JP5049456B2 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP5049456B2
JP5049456B2 JP2004143564A JP2004143564A JP5049456B2 JP 5049456 B2 JP5049456 B2 JP 5049456B2 JP 2004143564 A JP2004143564 A JP 2004143564A JP 2004143564 A JP2004143564 A JP 2004143564A JP 5049456 B2 JP5049456 B2 JP 5049456B2
Authority
JP
Japan
Prior art keywords
value
voltage
current
control
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004143564A
Other languages
Japanese (ja)
Other versions
JP2005328618A (en
Inventor
仁 田口
行生 門田
洋介 中沢
康直 関島
正幸 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Japan Railway Co
Original Assignee
Toshiba Corp
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Japan Railway Co filed Critical Toshiba Corp
Priority to JP2004143564A priority Critical patent/JP5049456B2/en
Publication of JP2005328618A publication Critical patent/JP2005328618A/en
Application granted granted Critical
Publication of JP5049456B2 publication Critical patent/JP5049456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、例えば鉄道用車両などの車両に搭載される制御装置に関し、特に主電動機を駆動するインバータ装置の入力側に設けられた車両用制御装置に関する。   The present invention relates to a control device mounted on a vehicle such as a railway vehicle, and more particularly to a vehicle control device provided on the input side of an inverter device that drives a main motor.

従来、例えば鉄道用の車両の回生運転時には、軽負荷回生制御(例えば非特許文献1参照)もしくは回生負荷抵抗チョッパ制御装置(例えば非特許文献2参照)により、インバータ装置の入力側である直流側電圧が過電圧になるのを回避している。   Conventionally, at the time of regenerative operation of a railway vehicle, for example, a direct current side that is an input side of an inverter device by a light load regenerative control (for example, see Non-Patent Document 1) or a regenerative load resistance chopper control device (for example, Non-Patent Document 2). It avoids overvoltage.

前述した軽負荷回生制御とは、車両に搭載された主電動機の駆動を制御するためのインバータ装置の直流側電圧が所定値以上になった際に主電動機のトルクを絞ることで回生エネルギーを抑制する制御である。   The light load regenerative control described above suppresses regenerative energy by reducing the torque of the main motor when the DC side voltage of the inverter device for controlling the drive of the main motor mounted on the vehicle exceeds a predetermined value. It is control to do.

次に、従来の回生負荷抵抗チョッパ制御装置の構成例を図14を参照して説明する。この装置では、架線71から電圧を供給し、フィルタリアクトル72とフィルタコンデンサ73を介してインバータ装置74が接続され、このインバータ装置74内のスイッチング素子の制御により主電動機75の回転数が制御される。また、インバータ装置74と並列に回生負荷抵抗76と回生負荷抵抗チョッパ77が接続される。   Next, a configuration example of a conventional regenerative load resistance chopper control device will be described with reference to FIG. In this apparatus, a voltage is supplied from an overhead line 71, an inverter device 74 is connected via a filter reactor 72 and a filter capacitor 73, and the rotational speed of the main motor 75 is controlled by controlling switching elements in the inverter device 74. . A regenerative load resistor 76 and a regenerative load resistor chopper 77 are connected in parallel with the inverter device 74.

図15は、図14に示した回生負荷抵抗チョッパ77を制御する制御部78の構成例を示すブロック図である。
この制御部78では、フィルタコンデンサ73の電圧から、回生負荷抵抗チョッパ77の動作開始電圧値を減算した値にゲイン部81によるゲイン(定数K4)をかけた上で、ゲイン部81からの出力値に対し上下限リミット処理部82による上下限リミット処理を行なう。上下限リミット処理部82の処理にかかる下限値は、回生負荷抵抗チョッパ77が動作しないレベル(ゲートOFFレベル)とし、上限値は回生負荷抵抗チョッパ77のゲートが常時ONしているレベル(ゲートFULL ONレベル)とする。そして、上下限リミット処理部82の出力信号を回生負荷抵抗チョッパ77のゲート信号として用いて、回生負荷抵抗チョッパ77のオンオフを制御することにより、回生負荷抵抗76に流れる電流量を制御している。
新井静男、他4名,「直流電車の新軽負荷回生制御」,平成9年電気学会産業応用部門全国大会講演論文集,p.259−263 神田英樹、他2名,「インバータ制御車の電気ブレーキ制御方式」,第33回 鉄道におけるサイバネティクス利用国内シンポジウム論文集,p.231−234
FIG. 15 is a block diagram illustrating a configuration example of the control unit 78 that controls the regenerative load resistance chopper 77 illustrated in FIG. 14.
The control unit 78 multiplies the value obtained by subtracting the operation start voltage value of the regenerative load resistance chopper 77 from the voltage of the filter capacitor 73 and applies the gain (constant K4) by the gain unit 81, and then outputs the value from the gain unit 81. The upper / lower limit processing by the upper / lower limit processing unit 82 is performed. The lower limit value applied to the upper / lower limit processing unit 82 is a level at which the regenerative load resistance chopper 77 does not operate (gate OFF level), and the upper limit value is a level at which the gate of the regenerative load resistance chopper 77 is always ON (gate FULL). ON level). Then, the amount of current flowing through the regenerative load resistor 76 is controlled by controlling on / off of the regenerative load resistor chopper 77 using the output signal of the upper / lower limit processing unit 82 as the gate signal of the regenerative load resistor chopper 77. .
Shizuo Arai and 4 others, “New Light Load Regenerative Control of DC Trains”, Proceedings of 1997 Annual Conference of the Institute of Electrical Engineers of Japan, p. 259-263 Hideki Kanda and two others, “Electric brake control system for inverter controlled vehicles”, Proceedings of the 33rd National Symposium on the Use of Cybernetics in Railway 231-234

前述した回生負荷抵抗チョッパ制御装置では回生エネルギーを抵抗で消費していたので、回生エネルギーが有効活用されない。また、前述した軽負荷回生制御においては、回生運転時のインバータ直流側電圧が過電圧になるのを防ぐために回生エネルギーをインバータ制御により抑制して空気ブレーキを用いていたので、空気ブレーキ関係の消耗品が磨耗してしまう。   In the above-described regenerative load resistance chopper control device, regenerative energy is consumed by resistance, so that regenerative energy is not effectively utilized. In the light load regenerative control described above, air brakes are used because the regenerative energy is suppressed by inverter control to prevent the inverter DC side voltage from becoming overvoltage during regenerative operation. Will wear out.

これらの問題を解消するために、図14に示した回生負荷抵抗76に代えて、例えばコンデンサなどの蓄電装置および制御用チョッパ装置を設け、制御用チョッパ装置の動作により回生時に発生したエネルギーを蓄電装置に蓄えることが考えられる。しかしながら、力行時の制御用チョッパ装置の制御は電流値の大小にしたがって行なう必要があるのに対し、回生時の制御用チョッパ装置の制御は電圧値の大小にしたがって行なう必要があるので、単一の制御装置よる充放電の制御ができない。また、制御用チョッパ装置にて、インバータ装置74の回生時に蓄電装置へ流れる電流を制御して電圧調整を行った場合、回生エネルギーの急変時においては電流制御が間に合わないので、インバータ装置74の直流側電圧が過電圧になる恐れがある。   In order to solve these problems, instead of the regenerative load resistor 76 shown in FIG. 14, a power storage device such as a capacitor and a control chopper device are provided, and the energy generated during regeneration is stored by the operation of the control chopper device. It can be stored in the device. However, control of the control chopper device during power running must be performed according to the magnitude of the current value, whereas control of the control chopper device during regeneration must be performed according to the magnitude of the voltage value. The charge / discharge cannot be controlled by the control device. In addition, when the control chopper device controls the current flowing to the power storage device during regeneration of the inverter device 74 and adjusts the voltage, current control is not in time when the regenerative energy suddenly changes. The side voltage may become overvoltage.

さらに、蓄電装置に吸収できるエネルギーには限りがあるので、発生する回生エネルギーの吸収を常に行ないたい場合には、回生エネルギーが発生するごとに、予め吸収しておいたエネルギーを放出する必要がある。また、蓄電装置を所定の使用電圧範囲の上限値を超えた値または下限値未満の値で使用すると損傷の原因となる。これらの理由から、回生時に発生したエネルギーを適切に有効利用することは難しかった。   Furthermore, since there is a limit to the energy that can be absorbed by the power storage device, when it is desired to always absorb the regenerative energy that is generated, it is necessary to release the energy that has been absorbed in advance every time regenerative energy is generated. . Further, if the power storage device is used at a value exceeding the upper limit value of the predetermined operating voltage range or a value less than the lower limit value, it causes damage. For these reasons, it has been difficult to appropriately and effectively use the energy generated during regeneration.

そこで、本発明の目的は、回生時に発生したエネルギーを適切に有効利用することが可能になる車両用制御装置を提供することにある。   Therefore, an object of the present invention is to provide a vehicle control device that can appropriately and effectively use energy generated during regeneration.

すなわち、本発明に関わる車両用制御装置は、主電動機と、この主電動機の駆動を制御するインバータ装置と、このインバータ装置の直流側に接続された半導体スイッチング装置と、この半導体スイッチング装置に接続された蓄電装置と、前記インバータ装置の直流側電圧を検出する直流電圧検出手段と、前記インバータ装置の直流側への電流を検出する第1の電流検出手段と、前記蓄電装置の端子電圧を検出する蓄電電圧検出手段と、前記蓄電装置から前記半導体スイッチング装置に流れる電流を検出する第2の電流検出手段と、前記インバータ装置が力行制御を行なう際に、前記第1の電流検出手段により検出した電流値が所定のしきい値電流を超えたに前記蓄電装置からの放電が開始するように前記半導体スイッチング装置を制御する放電開始制御を行ない放電開始後に前記蓄電電圧検出手段により検出された電圧値が減少して前記蓄電装置が使用可能な電圧範囲内の所定の下限値より高い所定のしきい値電圧未満となった状態で、前記しきい値電圧の値から前記蓄電電圧検出手段により検出された電圧値を減算した値に第1のゲイン処理を行ない、この処理結果の値を前記蓄電装置の定格電流の値から減算し、この減算結果である電流値に対し、前記定格電流の値を上限値とした第1のリミット処理を行ない、一方で、前記第1の電流検出手段により検出した電流値から前記しきい値電流の値を減算した値に第2のゲイン処理を行なった値に対し、前記第1のリミット処理の結果である電流値を上限値とした第2のリミット処理を行ない、この処理結果の値を前記蓄電装置から前記半導体スイッチング装置に流れる電流の指令値とし、この指令値から前記第2の電流検出手段により検出した電流値を減算した値に対し、比例、積分を含む電流制御を行ない、この電流制御の出力値と所定のキャリア波の出力値との比較を行ない、この比較の結果、前記電流制御の出力値が前記キャリア波の出力値を上回ったときに前記半導体スイッチング装置のゲート信号を生成することにより、前記蓄電電圧検出手段により検出された電圧値が前記しきい値電圧未満となって減少するにつれて前記第1のゲイン処理の結果の値を上昇させて、この結果、前記第1のリミット処理の結果である電流値を減少させて、この減少の結果、前記指令値を減少させて、この減少の結果、前記蓄電装置から前記半導体スイッチング装置に流れる電流値が減少するように前記半導体スイッチング装置を制御する放電抑制制御を行ない、前記力行制御の際に前記蓄電電圧検出手段により検出した電圧値が前記下限値になったに、前記第1のリミット処理の結果である電流値を0として、この結果、前記指令値を0にして、前記蓄電装置から前記半導体スイッチング装置に流れる電流値が0となるように前記半導体スイッチング装置を制御する放電停止制御を行なう放電制御手段と、前記インバータ装置が回生制御を行なう際に、前記直流電圧検出手段により検出した電圧値が所定の第1のしきい値電圧まで上昇した際に前記蓄電装置への充電が開始されるように前記半導体スイッチング装置を制御し、前記直流電圧検出手段により検出した電圧値が前記第1のしきい値電圧より低い第2のしきい値電圧まで下降した際に前記蓄電装置への充電が停止するように前記半導体スイッチング装置を制御することで前記蓄電装置への充電を制御する充電制御手段とを備えたことを特徴とする。 That is, a vehicle control device according to the present invention is connected to a main motor, an inverter device that controls driving of the main motor, a semiconductor switching device connected to the DC side of the inverter device, and the semiconductor switching device. A power storage device; a DC voltage detection means for detecting a DC side voltage of the inverter device; a first current detection means for detecting a current to the DC side of the inverter device; and a terminal voltage of the power storage device. when performing the storage voltage detecting means, a second current detecting means for detecting a current flowing from said power storage device to said semiconductor switching device, the inverter device for power running control, was detected by the first current detector current controls the semiconductor switching device so that the value is discharged from said power storage device when exceeding the predetermined threshold current is started Performs discharge start control, a predetermined high below a predetermined threshold voltage than the lower limit value in the voltage range of possible electric storage device voltage value detected is reduced is used by the stored voltage detecting means after the start discharge In this state, first gain processing is performed on a value obtained by subtracting the voltage value detected by the storage voltage detection means from the threshold voltage value, and the value of this processing result is the value of the rated current of the storage device. The first limit process is performed on the current value obtained as a result of the subtraction using the rated current value as the upper limit value. On the other hand, the current value detected by the first current detecting means The value obtained by performing the second gain process on the value obtained by subtracting the threshold current value is subjected to a second limit process with the current value as the result of the first limit process as the upper limit value. Value of the electricity storage A current command value flowing from the device to the semiconductor switching device and a current value detected by the second current detection means subtracted from the command value is subjected to current control including proportionality and integration. Is compared with the output value of the predetermined carrier wave, and as a result of the comparison, when the output value of the current control exceeds the output value of the carrier wave, the gate signal of the semiconductor switching device is generated. As a result, the value of the first gain process is increased as the voltage value detected by the storage voltage detecting means decreases below the threshold voltage, and as a result, the first limit is increased. The current value, which is the result of the process, is decreased, and as a result of the decrease, the command value is decreased. Current value performs the discharge suppression control for controlling the semiconductor switching device so as to reduce that, when the voltage detected by the stored voltage detecting means during the power running control becomes the lower limit value, the first Discharging for controlling the semiconductor switching device so that the current value which is the result of the limit processing of 0 is set to 0, and as a result, the command value is set to 0, and the current value flowing from the power storage device to the semiconductor switching device becomes 0 Discharge control means for performing stop control, and when the inverter device performs regenerative control, when the voltage value detected by the DC voltage detection means rises to a predetermined first threshold voltage, controls the semiconductor switching device so that the charging is started, the voltage value detected by the DC voltage detection means is lower than said first threshold voltage Characterized in that the charging of the power storage device when lowered to second threshold voltage and a charging control means for controlling the charging of the power storage device by controlling the semiconductor switching device to stop And

本発明に係わる車両用制御装置では、インバータ装置が力行制御を行なう際は電流値が所定のしきい値電流を超えた場合に蓄電装置の放電が開始するように制御し、前記力行制御の際に蓄電装置の端子電圧が、当該蓄電装置に流れる電流が過電流状態とならない状態で当該蓄電装置が使用可能な電圧範囲内の所定の下限値になった場合に蓄電装置からの放電が停止するように制御し、回生制御を行なう際は電圧値の大小にしたがって蓄電装置の充電制御を行なうようにしたので、主電動機からの回生時に発生したエネルギーを適切に有効利用することができる。 In the vehicle control apparatus according to the present invention, when the inverter performs power running control controls such that the current value is discharge of the power storage device when it exceeds a predetermined threshold current is started, during the power running control When the terminal voltage of the power storage device becomes a predetermined lower limit within the voltage range in which the power storage device can be used in a state where the current flowing through the power storage device does not enter an overcurrent state, the discharge from the power storage device stops. Thus, when performing regenerative control, charging control of the power storage device is performed according to the magnitude of the voltage value, so that the energy generated during regeneration from the main motor can be appropriately and effectively utilized.

以下図面により本発明の実施形態について説明する。
図1は、本発明の実施形態にしたがった鉄道車両用制御装置の構成例を示すブロック図である。
この鉄道車両用制御装置では、直流電源1に対し、フィルタリアクトル2を介してインバータ装置4が接続されており、インバータ装置4の入力側にフィルタコンデンサ3が、インバータ装置4の出力側に主電動機5がそれぞれ接続される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram illustrating a configuration example of a railway vehicle control device according to an embodiment of the present invention.
In this railway vehicle control device, an inverter device 4 is connected to a DC power source 1 via a filter reactor 2, a filter capacitor 3 is provided on the input side of the inverter device 4, and a main motor is provided on the output side of the inverter device 4. 5 are connected to each other.

また、フィルタコンデンサ3と並列に、半導体スイッチング装置であるチョッパ装置6が接続される。このチョッパ装置6は、第1のIGBT6aのエミッタと第2のIGBT6bのコレクタが接続されてなる。第1のIGBT6aのコレクタは直流電源1の高電位側に接続され、第2のIGBT6bのエミッタは直流電源1の低電位側に接続される。第2のIGBT6bのコレクタとエミッタの間には、蓄電装置として電気二重層コンデンサ(EDLC)7が接続される。   A chopper device 6 that is a semiconductor switching device is connected in parallel with the filter capacitor 3. The chopper device 6 is formed by connecting the emitter of the first IGBT 6a and the collector of the second IGBT 6b. The collector of the first IGBT 6 a is connected to the high potential side of the DC power supply 1, and the emitter of the second IGBT 6 b is connected to the low potential side of the DC power supply 1. Between the collector and emitter of the second IGBT 6b, an electric double layer capacitor (EDLC) 7 is connected as a power storage device.

また、フィルタコンデンサ3の端子電圧(Vdc)の値を検出する直流電圧検出部8、直流電源1から供給されてフィルタリアクトル2を流れる電流(Idc)の値を検出する直流電流検出部9、インバータ装置4への入力電流(Iinv)の値を検出するインバータ電流検出部10、EDLC7の端子電圧(Vch)の値を検出するEDLC電圧検出部11、および、EDLC7から第2のIGBT6bのコレクタに出力される電流(Ich)の値を検出するEDLC電流検出部12がそれぞれ設けられる。また、チョッパ装置6には充放電制御装置13が接続される。   The DC voltage detector 8 detects the value of the terminal voltage (Vdc) of the filter capacitor 3, the DC current detector 9 detects the value of the current (Idc) supplied from the DC power source 1 and flowing through the filter reactor 2, and an inverter. An inverter current detector 10 that detects the value of the input current (Iinv) to the device 4, an EDLC voltage detector 11 that detects the value of the terminal voltage (Vch) of the EDLC 7, and an output from the EDLC 7 to the collector of the second IGBT 6b EDLC current detectors 12 for detecting the value of the current (Ich) to be generated are provided. The charge / discharge control device 13 is connected to the chopper device 6.

図2は、図1に示した鉄道車両用制御装置の制御に係る各種パラメータ値を表にして示した図である。これらのパラメータについては順次説明する。
図3は、図1に示した充放電制御装置13の構成例を示すブロック図である。
この充放電制御装置13は、充電制御部21、放電制御部22および力行回生検出部23を備える。力行回生検出部23は、主電動機5、インバータ装置4が力行時にあるか回生時にあるかを検出する。充放電制御装置13では、力行回生検出部23による検出結果にしたがって、力行時は放電制御部22からの制御信号が、回生時は充電制御部21からの制御信号がチョッパ装置6に入力されるように、スイッチ24が切り替えられるようになっている。
FIG. 2 is a table showing various parameter values related to the control of the railway vehicle control device shown in FIG. These parameters will be described sequentially.
FIG. 3 is a block diagram illustrating a configuration example of the charge / discharge control device 13 illustrated in FIG. 1.
The charge / discharge control device 13 includes a charge control unit 21, a discharge control unit 22, and a power regeneration detection unit 23. The power running regeneration detection unit 23 detects whether the main motor 5 and the inverter device 4 are in power running or in regeneration. In the charge / discharge control device 13, a control signal from the discharge control unit 22 is input to the chopper device 6 during powering, and a control signal from the charge control unit 21 is input during regeneration according to the detection result by the powering regeneration detection unit 23. Thus, the switch 24 can be switched.

力行回生検出部23では、例えば図示しない運転用装置において、運転士により加速にかかる操作がなされて、これを示す制御信号が出力された際に、この信号を検出して力行時とみなし、減速にかかる操作がなされたことを示す制御信号が出力された際は、これを検出して回生時とみなす。つまり、力行時にあるか回生時にあるかによってチョッパ装置6の制御方法を切り替えている。   In the power regeneration detection unit 23, for example, when an operation for acceleration is performed by a driver in a driving device (not shown) and a control signal indicating this is output, this signal is detected and regarded as power running, and deceleration is performed. When a control signal indicating that the operation related to has been performed is output, this is detected and regarded as a regeneration time. That is, the control method of the chopper device 6 is switched depending on whether it is during power running or during regeneration.

次に、放電制御部22による放電制御について説明する。図4は、図3に示した放電制御部22の回路構成例を示すブロック図である。図5は、図4に示した構成の放電制御部22による制御を行なった際の動作波形を示した図である。   Next, discharge control by the discharge control unit 22 will be described. FIG. 4 is a block diagram illustrating a circuit configuration example of the discharge control unit 22 illustrated in FIG. 3. FIG. 5 is a diagram showing operation waveforms when the control by the discharge control unit 22 having the configuration shown in FIG. 4 is performed.

この放電制御部22では、まず直流電流検出部9で検出した直流電源供給電流(Idc)の値から直流電源供給電流リミット値(IdcL)の値を減算する。IdcLの値は7[A]である。そして、この減算した値に、ゲイン部31によるゲイン(定数K1)処理を行ない、この値に対し、上下限リミット処理部32による上下限リミット処理を行なう。この上下限リミット処理の上限値(LimitU)は50[A](図2参照)であり、下限値(LimitL)は0[A]である。LimitUは、チョッパ装置6およびEDLC7の定格電流の値である。   The discharge controller 22 first subtracts the value of the DC power supply current limit value (IdcL) from the value of the DC power supply current (Idc) detected by the DC current detector 9. The value of IdcL is 7 [A]. Then, a gain (constant K1) process by the gain unit 31 is performed on the subtracted value, and an upper / lower limit process by the upper / lower limit process unit 32 is performed on this value. The upper limit value (LimitU) of the upper and lower limit processing is 50 [A] (see FIG. 2), and the lower limit value (LimitL) is 0 [A]. LimitU is the value of the rated current of the chopper device 6 and the EDLC 7.

上下限リミット処理部32から出力される値は、チョッパ装置6の電流指令値(Ich)となる。そしてこのIchの値から、EDLC電流検出部12で検出したIchの値を減算した上で、ACR(電流制御部)33にて、比例、積分を含む電流制御を行なう。そして、ACR33からの出力値とCAR(キャリア波生成部)34からの出力値をPWM制御部35にて比較する処理である三角波比較を行ない、この比較の結果、ACR33からの出力値がCAR34からの出力値を上回ったときにチョッパ装置6の第1のIGBT6aのゲート信号を生成する。 The value output from the upper / lower limit processing unit 32 is the current command value (Ich * ) of the chopper device 6. Then, after subtracting the Ich value detected by the EDLC current detection unit 12 from the Ich * value, the ACR (current control unit) 33 performs current control including proportionality and integration. Then, a triangular wave comparison, which is a process of comparing the output value from the ACR 33 with the output value from the CAR (carrier wave generation unit) 34, is performed by the PWM control unit 35. As a result of this comparison, the output value from the ACR 33 is changed from the CAR 34. When the output value is exceeded, the gate signal of the first IGBT 6a of the chopper device 6 is generated.

具体的には、Idcの値が7[A]を超えるとIchの値が正の値となり、PWM制御部35による処理を経てチョッパ装置6にゲート信号が供給されるようになる。これにより、チョッパ装置6がオン状態となり、EDLC7に予め蓄えられたエネルギーの放電が開始される。 Specifically, when the value of Idc exceeds 7 [A], the value of Ich * becomes a positive value, and the gate signal is supplied to the chopper device 6 through processing by the PWM control unit 35. Thereby, the chopper device 6 is turned on, and the discharge of energy stored in the EDLC 7 in advance is started.

図5のグラフで示されるように、力行時はIdcおよびIinvの値が徐々に上昇する。また、チョッパ装置6がオン状態となってEDLC7からの放電が開始されると、Vchの値が徐々に減少する一方で、Idcの値は放電開始時から上昇しない。また、Iinvの値は、力行時に必要な電流値に達すると上昇しない。   As shown in the graph of FIG. 5, the values of Idc and Iinv gradually increase during powering. When the chopper device 6 is turned on and discharge from the EDLC 7 is started, the Vch value gradually decreases, while the Idc value does not increase from the start of discharge. Further, the value of Iinv does not increase when the current value necessary for powering is reached.

よって、主電動機5を駆動するためのエネルギーを架線(直流電源1に相当)からの電力に代えて確保することができる。なお、チョッパ装置6がオン状態になってもEDLC7にエネルギーが充電されていない場合には、Iinvの値が力行時に必要な電流値に達するまでIdcの値が上昇する。   Therefore, energy for driving the main motor 5 can be secured in place of the power from the overhead line (corresponding to the DC power supply 1). If the EDLC 7 is not charged with energy even when the chopper device 6 is turned on, the value of Idc increases until the value of Iinv reaches the current value required for powering.

次に、図3に示した充電制御部21の回路構成例について、図6を参照して説明する。図7は、図6に示した構成の充電制御部21による制御を行なった際の動作波形を示した図である。   Next, a circuit configuration example of the charging control unit 21 shown in FIG. 3 will be described with reference to FIG. FIG. 7 is a diagram showing operation waveforms when the control by the charging control unit 21 having the configuration shown in FIG. 6 is performed.

この充電制御部21では、直流電圧検出部8により検出したVdcの値をヒステリシスコンパレータ41(図6参照)に入力し、その出力信号をチョッパ装置6の第1のIGBT6aのゲートに入力して第1のIGBT6aを制御する。また、第2のIGBT6bは常にオフ状態にする。ヒステリシスコンパレータ41の上限値(HysU)は280[V](図2参照)で、下限値(HysL)は275[V](図2参照)である。   In this charging control unit 21, the value of Vdc detected by the DC voltage detection unit 8 is input to the hysteresis comparator 41 (see FIG. 6), and the output signal is input to the gate of the first IGBT 6a of the chopper device 6 to be changed. 1 IGBT 6a is controlled. Further, the second IGBT 6b is always turned off. The upper limit value (HysU) of the hysteresis comparator 41 is 280 [V] (see FIG. 2), and the lower limit value (HysL) is 275 [V] (see FIG. 2).

具体的には、回生開始後にVdcの値が280[V]未満の値から280[V]まで上昇する(図7参照)と、チョッパ装置6の第1のIGBT6aのゲートがオン状態となって、EDLC7への充電が開始される。   Specifically, when the value of Vdc rises from a value less than 280 [V] to 280 [V] after starting regeneration (see FIG. 7), the gate of the first IGBT 6a of the chopper device 6 is turned on. , Charging to the EDLC 7 is started.

図7に示したグラフでは、充電開始後のVdcの値の軌跡は280[V]で一定となっているが、実際には、チョッパ装置6の第1のIGBT6aのゲートがオン状態となってEDLC7への充電が開始されるとVdcの値が減少し、この減少したVdcの値がHysLの値(275[V])まで下降すると、第1のIGBT6aのゲートがオフ状態となってEDLC7への充電が停止する。するとVdcの値が再び上昇して、この値がHysUの値(280[V])となることでIGBT6aのゲートが再びオン状態となり、EDLC7への充電が再開される。以後はこれらの動作を繰り返す。   In the graph shown in FIG. 7, the locus of the Vdc value after the start of charging is constant at 280 [V], but in reality, the gate of the first IGBT 6 a of the chopper device 6 is turned on. When charging to the EDLC 7 is started, the value of Vdc decreases. When the decreased value of Vdc falls to the value of HysL (275 [V]), the gate of the first IGBT 6a is turned off and the signal is transferred to the EDLC 7. Charging stops. Then, the value of Vdc rises again, and when this value becomes the value of HysU (280 [V]), the gate of the IGBT 6a is turned on again, and charging to the EDLC 7 is resumed. Thereafter, these operations are repeated.

つまり、Vdcの値が所定の上限値または下限値となった場合にEDLC7への充電のオンオフを制御するので、回生制御の際に回生エネルギーが急変してもインバータ装置4の直流側電圧が過電圧になることが回避できる。よって安全な回生制御が可能になる。以上説明したように、力行時には電流値の大小にしたがって放電制御を行ない、回生時には電圧値の大小にしたがって充電制御を行なうので、力行時と回生時においてそれぞれ適した制御を行なうことができる。   That is, when the value of Vdc reaches a predetermined upper limit value or lower limit value, on / off of charging to the EDLC 7 is controlled. Therefore, even if the regenerative energy changes suddenly during regenerative control, the DC side voltage of the inverter device 4 is overvoltage. Can be avoided. Therefore, safe regeneration control becomes possible. As described above, discharge control is performed according to the magnitude of the current value during power running, and charge control is performed according to the magnitude of the voltage value during regeneration, so that appropriate control can be performed during power running and regeneration.

次に、図4に示した構成の放電制御部22の変形例について図8を参照して説明する。この変形例では、前述した放電制御に加え、放電によりEDLC7の端子電圧が所定の使用電圧範囲(100[V]〜200[V]、図2参照)の下限値(100[V])未満になることを防ぐための放電抑制制御を行なうことができる。   Next, a modification of the discharge control unit 22 having the configuration shown in FIG. 4 will be described with reference to FIG. In this modified example, in addition to the above-described discharge control, the terminal voltage of the EDLC 7 is less than the lower limit value (100 [V]) of the predetermined operating voltage range (100 [V] to 200 [V], see FIG. 2) due to the discharge. It is possible to perform discharge suppression control to prevent this.

EDLC7の端子電圧を使用電圧範囲の下限値(100[V])以上とするのは、放電によりEDLC7の電圧が一定の値を超えて減少するとEDLC7に流れる電流が過電流状態となり、EDLC7の損傷の原因となるからである。   The reason why the terminal voltage of the EDLC 7 is set to be equal to or higher than the lower limit (100 [V]) of the operating voltage range is that when the voltage of the EDLC 7 decreases beyond a certain value due to discharge, the current flowing through the EDLC 7 becomes an overcurrent state. It is because it becomes the cause.

図9は、図8に示した構成の放電制御部22による制御を行なった際の、VchとIchの値の関係をグラフで示した図である。図10は、図8に示した構成の放電制御部22による制御を行なった際の動作波形を示した図である。   FIG. 9 is a graph showing the relationship between the values of Vch and Ich when control is performed by the discharge control unit 22 having the configuration shown in FIG. FIG. 10 is a diagram showing operation waveforms when the control by the discharge control unit 22 having the configuration shown in FIG. 8 is performed.

図8に示した構成の放電制御部22では、前述した放電開始後において、Vchの値の変化に応じて、上下限リミット処理部32のLimitU(図2参照)の値を変化させる。 The discharge control unit 22 having the configuration shown in FIG. 8 changes the value of LimitU (see FIG. 2) of the upper and lower limit processing unit 32 in accordance with the change in the value of Vch after the start of the above-described discharge.

放電制御部22では、放電抑制開始電圧(VchLL)の値(110[V]、図2参照)から、EDLC電圧検出部11により検出したVchの値を減算し、この値に対してゲイン部51によるゲイン(定数K2)処理を行なう。そして、ゲイン部51の出力値を初期LimitUの値(50[A]、図2参照)から減算し、この減算により得られた値に対して上下限リミット処理部52による上下限リミット処理を行なう。この上下限リミット処理における下限値は0[A]で、上限値は50[A]である。そして、上下限リミット処理部52からの出力値が、上下限リミット処理部32におけるLimitUの値となる。   The discharge control unit 22 subtracts the value of Vch detected by the EDLC voltage detection unit 11 from the value of the discharge suppression start voltage (VchLL) (110 [V], see FIG. 2), and a gain unit 51 is subtracted from this value. The gain (constant K2) processing is performed. Then, the output value of the gain unit 51 is subtracted from the value of the initial LimitU (50 [A], see FIG. 2), and the upper and lower limit processing by the upper and lower limit processing unit 52 is performed on the value obtained by this subtraction. . The lower limit value in this upper / lower limit process is 0 [A], and the upper limit value is 50 [A]. Then, the output value from the upper / lower limit processing unit 52 becomes the value of LimitU in the upper / lower limit processing unit 32.

具体的には、放電によりVchの値が110[V]未満となると、ゲイン部51からの出力値が正の値となる。そして、ゲイン部51からの出力値の上昇にしたがって上下限リミット処理部32のLimitUの値が減少するのでIchの値が減少する。この構成例では、Vchの値が減少して、EDLC7の使用電圧下限値である100[V]となった際に上下限リミット処理部32のLimitUの値が0[A]となるように制御される。上下限リミット処理部32のLimitUの値が0[A]になるとIchの値も0[A]になるのでチョッパ装置6がオフ状態となる。よって、EDLC7の放電が停止する。 Specifically, when the value of Vch becomes less than 110 [V] due to discharge, the output value from the gain unit 51 becomes a positive value. Then, as the output value from the gain unit 51 increases, the value of LimitU of the upper / lower limit processing unit 32 decreases, so that the value of Ich * decreases. In this configuration example, control is performed so that the value of LimitU of the upper and lower limit processing unit 32 becomes 0 [A] when the value of Vch decreases and reaches 100 [V], which is the lower limit value of the working voltage of the EDLC 7. Is done. When the value of LimitU of the upper / lower limit processing unit 32 becomes 0 [A], the value of Ich * also becomes 0 [A], so the chopper device 6 is turned off. Therefore, the discharge of the EDLC 7 is stopped.

放電抑制制御が開始されると、図10のグラフに示すようにVdcの値が減少する。また、放電抑制制御によりIchの値が徐々に減少すると、その減少した分だけIdcの値が徐々に上昇する。つまり、Iinvの値は放電抑制制御が開始されても変化せず、放電停止時におけるIdcの値はIinvの値と同じになり、Ichの値が0となる。以上述べたように、Vchの値がEDLC7の使用電圧範囲の下限値(100[V])を下回った状態での放電がなされなくなるため、EDLC7を安全に使用することができる。   When the discharge suppression control is started, the value of Vdc decreases as shown in the graph of FIG. Further, when the value of Ich is gradually decreased by the discharge suppression control, the value of Idc is gradually increased by the decreased amount. That is, the value of Iinv does not change even when the discharge suppression control is started, the value of Idc when the discharge is stopped is the same as the value of Iinv, and the value of Ich is 0. As described above, since discharge is not performed in a state where the value of Vch falls below the lower limit value (100 [V]) of the working voltage range of EDLC 7, EDLC 7 can be used safely.

次に、図6に示した構成の充電制御部21の変形例について図11を参照して説明する。この変形例では、前述した充電制御に加え、充電によりEDLC7の端子電圧が所定の使用電圧範囲の上限値(200[V]、図2参照)を超えることを防ぐための充電抑制制御を行なうことができる。   Next, a modification of the charge control unit 21 having the configuration shown in FIG. 6 will be described with reference to FIG. In this modification, in addition to the above-described charging control, charging suppression control is performed to prevent the terminal voltage of the EDLC 7 from exceeding the upper limit value (200 [V], see FIG. 2) of the predetermined operating voltage range due to charging. Can do.

図12は、図11に示した構成の充電制御部21による制御を行なった際のVchの値とHysU(図2参照)の値の関係をグラフで示した図である。図13は、図11に示した構成の充電制御部21による制御を行なった際の動作波形を示した図である。   FIG. 12 is a graph showing the relationship between the value of Vch and the value of HysU (see FIG. 2) when the control by the charging control unit 21 having the configuration shown in FIG. 11 is performed. FIG. 13 is a diagram showing operation waveforms when the control by the charging control unit 21 having the configuration shown in FIG. 11 is performed.

図11に示した構成の充電制御部21では、前述した充電制御の開始後において、Vchの値の変化に応じてヒステリシスコンパレータ41のHysU(図2参照)の値を変化させる。充電制御部21では、EDLC電圧検出部11により検出したVchの値から充電抑制開始電圧(VchUL)の値(190[V]、図2参照)を減算した値に対してゲイン部61によるゲイン(定数K3)処理を行なう。そしてゲイン部61による出力値に対して下限値リミット処理部62による下限値リミット処理を行なう。この下限値リミット処理における下限値は0[A]である。   The charge control unit 21 having the configuration shown in FIG. 11 changes the value of HysU (see FIG. 2) of the hysteresis comparator 41 in accordance with the change in the value of Vch after the start of the above-described charge control. In the charging control unit 21, the gain (61 [V], see FIG. 2) of the charging suppression start voltage (VchUL) is subtracted from the Vch value detected by the EDLC voltage detecting unit 11 with a gain ( Constant K3) Perform processing. Then, the lower limit limit processing by the lower limit limit processing unit 62 is performed on the output value from the gain unit 61. The lower limit value in the lower limit process is 0 [A].

そして、下限値リミット処理部62からの出力値に、初期のHysUの値(280[V]、図2参照)の値を加算した値がヒステリシスコンパレータ41のHysUの値となる。HysUの値が280[V]を超えて徐々に上昇すると、チョッパ装置6の第1のIGBT6aのゲートがオフ状態からオン状態に切り替わる際の電圧値が徐々に上昇することになるので、回生時に発生するエネルギーが一定である場合には、Vdcの平均値の増加とともにIinvの値が減少する。Iinvの値は、充電時におけるIchの値と同じなので、EDLC7への充電が徐々に抑制されることになる。   A value obtained by adding the initial HysU value (280 [V], see FIG. 2) to the output value from the lower limit limit processing unit 62 is the HysU value of the hysteresis comparator 41. When the value of HysU gradually increases beyond 280 [V], the voltage value when the gate of the first IGBT 6a of the chopper device 6 is switched from the off state to the on state gradually increases. When the generated energy is constant, the value of Iinv decreases as the average value of Vdc increases. Since the value of Iinv is the same as the value of Ich at the time of charging, charging to the EDLC 7 is gradually suppressed.

図13に示したグラフでは、充電抑制開始後において、Vdcの値が280[V]を超えて直線的に上昇しているが、実際には、EDLC7への充電が開始されるとVdcの値はHysLの値(275[V])となるまで減少して、HysLの値となった際にEDLC7への充電が停止し、Vdcの値はHysUの値となるまで再び上昇する。つまりVdcの値は、Vchの値の上昇にともなって上昇した値であるHysUの値とHysLの値(275[V])との間での変化を繰り返す。   In the graph shown in FIG. 13, the value of Vdc increases linearly beyond 280 [V] after the start of charging suppression, but in reality, the value of Vdc increases when charging to EDLC 7 is started. Decreases to the value of HysL (275 [V]). When the value of HysL is reached, charging to the EDLC 7 is stopped, and the value of Vdc increases again until it reaches the value of HysU. That is, the value of Vdc repeats a change between the value of HysU and the value of HysL (275 [V]), which are increased as the value of Vch increases.

具体的には、回生制御によりVchの値が増加してVchULの値(190[V])を超えると、ゲイン部61からの出力値が正の値となり、ヒステリシスコンパレータ41のHysUの値が増加する。この構成例では、Vchの値が使用電圧上限値(200[V])に達した際にHysUの値が310[V]になるように制御される(図12参照)。   Specifically, when the value of Vch increases due to regenerative control and exceeds the value of VchUL (190 [V]), the output value from the gain unit 61 becomes a positive value, and the value of HysU of the hysteresis comparator 41 increases. To do. In this configuration example, when the value of Vch reaches the use voltage upper limit (200 [V]), the HysU value is controlled to be 310 [V] (see FIG. 12).

Vchの値がEDLC7の使用電圧上限値である200[V]となって、Vdcの値がインバータの軽負荷回生制御開始レベル(300[V])となった場合には、インバータ装置4は軽負荷回生制御を開始し、Vdcの値が300[V]一定となるように制御する。このときのVdcの値はHysUの値(310[V])より小さい値なので、チョッパ装置6はオフ状態である。よって、車両の減速制御を継続して行なうことができる。以上説明したように、Vchの値がEDLC7の所定の使用電圧範囲上限値を上回った状態での充電がなされなくなるため、EDLC7を安全に使用することができる。   When the value of Vch becomes 200 [V] which is the upper limit value of the working voltage of EDLC 7 and the value of Vdc becomes the light load regenerative control start level (300 [V]) of the inverter, the inverter device 4 is light. Load regeneration control is started, and control is performed so that the value of Vdc is constant at 300 [V]. Since the value of Vdc at this time is smaller than the value of HysU (310 [V]), the chopper device 6 is in the off state. Therefore, the deceleration control of the vehicle can be continuously performed. As described above, since charging is not performed in a state where the value of Vch exceeds the upper limit value of the predetermined operating voltage range of EDLC 7, EDLC 7 can be used safely.

なお、この発明は、前記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の実施形態にしたがった鉄道車両用制御装置の構成例を示すブロック図。The block diagram which shows the structural example of the control apparatus for rail vehicles according to embodiment of this invention. 図1に示した鉄道車両用制御装置の制御に係る各種パラメータ値を表にして示した図。FIG. 2 is a table showing various parameter values related to control of the railway vehicle control device shown in FIG. 1. 図1に示した充放電制御装置の構成例を示すブロック図。The block diagram which shows the structural example of the charging / discharging control apparatus shown in FIG. 図3に示した放電制御部の構成例を示すブロック図。The block diagram which shows the structural example of the discharge control part shown in FIG. 図4に示した構成の放電制御部による制御を行なった際の動作波形を示した図。The figure which showed the operation | movement waveform at the time of performing control by the discharge control part of the structure shown in FIG. 図3に示した充電制御部の回路構成例を示すブロック図。The block diagram which shows the circuit structural example of the charge control part shown in FIG. 図6に示した構成の充電制御部による制御を行なった際の動作波形を示した図。The figure which showed the operation | movement waveform at the time of performing control by the charge control part of the structure shown in FIG. 図4に示した構成の放電制御部の変形例を示すブロック図。The block diagram which shows the modification of the discharge control part of the structure shown in FIG. 図8に示した構成の放電制御部による制御を行なった際の、VchとIchの関係をグラフで示した図。The figure which showed the relationship between Vch and Ich by the graph at the time of performing control by the discharge control part of the structure shown in FIG. 図8に示した構成の放電制御部による制御を行なった際の動作波形を示した図。The figure which showed the operation | movement waveform at the time of performing control by the discharge control part of the structure shown in FIG. 図6に示した構成の充電制御部の変形例を示すブロック図。The block diagram which shows the modification of the charge control part of the structure shown in FIG. 図11に示した構成の充電制御部による制御を行なった際の、VchとHysUの関係をグラフで示した図。The figure which showed the relationship between Vch and HysU at the time of performing control by the charge control part of the structure shown in FIG. 図11に示した構成の充電制御部による制御を行なった際の動作波形を示した図。The figure which showed the operation | movement waveform at the time of performing control by the charge control part of the structure shown in FIG. 従来の回生負荷抵抗チョッパ制御装置の構成例を示すブロック図。The block diagram which shows the structural example of the conventional regenerative load resistance chopper control apparatus. 図14に示した回生負荷抵抗チョッパを制御する制御部の構成例を示すブロック図。The block diagram which shows the structural example of the control part which controls the regenerative load resistance chopper shown in FIG.

符号の説明Explanation of symbols

1…直流電源、2…フィルタリアクトル、3…フィルタコンデンサ、4…インバータ装置、5…主電動機、6…チョッパ装置、7…電気二重層コンデンサ(EDLC)、8…直流電圧検出部、9…直流電流検出部、10…インバータ電流検出部、11…EDLC電圧検出部、12…EDLC電流検出部、13…充放電制御装置、21…充電制御部、22…放電制御部、23…力行回生検出部、31…ゲイン部、32…上下限リミット処理部、33…ACR(電流制御部)、34…CAR(キャリア波生成部)、35…PWM制御部、41…ヒステリシスコンパレータ、51…ゲイン部、52…上下限リミット処理部、61…ゲイン部、62…下限リミット処理部。   DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Filter reactor, 3 ... Filter capacitor, 4 ... Inverter device, 5 ... Main motor, 6 ... Chopper device, 7 ... Electric double layer capacitor (EDLC), 8 ... DC voltage detection part, 9 ... DC Current detection unit, 10 ... inverter current detection unit, 11 ... EDLC voltage detection unit, 12 ... EDLC current detection unit, 13 ... charge / discharge control device, 21 ... charge control unit, 22 ... discharge control unit, 23 ... power regeneration detection unit , 31 ... gain section, 32 ... upper and lower limit processing section, 33 ... ACR (current control section), 34 ... CAR (carrier wave generation section), 35 ... PWM control section, 41 ... hysteresis comparator, 51 ... gain section, 52 ... upper / lower limit processing unit, 61 ... gain unit, 62 ... lower limit processing unit.

Claims (3)

主電動機と、
この主電動機の駆動を制御するインバータ装置と、
このインバータ装置の直流側に接続された半導体スイッチング装置と、
この半導体スイッチング装置に接続された蓄電装置と、
前記インバータ装置の直流側電圧を検出する直流電圧検出手段と、
前記インバータ装置の直流側への電流を検出する第1の電流検出手段と、
前記蓄電装置の端子電圧を検出する蓄電電圧検出手段と、
前記蓄電装置から前記半導体スイッチング装置に流れる電流を検出する第2の電流検出手段と、
前記インバータ装置が力行制御を行なう際に、前記第1の電流検出手段により検出した電流値が所定のしきい値電流を超えたに前記蓄電装置からの放電が開始するように前記半導体スイッチング装置を制御する放電開始制御を行ない放電開始後に前記蓄電電圧検出手段により検出された電圧値が減少して前記蓄電装置が使用可能な電圧範囲内の所定の下限値より高い所定のしきい値電圧未満となった状態で、前記しきい値電圧の値から前記蓄電電圧検出手段により検出された電圧値を減算した値に第1のゲイン処理を行ない、この処理結果の値を前記蓄電装置の定格電流の値から減算し、この減算結果である電流値に対し、前記定格電流の値を上限値とした第1のリミット処理を行ない、一方で、前記第1の電流検出手段により検出した電流値から前記しきい値電流の値を減算した値に第2のゲイン処理を行なった値に対し、前記第1のリミット処理の結果である電流値を上限値とした第2のリミット処理を行ない、この処理結果の値を前記蓄電装置から前記半導体スイッチング装置に流れる電流の指令値とし、この指令値から前記第2の電流検出手段により検出した電流値を減算した値に対し、比例、積分を含む電流制御を行ない、この電流制御の出力値と所定のキャリア波の出力値との比較を行ない、この比較の結果、前記電流制御の出力値が前記キャリア波の出力値を上回ったときに前記半導体スイッチング装置のゲート信号を生成することにより、前記蓄電電圧検出手段により検出された電圧値が前記しきい値電圧未満となって減少するにつれて前記第1のゲイン処理の結果の値を上昇させて、この結果、前記第1のリミット処理の結果である電流値を減少させて、この減少の結果、前記指令値を減少させて、この減少の結果、前記蓄電装置から前記半導体スイッチング装置に流れる電流値が減少するように前記半導体スイッチング装置を制御する放電抑制制御を行ない、前記力行制御の際に前記蓄電電圧検出手段により検出した電圧値が前記下限値になったに、前記第1のリミット処理の結果である電流値を0として、この結果、前記指令値を0にして、前記蓄電装置から前記半導体スイッチング装置に流れる電流値が0となるように前記半導体スイッチング装置を制御する放電停止制御を行なう放電制御手段と、
前記インバータ装置が回生制御を行なう際に、前記直流電圧検出手段により検出した電圧値が所定の第1のしきい値電圧まで上昇した際に前記蓄電装置への充電が開始されるように前記半導体スイッチング装置を制御し、前記直流電圧検出手段により検出した電圧値が前記第1のしきい値電圧より低い第2のしきい値電圧まで下降した際に前記蓄電装置への充電が停止するように前記半導体スイッチング装置を制御することで前記蓄電装置への充電を制御する充電制御手段と
を備えたことを特徴とする車両用制御装置。
A main motor,
An inverter device for controlling the drive of the main motor;
A semiconductor switching device connected to the DC side of the inverter device;
A power storage device connected to the semiconductor switching device;
DC voltage detecting means for detecting a DC side voltage of the inverter device;
First current detection means for detecting a current to the DC side of the inverter device;
A storage voltage detecting means for detecting a terminal voltage of the power storage device;
Second current detection means for detecting a current flowing from the power storage device to the semiconductor switching device;
When the inverter device performs power running control, the semiconductor switching device is configured to start discharging from the power storage device when the current value detected by the first current detection means exceeds a predetermined threshold current. performs discharge start control for controlling said power storage voltage higher predetermined threshold voltage than a predetermined lower limit value of the power storage device is within a usable voltage range the voltage value detected is reduced by the detection means after the start discharge In a state in which the value is less than the threshold voltage value, a first gain process is performed on a value obtained by subtracting the voltage value detected by the storage voltage detection means from the threshold voltage value. Subtracting from the current value, the first current limit value is used as the upper limit value for the current value obtained as a result of the subtraction, while the first current detecting means detects the current value. A second limit process in which the current value, which is the result of the first limit process, is set to the upper limit value for the value obtained by performing the second gain process on the value obtained by subtracting the threshold current value from the current value. The value of this processing result is used as a command value for the current flowing from the power storage device to the semiconductor switching device, and the value obtained by subtracting the current value detected by the second current detection means from the command value is proportional and integral. When the current control output value exceeds the carrier wave output value as a result of the comparison, the current control output value is compared with the output value of the predetermined carrier wave. By generating the gate signal of the semiconductor switching device, the first gain processing is performed as the voltage value detected by the storage voltage detection means decreases below the threshold voltage. As a result, the current value as a result of the first limit process is decreased, and as a result of the decrease, the command value is decreased. It performs discharge suppression control current flowing through the semiconductor switching device controls the semiconductor switching device so as to reduce, when the voltage detected by the stored voltage detecting means during the power running control becomes the lower limit value In addition, the current value that is the result of the first limit processing is set to 0, and as a result, the command value is set to 0, and the current value that flows from the power storage device to the semiconductor switching device becomes 0. Discharge control means for performing discharge stop control for controlling the apparatus;
When the inverter device performs regenerative control , the semiconductor device is configured to start charging the power storage device when the voltage value detected by the DC voltage detecting means rises to a predetermined first threshold voltage. Controlling the switching device so that charging of the power storage device is stopped when the voltage value detected by the DC voltage detecting means drops to a second threshold voltage lower than the first threshold voltage. A vehicle control device comprising: charge control means for controlling charging of the power storage device by controlling the semiconductor switching device.
前記充電制御手段は、
前記回生制御の際に前記蓄電電圧検出手段により検出された電圧値が前記蓄電装置の使用可能な電圧範囲内の所定の上限値となったに、前記蓄電装置への充電が停止するように前記半導体スイッチング装置を制御する充電停止手段を有する
ことを特徴とする請求項に記載の車両用制御装置。
The charge control means includes
The charging of the power storage device is stopped when the voltage value detected by the power storage voltage detection means during the regeneration control reaches a predetermined upper limit value within the usable voltage range of the power storage device. The vehicle control device according to claim 1 , further comprising a charging stop unit that controls the semiconductor switching device.
前記充電制御手段は、
前記回生制御の際に前記蓄電電圧検出手段により検出された電圧値が増加して前記蓄電装置の使用可能な電圧範囲内の所定の上限値より低い所定のしきい値電圧を超えた際に、前記検出された電圧値と前記所定の上限値より低い所定のしきい値電圧との差分の大小に応じて、前記蓄電装置に流れる電流値が減少するように前記半導体スイッチング装置を制御する充電抑制手段と、
前記蓄電電圧検出手段により検出された電圧値が前記所定の上限値より低い所定のしきい値電圧からさらに増加して前記上限値となった際に、前記蓄電装置に流れる電流値が0となるように前記半導体スイッチング装置を制御する充電停止手段と
を有することを特徴とする請求項に記載の車両用制御装置。
The charge control means includes
When the voltage value detected by the storage voltage detection means during the regeneration control increases and exceeds a predetermined threshold voltage lower than a predetermined upper limit value within a usable voltage range of the power storage device, Charge suppression for controlling the semiconductor switching device such that the value of the current flowing through the power storage device decreases according to the difference between the detected voltage value and a predetermined threshold voltage lower than the predetermined upper limit value Means,
When the voltage value detected by the storage voltage detection means further increases from a predetermined threshold voltage lower than the predetermined upper limit value and reaches the upper limit value , the current value flowing through the power storage device becomes zero. the vehicle control device according to claim 1, characterized in that said and a charge stopping means for controlling the semiconductor switching device so.
JP2004143564A 2004-05-13 2004-05-13 Vehicle control device Expired - Fee Related JP5049456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143564A JP5049456B2 (en) 2004-05-13 2004-05-13 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143564A JP5049456B2 (en) 2004-05-13 2004-05-13 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2005328618A JP2005328618A (en) 2005-11-24
JP5049456B2 true JP5049456B2 (en) 2012-10-17

Family

ID=35474518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143564A Expired - Fee Related JP5049456B2 (en) 2004-05-13 2004-05-13 Vehicle control device

Country Status (1)

Country Link
JP (1) JP5049456B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921878B2 (en) * 2006-07-24 2012-04-25 株式会社東芝 Railway vehicle power storage device control method
JP4809271B2 (en) * 2007-03-08 2011-11-09 公益財団法人鉄道総合技術研究所 Electric vehicle power storage device and power storage device system
JP4844479B2 (en) * 2007-06-18 2011-12-28 パナソニック株式会社 Power supply
JP4934562B2 (en) * 2007-09-28 2012-05-16 株式会社日立製作所 Vehicle control device having power storage device
JP4958846B2 (en) * 2008-06-03 2012-06-20 株式会社日立製作所 Vehicle control device for intermittent power reception
JP5381026B2 (en) * 2008-11-07 2014-01-08 株式会社明電舎 Control circuit for composite power supply
JP5262727B2 (en) * 2009-01-06 2013-08-14 株式会社明電舎 DC power supply control method and mobile vehicle using the DC power supply control method
JP5119229B2 (en) 2009-09-30 2013-01-16 株式会社日立製作所 Vehicle control device
KR101420987B1 (en) 2010-09-06 2014-07-17 미쓰비시덴키 가부시키가이샤 Ac motor driver apparatus
KR101141770B1 (en) * 2010-10-12 2012-05-11 호남대학교 산학협력단 electric energy charging and discharging apparatus and method using super capactiors for regenerative braking system of electric motorcycles
JP5537406B2 (en) * 2010-12-27 2014-07-02 株式会社日立製作所 Vehicle control system
US9481253B2 (en) 2011-08-05 2016-11-01 Abb Inc. Electrical energy storage system for traction power supply
JP5479429B2 (en) * 2011-10-14 2014-04-23 株式会社東芝 Railway vehicle
EP2810813B1 (en) * 2012-01-30 2017-07-12 Mitsubishi Electric Corporation Propulsion control device of electric vehicle and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322314A (en) * 1996-05-31 1997-12-12 Isuzu Motors Ltd Electric motorcar power supply controller
JP3890924B2 (en) * 2001-07-02 2007-03-07 株式会社明電舎 Electric car drive system
JP3795803B2 (en) * 2001-12-25 2006-07-12 株式会社東芝 Electric vehicle control device

Also Published As

Publication number Publication date
JP2005328618A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP5049456B2 (en) Vehicle control device
JP4934562B2 (en) Vehicle control device having power storage device
JP3867270B2 (en) Electric vehicle control device
KR101803153B1 (en) Fuel cell vehicle and control method therefor
JP4713690B2 (en) Electric vehicle power converter
KR101526402B1 (en) Method and system for controlling fuel cell vehicle
JP5282876B2 (en) Vehicle power supply
JP4500217B2 (en) Circuit equipment
JP2009183078A (en) Drive system of electric vehicle
JPH092753A (en) Elevator control device
JP2005206111A (en) Dc voltage power feed device
JP5386457B2 (en) Power regeneration device
JP6069151B2 (en) Power converter control circuit
JP2008289313A (en) Vehicle control unit
JP7127294B2 (en) fuel cell system
JP2017103003A (en) Fuel battery system
JP5385728B2 (en) Control method and control apparatus
CN104418192A (en) Elevator control apparatus
JP4273925B2 (en) Elevator system
JP3983775B2 (en) Power converter using electric double layer capacitor
JP2014129001A (en) Regenerative power absorption apparatus for electric railroad
WO2009101859A1 (en) Inverter device and method for controlling the same
JP2015104195A (en) Electric vehicle power supply system
JP7362859B1 (en) Elevator equipment and elevator control method
JP2020124072A (en) vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110824

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees