluating whether or not the capacity is a design value will be described. 7 is a diagram for explaining an embodiment of a design evaluation support system for an electric double layer capacitor, FIG. 8 is a diagram for explaining an outline of the electric double layer capacitor and a load circuit, and FIG. 9 is a diagram for explaining a configuration example of capacitor data. FIG. 10 is a diagram illustrating a configuration example of load data, and FIG. 11 is a diagram illustrating a configuration example of analysis data and evaluation data. In FIG. 7, 21 is capacitor data, 22 is load data, 23 is a capacitor current calculation unit, 24 is a capacitor charge / discharge calculation unit, 25 is an evaluation data generation processing unit, and 26 is an analysis data storage / output unit.

本実施形態の電気二重層キャパシタの設計評価支援システムは、図7に示すように設計データとして与えられるキャパシタデータ21及び負荷データ22、これらの設計データに基づき時系列に電気二重層キャパシタの充放電電流を求めるキャパシタ電流演算部23、電圧(原電圧、端子電圧)を求めるキャパシタ充放電演算部24、電気二重層キャパシタの必要蓄電容量及び許容熱容量の評価に関する情報を求める評価データ生成処理部25、それらのデータを格納し、また、表やリスト、波形図、グラフなどに編集して出力する解析データ格納・出力部26を有する。キャパシタデータ21として、電気二重層キャパシタの定格仕様に関するデータを格納し、負荷データ22として、時系列の動作パターンや負荷パターン等のデータを格納することにより、電気二重層キャパシタの設計評価支援システムでは、それぞれ電気二重層キャパシタ3とその負荷回路(図8に示す可逆コンバータ12、インバータ13、モータ14)に関するデータに基づき、例えば電気二重層キャパシタが許容範囲内の終止電圧や蓄電容量、温度上昇となるキャパシタの直並列数の判定を行う。   The electric double layer capacitor design evaluation support system according to this embodiment includes capacitor data 21 and load data 22 given as design data as shown in FIG. 7, and charging / discharging of the electric double layer capacitor in time series based on these design data. A capacitor current calculation unit 23 for obtaining a current, a capacitor charge / discharge calculation unit 24 for obtaining a voltage (original voltage, terminal voltage), an evaluation data generation processing unit 25 for obtaining information on an evaluation of a necessary storage capacity and an allowable heat capacity of the electric double layer capacitor, The analysis data storage / output unit 26 stores these data, and edits and outputs the data into a table, list, waveform diagram, graph, or the like. In the electric double layer capacitor design evaluation support system, data related to the rated specifications of the electric double layer capacitor is stored as the capacitor data 21, and data such as time series operation patterns and load patterns is stored as the load data 22. Based on data relating to the electric double layer capacitor 3 and its load circuit (reversible converter 12, inverter 13 and motor 14 shown in FIG. 8), for example, the electric double layer capacitor has an end voltage, a storage capacity and a temperature rise within an allowable range. The number of series-parallel capacitors is determined.

そのため、まず、時系列の負荷パターンのデータ及び電気二重層キャパシタ3の定格仕様を含む設計データに基づいて時系列に電気二重層キャパシタの電流、電圧、充放電量、電力損失、温度上昇の情報を含む解析データを求める。さらに解析データに基づいて電気二重層キャパシタの容量設計、評価に関する情報を含む評価データを求めて、それら解析データ及び評価データを出力する。このことにより、時系列の負荷パターンのデータ及び電気二重層キャパシタの定格仕様を含む設計データに応じてシミュレーションした解析データ及び評価データを電気二重層キャパシタの設計評価支援データとして提供する。   Therefore, first, information on the current, voltage, charge / discharge amount, power loss, and temperature rise of the electric double layer capacitor in time series based on time series load pattern data and design data including the rated specifications of the electric double layer capacitor 3 Analytical data including Further, evaluation data including information on capacitance design and evaluation of the electric double layer capacitor is obtained based on the analysis data, and the analysis data and the evaluation data are output. Thus, analysis data and evaluation data simulated according to design data including time-series load pattern data and rated specifications of the electric double layer capacitor are provided as design evaluation support data for the electric double layer capacitor.

図8において、電気二重層キャパシタ3に関するデータが、例えばti 時にバンク電圧(キャパシタ電圧、原電圧)vci、静電容量Cc 、内部抵抗rc 、蓄電量wciであるとすると、電気二重層キャパシタ3から必要電力wli(回生電力の場合には負)を給電するには、出力電圧vtiに対応した所定の電流ii が流れるように充放電制御をしなければならない。このとき、電気二重層キャパシタ内に発生する電力損失は、内部抵抗rc と電流ii より(ii 2 ×rc )として求められ、また、電気二重層キャパシタのバンク電圧vciは、内部抵抗rc に電流ii が流れて生じる電圧降下分を出力電圧vtiに加算した(vti+ii ×rc )、電気二重層キャパシタでの蓄電量wciは、Cc ×vci 2 /2、充放電量Δwciは、(wci-1−wci)としてそれぞれ求められる。さらに、発熱量や放熱量は、電力損失に応じた関数に基づき求められ、これら各時ti の値として求めたのが解析データである。なお、電気二重層キャパシタの蓄電容量Wcmaxは、バンクを満充電電圧vcfまで充電したときの(Cc ×vcf 2 /2)となる。 In FIG. 8, if the data regarding the electric double layer capacitor 3 is, for example, a bank voltage (capacitor voltage, original voltage) v ci , capacitance C c , internal resistance r c , and storage amount w ci at t i. In order to supply the required power w li (negative in the case of regenerative power) from the double layer capacitor 3, charge / discharge control must be performed so that a predetermined current i i corresponding to the output voltage v ti flows. At this time, the power loss generated in the electric double layer capacitor is obtained as (i i 2 × r c ) from the internal resistance r c and the current i i, and the bank voltage v ci of the electric double layer capacitor is expressed as follows. The voltage drop caused by the current i i flowing through the resistor r c is added to the output voltage v ti (v ti + i i × r c ), and the charged amount w ci in the electric double layer capacitor is C c × v ci 2 / 2, the charge / discharge amount Δw ci is obtained as (w ci−1 −w ci ), respectively. Further, the heat generation amount and the heat radiation amount are obtained based on a function corresponding to the power loss, and the analysis data is obtained as the value of each time t i . Incidentally, the power storage capacity W cmax of the electric double layer capacitor, a (C c × v cf 2/ 2) when the charged bank until the full charge voltage v cf.

キャパシタデータ21は、例えば図9に示すモジュール電圧vM 、セル直列数NS 、モジュール静電容量CM 、モジュール内部抵抗rM 、許容温度Tref 、モジュール直列数NMS、並列数NMP、バンク電圧vc (満充電時の電圧vcf)、バンク静電容量Cc 、バンク内部抵抗rc 、モジュール数NM 、さらには発熱・放熱係数、温度上昇関数、熱許容量等の定格仕様を含む、所謂電気二重層キャパシタの設計データであり、記憶保持するメモリ等に格納される。モジュールは、所定数のセルを直列接続した電気二重層キャパシタ3の基本構成単位であり、バンクは、複数個のモジュールを直列接続し、さらにそれらを並列接続して電気二重層キャパシタを構成するものである。 The capacitor data 21 includes, for example, the module voltage v M , the cell series number N S , the module capacitance C M , the module internal resistance r M , the allowable temperature T ref , the module series number N MS , and the parallel number N MP shown in FIG . Rating specifications such as bank voltage v c (voltage v cf at full charge), bank capacitance C c , bank internal resistance r c , number of modules N M , heat generation / heat dissipation coefficient, temperature rise function, heat tolerance, etc. The design data of the so-called electric double layer capacitor including, and is stored in a memory or the like to be stored. The module is a basic structural unit of the electric double layer capacitor 3 in which a predetermined number of cells are connected in series, and the bank is configured by connecting a plurality of modules in series and connecting them in parallel to form an electric double layer capacitor. It is.

例えば2.5(V)のセルを25個直列接続してモジュール電圧vM が50(V)のモジュールを構成する。このモジュールを基本構成単位とすると、負荷の使用(開始)電圧vL が650(V)である場合には、13個のモジュールを直列接続するものとして並列数1のバンクが選択、設定される。つまり、モジュール直列数NMSが13、満充電時のバンク電圧(vcf)が650(V)のバンク構成にすることで、バンク静電容量Cc はCM /13、バンク内部抵抗rc は13×rM により求められる。並列数NMPが1から2になれば、それに応じて新たなバンク静電容量Cc が2倍、バンク内部抵抗rc が2分の1、モジュール数NM が2倍になる。このようにバンクに関する定格仕様の値は、まず、バンク電圧が決まると共に他の値も決まる。 For example, 25 cells of 2.5 (V) are connected in series to constitute a module having a module voltage v M of 50 (V). Assuming that this module is the basic structural unit, when the load use (start) voltage v L is 650 (V), a bank having a parallel number of 1 is selected and set as 13 modules connected in series. . That is, by the module series number N MS 13, fully charged when the bank voltage (v cf) is a bank configuration of 650 (V), the bank capacitance C c is C M / 13, the bank internal resistance r c Is obtained by 13 × r M. If the parallel number N MP is reduced from 1 to 2, the new bank capacitance C c is doubled, the bank internal resistance r c is halved, and the number of modules N M is doubled. As described above, the rated specification value related to the bank first determines the bank voltage and other values.

負荷データ22は、例えば図10に示す使用電圧vL 、電気二重層キャパシタに対して時系列ti に要求される電力(必要電力)wliを有する負荷パターンのデータであり、記憶保持するメモリ等に格納される。単位時間Δt毎の負荷容量wliでもよいし、経時的に変化する負荷容量の関数でもよい。例えば入力される加減速走行パターンからトルクが算出され、その走行パターンの回転数トルクの乗算により負荷パターン(=回転数×トルク)が得られる。 The load data 22 is, for example, load pattern data having the use voltage v L shown in FIG. 10 and the power (required power) w li required for the electric double layer capacitor in time series t i , and the memory for storing and holding the load data 22 And so on. It may be a load capacity w li per unit time Δt, or may be a function of a load capacity that changes with time. For example, the torque is calculated from the input acceleration / deceleration travel pattern, and a load pattern (= rotation speed × torque) is obtained by multiplying the rotation speed torque of the travel pattern.

キャパシタ電流演算部23は、キャパシタデータ21及び負荷データ22に基づき電気二重層キャパシタ3から必要電力に見合って充放電される電流ii を求めるものであり、時刻更新により解析データの一部として解析データ格納・出力部7に格納され、その時系列更新されたキャパシタデータの電圧が次のデータとして使用される。負荷データの各時ti における必要電力wli(=vti×ii )に見合って流れるキャパシタ電流ii は、
〔数5〕
i ={vci±√(vci 2 −4×rc ×wli)}/(2×rc
ここで、ii ×vci=wli+ii 2 ×rc =Δwci
により求められる。
The capacitor current calculation unit 23 obtains a current i i that is charged / discharged from the electric double layer capacitor 3 according to the required power based on the capacitor data 21 and the load data 22, and is analyzed as part of the analysis data by updating the time. The voltage of the capacitor data stored in the data storage / output unit 7 and updated in time series is used as the next data. The capacitor current i i flowing corresponding to the required power w li (= v ti × i i ) at each time t i of the load data is
[Equation 5]
i i = {v ci ± √ (v ci 2 −4 × r c × w li )} / (2 × r c )
Here, i i × v ci = w li + i i 2 × r c = Δw ci
Is required.

キャパシタ充放電演算部24は、キャパシタ電流演算部23で求めた電気二重層キャパシタ3の電流ii と各データに基づきバンク電圧(キャパシタ電圧、原電圧)、端子電圧を求め時刻更新するものであり、ti 時における電気二重層キャパシタ3の端子(出力)電圧vtiは、
〔数6〕
ti=vci−ii ×rc
電流ii による放電の後(ti+1 時)の電気二重層キャパシタ3のバンク電圧vci+1は、
〔数7〕
ci+1=√(vci 2 −2×ii ×vci/Cc
ここで、Cc ×vci 2 /2=(Cc ×vci+1 2 /2)+(ii ×vci
ci=wci+1+Δwci
により求められる。
The capacitor charge / discharge calculation unit 24 calculates the bank voltage (capacitor voltage, original voltage) and terminal voltage based on the current i i of the electric double layer capacitor 3 calculated by the capacitor current calculation unit 23 and each data, and updates the time. , T i at the terminal (output) voltage v ti of the electric double layer capacitor 3 is
[Equation 6]
v ti = v ci -i i × r c
The bank voltage v ci + 1 of the electric double layer capacitor 3 after the discharge by the current i i (at t i + 1 ) is:
[Equation 7]
v ci + 1 = √ (v ci 2 −2 × i i × v ci / C c )
Here, C c × v ci 2/ 2 = (C c × v ci + 1 2/2) + (i i × v ci)
w ci = w ci + 1 + Δw ci
Is required.

評価データ生成処理部25は、電気二重層キャパシタ3の温度を内部抵抗rc での電力損失ii 2 ×rc と発熱・放熱係数や温度上昇関数との演算により求め、或いはその積算値である総電力損失Σii 2 ×rc と温度上昇係数(実験値として求まる値、例えば1〜3)との演算により求める。また、総電力損失をジュール熱に変換し、モジュールの比熱を用いて温度上昇の値を算出してもよい。そして、電気二重層キャパシタ3の必要蓄電容量及び許容熱容量の評価に関する情報を求める。例えば放電量が最も大きい、つまり蓄電残容量(各時における蓄電量)が最も少なくなる電圧の最小値、終止電圧、それらの電圧に対応する蓄電残容量、最大放電量(=電気二重層キャパシタの蓄電容量−蓄電残容量の最小値)、電気二重層キャパシタの利用率、温度上昇値、余裕率等を求める。例えば電気二重層キャパシタの温度に関しては、温度上昇値が温度上昇許容範囲又は上限値に納まるか否かを、温度上昇値のそれら温度上昇値、上限値に対する割合や温度上昇値と上限値との差のそれら温度上昇値、上限値に対する割合などを余裕率として求める。 Evaluation data generation processing unit 25, the temperature of the electric double layer capacitor 3 determined by calculation of the internal resistance power loss i i 2 × r c and the heating-radiation coefficient and temperature rise functions in r c, or in the integrated value there total power loss Σi i 2 × r c and the temperature rise coefficient (obtained as an experimental value value, for example 1 to 3) obtained by calculation with. Alternatively, the total power loss may be converted into Joule heat, and the temperature rise value may be calculated using the specific heat of the module. And the information regarding evaluation of the required electrical storage capacity and allowable heat capacity of the electric double layer capacitor 3 is calculated | required. For example, the minimum value of the voltage at which the discharge amount is the largest, that is, the remaining storage capacity (storage capacity at each time) is the smallest, the end voltage, the remaining storage capacity corresponding to those voltages, the maximum discharge amount (= of the electric double layer capacitor) Storage capacity-minimum value of remaining storage capacity), utilization rate of electric double layer capacitor, temperature rise value, margin ratio, etc. are obtained. For example, regarding the temperature of the electric double layer capacitor, whether or not the temperature rise value falls within the temperature rise allowable range or the upper limit value is determined based on the temperature rise value, the ratio of the temperature rise value to the upper limit value, the temperature rise value and the upper limit value. The ratio of the difference between the temperature rise value and the upper limit value is obtained as a margin rate.

解析データ格納・出力部26は、解析・評価データファイルとして、電気二重層キャパシタ3の電圧(バンク電圧)vci、電流ii 、充放電量Δwci、電力損失ii 2 ×rc 、発熱・放熱量Qti、内部抵抗rc による電圧降下を除いた出力電圧vti、総電力損失Σii 2 ×rc (=∫i2 ×rc di)を含む例えば図11(a)に示す解析データと、バンク電圧の最小値vcmin、必要電力量の最大値Wmax 、電気二重層キャパシタの利用率η、温度上昇値Tmax 、余裕率γを含む図11(b)に示す評価データを格納し、表やリスト、波形図、グラフなどに編集して出力するものである。解析データは、時系列ti の負荷パターンwliのそれぞれに対応して求められる。 The analysis data storage / output unit 26 generates, as an analysis / evaluation data file, the voltage (bank voltage) v ci , current i i , charge / discharge amount Δw ci , power loss i i 2 × r c , and heat generation. 11 including, for example, FIG. 11A including the heat dissipation amount Q ti , the output voltage v ti excluding the voltage drop due to the internal resistance r c , and the total power loss Σi i 2 × r c (= ∫i 2 × r c di) The evaluation data shown in FIG. 11 (b) including the analysis data, the minimum value v cmin of the bank voltage, the maximum value W max of the required electric energy, the utilization factor η of the electric double layer capacitor, the temperature rise value T max , and the margin rate γ. Are stored, edited and output as a table, list, waveform diagram, graph, or the like. Analysis data is determined to correspond to each of the load pattern w li of the time series t i.

次に、具体的な処理により本実施形態をさらに説明する。図12は本実施形態の電気二重層キャパシタの設計評価支援システムにおける処理の例を説明する図である。電気二重層キャパシタの1基本構成単位であるモジュールのキャパシタデータはデータファイルに既に格納されているとする。図12に示すようにまず、負荷データを入力することにより(ステップS11)、所望の電圧(vL 、vc )の得られるモジュール直列数NMSを求める(ステップS12)。次に、並列数NMPを入力することにより(ステップS13)、電気二重層キャパシタの各定格値(バンク電圧vc 、バンク静電容量Cc 、バンク内部抵抗rc 、モジュール数NM )を求める(ステップS14)。 Next, this embodiment will be further described with specific processing. FIG. 12 is a diagram for explaining an example of processing in the design evaluation support system for the electric double layer capacitor of the present embodiment. It is assumed that capacitor data of a module that is one basic structural unit of the electric double layer capacitor is already stored in the data file. As shown in FIG. 12, first, by inputting load data (step S11), the module series number NMS from which a desired voltage (v L , v c ) is obtained is obtained (step S12). Next, by inputting the parallel number N MP (step S13), each rated value of the electric double layer capacitor (bank voltage v c , bank capacitance C c , bank internal resistance r c , number of modules N M ) is obtained. Obtained (step S14).

負荷データの各時ti における必要電力wliに見合ったキャパシタ電流ii を求め(ステップS15)、さらにバンク電圧vci、出力電圧vti、充放電量Δwci、電力損失ii 2 ×rc 、発熱・放熱量Qti等を求めてキャパシタデータを格納する(ステップS16)。そして、時刻を更新(ti ←ti+1 )して(ステップS17)、全時刻について処理を終了したか否かを判定し(ステップS18)、全時刻について処理を終了するまで、ステップS15に戻って同様の処理を繰り返し実行する。 The capacitor current i i corresponding to the required power w li at each time t i of the load data is obtained (step S15), and the bank voltage v ci , output voltage v ti , charge / discharge amount Δw ci , power loss i i 2 × r c . Obtain heat generation / heat radiation amount Qti and store capacitor data (step S16). Then, the time is updated (t i ← t i + 1 ) (step S17), it is determined whether or not the process has been completed for all times (step S18), and step S15 is performed until the process is completed for all times. Return to the above and repeat the same process.

全時刻について処理を終了すると、バンク電圧の最小値vcminを抽出し(ステップS19)、必要電力量の最大値Wmax (=Cc ×vcf 2 /2−Cc ×vcmin 2 /2)を求める(ステップS20)。さらに、発熱・放熱に基づき求められる各時の上昇温度から最大値を抽出し、或いは電力損失から温度上昇値求めて(ステップS21)、電気二重層キャパシタの利用率η、余裕率γを含めた各処理データを出力する(ステップS22)。さらに、電気二重層キャパシタの容量増加等の条件変更があるか否かを判定し(ステップS23)、条件変更であれば、ステップS13に戻り新たな並列数を入力して以下同様の処理を繰り返して実行する。また、条件変更では、図12(b)に示すように負荷データやモジュールデータ等を新たに入力して設定し直すようにしてもよい(ステップS11→S12′)。 When the process for all the time, extracts the minimum value v cmin bank voltage (step S19), the maximum value W max of required power amount (= C c × v cf 2 /2-C c × v cmin 2/2 ) Is obtained (step S20). Further, the maximum value is extracted from the rising temperature at each time obtained based on the heat generation and the heat radiation, or the temperature rising value is obtained from the power loss (step S21), and the utilization rate η and margin rate γ of the electric double layer capacitor are included. Each processing data is output (step S22). Further, it is determined whether or not there is a condition change such as an increase in the capacity of the electric double layer capacitor (step S23). If the condition is changed, the process returns to step S13 and a new parallel number is input and the same processing is repeated thereafter. And execute. In the condition change, as shown in FIG. 12B, load data, module data, or the like may be newly input and set again (steps S11 → S12 ′).

電気二重層キャパシタ3は、モジュールの直列数を増やすと使用開始電圧が高くなると共に電流損失を減らすことができる。また、並列数を増やすと蓄電容量が増加すると共に内部抵抗を減らすことができる。つまり、モータ又は出力側の電力変換装置の耐電圧が許容される範囲で直列数を増やすことができ、体積、重量、コストが許容される範囲で直並列数を増やすことができる。上記の処理によれば、所定の負荷データに対してモジューの直列数、それらの並列数を増減させながら繰り返すことにより、許容範囲内の最適な電気二重層キャパシタを見いだすことができる。また、初期値を1とし順次増やして上記処理による解析を行えば、許容範囲内におさまったところを最適な設計値とすることもできる。   In the electric double layer capacitor 3, when the number of modules in series is increased, the use starting voltage becomes higher and the current loss can be reduced. Further, when the number of parallel is increased, the storage capacity is increased and the internal resistance can be reduced. That is, the number of series can be increased within a range where the withstand voltage of the motor or the power converter on the output side is allowed, and the number of series-parallel can be increased within a range where the volume, weight, and cost are allowed. According to the above processing, it is possible to find an optimum electric double layer capacitor within an allowable range by repeating while increasing / decreasing the number of modules in series and the number of parallel to predetermined load data. Further, if the initial value is set to 1 and the analysis is performed by the above process, the place within the allowable range can be set as the optimum design value.

負荷パターンの情報を入力する例をさらに説明する。図13はモータ負荷の回転数、トルク、電力の波形例を示す図、図14は負荷データの一部構成例を示す図、図15は速度(加速度)プロファイルを入力する場合の処理の例を説明する図である。   An example of inputting load pattern information will be further described. FIG. 13 is a diagram showing a waveform example of the rotation speed, torque, and power of a motor load, FIG. 14 is a diagram showing a partial configuration example of load data, and FIG. 15 is an example of processing when a speed (acceleration) profile is input. It is a figure explaining.

電気二重層キャパシタは、加速、力行走行の間に放電され、減速し停止する間の回生電力により充電されることにより、バンク電圧が上下動する。したがって、負荷パターンにより解析されたバンク電圧が最小値vcminとなったときの満充電からの放電量(Wcmax−Wcmin=Wmax )が電気二重層キャパシタとして少なくとも必要となる蓄電容量となり、電気二重層キャパシタの蓄電容量に対する割合が利用率となる。また、温度上昇値は、電力損失の関数、例えば(総電力損失Σii 2 c ×K+T0 )で求め、この温度上昇値の許容温度に対する割合を余裕率として求めることができる。ここで、Kは1〜3、T0 は1〜5で実験値として求められるものである。したがって、それぞれが電気二重層キャパシタの評価を行う情報となる。 The electric double layer capacitor is discharged during acceleration and power running, and is charged by regenerative power while decelerating and stopping, whereby the bank voltage moves up and down. Therefore, the amount of discharge from full charge when the bank voltage analyzed by the load pattern reaches the minimum value v cmin (W cmax −W cmin = W max ) is at least the necessary storage capacity as the electric double layer capacitor, The ratio of the electric double layer capacitor to the storage capacity is the utilization rate. Further, the temperature rise value can be determined function of the power loss, for example, determined by (the total power loss Σi i 2 r c × K + T 0), the ratio of the allowable temperature of the temperature rise value as margin. Here, K is 1 to 3, and T 0 is 1 to 5, which are obtained as experimental values. Therefore, each becomes information for evaluating the electric double layer capacitor.

モータ負荷回路において、例えば図13(a)に示すように一定の加速度n′で加速する加速域A、定速域B、一定の減速度−n′で減速する減速域Cからなる動作パターンが与えられると、負荷特性にしたがって図13(b)に示すトルクτ、さらにそのトルクτに見合った図13(c)に示す負荷電力Pが求めることができる。負荷電力Pは、減速域Cで負になり回生電力として電気二重層キャパシタの充電に使用される。電気二重層キャパシタでは、必要電力wliを供給するために放電することにより電圧が降下するが、回生電力により充電して電圧が上昇し回復する。 In the motor load circuit, for example, as shown in FIG. 13 (a), an operation pattern comprising an acceleration area A that accelerates at a constant acceleration n ′, a constant speed area B, and a deceleration area C that decelerates at a constant deceleration −n ′. If given, the torque τ shown in FIG. 13B and the load power P shown in FIG. 13C commensurate with the torque τ can be obtained according to the load characteristics. The load power P becomes negative in the deceleration region C and is used as regenerative power for charging the electric double layer capacitor. In the electric double layer capacitor, the voltage drops by discharging to supply the necessary power w li , but the voltage rises and recovers by charging with regenerative power.

動作パターンを速度で与えるデータの例を示したのが図14(a)であり、この場合には速度の単位時間の変化率(微分)で加速度が求められる。加速度で与えるデータの例を示したのが図14(b)である。複数の異なる種別の負荷を有する場合、負荷の種別により所望の加速度を得るために必要なトルク、そのトルクを得るために必要な電力も異なってくる。負荷の種別を指定することによりそれに対応して必要な電力が求められる。そのトルク・電力変換関数のデータの例を示したのが図14(c)である。   FIG. 14A shows an example of data that gives an operation pattern by speed. In this case, the acceleration is obtained by the rate of change (differentiation) of the speed per unit time. FIG. 14B shows an example of data given by acceleration. When there are a plurality of different types of loads, the torque required to obtain a desired acceleration and the electric power required to obtain the torque vary depending on the type of load. By designating the type of load, the required power corresponding to it is obtained. FIG. 14C shows an example of data of the torque / power conversion function.

図15に示す速度(加速度)プロファイルを入力する場合の処理の例では、図14(a)、(b)に示す速度或いは加速度プロファイルのデータを入力し(ステップS31)、負荷の種別、モジュールの種別、定格を選択して指定することにより(ステップS32)、図14(c)に示す変換関数に基づき各時刻のトルク、負荷電力を算出し(ステップS33)、その負荷電力から各時刻の電気二重層キャパシタの必要電力を算出して(ステップS34)、先に説明した処理と同様にキャパシタの解析処理を実行する。   In the example of processing when the speed (acceleration) profile shown in FIG. 15 is input, the speed or acceleration profile data shown in FIGS. 14A and 14B is input (step S31), the load type, the module By selecting and specifying the type and rating (step S32), the torque and load power at each time are calculated based on the conversion function shown in FIG. 14C (step S33), and the electric power at each time is calculated from the load power. The required power of the double layer capacitor is calculated (step S34), and the capacitor analysis processing is executed in the same manner as described above.

上記のように本実施形態の設計評価支援システムでは、負荷データ、キャパシタデータ、条件設定に応じて解析データ、評価データを出力することにより、それぞれの負荷と電気二重層キャパシタとの組み合わせが適合するか否かを評価、判定することができるので、負荷データ、キャパシタデータ、条件設定を変数として更新しながら繰り返し解析データ、評価データを出力して、最適な電気二重層キャパシタの解を求めることができる。電気二重層キャパシタを使用した図3及び図5における設計評価を行う例で説明したが、これを図1や図4、図6におけるハイブリッド蓄電装置にも同様に適用可能である。ハイブリッド蓄電装置について上記演算を行う場合には、二次電池に図1に示す等価回路を用いて演算を行うようにしてもよいが、二次電池を定電圧源として演算を行うようにしてもよい。   As described above, in the design evaluation support system of this embodiment, the combination of each load and the electric double layer capacitor is adapted by outputting analysis data and evaluation data according to load data, capacitor data, and condition setting. It is possible to evaluate and determine whether or not it is possible to repeatedly output analysis data and evaluation data while updating load data, capacitor data, and condition settings as variables to obtain an optimal solution for the electric double layer capacitor. it can. Although the example of performing the design evaluation in FIGS. 3 and 5 using the electric double layer capacitor has been described, this can be similarly applied to the hybrid power storage device in FIGS. 1, 4, and 6. When performing the above calculation for the hybrid power storage device, the calculation may be performed using the equivalent circuit shown in FIG. 1 for the secondary battery, but the calculation may be performed using the secondary battery as a constant voltage source. Good.

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、電気車両として、き電変電所等の地上電源装置からの電力を集電する集電装置と列車制御装置を搭載した架線レスの列車で説明したが、都市交通システムや路面電車、バス等、所定の路線長の各駅間を所定の走行特性に従って走行する交通システムにも同様に適してもよい。また、地上電源装置は、路線の中間駅に適宜配置することによって中間駅でハイブリッド蓄電装置を充電し、全路線長の走行に要する電力が蓄電可能な容量を有しない二次電池を搭載した場合でも、長い路線長を運行できるようにしてもよいことはいうまでもない。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, the electric vehicle is described as a train without an overhead line equipped with a current collector and a train control device that collect power from a ground power supply device such as a feeder substation. Similarly, it may be suitable for a traffic system such as a tram, a bus, and the like that travels between stations of a predetermined route length according to predetermined traveling characteristics. In addition, when the ground power supply device is installed appropriately at the intermediate station on the route to charge the hybrid power storage device at the intermediate station, and a secondary battery that does not have the capacity to store the power required for traveling for the entire route length is installed However, it goes without saying that it may be possible to operate a long route.

本発明に係るハイブリッド蓄電装置を搭載した電気車両の実施の形態を説明する簡易等価回路構成を示す図。The figure which shows the simple equivalent circuit structure explaining embodiment of the electric vehicle carrying the hybrid electrical storage apparatus which concerns on this invention. ハイブリッド蓄電装置の入出力特性を説明する図。FIG. 9 illustrates input / output characteristics of a hybrid power storage device. キャパシタ蓄電装置を使用した列車インバータ駆動回路の構成を示す図。The figure which shows the structure of the train inverter drive circuit which uses a capacitor electrical storage apparatus. ハイブリッド蓄電装置を使用した列車インバータ駆動回路の構成を示す図。The figure which shows the structure of the train inverter drive circuit which uses a hybrid electrical storage apparatus. 蓄電装置としてのキャパシタ蓄電装置での走行特性を示す図。The figure which shows the driving | running | working characteristic in the capacitor electrical storage apparatus as an electrical storage apparatus. ハイブリッド蓄電装置での走行特性を示す図。The figure which shows the driving | running | working characteristic in a hybrid electrical storage apparatus. 電気二重層キャパシタの設計支援システムの実施の形態を説明する図。The figure explaining embodiment of the design support system of an electric double layer capacitor. 電気二重層キャパシタと負荷回路の概要を説明する図。The figure explaining the outline | summary of an electric double layer capacitor and a load circuit. キャパシタデータの構成例を説明する図。The figure explaining the structural example of capacitor data. 負荷データの構成例を説明する図。The figure explaining the structural example of load data. 解析データ及び評価データの構成例を説明する図。The figure explaining the structural example of analysis data and evaluation data. 電気二重層キャパシタの設計支援システムにおける処理の例を説明する図。The figure explaining the example of the process in the design support system of an electric double layer capacitor. モータ負荷の回転数、トルク、電力の波形例を示す図。The figure which shows the waveform example of the rotation speed of a motor load, a torque, and electric power. 負荷データの一部構成例を示す図。The figure which shows the partial structural example of load data. 速度(加速度)プロファイルを入力する場合の処理の例を説明する図。The figure explaining the example of a process in the case of inputting a speed (acceleration) profile.

符号の説明Explanation of symbols

1…ハイブリッド蓄電装置、2…二次電池、3…電気二重層キャパシタ、4…電流源、5…DC−DCコンバータ、6…負荷、Sw1、Sw2…スイッチ   DESCRIPTION OF SYMBOLS 1 ... Hybrid electrical storage apparatus, 2 ... Secondary battery, 3 ... Electric double layer capacitor, 4 ... Current source, 5 ... DC-DC converter, 6 ... Load, Sw1, Sw2 ... Switch

Claims (3)

インバータによる交流電動機制御やチョッパ装置による直流電動機制御等での回生制動機能を有し、き電変電所等の地上電源装置からの電力を集電する集電装置と列車制御装置との間に並列に蓄電装置を接続して前記蓄電装置に蓄電し、力行時には前記蓄電した電力を放電してき電線を介さないで前記列車制御装置の駆動電力に利用し、前記列車制御装置からの回生電力を前記蓄電装置に充電して所定の路線長の各駅間を所定の走行特性に従って走行する電気車両のハイブリッド蓄電装置であって、前記蓄電装置は、電気二重層キャパシタと二次電池とを並列接続して構成し、前記電気二重層キャパシタは、前記二次電池の等価内部抵抗の2分の1以下の等価内部抵抗と、前記各駅間走行に要する各電力のうち、少なくとも最大の電力が蓄電可能な容量とを有すると共に、前記二次電池は、前記所定の路線長の走行に要する電力が蓄電可能な容量を有することを特徴とする電気車両のハイブリッド蓄電装置。 It has a regenerative braking function for AC motor control by an inverter and DC motor control by a chopper device, and is connected in parallel between a current collector that collects power from a ground power source such as a feeder substation and a train controller. The power storage device is connected to the power storage device and stored in the power storage device. During power running, the stored power is discharged and used as driving power for the train control device without going through an electric wire, and regenerative power from the train control device is stored in the power storage A hybrid power storage device for an electric vehicle that charges a device and travels between stations of a predetermined route length according to predetermined travel characteristics, wherein the power storage device is configured by connecting an electric double layer capacitor and a secondary battery in parallel The electric double layer capacitor stores at least the maximum power among the equivalent internal resistance less than half of the equivalent internal resistance of the secondary battery and each power required for traveling between the stations. Which has a capacity capacity, the secondary battery, the hybrid energy storage device of the electric vehicle power required for traveling of the predetermined line length and having an available storage capacity. 前記所定の路線長は、前記集電する集電装置に前記き電変電所等の地上電源装置から電力を集電可能になった路線長であることを特徴とする請求項1記載の電気車両のハイブリッド蓄電装置。 2. The electric vehicle according to claim 1, wherein the predetermined route length is a route length that allows the current collecting device to collect power from a ground power supply device such as the feeding substation. Hybrid power storage device. インバータによる交流電動機制御やチョッパ装置による直流電動機制御等での回生制動機能を有し、所定の路線長の各駅間を所定の走行特性に従って走行する電気車両であって、電気二重層キャパシタと二次電池とを並列接続して蓄電装置を構成し、前記電気二重層キャパシタは、前記二次電池の等価内部抵抗の2分の1以下の等価内部抵抗と、前記各駅間走行に要する各電力のうち、少なくとも最大の電力が蓄電可能な容量とを有すると共に、前記二次電池は、前記所定の路線長の走行に要する電力が蓄電可能な容量を有し、き電変電所等の地上電源装置からの電力を集電する集電装置と列車制御装置との間に並列に前記蓄電装置を接続して前記蓄電装置に蓄電し、力行時には前記蓄電した電力を放電してき電線を介さないで前記列車制御装置の駆動電力に利用し、前記列車制御装置からの回生電力を前記蓄電装置に充電することを特徴とするハイブリッド蓄電装置を搭載した電気車両。 An electric vehicle having a regenerative braking function in an AC motor control by an inverter, a DC motor control by a chopper device, etc., and traveling between stations of a predetermined route length according to a predetermined traveling characteristic, and an electric double layer capacitor and a secondary A battery is connected in parallel to form a power storage device, and the electric double layer capacitor includes an equivalent internal resistance equal to or less than half of an equivalent internal resistance of the secondary battery, and each electric power required for traveling between the stations. The secondary battery has a capacity capable of storing the electric power required to travel the predetermined route length, and has a capacity capable of storing the maximum electric power, from a ground power supply device such as a feeder substation. The power storage device is connected in parallel between the current collector that collects the power of the train and the train control device, and the power is stored in the power storage device. During power running, the stored power is discharged and the train control is not performed via the electric wire. Using the location of the driving power, electric vehicle equipped with a hybrid energy storage device, characterized by charging to said power storage device regenerative electric power from the train control device.
JP2006298662A 2006-11-02 2006-11-02 Hybrid storage device for electric vehicle and electric vehicle Expired - Fee Related JP3960557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298662A JP3960557B1 (en) 2006-11-02 2006-11-02 Hybrid storage device for electric vehicle and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298662A JP3960557B1 (en) 2006-11-02 2006-11-02 Hybrid storage device for electric vehicle and electric vehicle

Publications (2)

Publication Number Publication Date
JP3960557B1 JP3960557B1 (en) 2007-08-15
JP2008118761A true JP2008118761A (en) 2008-05-22

Family

ID=38456470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298662A Expired - Fee Related JP3960557B1 (en) 2006-11-02 2006-11-02 Hybrid storage device for electric vehicle and electric vehicle

Country Status (1)

Country Link
JP (1) JP3960557B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004546A (en) * 2009-06-19 2011-01-06 Hitachi Ltd Railway system having power feeding facility provided on rail track between stations
CN102358191A (en) * 2011-08-05 2012-02-22 惠州市标顶空压技术有限公司 Novel regenerated electric energy recycling system for urban rail transit
JP2013059144A (en) * 2011-09-07 2013-03-28 Hitachi Ltd Drive system of railway vehicle
WO2016017040A1 (en) * 2014-07-30 2016-02-04 株式会社東芝 Vehicle system and control method therefor
KR102108659B1 (en) * 2018-12-19 2020-05-18 한양대학교 산학협력단 Power distribution method and device for hybrid electric vehicle considering electric load

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139717B2 (en) * 2017-07-13 2021-10-05 Panasonic Intellectual Property Management Co., Ltd. Power generation system including power generating device and capacitor, and capable of storing energy of generated electric power with reducing waste energy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340328A (en) * 1991-05-16 1992-11-26 Elna Co Ltd Power supply
JPH06270695A (en) * 1993-03-18 1994-09-27 Aisin Aw Co Ltd Power supply device
JP2001352607A (en) * 2000-06-06 2001-12-21 Hitachi Ltd Battery-driven rolling stock
JP2001359244A (en) * 2000-06-14 2001-12-26 Shizuki Electric Co Inc Secondary cell assisting circuit by capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340328A (en) * 1991-05-16 1992-11-26 Elna Co Ltd Power supply
JPH06270695A (en) * 1993-03-18 1994-09-27 Aisin Aw Co Ltd Power supply device
JP2001352607A (en) * 2000-06-06 2001-12-21 Hitachi Ltd Battery-driven rolling stock
JP2001359244A (en) * 2000-06-14 2001-12-26 Shizuki Electric Co Inc Secondary cell assisting circuit by capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004546A (en) * 2009-06-19 2011-01-06 Hitachi Ltd Railway system having power feeding facility provided on rail track between stations
CN102358191A (en) * 2011-08-05 2012-02-22 惠州市标顶空压技术有限公司 Novel regenerated electric energy recycling system for urban rail transit
JP2013059144A (en) * 2011-09-07 2013-03-28 Hitachi Ltd Drive system of railway vehicle
WO2016017040A1 (en) * 2014-07-30 2016-02-04 株式会社東芝 Vehicle system and control method therefor
JP2016034171A (en) * 2014-07-30 2016-03-10 株式会社東芝 Vehicle system and method for controlling the same
TWI548544B (en) * 2014-07-30 2016-09-11 東芝股份有限公司 Vehicle system and control method thereof
US10259327B2 (en) 2014-07-30 2019-04-16 Kabushiki Kaisha Toshiba Vehicle system and control method therefor
KR102108659B1 (en) * 2018-12-19 2020-05-18 한양대학교 산학협력단 Power distribution method and device for hybrid electric vehicle considering electric load

Also Published As

Publication number Publication date
JP3960557B1 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
Wang et al. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles
JP6717826B2 (en) Electric power supply and energy harvesting auxiliary system for electric vehicle and method of operating the power supply and energy harvesting auxiliary system
JP6459085B2 (en) Charging facility and energy management method
JP6236391B2 (en) Device for balancing the amount of charge for power batteries
Amjadi et al. Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems
US8115446B2 (en) Automotive vehicle power system
JP4252953B2 (en) Power storage type feeder voltage compensation apparatus and method
JP5478743B2 (en) Power regeneration power system
JP6653197B2 (en) Power storage device, device and control method
CN108012538A (en) Mixed tensor stores
JP2016047005A (en) Vehicle propulsion system having energy storage system and optimized method of controlling operation thereof
CN105612081A (en) Electrical storage system for vehicle
CN104272554A (en) Dual chemistry, battery system for use in plug-in or hybrid electric vehicles
JP5796457B2 (en) Battery system and battery system control method
JP3960557B1 (en) Hybrid storage device for electric vehicle and electric vehicle
Joshi et al. Improved energy management algorithm with time-share-based ultracapacitor charging/discharging for hybrid energy storage system
Mir et al. A supercapacitor based light rail vehicle: system design and operations modes
US10576835B2 (en) Energy storage device, transport apparatus, and control method
JP6765208B2 (en) Railroad vehicle
JP6214607B2 (en) Power storage device and transportation equipment
Cheng et al. Fast-swap charging: An improved operation mode for catenary-free light rail networks
JP6431829B2 (en) Power storage control device, transport equipment, and power storage control method
Azad et al. Design of hybrid energy storage systems for wirelessly charged electric vehicles
JP2016152718A (en) Charge and discharge controller, mobile and power sharing amount determination method
Xiaoliang et al. System design and converter control for super capacitor and battery hybrid energy system of compact electric vehicles

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees