JP2005206111A - Dc voltage power feed device - Google Patents

Dc voltage power feed device Download PDF

Info

Publication number
JP2005206111A
JP2005206111A JP2004017097A JP2004017097A JP2005206111A JP 2005206111 A JP2005206111 A JP 2005206111A JP 2004017097 A JP2004017097 A JP 2004017097A JP 2004017097 A JP2004017097 A JP 2004017097A JP 2005206111 A JP2005206111 A JP 2005206111A
Authority
JP
Japan
Prior art keywords
voltage
charge
storage element
discharge
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004017097A
Other languages
Japanese (ja)
Other versions
JP4387813B2 (en
Inventor
Yukio Kadota
行生 門田
Hitoshi Taguchi
仁 田口
Yosuke Nakazawa
洋介 中沢
Ikuya Aoyama
育也 青山
Yasunao Sekijima
康直 関島
Masayuki Inui
正幸 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Japan Railway Co
Original Assignee
Toshiba Corp
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Japan Railway Co filed Critical Toshiba Corp
Priority to JP2004017097A priority Critical patent/JP4387813B2/en
Publication of JP2005206111A publication Critical patent/JP2005206111A/en
Application granted granted Critical
Publication of JP4387813B2 publication Critical patent/JP4387813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To re-utilize regeneration power of an electric vehicle. <P>SOLUTION: The DC voltage power feed device is provided with an electricity storage element 15 for storing power fed through a DC wire 3; a charge/discharge circuit 14 for performing charge/discharge action of the electricity storage element 15; a control circuit 16 for controlling the charge/discharge circuit 14; a voltage detector 17 for detecting DC voltage of an output end of the charge/discharge circuit 14 and outputting it to the control circuit 16 as DC voltage signal; a current detector 18 for detecting current outputted to the electric vehicle 10 side and outputting it to the control circuit as an output current signal; and a current detector 19 for detecting the charge/discharge current of the electricity storage element 15 and outputting it to the control circuit 16 as a charge/discharge current signal. The control circuit 16 charge-controls the electricity storage element when the DC voltage signal exceeds a charge set value and controls discharge-controls the electricity storage element when the DC voltage signal exceeds a discharge set value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気車の回生電力を再利用するようにした直流電圧給電装置に関する。   The present invention relates to a direct-current voltage power supply apparatus configured to reuse regenerative power of an electric vehicle.

一般に、直流電圧給電装置においては、交流電圧をダイオード整流器で直流電圧に変換して電気車に直流電力を給電している。図12に従来の直流電圧給電装置を示す。図12において、1は交流電源,2は整流器、3は直流架線、4はインバータ、5は交流電動機、6はフィルタリアクトル、7はフィルタコンデンサ、8は抵抗器、9はスイッチ、10はインバータ4と交流電動機5とフィルタリアクトル6とフィルタコンデンサ7と抵抗器8とスイッチ9で構成される電気車である。   In general, in a DC voltage power supply apparatus, an AC voltage is converted into a DC voltage by a diode rectifier to supply DC power to an electric vehicle. FIG. 12 shows a conventional DC voltage feeder. In FIG. 12, 1 is an AC power source, 2 is a rectifier, 3 is a DC overhead wire, 4 is an inverter, 5 is an AC motor, 6 is a filter reactor, 7 is a filter capacitor, 8 is a resistor, 9 is a switch, 10 is an inverter 4 And an AC motor 5, a filter reactor 6, a filter capacitor 7, a resistor 8, and a switch 9.

従来の直流電圧給電装置について説明する。交流電源1の交流電圧は、整流器2によって交流電圧から直流電圧に変換され、直流架線3を介して電気車10へと給電される(例えば非特許文献1参照)。   A conventional DC voltage feeder will be described. The AC voltage of the AC power supply 1 is converted from an AC voltage to a DC voltage by the rectifier 2 and fed to the electric vehicle 10 via the DC overhead wire 3 (see, for example, Non-Patent Document 1).

電気車10はインバータ4で直流電圧を交流電圧に変換して交流電動機5を駆動する。交流電動機5で電力を消費する力行運転では、交流電動機5は直流架線3→インバータ4→交流電動機5と電力を受電し、交流電動機5が電力を発電する回生運転では、交流電動機5は交流電動機5→インバータ4→直流架線3へと回生電力を出力する。直流架線3に出力された電力は、同じ直流架線3で他の電気車が力行運転をしていると回生電力は力行運転を行う他の電気車で消費されて電力を有効に利用することができる。
持永芳文著「電気鉄道工学」エース出版 1999年 第62頁
The electric vehicle 10 converts the DC voltage into an AC voltage by the inverter 4 to drive the AC motor 5. In the power running operation in which power is consumed by the AC motor 5, the AC motor 5 receives power from the DC overhead wire 3 → the inverter 4 → the AC motor 5, and in the regenerative operation in which the AC motor 5 generates power, the AC motor 5 is the AC motor. 5. Regenerative power is output from the inverter 4 to the DC overhead line 3. When the electric power output to the DC overhead line 3 is operated by another electric vehicle on the same DC overhead line 3, the regenerative power is consumed by the other electric vehicle performing the power operation and the power can be used effectively. it can.
Yoshifumi Mochinaga “Electrical Railway Engineering” Ace Publishing 1999, page 62

しかしながら従来の直流電圧給電装置では、電気車が回生運転をしているときに力行運転を行う他の電気車が存在しない場合、直流架線の直流電圧が上昇する。直流架線の直流電圧が過電圧の設定値を越えると、回生運転を行う電気車のスイッチがオンし、抵抗器で回生電力を消費して直流架線の過電圧を抑制する。そのため、回生電力が無駄に消費されてしまうという課題があった。   However, in the conventional DC voltage power supply device, when there is no other electric vehicle that performs a power running operation when the electric vehicle is performing a regenerative operation, the DC voltage of the DC overhead line increases. When the DC voltage of the DC overhead line exceeds the set value of the overvoltage, the switch of the electric vehicle that performs the regenerative operation is turned on, and regenerative power is consumed by the resistor to suppress the overvoltage of the DC overhead line. For this reason, there is a problem that the regenerative power is wasted.

そこで、本発明は直流架線と並列に充放電回路と蓄電素子を接続し、直流架線の電圧上昇で蓄電素子を充電して、電気車への出力電流で蓄電素子を放電することで電気車の回生電力を再利用することを可能にした直流電圧給電装置を提供することを目的とする。   Therefore, the present invention connects the charge / discharge circuit and the storage element in parallel with the DC overhead line, charges the storage element with the voltage rise of the DC overhead line, and discharges the storage element with the output current to the electric vehicle. It is an object of the present invention to provide a DC voltage power supply device that can recycle regenerative power.

上記の目的を達成するために本発明は、交流電圧を直流電圧に変換し、この直流電圧を直流架線を介して電気車に供給する直流電圧給電装置において、直流架線を介して供給される電力を蓄積する蓄電素子と、当該蓄電素子の充放電動作を行う充放電回路と、当該充放電回路を制御するための制御回路と、充放電回路の出力端の直流電圧を検出して制御回路に直流電圧信号として出力する電圧検出器と、電気車側に出力する電流を検出して制御回路に出力電流信号として出力する電流検出器と、蓄電素子の充放電電流を検出して制御回路に充放電電流信号として出力する電流検出器を備え、制御回路は、直流電圧信号が充電設定値を越えたとき蓄電素子を充電制御する一方、直流電圧信号が放電設定値を越えたとき蓄電素子を放電制御することを特徴としている。   In order to achieve the above object, the present invention provides an electric power supplied via a DC overhead line in a DC voltage feeder that converts an AC voltage into a DC voltage and supplies the DC voltage to an electric vehicle via the DC overhead line. A storage element for storing the charge, a charging / discharging circuit for charging / discharging the storage element, a control circuit for controlling the charging / discharging circuit, and detecting a DC voltage at the output terminal of the charging / discharging circuit to the control circuit A voltage detector that outputs as a DC voltage signal, a current detector that detects the current output to the electric vehicle and outputs it as an output current signal to the control circuit, and detects the charge / discharge current of the storage element and charges the control circuit Provided with a current detector that outputs as a discharge current signal, the control circuit controls charging of the storage element when the DC voltage signal exceeds the charge setting value, while discharging the storage element when the DC voltage signal exceeds the discharge setting value To control It is characterized in.

上記構成の本発明によれば、電気車の回生電力を蓄電素子に充電するとともに、力行運転で放電するので、電気車の回生電力を再利用することが可能となる。また直流架線電圧の大きさを見て蓄電素子を充電するため、架線電圧の上昇をすばやく抑えることができる。   According to the present invention having the above-described configuration, the regenerative power of the electric vehicle can be reused because the regenerative power of the electric vehicle is charged in the power storage element and discharged by powering operation. In addition, since the storage element is charged by looking at the magnitude of the DC overhead line voltage, an increase in the overhead line voltage can be quickly suppressed.

《第1の実施形態》
図1は本発明に係る直流電圧給電装置の第1の実施形態を示す回路構成図である。図中、交流電源1、整流器2、直流架線3、インバータ4、交流電動機5、フィルタリアクトル6、フィルタコンデンサ7、抵抗器8、スイッチ9、インバータ4と交流電動機5とフィルタリアクトル6とフィルタコンデンサ7と抵抗器8とスイッチ9とで構成される電気車10は図12に示した従来図面と同一構成であるため、説明は省略する。
<< First Embodiment >>
FIG. 1 is a circuit configuration diagram showing a first embodiment of a DC voltage supply apparatus according to the present invention. In the figure, AC power supply 1, rectifier 2, DC overhead line 3, inverter 4, AC motor 5, filter reactor 6, filter capacitor 7, resistor 8, switch 9, inverter 4, AC motor 5, filter reactor 6, and filter capacitor 7 are shown. Since the electric vehicle 10 including the resistor 8 and the switch 9 has the same configuration as the conventional drawing shown in FIG.

図1において、11a,11bは自己消弧形素子、12はリアクトル、13は直流コンデンサ、14は自己消弧形素子11a,11bとリアクトル12と直流コンデンサ13で構成する充放電回路、15は蓄電素子、16は充放電回路14を制御するための制御回路、17は直流コンデンサ電圧を検出する電圧検出器、18は直流架線4へ出力する電流を検出する電流検出器、19は蓄電素子15の充放電電流を検出する電流検出器である。充放電回路14は直流架線3と並列に接続し、制御回路16で自己消弧形素子11a,11bを制御して蓄電素子15の充放電を行う。   In FIG. 1, 11a and 11b are self-extinguishing elements, 12 is a reactor, 13 is a DC capacitor, 14 is a charge / discharge circuit composed of the self-extinguishing elements 11a and 11b, a reactor 12 and a DC capacitor 13, and 15 is a power storage. Element 16 is a control circuit for controlling the charging / discharging circuit 14, 17 is a voltage detector for detecting a DC capacitor voltage, 18 is a current detector for detecting a current output to the DC overhead wire 4, and 19 is a storage element 15. It is a current detector for detecting a charge / discharge current. The charge / discharge circuit 14 is connected in parallel with the DC overhead line 3, and the control circuit 16 controls the self-extinguishing elements 11 a and 11 b to charge and discharge the storage element 15.

次に、図2から図4を用いて制御回路16の回路動作について説明する。   Next, the circuit operation of the control circuit 16 will be described with reference to FIGS.

図2は制御回路16の制御機能ブロックを示しており、充電と放電の制御モードを切換える充電・放電切換え回路の制御ブロック図である。図2において20は充電制御部、21は放電制御部、22はゲート回路、23は充放電判定回路、24は切換え回路である。   FIG. 2 shows a control function block of the control circuit 16 and is a control block diagram of a charge / discharge switching circuit for switching between charge and discharge control modes. In FIG. 2, 20 is a charge control unit, 21 is a discharge control unit, 22 is a gate circuit, 23 is a charge / discharge determination circuit, and 24 is a switching circuit.

図2の動作について説明する。電圧検出器17から得られた直流コンデンサ電圧信号Vdcは充放電判定回路23で充電レベルLevel_Hおよび放電レベルLevel_Lと比較され、直流コンデンサ電圧信号Vdcが充電レベルLevel_Hを越えれば切換え回路24により充電制御部20からゲート回路22へと信号を出力し、直流コンデンサ電圧信号Vdcが放電レベルLevel_Lを下回れば切換え回路24により放電制御部21からゲート回路22へと信号を出力する。   The operation of FIG. 2 will be described. The DC capacitor voltage signal Vdc obtained from the voltage detector 17 is compared with the charge level Level_H and the discharge level Level_L by the charge / discharge determination circuit 23. If the DC capacitor voltage signal Vdc exceeds the charge level Level_H, the switching circuit 24 controls the charge controller. A signal is output from 20 to the gate circuit 22, and when the DC capacitor voltage signal Vdc falls below the discharge level Level_L, the switching circuit 24 outputs a signal from the discharge control unit 21 to the gate circuit 22.

図3に放電制御部21の制御ブロック図を示す。図3において25は引算器、26は増幅器、27はリミット回路、28は引算器、29は電流制御回路、30は三角波発生回路、31はPWM回路である。   FIG. 3 shows a control block diagram of the discharge controller 21. In FIG. 3, 25 is a subtractor, 26 is an amplifier, 27 is a limit circuit, 28 is a subtractor, 29 is a current control circuit, 30 is a triangular wave generation circuit, and 31 is a PWM circuit.

図3の動作について説明する。電流検出器18から得られた出力電流信号Ioは、引算器25で出力電流設定値Io_Lを引算し、増幅器26で増幅した後リミット回路27でリミット処理を施して放電電流指令Ib*を生成する。引算器28で放電電流指令Ib*と電流検出器19から得られた充放電電流信号Ibを引算し、その出力信号を電流制御回路29で演算してPWM回路31の入力信号とする。PWM回路31では電流制御回路29の出力信号と三角波発生回路30の出力信号を比較して、放電制御の出力信号を出力する。   The operation of FIG. 3 will be described. The output current signal Io obtained from the current detector 18 subtracts the output current set value Io_L by the subtractor 25, amplifies it by the amplifier 26, performs limit processing by the limit circuit 27, and outputs the discharge current command Ib *. Generate. The subtractor 28 subtracts the discharge current command Ib * and the charge / discharge current signal Ib obtained from the current detector 19, and the output signal is calculated by the current control circuit 29 to be an input signal of the PWM circuit 31. The PWM circuit 31 compares the output signal of the current control circuit 29 with the output signal of the triangular wave generation circuit 30 and outputs a discharge control output signal.

図4に充電制御部の制御ブロック図を示す。図4において32は充電動作判定回路である。   FIG. 4 shows a control block diagram of the charge control unit. In FIG. 4, reference numeral 32 denotes a charging operation determination circuit.

図4の動作について説明する。電圧検出器17から得られた直流コンデンサ電圧信号Vdcは充電動作判定回路32で充電動作レベルLevelCと比較され、直流コンデンサ電圧信号Vdcが充電動作レベルLevelCを上回っていると、充放電回路14の上側自己消弧形素子11aをオンして蓄電素子15を充電し、直流コンデンサ電圧信号Vdcが充電動作レベルLevelCを下回っていると充放電回路14の上側自己消弧形素子11aをオフして蓄電素子15の充電を停止する。なお充電制御部においては、下側自己消弧形素子11bを常にオフして、蓄電素子15が放電しないよう制御する。   The operation of FIG. 4 will be described. The DC capacitor voltage signal Vdc obtained from the voltage detector 17 is compared with the charging operation level LevelC by the charging operation determination circuit 32. When the DC capacitor voltage signal Vdc exceeds the charging operation level LevelC, the upper side of the charging / discharging circuit 14 is detected. The self-extinguishing element 11a is turned on to charge the storage element 15, and when the DC capacitor voltage signal Vdc is below the charging operation level LevelC, the upper self-extinguishing element 11a of the charge / discharge circuit 14 is turned off to store the storage element. 15 stops charging. In the charge control unit, the lower self-extinguishing element 11b is always turned off and the storage element 15 is controlled not to be discharged.

このように第1の実施形態によれば、架線電圧の増加で蓄電素子15を充電し、架線3への出力電流の増加で蓄電素子15を放電することができる。これにより、電気車10の回生電力を蓄電素子15に充電するとともに、力行運転で放電するので、電気車10の回生電力を再利用することが可能となる。また直流架線電圧の大きさを見て蓄電素子15を充電するため、架線電圧の上昇をすばやく抑えることができる。   As described above, according to the first embodiment, the storage element 15 can be charged by increasing the overhead line voltage, and the storage element 15 can be discharged by increasing the output current to the overhead line 3. As a result, the regenerative power of the electric vehicle 10 is charged in the power storage element 15 and discharged in the power running operation, so that the regenerative power of the electric vehicle 10 can be reused. Moreover, since the electrical storage element 15 is charged in view of the magnitude of the DC overhead line voltage, an increase in the overhead line voltage can be quickly suppressed.

《第2の実施形態》
図5は本発明に係る直流電圧給電装置の第2の実施形態を示す回路構成図である。33はリアクトル、34はスイッチ、35はリアクトル33とスイッチ34で構成する開閉回路である。
<< Second Embodiment >>
FIG. 5 is a circuit configuration diagram showing a second embodiment of the DC voltage feeding device according to the present invention. Reference numeral 33 denotes a reactor, 34 denotes a switch, and 35 denotes an open / close circuit constituted by the reactor 33 and the switch 34.

図5の回路動作について説明する。充放電回路14は出力端に直流コンデンサ13が接続されている。この直流コンデンサ13が直流架線3と直接に接続された状態で、直流架線3において短絡故障および地絡故障が発生すると、直流コンデンサ13もしくは蓄電素子15の蓄積エネルギーが故障点を通じて放出される。この放電エネルギーが事故の増大を招く恐れがあるため、直流架線で短絡故障および地絡故障が発生したら、すばやくスイッチ34を開放してエネルギーの放出を停止する。この場合、リアクトル33は短絡電流の増加率を抑える効果がある。   The circuit operation of FIG. 5 will be described. The charge / discharge circuit 14 is connected to a DC capacitor 13 at the output end. When a short circuit fault and a ground fault occur in the DC overhead line 3 in a state where the DC capacitor 13 is directly connected to the DC overhead line 3, the stored energy of the DC capacitor 13 or the storage element 15 is released through the failure point. Since this discharge energy may increase the number of accidents, when a short circuit fault or a ground fault occurs in the DC overhead line, the switch 34 is quickly opened to stop the energy release. In this case, the reactor 33 has an effect of suppressing the increase rate of the short circuit current.

このように第2の実施形態によれば、直流架線3で短絡故障もしくは地絡故障が発生した場合でも、スイッチ34を開放することでエネルギーの放出を抑えることができ、直流電圧給電装置を安全に運用することができる。   As described above, according to the second embodiment, even when a short-circuit fault or a ground fault occurs in the DC overhead line 3, it is possible to suppress the release of energy by opening the switch 34, and to make the DC voltage supply device safe. Can be operated.

また事故発生時に限定せずとも、スイッチ34を開放することで蓄電素子15および充放電回路14を直流架線3から切り離すことができる。   Further, the power storage element 15 and the charge / discharge circuit 14 can be disconnected from the DC overhead line 3 by opening the switch 34 without being limited to when an accident occurs.

《第3の実施形態》
図6は本発明に係る直流電圧給電装置の第3の実施形態を示す制御ブロック図である。図6において36はヒステリシス特性を持った充電動作判定回路である。
<< Third Embodiment >>
FIG. 6 is a control block diagram showing a third embodiment of the DC voltage supply apparatus according to the present invention. In FIG. 6, reference numeral 36 denotes a charging operation determination circuit having hysteresis characteristics.

図6の動作について説明する。電圧検出器17から得られた直流コンデンサ電圧信号Vdcは充電動作判定回路36で充電動作上レベルLevelC_Hおよび充電動作下レベルLevelC_Lと比較され、直流コンデンサ電圧信号Vdcが充電動作上レベルLevelC_Hを上回っていると、充放電回路14の上側自己消弧形素子11aをオンして蓄電素子15を充電し、直流コンデンサ電圧信号Vdcが充電動作下レベルLevelC_Lを下回っていると、充放電回路14の上側自己消弧形素子11aをオフして蓄電素子15の充電を停止する。   The operation of FIG. 6 will be described. The DC capacitor voltage signal Vdc obtained from the voltage detector 17 is compared with the charging operation upper level LevelC_H and the charging operation lower level LevelC_L by the charging operation determination circuit 36, and the DC capacitor voltage signal Vdc exceeds the charging operation upper level LevelC_H. When the upper self-extinguishing element 11a of the charging / discharging circuit 14 is turned on to charge the storage element 15, and the DC capacitor voltage signal Vdc is below the charging operation lower level LevelC_L, the upper self-extinguishing element 11a of the charging / discharging circuit 14 is charged. The arc-shaped element 11a is turned off and charging of the electricity storage element 15 is stopped.

このように第3の実施形態によれば、充電動作判定回路36がヒステリシス特性を持つことで、充電判定の閾値にて自己消弧形素子11a,11bのスイッチング周波数が増加する現象を生ずることなく、架線電圧の増加で蓄電素子を充電し、架線への出力電流の増加で蓄電素子を放電できるようになる。よって電気車10の回生電力を蓄電素子で充電し、力行運転で放電して、電気車10の回生電力を再利用することが可能となる。   As described above, according to the third embodiment, since the charging operation determination circuit 36 has hysteresis characteristics, the phenomenon that the switching frequency of the self-extinguishing elements 11a and 11b increases at the threshold value of the charging determination does not occur. The storage element can be charged by increasing the overhead line voltage, and the storage element can be discharged by increasing the output current to the overhead line. Therefore, the regenerative power of the electric vehicle 10 can be recharged by charging the regenerative power of the electric vehicle 10 with a power storage element and discharging it by powering operation.

《第4の実施形態》
図7は本発明に係る直流電圧給電装置の第4の実施形態を示す回路構成図である。図7において37は蓄電素子15の端子電圧を検出する電圧検出器である。
<< Fourth Embodiment >>
FIG. 7 is a circuit configuration diagram showing a fourth embodiment of the DC voltage feeding device according to the present invention. In FIG. 7, reference numeral 37 denotes a voltage detector that detects the terminal voltage of the storage element 15.

図8に制御回路16の制御ブロック図を示す。図8において38は満充電判定回路、39は低電圧判定回路、40は充電停止部、41は放電停止部、42は充電停止切換え回路、43は放電停止切換え回路である。   FIG. 8 shows a control block diagram of the control circuit 16. 8, 38 is a full charge determination circuit, 39 is a low voltage determination circuit, 40 is a charge stop unit, 41 is a discharge stop unit, 42 is a charge stop switching circuit, and 43 is a discharge stop switching circuit.

図8の動作について説明する。電圧検出器37から得られた蓄電素子15の端子電圧信号Vbは、満充電判定回路38と低電圧判定回路39に入力される。満充電判定回路38では端子電圧信号Vbと満充電設定値Level_Pを比較し、端子電圧信号Vbが満充電設定値Level_Pを上回ったら充電制御部20から充電停止部40へと充電停止切換え回路42を切換え、蓄電素子15の充電動作を停止する。また低電圧判定回路39では端子電圧信号Vbと低電圧設定値Level_Nを比較し、端子電圧信号Vbが低電圧設定値Level_Nを下回ったら放電制御部21から放電停止部41へと放電停止切換え回路43を切換え、蓄電素子15の放電動作を停止する。   The operation of FIG. 8 will be described. The terminal voltage signal Vb of the storage element 15 obtained from the voltage detector 37 is input to the full charge determination circuit 38 and the low voltage determination circuit 39. The full charge determination circuit 38 compares the terminal voltage signal Vb and the full charge set value Level_P. When the terminal voltage signal Vb exceeds the full charge set value Level_P, the charge stop switching circuit 42 is changed from the charge control unit 20 to the charge stop unit 40. Switching and charging operation of the storage element 15 are stopped. The low voltage determination circuit 39 compares the terminal voltage signal Vb with the low voltage set value Level_N, and when the terminal voltage signal Vb falls below the low voltage set value Level_N, the discharge stop switching circuit 43 from the discharge control unit 21 to the discharge stop unit 41. And the discharging operation of the storage element 15 is stopped.

このように第4の実施形態によれば、蓄電素子15に過電圧もしくは電圧低下を発生することなく、電気車10の回生電力を蓄電素子で充電し、力行運転で放電して、電気車10の回生電力を再利用することが可能となる。   As described above, according to the fourth embodiment, the regenerative electric power of the electric vehicle 10 is charged by the electric storage element without discharging an overvoltage or a voltage drop in the electric storage element 15, and discharged by the power running operation. Regenerative power can be reused.

《第5の実施形態》
図9は本発明に係る直流電圧給電装置の第5の実施形態を示す制御ブロック図である。図9において、44はヒステリシス特性を持った満充電判定回路、45はヒステリシス特性を持った低電圧判定回路である。満充電判定回路44および低電圧判定回路45がヒステリシス特性を持つことで、満充電もしくは電圧低下の判定後に充放電電流が停止したとき、蓄電素子15の内部抵抗による電圧の増減が無くなり、再び充電制御または放電制御に戻ることを防ぐことができる。
<< Fifth Embodiment >>
FIG. 9 is a control block diagram showing a fifth embodiment of the DC voltage feeding device according to the present invention. In FIG. 9, reference numeral 44 denotes a full charge determination circuit having a hysteresis characteristic, and reference numeral 45 denotes a low voltage determination circuit having a hysteresis characteristic. Since the full charge determination circuit 44 and the low voltage determination circuit 45 have hysteresis characteristics, when the charge / discharge current stops after the determination of full charge or voltage drop, the voltage increase / decrease due to the internal resistance of the storage element 15 is eliminated, and the charge is performed again. Returning to control or discharge control can be prevented.

このように第5の実施形態によれば、過充電もしくは電圧低下で充放電動作を停止した場合に生ずる蓄電素子内部抵抗での電圧変動による電圧ばたつきを抑制することができ、蓄電素子に過電圧もしくは電圧低下を発生することなく、電気車10の回生電力を蓄電素子15で充電し、力行運転で放電して、電気車10の回生電力を再利用することが可能となる。   As described above, according to the fifth embodiment, it is possible to suppress voltage fluctuation due to voltage fluctuation in the storage element internal resistance that occurs when the charge / discharge operation is stopped due to overcharge or voltage drop. Without causing a voltage drop, the regenerative power of the electric car 10 can be charged by the power storage element 15 and discharged by powering operation, and the regenerative power of the electric car 10 can be reused.

《第6の実施形態》
図10と図11は本発明に係る直流電圧給電装置の第6の実施形態を示す制御ブロック図である。図10は放電制御部の制御ブロックで、46は引算器、47は増幅器、48はリミット回路である。
<< Sixth Embodiment >>
FIG. 10 and FIG. 11 are control block diagrams showing a sixth embodiment of the DC voltage feeding device according to the present invention. FIG. 10 is a control block of the discharge controller, 46 is a subtractor, 47 is an amplifier, and 48 is a limit circuit.

図10の放電制御動作について説明する。引算器46により低電圧設定値Level_Nから端子電圧信号Vbを引算し、その出力信号を増幅器47で増幅する。リミット回路48は端子電圧信号Vbが低電圧設定値Level_Nを下回ったら出力信号を絞るよう働き、この出力信号がリミット回路27の上限リミットとして入力されるので、放電電流指令Ib*は端子電圧信号が低電圧設定値を下回ると徐々に減少する。   The discharge control operation of FIG. 10 will be described. The subtractor 46 subtracts the terminal voltage signal Vb from the low voltage set value Level_N, and the output signal is amplified by the amplifier 47. The limit circuit 48 works to narrow the output signal when the terminal voltage signal Vb falls below the low voltage set value Level_N. Since this output signal is input as the upper limit of the limit circuit 27, the discharge current command Ib * Decreases gradually when the voltage drops below the low voltage setting.

図11は充電制御部の制御ブロック図である。49は引算器、50は増幅器、51は下限リミット回路である。   FIG. 11 is a control block diagram of the charge control unit. 49 is a subtracter, 50 is an amplifier, and 51 is a lower limit circuit.

図11の充電制御動作について説明する。引算器49により満充電設定値Level_Pから端子電圧信号Vbを引算し、その出力信号を増幅器50で増幅する。下限リミット回路51は端子電圧信号Vbが満充電設定値Level_Pを越えたら出力信号を増加させる。この出力信号が充電判定回路33の充電動作上レベルとして入力されるので、端子電圧信号Vbが満充電設定値Level_Pを越える充電動作レベルが上昇して充電電流は徐々に減少する。   The charge control operation of FIG. 11 will be described. The subtractor 49 subtracts the terminal voltage signal Vb from the full charge set value Level_P and amplifies the output signal by the amplifier 50. The lower limit circuit 51 increases the output signal when the terminal voltage signal Vb exceeds the full charge set value Level_P. Since this output signal is input as a level in the charging operation of the charging determination circuit 33, the charging operation level at which the terminal voltage signal Vb exceeds the full charge setting value Level_P increases, and the charging current gradually decreases.

このように第6の実施形態によれば、蓄電素子15の過電圧もしくは電圧低下に対して充放電電流を徐々に減少させ、過充電もしくは電圧低下で充放電動作を停止した場合に生ずる蓄電素子内部抵抗での電圧変動による電圧ばたつきを抑制することができ、蓄電素子15に過電圧もしくは電圧低下を発生することなく、電気車10の回生電力を蓄電素子15で充電し、力行運転で放電して、電気車10の回生電力を再利用することが可能となる。   As described above, according to the sixth embodiment, the charge / discharge current is gradually decreased with respect to the overvoltage or voltage drop of the electricity storage element 15, and the charge / discharge operation is stopped when the charge / discharge operation is stopped due to overcharge or voltage drop. Voltage fluctuation due to voltage fluctuation at the resistance can be suppressed, and the regenerative power of the electric vehicle 10 is charged by the power storage element 15 without causing an overvoltage or voltage drop in the power storage element 15, and discharged by power running operation. The regenerative power of the electric vehicle 10 can be reused.

なお、蓄電素子15はリチウムイオン電池やニッケル水素電池等の二次電池や、電気二重層キャパシタ等の大容量キャパシタを適用することができる。   Note that a secondary battery such as a lithium ion battery or a nickel metal hydride battery, or a large-capacity capacitor such as an electric double layer capacitor can be applied to the storage element 15.

本発明に係る直流電圧給電装置の第1の実施形態を示す回路構成図。The circuit block diagram which shows 1st Embodiment of the DC voltage electric power feeder which concerns on this invention. 第1の実施形態の充電・放電切換え回路を説明する制御ブロック図。The control block diagram explaining the charge / discharge switching circuit of 1st Embodiment. 第1の実施形態の放電制御を説明する制御ブロック図。The control block diagram explaining the discharge control of 1st Embodiment. 第1の実施形態の充電制御を説明する制御ブロック図。The control block diagram explaining charge control of a 1st embodiment. 本発明に係る直流電圧給電装置の第2の実施形態を示す回路構成図。The circuit block diagram which shows 2nd Embodiment of the DC voltage electric power feeder which concerns on this invention. 本発明に係る直流電圧給電装置の第3の実施形態を示す制御ブロック図。The control block diagram which shows 3rd Embodiment of the DC voltage electric power feeder which concerns on this invention. 本発明に係る直流電圧給電装置の第4の実施形態を示す回路構成図。The circuit block diagram which shows 4th Embodiment of the DC voltage electric power feeder which concerns on this invention. 第4の実施形態の満充電判定および低電圧判定を説明する制御ブロック図。The control block diagram explaining the full charge determination and low voltage determination of 4th Embodiment. 本発明に係る直流電圧給電装置の第5の実施形態を示す制御ブロック図。The control block diagram which shows 5th Embodiment of the DC voltage electric power feeder which concerns on this invention. 本発明に係る直流電圧給電装置の第6の実施形態を示す制御ブロック図。The control block diagram which shows 6th Embodiment of the DC voltage electric power feeder which concerns on this invention. 本発明に係る直流電圧給電装置の第6の実施形態を示す制御ブロック図。The control block diagram which shows 6th Embodiment of the DC voltage electric power feeder which concerns on this invention. 従来の直流電圧給電装置の一例を示す回路構成図。The circuit block diagram which shows an example of the conventional DC voltage electric power feeder.

符号の説明Explanation of symbols

1…交流電源
2…整流器
3…直流架線
4…インバータ
5…交流電動機
6…フィルタリアクトル
7…フィルタコンデンサ
8…抵抗器
9,34…スイッチ
10…電気車
11a,11b…自己消弧形素子
12,33…リアクトル
13…直流コンデンサ
14…充放電回路
15…蓄電素子
16…制御回路
17,37…電圧検出器
18,19…電流検出器
20…充電制御部
21…放電制御部
22…ゲート回路
23…充放電判定回路
24…切換え回路
25,28,46,49…引算器
26…増幅器
27,48…リミット回路
29…電流制御回路
30…三角波発生回路
31…PWM回路
32…充電動作判定回路
35…開閉回路
36…ヒステリシス特性付き充電動作判定回路
38…満充電判定回路
39…低電圧判定回路
40…充電停止
41…放電停止
42…充電停止切換え回路
43…放電停止切換え回路
44…ヒステリシス特性付き充電停止切換え回路
45…ヒステリシス特性付き放電停止切換え回路
47,50…増幅器
51…下限リミット回路
DESCRIPTION OF SYMBOLS 1 ... AC power source 2 ... Rectifier 3 ... DC overhead wire 4 ... Inverter 5 ... AC motor 6 ... Filter reactor 7 ... Filter capacitor 8 ... Resistor 9, 34 ... Switch 10 ... Electric car 11a, 11b ... Self-extinguishing element 12, DESCRIPTION OF SYMBOLS 33 ... Reactor 13 ... DC capacitor 14 ... Charge / discharge circuit 15 ... Power storage element 16 ... Control circuit 17, 37 ... Voltage detector 18, 19 ... Current detector 20 ... Charge control part 21 ... Discharge control part 22 ... Gate circuit 23 ... Charging / discharging determination circuit 24 ... switching circuit 25, 28, 46, 49 ... subtractor 26 ... amplifier 27, 48 ... limit circuit 29 ... current control circuit 30 ... triangular wave generation circuit 31 ... PWM circuit 32 ... charging operation determination circuit 35 ... Open / close circuit 36 ... Charging operation determination circuit with hysteresis characteristic 38 ... Full charge determination circuit 39 ... Low voltage determination circuit 40 ... Charge stop 1 ... discharge stop 42 ... charging stop switching circuit 43 ... discharge stop switching circuit 44 ... hysteresis characteristic with charging stop switching circuit 45 ... hysteresis characteristic with discharge stop switching circuit 47, 50 ... amplifier 51 ... Lower limit circuit

Claims (6)

交流電圧を直流電圧に変換し、この直流電圧を直流架線を介して電気車に供給する直流電圧給電装置において、
直流架線を介して供給される電力を蓄積する蓄電素子と、当該蓄電素子の充放電動作を行う充放電回路と、当該充放電回路を制御するための制御回路と、充放電回路の出力端の直流電圧を検出して制御回路に直流電圧信号として出力する電圧検出器と、電気車側に出力する電流を検出して制御回路に出力電流信号として出力する電流検出器と、蓄電素子の充放電電流を検出して制御回路に充放電電流信号として出力する電流検出器を備え、
制御回路は、直流電圧信号が充電設定値を越えたとき蓄電素子を充電制御する一方、直流電圧信号が放電設定値を越えたとき蓄電素子を放電制御することを特徴とする直流電圧給電装置。
In a DC voltage power supply device that converts an AC voltage into a DC voltage and supplies this DC voltage to an electric vehicle via a DC overhead wire,
A storage element that accumulates power supplied via the DC overhead line, a charge / discharge circuit that performs a charge / discharge operation of the storage element, a control circuit that controls the charge / discharge circuit, and an output terminal of the charge / discharge circuit A voltage detector that detects DC voltage and outputs it as a DC voltage signal to the control circuit, a current detector that detects current output to the electric vehicle and outputs it as an output current signal to the control circuit, and charge / discharge of the storage element A current detector that detects current and outputs it as a charge / discharge current signal to the control circuit,
The control circuit performs charge control of the storage element when the DC voltage signal exceeds the charge set value, and controls discharge of the storage element when the DC voltage signal exceeds the discharge set value.
請求項1に記載の直流電圧給電装置において、
充放電回路と直流架線との間に開閉回路を接続することを特徴とする直流電圧給電装置。
In the direct-current voltage electric power feeder of Claim 1,
A DC voltage power supply device comprising a switching circuit connected between a charge / discharge circuit and a DC overhead wire.
請求項1または請求項2に記載の直流電圧給電装置において、
制御回路における充電設定値にはヒステリシス特性が設定され、制御回路に入力された直流電圧信号が充電設定値の上限を越えたとき蓄電素子を充電制御する一方、制御回路に入力された直流電圧信号が充電設定値の下限を下回ったとき蓄電素子の充電制御を停止することを特徴とする直流電圧給電装置。
In the direct-current voltage feeder according to claim 1 or 2,
Hysteresis characteristics are set for the charge setting value in the control circuit. When the DC voltage signal input to the control circuit exceeds the upper limit of the charge setting value, the storage element is controlled to be charged, while the DC voltage signal input to the control circuit The DC voltage power supply device, wherein the charging control of the storage element is stopped when the battery voltage falls below a lower limit of the charge set value.
請求項1から請求項3のいずれか1項に記載の直流電圧給電装置において、
蓄電素子電圧を検出して制御回路に蓄電素子電圧信号を出力する電圧検出器を備え、
制御回路は、入力された蓄電素子端子電圧が満充電設定値を越えたとき充電動作を停止する一方、入力された蓄電素子端子電圧が低電圧設定値を下回ったとき放電動作を停止することを特徴とする直流電圧給電装置。
In the DC voltage electric power feeder of any one of Claims 1-3,
A voltage detector that detects a storage element voltage and outputs a storage element voltage signal to the control circuit;
The control circuit stops the charging operation when the input storage element terminal voltage exceeds the full charge set value, and stops the discharge operation when the input storage element terminal voltage falls below the low voltage set value. A DC voltage power supply device.
請求項4に記載の直流電圧給電装置において、
制御回路における満充電設定値および低電圧設定値にはそれぞれヒステリシス特性が設定されることを特徴とする直流電圧給電装置。
In the direct-current voltage electric power feeder of Claim 4,
A DC voltage power supply apparatus, wherein a hysteresis characteristic is set for each of a full charge set value and a low voltage set value in a control circuit.
請求項1から請求項3のいずれか1項に記載の直流電圧給電装置において、
蓄電素子電圧を検出して制御回路に蓄電素子電圧信号を出力する電圧検出器を備え、
制御回路は、入力された蓄電素子端子電圧が満充電設定値を越えたとき徐々に充電電流を抑制する一方、入力された蓄電素子端子電圧が低電圧設定電圧を下回ったとき放電電流を徐々に抑制することを特徴とする直流電圧給電装置。
In the DC voltage electric power feeder of any one of Claims 1-3,
A voltage detector that detects a storage element voltage and outputs a storage element voltage signal to the control circuit;
The control circuit gradually suppresses the charging current when the input storage element terminal voltage exceeds the full charge setting value, and gradually reduces the discharge current when the input storage element terminal voltage falls below the low voltage setting voltage. A DC voltage power supply device characterized by being suppressed.
JP2004017097A 2004-01-26 2004-01-26 DC voltage feeder Expired - Fee Related JP4387813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017097A JP4387813B2 (en) 2004-01-26 2004-01-26 DC voltage feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017097A JP4387813B2 (en) 2004-01-26 2004-01-26 DC voltage feeder

Publications (2)

Publication Number Publication Date
JP2005206111A true JP2005206111A (en) 2005-08-04
JP4387813B2 JP4387813B2 (en) 2009-12-24

Family

ID=34902044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017097A Expired - Fee Related JP4387813B2 (en) 2004-01-26 2004-01-26 DC voltage feeder

Country Status (1)

Country Link
JP (1) JP4387813B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236082A (en) * 2006-02-28 2007-09-13 Toshiba Corp Power conversion controlling device
WO2007108115A1 (en) 2006-03-22 2007-09-27 Mitsubishi Denki Kabushiki Kaisha Bidirectional step-up/step-down dc/dc converter apparatus
JP2008062826A (en) * 2006-09-08 2008-03-21 West Japan Railway Co Electric power storage device
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system
JP2010023785A (en) * 2008-07-24 2010-02-04 Kawasaki Heavy Ind Ltd Electricity supply system for storage battery-driven train
US7772806B2 (en) 2006-04-11 2010-08-10 Mitsubishi Electric Corporation Power storage system
WO2010109840A1 (en) * 2009-03-24 2010-09-30 川崎重工業株式会社 Electric power regulating device for electric power feeding system
JP2011016399A (en) * 2009-07-07 2011-01-27 Kawasaki Heavy Ind Ltd Power adjusting device for power generation system
WO2012015042A1 (en) * 2010-07-30 2012-02-02 三菱重工業株式会社 Overhead wire transportation system and control method therefor
JP2013048535A (en) * 2011-08-29 2013-03-07 Kano:Kk Charger for weak power
JP2016068741A (en) * 2014-09-30 2016-05-09 株式会社日立製作所 Electric power conversion device
DE102016203190A1 (en) * 2016-02-29 2017-06-22 Continental Automotive Gmbh Electrical energy supply device, electric drive arrangement and electrical system with an electrical energy supply device
JP2017140908A (en) * 2016-02-09 2017-08-17 株式会社東芝 Power storage device and power storage method
WO2020013614A1 (en) * 2018-07-11 2020-01-16 효성중공업 주식회사 Ess charging and discharging operation method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236082A (en) * 2006-02-28 2007-09-13 Toshiba Corp Power conversion controlling device
WO2007108115A1 (en) 2006-03-22 2007-09-27 Mitsubishi Denki Kabushiki Kaisha Bidirectional step-up/step-down dc/dc converter apparatus
US7723865B2 (en) 2006-03-22 2010-05-25 Mitsubishi Electric Corporation Bidirectional buck boost DC-DC converter, railway coach drive control system, and railway feeder system
US7772806B2 (en) 2006-04-11 2010-08-10 Mitsubishi Electric Corporation Power storage system
JP2008062826A (en) * 2006-09-08 2008-03-21 West Japan Railway Co Electric power storage device
JP5174146B2 (en) * 2008-02-29 2013-04-03 川崎重工業株式会社 Electric railway power supply system
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system
EP2255992A1 (en) * 2008-02-29 2010-12-01 Kawasaki Jukogyo Kabushiki Kaisha Electric railway power-supply system
EP2255992A4 (en) * 2008-02-29 2014-09-24 Kawasaki Heavy Ind Ltd Electric railway power-supply system
US8598739B2 (en) 2008-02-29 2013-12-03 Kawasaki Jukogyo Kabushiki Kaisha Electric railway power-supply system
JP2010023785A (en) * 2008-07-24 2010-02-04 Kawasaki Heavy Ind Ltd Electricity supply system for storage battery-driven train
WO2010109840A1 (en) * 2009-03-24 2010-09-30 川崎重工業株式会社 Electric power regulating device for electric power feeding system
CN102333670A (en) * 2009-03-24 2012-01-25 川崎重工业株式会社 Electric power regulating device for electric power feeding system
US9035485B2 (en) 2009-03-24 2015-05-19 Kawasaki Jukogyo Kabushiki Kaisha Power conditioner for feeding system
RU2509400C2 (en) * 2009-03-24 2014-03-10 Кавасаки Дзюкогио Кабусики Кайся Voltage stabiliser for power supply system
JP2011016399A (en) * 2009-07-07 2011-01-27 Kawasaki Heavy Ind Ltd Power adjusting device for power generation system
US8583311B2 (en) 2010-07-30 2013-11-12 Mitsubishi Heavy Industries, Ltd. Overhead wire transportation system and control method thereof
CN102958747A (en) * 2010-07-30 2013-03-06 三菱重工业株式会社 Overhead wire transportation system and control method therefor
JP5331251B2 (en) * 2010-07-30 2013-10-30 三菱重工業株式会社 Overhead traffic system and control method thereof
WO2012015042A1 (en) * 2010-07-30 2012-02-02 三菱重工業株式会社 Overhead wire transportation system and control method therefor
JP2013048535A (en) * 2011-08-29 2013-03-07 Kano:Kk Charger for weak power
JP2016068741A (en) * 2014-09-30 2016-05-09 株式会社日立製作所 Electric power conversion device
JP2017140908A (en) * 2016-02-09 2017-08-17 株式会社東芝 Power storage device and power storage method
DE102016203190A1 (en) * 2016-02-29 2017-06-22 Continental Automotive Gmbh Electrical energy supply device, electric drive arrangement and electrical system with an electrical energy supply device
WO2020013614A1 (en) * 2018-07-11 2020-01-16 효성중공업 주식회사 Ess charging and discharging operation method
KR20200006887A (en) * 2018-07-11 2020-01-21 효성중공업 주식회사 Operation Method of ESS in Charging and Discharging
KR102129132B1 (en) * 2018-07-11 2020-07-01 효성중공업 주식회사 Operation Method of ESS in Charging and Discharging
US11312264B2 (en) 2018-07-11 2022-04-26 Hyosung Heavy Industries Corporation ESS charging and discharging operation method

Also Published As

Publication number Publication date
JP4387813B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5085202B2 (en) Hybrid power supply
JP4387813B2 (en) DC voltage feeder
JP5044340B2 (en) Substation and electric railway feeding system using power storage elements
CN109774540B (en) Power system control method of fuel cell vehicle, computer device, and storage medium
JP2007159370A (en) Bidirectional power conversion device with reverse power flow prevention function
US20160301233A1 (en) Power supply device and method for controlling power supply device
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP3618273B2 (en) DC feeder system for electric railway
JP2003199203A (en) Protection method for regenerated-energy accumulator and regenerated-energy accumulator
JP2009254169A (en) Power supply system
JP6876992B2 (en) Vehicle power supply
JP2008168795A (en) Electric supply facility
US9975433B2 (en) Electric vehicle controller
JP4934562B2 (en) Vehicle control device having power storage device
WO2011055559A1 (en) Power supply system
WO2012131995A1 (en) Alternating current motor drive device
JP4238190B2 (en) Power storage type regenerative power absorber and control method thereof
JP5509655B2 (en) Fuel cell system and vehicle equipped with the same
JP5049456B2 (en) Vehicle control device
JP5404712B2 (en) Charging apparatus, in-vehicle charging apparatus, and charging method in in-vehicle charging apparatus
JP2010220392A (en) Charging system
JP2005269828A (en) Hybrid system
JP7127294B2 (en) fuel cell system
JP5332214B2 (en) Motor drive device
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees