JP4958846B2 - Vehicle control device for intermittent power reception - Google Patents

Vehicle control device for intermittent power reception Download PDF

Info

Publication number
JP4958846B2
JP4958846B2 JP2008146090A JP2008146090A JP4958846B2 JP 4958846 B2 JP4958846 B2 JP 4958846B2 JP 2008146090 A JP2008146090 A JP 2008146090A JP 2008146090 A JP2008146090 A JP 2008146090A JP 4958846 B2 JP4958846 B2 JP 4958846B2
Authority
JP
Japan
Prior art keywords
voltage
value
current
power storage
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008146090A
Other languages
Japanese (ja)
Other versions
JP2009296731A (en
Inventor
豊田  瑛一
亨一 大石
嶋田  基巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008146090A priority Critical patent/JP4958846B2/en
Priority to GB0909390A priority patent/GB2460743B/en
Priority to KR1020090048343A priority patent/KR101254370B1/en
Priority to CN200910146620.5A priority patent/CN101596871B/en
Publication of JP2009296731A publication Critical patent/JP2009296731A/en
Application granted granted Critical
Publication of JP4958846B2 publication Critical patent/JP4958846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/04Current collectors for power supply lines of electrically-propelled vehicles using rollers or sliding shoes in contact with trolley wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/38Current collectors for power supply lines of electrically-propelled vehicles for collecting current from conductor rails
    • B60L5/39Current collectors for power supply lines of electrically-propelled vehicles for collecting current from conductor rails from third rail
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/36Single contact pieces along the line for power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、たとえば鉄道車両用車両などの車両に搭載される制御装置に関し、特に主電動機を駆動するインバータ装置の入力側に設けられた蓄電装置を有する車両用制御装置に関する。   The present invention relates to a control device mounted on a vehicle such as a railcar vehicle, and more particularly to a vehicle control device having a power storage device provided on the input side of an inverter device that drives a main motor.

従来、電気鉄道のシステムにおいては電車線より電力を得て車両を駆動するのが前提であるが、線路の状況や周辺設備などの理由で電車線が設備できない区間もあり、万一電車線非設備区間で車両が停止すると以後の移動ができなくなる。このような場所では車両は事前に所定の速度を確保し、電車線のない区間は惰行で通過するなどの運転操作によりこの部分の電力供給不能区間の走行をカバーしている。
特開2005−328618号公報
Conventionally, in electric railway systems, it is assumed that the vehicle is driven by obtaining electric power from the train line, but there are sections where the train line cannot be installed due to the situation of the track and surrounding facilities, etc. If the vehicle stops in the equipment section, it cannot move afterwards. In such a place, the vehicle secures a predetermined speed in advance and covers the travel of the section where power cannot be supplied by a driving operation such as passing the section without a train line by coasting.
JP 2005-328618 A

しかしながら、このような電車線非設備区間が長距離にわたる場合や、多頻度に存在する区間で、さらに車両の速度制限などがあり運転方法が制限されるような場合は、これら区間で停止することがないように、運転扱いも高度な技術を要することとなり、運転者への負担は大きくなる。さらに本来電車線非設備区間は無いのが理想であるから、線路形状などの条件によっては地上の電車線に関する設備、工事などにおいても電車線非設備区間を最小化するため困難な作業を要することもある。   However, if such train line non-equipment sections are long distances, or there are frequent sections, and if the driving method is restricted due to vehicle speed restrictions, stop at these sections. As a result, advanced handling is required for driving, which increases the burden on the driver. Furthermore, it is ideal that there is essentially no non-equipment section of the train line, so depending on the conditions such as the track shape, it may be difficult to minimize the non-equipment section of the train line in equipment and construction related to the ground train line. There is also.

したがって少なくとも1回の力行が可能な程度のエネルギー源を車両側で有しこのエネルギーを利用して電車線非設備区間を走行できるようにしておけば、上記の運転者への負担や、地上工事への要求は軽減されシステム全体としての効果は大きい。   Therefore, if the vehicle has an energy source capable of at least one power running and can use this energy to travel on the non-equipment section of the train line, the burden on the driver and ground construction The demand for the system is reduced and the effect of the entire system is great.

これらの問題を解決する為に、車上側に充放電能力が十分に高くかつ必要最低限の充電容量を有する2次電池など蓄電装置及び制御用チョッパ装置を設け、電車線設備のある場所で充電し、電車線設備のない場所では上記蓄電装置に蓄えられたエネルギーをチョッパ装置により放出し、これにより走行できるようにすることが考えられる。この場合、たとえ電車線非設備区間で車両が停止しても蓄電エネルギーを使用して自力走行が可能であるので運転技量、地上設備への要求も大幅に緩和される。   In order to solve these problems, a power storage device such as a secondary battery with a sufficiently high charge / discharge capacity and a minimum charge capacity and a control chopper device are provided on the upper side of the vehicle, and charging is performed at a place where there is a train line facility. However, in a place where there is no train line facility, it is conceivable that the energy stored in the power storage device is released by the chopper device so that the vehicle can run. In this case, even if the vehicle stops in the train line non-equipment section, it is possible to travel on its own using the stored energy, so that the driving skill and demands on the ground facility are greatly eased.

しかしながら、エネルギー源として蓄電装置を利用する場合、蓄電システム特有の問題点がある。即ち、蓄電装置が蓄積できるエネルギーには限りがあるので、電車線非設備区間に入る前には可能な限り十分エネルギーの蓄積がなされているように管理されている必要がある。   However, when a power storage device is used as an energy source, there are problems peculiar to a power storage system. In other words, since the energy that can be stored in the power storage device is limited, it is necessary to manage the energy storage as much as possible before entering the train line non-equipment section.

また電車線電圧は必ずしも一定でなく周辺の負荷状態や電力の送り出し設備からの距離などにより変動するので、その電圧変動などの条件によって蓄電装置の許容充放電電流を越えた電流を流さないよう防護することや、許容充電量をこえて充電する過充電が発生しないように管理されていることが必要である。   In addition, the voltage on the train line is not necessarily constant and varies depending on the surrounding load conditions and the distance from the power supply equipment, etc., so that the current exceeding the allowable charge / discharge current of the power storage device is protected according to conditions such as voltage fluctuation. It is necessary to be managed so as not to cause overcharge that charges beyond the allowable charge amount.

即ち、どのような条件で充電・放電を行うべきかを定める充放電制御を必要とする。さらに多くの蓄電装置は過充電・過放電を嫌うものも多く、多くの場合最大充放電電流の制限も有す。したがって、エネルギー蓄電装置を利用する場合、蓄積エネルギーの管理方法、充放電量制限、充放電電流制限などの手法の確立が不可欠である。   That is, charge / discharge control is required to determine under what conditions charging / discharging should be performed. Further, many power storage devices do not like overcharge / overdischarge, and in many cases have limitations on the maximum charge / discharge current. Therefore, when using an energy storage device, it is indispensable to establish methods such as a method for managing stored energy, charging / discharging amount limitation, charging / discharging current limitation.

本発明の目的は蓄電装置の充放電を適正に管理し電車線非設備区間において蓄電装置に蓄えられたエネルギーを使用し自力走行を可能にする車両用制御装置を提供することにある。   An object of the present invention is to provide a vehicle control device that appropriately manages charging / discharging of a power storage device and enables self-running using energy stored in the power storage device in a train line non-equipment section.

本発明の車両用制御装置は、電車線から集電装置を介して直流電圧の供給を受け、主電動機の駆動を制御するインバータ装置と、このインバータ装置の直流側に接続された半導体スイッチング装置と、この半導体スイッチング装置に接続された蓄電装置と、前記半導体スイッチング装置が接続されたインバータ装置の直流側の電圧を計測する直流電圧検出手段と、前記直流電圧検出手段の出力に応じて前記半導体スイッチング装置を制御する充放電制御部とを有し、前記充放電制御部は、充電量を所定の値に保つように前記半導体スイッチング装置を制御する制御部と、前記インバータ装置の直流側と前記半導体スイッチング装置の接続点の電圧を所定の範囲に保つよう前記半導体スイッチング装置を制御する制御部とを備えており、電車線の設備区間で電車線から集電装置を介して直流電圧の供給を受けて、前記直流電圧検出手段の検出値が電車線電源送り出し電圧以上の場合に、前記インバータ装置との接続点に対して前記蓄電装置から充放電を行い蓄電装置の充電量を所定の値に保つように前記半導体スイッチング装置を制御し、電車線非設備区間で電車線から分離し集電装置を介して直流電圧の供給を受けられず前記直流電圧検出手段の検出値が電車線電源送り出し電圧と前記インバータ装置の制御可能な最低直流入力電圧との間に設定された特定電圧範囲内となる場合に、前記直流電圧検出手段の出力に応じて、前記蓄電装置から充放電を行い前記インバータ装置の直流側と前記半導体スイッチング装置の接続点の電圧を前記特定電圧範囲内に設定される制御目標電圧値近傍に保つよう前記半導体スイッチング装置を制御することを特徴とする。 A vehicle control device according to the present invention includes an inverter device that receives a DC voltage from a train line via a current collector and controls driving of a main motor, and a semiconductor switching device that is connected to the DC side of the inverter device. A power storage device connected to the semiconductor switching device; a DC voltage detecting means for measuring a DC side voltage of the inverter device to which the semiconductor switching device is connected; and the semiconductor switching according to an output of the DC voltage detecting means A charge / discharge control unit for controlling the device , wherein the charge / discharge control unit controls the semiconductor switching device so as to keep a charge amount at a predetermined value, a DC side of the inverter device, and the semiconductor A control unit for controlling the semiconductor switching device so as to keep the voltage at the connection point of the switching device in a predetermined range, Supplied with a DC voltage equipment section through a current collector from the contact line, if the detected value is greater than the catenary supply feed voltage of the DC voltage detecting means, the relative connection point between the inverter device The semiconductor switching device is controlled so as to charge and discharge from the power storage device and keep the charge amount of the power storage device at a predetermined value, separated from the train line in the non-equipment section of the train line, and supplied with a DC voltage via the current collector. If the detection value of the DC voltage detection means is not within the specific voltage range set between the train line power supply voltage and the controllable minimum DC input voltage of the inverter device, the DC voltage detection means depending on the output, the power storage device were charged and discharged from the inverter DC side to the semiconductor switching device of the control target voltage value of the voltage at the connection point is set to said specific voltage range And controls the semiconductor switching device so as to maintain near.

本発明に係わる車両用制御装置では、前記半導体スイッチング装置は電車線に電力を供給する地上電源システムの送り出し電圧に係わる電圧値とインバータ装置が制御可能な最低直流入力電圧値の間の電圧範囲内の特定電圧範囲においては、前記インバータ装置の直流側と前記半導体スイッチング装置の接続点への電流の出入りを制御し該接続点の電圧を前記特定電圧範囲内に設定された制御目標電圧に保つように制御する定電圧制御モードとし、前記特定電圧範囲よりも高い電圧範囲では蓄電装置への充電電流に対し定電流充電制御するモードとし、前記特定電圧範囲よりも低い電圧範囲では蓄電装置からの放電電流に対し定電流放電制御を行うため、定電圧制御目標値以上の電圧がインバータ装置の直流側と前記半導体スイッチング装置の接続点に印加されると前記接続点から電流を吸収して蓄電装置への充電が行われ、定電圧制御目標値以下の電圧が前記接続点に印加されると前記接続点へ電流を放出して蓄電装置からの放電が行われる。したがって定電圧制御の目標電圧を電車線電圧よりも低く設定しておくことにより、電車線への接触がなされている時は蓄電装置への充電が行われ、電車線から分離されている時は蓄電装置からの充放電により定電圧制御目標値相当の電圧がインバータ直流入力に現れる。定電圧制御目標値はインバータ装置の最低動作電圧以上に設定されているのでこの蓄電装置からのインバータ装置直流側電圧に対する制御電圧でインバータ装置は主電動機の運転が可能である。   In the vehicle control device according to the present invention, the semiconductor switching device is within a voltage range between the voltage value related to the supply voltage of the ground power supply system that supplies power to the train line and the minimum DC input voltage value that can be controlled by the inverter device. In this specific voltage range, the flow of current to and from the connection point between the DC side of the inverter device and the semiconductor switching device is controlled, and the voltage at the connection point is maintained at the control target voltage set within the specific voltage range. In a voltage range higher than the specific voltage range, a mode in which constant current charge control is performed with respect to a charging current to the power storage device in a voltage range higher than the specific voltage range, and discharge from the power storage device in a voltage range lower than the specific voltage range. In order to perform constant current discharge control for current, a voltage equal to or higher than a constant voltage control target value is applied to the DC side of the inverter device and the semiconductor switching device. When applied to the connection point, current is absorbed from the connection point to charge the power storage device, and when a voltage equal to or lower than the constant voltage control target value is applied to the connection point, the current is discharged to the connection point. Thus, discharging from the power storage device is performed. Therefore, by setting the target voltage for constant voltage control lower than the train line voltage, the battery is charged when the train line is in contact and when it is separated from the train line. A voltage corresponding to the constant voltage control target value appears at the inverter DC input due to charge / discharge from the power storage device. Since the constant voltage control target value is set to be equal to or higher than the minimum operating voltage of the inverter device, the inverter device can operate the main motor with the control voltage for the inverter device DC side voltage from the power storage device.

以上説明したように、本発明によれば、電車線非設備区間においても蓄電装置7における充放電電流、充電量の許容値をも守りつつ、かつ蓄電装置7の能力の範囲で、力行、回生動作が可能となり運転取り扱い上厄介な運転制限を無くすることができ、また地上設備側においても適度な電車線の非設備区間が許容される。   As described above, according to the present invention, power running and regeneration can be performed within the range of the capacity of the power storage device 7 while maintaining the allowable values of the charge / discharge current and the charge amount in the power storage device 7 even in the non-equipment section of the train line. It is possible to operate, and it is possible to eliminate troublesome operation restrictions in terms of handling, and an appropriate non-equipment section of the train line is allowed on the ground facility side.

尚、本説明では電車線非設備区間が大きくないケースを中心に説明したが蓄電容量が十分に大きくできれば、それに対応して電車線非設備区間は大きくできることは明らかである。例えば駅間距離の短い路線などでは蓄電容量が十分であれば駅周辺のみに電車線を有する電気鉄道システムも可能である。   In this description, the case where the train line non-equipment section is not large is mainly described. However, if the storage capacity can be sufficiently increased, it is clear that the train line non-equipment section can be correspondingly enlarged. For example, on a route with a short distance between stations, an electric railway system having a train line only around the station is also possible if the storage capacity is sufficient.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、図1を用いて本発明の一実施例の構成を説明する。図示のように電車線と電気的に接続する集電装置1とフィルタリアクトル2を介し電車線に接続されるインバータ装置4と、このインバータ装置4の入力側にフィルタコンデンサ3が、インバータ装置4の出力側に主電動機5がそれぞれ接続される。   First, the configuration of an embodiment of the present invention will be described with reference to FIG. As shown in the figure, a current collector 1 that is electrically connected to the train line, an inverter device 4 that is connected to the train line via the filter reactor 2, a filter capacitor 3 on the input side of the inverter device 4, The main motors 5 are connected to the output side.

またフィルタコンデンサ3と並列に、半導体スイッチング装置であるチョッパ装置6が接続される。このチョッパ装置6は、フリーホイールダイオードを並列接続された第1のIGBT6aのエミッタとフリーホイールダイオードを並列接続された第2のIGBT6bのコレクタが接続されてなる。IGBT6aのコレクタはフィルタリアクトル2とインバータ装置4の間に接続され、IGBT6bのエミッタはインバータ装置4の直流低電位側に接続される。IGBT6bのコレクタとエミッタ間にはインバータ装置4が制御可能な最低直流入力電圧値よりも低い端子電圧を持つように選択された蓄電装置7が接続される。   A chopper device 6 that is a semiconductor switching device is connected in parallel with the filter capacitor 3. The chopper device 6 is formed by connecting the emitter of a first IGBT 6a connected in parallel with a freewheel diode and the collector of a second IGBT 6b connected in parallel with a freewheel diode. The collector of IGBT 6 a is connected between filter reactor 2 and inverter device 4, and the emitter of IGBT 6 b is connected to the DC low potential side of inverter device 4. A power storage device 7 selected to have a terminal voltage lower than the lowest DC input voltage value that can be controlled by the inverter device 4 is connected between the collector and emitter of the IGBT 6b.

また、インバータ装置4の直流側と前記半導体スイッチング装置の接続点の電圧値(Vfc)を検出する直流電圧検出器9、インバータ装置4への入力電流(Iinv)の値を検出するインバータ直流電流検出器10、蓄電装置7の端子電圧(Vch)の値を検出する2次電池直流電圧検出器11および、蓄電装置7からIGBT6bのコレクタに出力される電流(Ich)の値を検出する蓄電装置直流電流検出器12がそれぞれ設けられる。またチョッパ装置6には充放電制御装置13が接続される。さらにインバータ装置4にはインバータ制御装置14が接続され、また蓄電装置7には蓄電制御装置16が接続され、蓄電制御装置16と充放電制御装置13の間には情報伝達手段17が設けられている。蓄電制御装置16は蓄電装置7の充電量や内部温度を検出し許容最大充放電電流を算出するとともに、これらの情報を充放電制御装置13に渡すように構成される。   Further, a DC voltage detector 9 for detecting a voltage value (Vfc) at a connection point between the DC side of the inverter device 4 and the semiconductor switching device, and an inverter DC current detection for detecting a value of an input current (Iinv) to the inverter device 4 Battery 10, secondary battery DC voltage detector 11 for detecting the value of terminal voltage (Vch) of power storage device 7, and power storage device DC for detecting the value of current (Ich) output from power storage device 7 to the collector of IGBT 6b A current detector 12 is provided for each. The charge / discharge control device 13 is connected to the chopper device 6. Further, an inverter control device 14 is connected to the inverter device 4, a power storage control device 16 is connected to the power storage device 7, and an information transmission means 17 is provided between the power storage control device 16 and the charge / discharge control device 13. Yes. The power storage control device 16 is configured to detect the amount of charge and the internal temperature of the power storage device 7 to calculate the allowable maximum charge / discharge current and to pass the information to the charge / discharge control device 13.

図2は図1に示した半導体スイッチング装置であるチョッパ装置6の駆動方法を示す構成例である。充放電制御部21はチョッパ装置6を動作させる時はon/off信号をオンとし制御目標に関連したパルス幅のPWMパルスPpを出力する。このパルスは一方で反転機能24により論理反転しPnが生成され、Pn,Ppが論理積機能22,23を介してIGBT6aとIGBT6bに与えられる。   FIG. 2 is a configuration example showing a driving method of the chopper device 6 which is the semiconductor switching device shown in FIG. When the chopper device 6 is operated, the charge / discharge control unit 21 turns on the on / off signal and outputs a PWM pulse Pp having a pulse width related to the control target. On the other hand, this pulse is logically inverted by the inversion function 24 to generate Pn, and Pn and Pp are given to the IGBT 6a and the IGBT 6b via the AND functions 22 and 23, respectively.

本構成のチョッパ装置6の駆動方法は蓄電装置7が接続される低圧(Vch)側から電源・負荷が接続される高圧(Vfc)側に昇圧し電流を流す動作と、その逆に高圧(Vfc)側から降圧し低圧(Vch)側に電流を流す両方向の動作を連続的に行うことが可能なよく知られた回路方式である。   The driving method of the chopper device 6 of this configuration is an operation of increasing the voltage from the low voltage (Vch) side to which the power storage device 7 is connected to the high voltage (Vfc) side to which the power source / load is connected and flowing the current, and vice versa. This is a well-known circuit system capable of continuously performing operations in both directions in which a voltage is stepped down from the) side and a current is supplied to the low voltage (Vch) side.

図3にその動作波形を示す。Ichを蓄電装置7から電圧変換用リアクトル8に向かって流れる向きを正と定義し、(図3a)に示すようなPpを与えるとすると、図2に示すチョッパ装置入力電圧Vbは電圧変換用リアクトル8を流れる電流の向きに係わらず(図3b)の波形となる。この電圧と蓄電装置電圧(Vch)が電圧変換用リアクトル8に印加されるので蓄電池からIchは(図3c)に示すような電流波形となる。   FIG. 3 shows the operation waveform. When the direction in which Ich flows from the power storage device 7 toward the voltage conversion reactor 8 is defined as positive, and Pp as shown in FIG. 3A is given, the chopper device input voltage Vb shown in FIG. Regardless of the direction of the current flowing in FIG. Since this voltage and the storage device voltage (Vch) are applied to the voltage conversion reactor 8, Ich from the storage battery has a current waveform as shown in FIG. 3C.

ここでインダクタンス(L)に流れる電流(I)と両端電圧(V)の関係はよく知られているように次の(1)式で表される。
L・di・dt=V・・・・・・・(1)
ここでtは時間を示す。
Here, as is well known, the relationship between the current (I) flowing through the inductance (L) and the voltage (V) at both ends is expressed by the following equation (1).
L · di · dt = V (1)
Here, t indicates time.

また、図3に示す各物理量を以下のように定義し
ton:Gate bがオンの時間
toff:Gate bがオフの時間
tc:Gate bのパルスの出力される周期
ΔIon:ton時間の間でのIchの増分
ΔIoff:toff時間の間でのIchの増分
ΔIc:tc時間の間でのIchの増分
Vav:tc時間の間でのVbの平均値
ton、toffが十分小さいとして、(1)式を図2の電圧変換用リアクトル8に適用すれば、Gate bがオンのときはIGBT6aがオフしIGBT6bがオンしているので、
Further, each physical quantity shown in FIG. 3 is defined as follows, and when ton: Gate b is on time toff: Gate b is off time tc: Gate b pulse output period ΔIon: between ton time Ich increment ΔIoff: Ich increment during toff time ΔIc: Ich increment during tc time Vav: Vb average value ton, toff during tc time When applied to the voltage conversion reactor 8 of FIG. 2, when Gate b is on, the IGBT 6a is off and the IGBT 6b is on.

L・ΔIon=(Vch−0)・ton・・・・(2)
Gate bがオフのときはIGBT6aがオンしIGBT6bがオフしているので、
L・ΔIoff=(Vch−Vfc)・toff・・・・(3)
である。
L · ΔIon = (Vch−0) · ton ··· (2)
When Gate b is off, the IGBT 6a is on and the IGBT 6b is off.
L · ΔIoff = (Vch−Vfc) · toff (3)
It is.

また、
tc=ton+toff・・・・・・・・・・・・(4)
ΔIc=ΔIon+ΔIoff・・・・・・・・・(5)
Vav=Vfc・toff/tc・・・・・・・・・・(6)
であるから、(2)式と(3)式の和を取り整理すると、
L・ΔIc=(Vch−Vav)・tc・・・・・・・・(7)
が得られる。
Also,
tc = ton + toff (4)
ΔIc = ΔIon + ΔIoff (5)
Vav = Vfc · toff / tc (6)
Therefore, when the sum of formulas (2) and (3) is taken and arranged,
L · ΔIc = (Vch−Vav) · tc (7)
Is obtained.

(1)式と(7)式を比べれば理解されるようにΔI即ちtc時間の間でのIchの増分は電圧変換用リアクトル8の両端に印加されるtc間の平均電圧即ち(Vch−Vav)が直流的に電圧変換用リアクトル8印加されていると同等の電流の変化率となる。(2)式、(3)式は電圧変換用リアクトル8に流れる電流の向きにかかわらず成立し、かつVabは(6)式のようにton/tcによりコントロールできるから図2の構成で蓄電装置7への充放電が連続的に制御可能である。したがってVav>Vchとなるようtoff(またはton)時間を制御すればIchは負側に(充電側)に移行し、Vav<Vchとなるようtoff(またはton)時間を制御すればIchは正側に(放電側)に移行する。   As can be understood by comparing the equations (1) and (7), the increment of Ich during ΔI, that is, tc time, is the average voltage between tc applied to both ends of the voltage conversion reactor 8, that is, (Vch−Vav). ) Becomes a current change rate equivalent to that when the voltage conversion reactor 8 is applied in a DC manner. The expressions (2) and (3) are established regardless of the direction of the current flowing through the voltage conversion reactor 8, and Vab can be controlled by ton / tc as in the expression (6). 7 can be continuously controlled. Therefore, if the toff (or ton) time is controlled so that Vav> Vch, Ich shifts to the negative side (charging side), and if the toff (or ton) time is controlled so that Vav <Vch, Ich is the positive side. (Discharge side).

次に、充放電制御部21による充放電制御について説明する。図4は、図2に示した充放電制御部21の構成例を示すブロック図である。図5は、図4に示した構成の充放電制御部21による制御を行った際の電圧電流制御特性示した図である。この充放電制御部21では、電車線に電圧を供給する地上側電源の送り出し電圧値(Vs)より低く、インバータ装置4の入力電圧Vfcに関する最低制御可能電圧値(Vbo)よりも高い制御目標値を発生する基準値発生器41の出力(Vo)から直流電圧検出器9で検出したフィルタコンデンサ3の両端電圧Vfcの値を減算器42により減算し、その差分に対し係数器43により適度な係数K1を乗算して上記電圧差分に比例して大きさの定まるチョッパ電流目標値をIchP1算出する。   Next, charge / discharge control by the charge / discharge control unit 21 will be described. FIG. 4 is a block diagram illustrating a configuration example of the charge / discharge control unit 21 illustrated in FIG. 2. FIG. 5 is a diagram showing voltage-current control characteristics when the control by the charge / discharge control unit 21 having the configuration shown in FIG. 4 is performed. In the charge / discharge control unit 21, a control target value that is lower than the send-out voltage value (Vs) of the ground-side power source that supplies the voltage to the train line and higher than the minimum controllable voltage value (Vbo) related to the input voltage Vfc of the inverter device 4. The value of the voltage Vfc across the filter capacitor 3 detected by the DC voltage detector 9 is subtracted from the output (Vo) of the reference value generator 41 for generating the difference by the subtractor 42, and an appropriate coefficient is obtained by the coefficient unit 43 for the difference. By multiplying by K1, IchP1 is calculated as a chopper current target value whose size is determined in proportion to the voltage difference.

基準値VoよりVfcが大きい場合はチョッパ装置6の電流制御目標IchP1は負となる。このため後に示すようにインバータ装置4の直流側から電流を取る側即ちVfcを下げる側に動作する。基準値VoよりVfcが小さい場合はチョッパ装置6の制御目標は正となり、上記とは逆にインバータ装置4の直流側へ電流を送り出しVfcを上げる側に動作する。この動作によりインバータ入力電圧Vfcを一定に保つような動作すなわち定電圧制御の動作をする。   When Vfc is larger than the reference value Vo, the current control target IchP1 of the chopper device 6 is negative. For this reason, as will be described later, the inverter device 4 operates from the DC side to the side where current is taken, that is, the side where Vfc is lowered. When Vfc is smaller than the reference value Vo, the control target of the chopper device 6 is positive, and, contrary to the above, the current is sent to the DC side of the inverter device 4 to operate to increase Vfc. By this operation, an operation for keeping the inverter input voltage Vfc constant, that is, a constant voltage control operation is performed.

次に、リミット機能44により、IchP1の値をminL以上からmaxL以下の範囲に限定し、この値を最終的なチョッパ電流目標値IchP4とする。minLは蓄電制御装置16より情報伝達手段17を介して得られる許容最大充電電流値を負の値で示したIchP2と蓄電装置7の充電量を示す値SOCとにより演算され出力される負の値である。またその値はSOCを入力しSOCが許容される最高値を示す閾値3以上のとき0、SOCが閾値3よりやや小さいもう一つの閾値4以下の場合は1を出力し、かつ、閾値3、閾値4の間は0から1の中間値を出力するSOC上限リミットパターン発生器48の出力をIchP2に乗じたものである。   Next, the value of IchP1 is limited to a range between minL and maxL by the limit function 44, and this value is set as a final chopper current target value IchP4. minL is a negative value that is calculated and output by IchP2 that indicates the allowable maximum charging current value obtained from the power storage control device 16 via the information transmission means 17 as a negative value and the value SOC that indicates the charge amount of the power storage device 7 It is. The value is 0 when the SOC is input and the SOC is equal to or greater than the threshold 3 indicating the maximum allowable value, and 1 is output when the SOC is another threshold 4 that is slightly smaller than the threshold 3, and the threshold 3, During the threshold 4, the output of the SOC upper limit pattern generator 48 that outputs an intermediate value from 0 to 1 is multiplied by IchP2.

一方maxLは蓄電制御装置16より情報伝達手段17を介して得られる許容最大放電電流値を正の値で示したIchP3とSOCとにより演算され出力される正の値である。またその値はSOCを入力しSOCが許容される最低値を示す閾値1以下のとき0、SOCが閾値1よりやや大きいもう一つの閾値2以上の場合は1を出力し、かつ、閾値1、閾値2の間は0から1の中間値を出力するSOC下限リミットパターン発生器50の出力をIchP2に乗じたものである。   On the other hand, maxL is a positive value that is calculated and output by IchP3 and SOC that indicate the allowable maximum discharge current value obtained from the power storage control device 16 via the information transmission means 17 as a positive value. The value is 0 when the SOC is input and the threshold is 1 or less indicating the lowest allowable SOC, and 1 when the SOC is 2 or more, which is slightly larger than the threshold 1, and the threshold 1 is output. During the threshold value 2, IchP2 is multiplied by the output of the SOC lower limit pattern generator 50 that outputs an intermediate value from 0 to 1.

このようにして得られる最終的なチョッパ電流目標値IchP4に対し蓄電装置電流検出部12により検出されるIchを蓄電装置7から放電する向きを正としてネガティブフィードバックし電流制御部(ACR)46により比例積分などの処置を行い通流角指令とする。この値をPWM変換器47により通流角指令に比例したパルス幅を有するパルス信号に変換し、図2に示すPpとして出力する。電流の向きを含めてIchの増減はチョッパ装置6のパルス幅により制御できることは上記図3において説明したとおりである。   Negative feedback is performed with the current control unit (ACR) 46 in proportion to the final chopper current target value IchP4 obtained in this manner, with the direction in which the Ich detected by the power storage device current detection unit 12 is discharged from the power storage device 7 being positive. A treatment such as integration is performed and the flow angle command is set. This value is converted by the PWM converter 47 into a pulse signal having a pulse width proportional to the conduction angle command and output as Pp shown in FIG. As described above with reference to FIG. 3, the increase / decrease of Ich including the direction of current can be controlled by the pulse width of the chopper device 6.

IchP4はIchP2からIchP3の範囲に限定され、IchP4がIchの最終的な制御目標値とされる。この機能により蓄電装置7は最低許容充電量以下では蓄電装置の放電が禁止され最低許容充電量が確保され、蓄電装置7が最高許容充電量以上では蓄電装置7の充電が禁止され最高許容充電量が保証される。   IchP4 is limited to the range of IchP2 to IchP3, and IchP4 is the final control target value of Ich. With this function, when the power storage device 7 is below the minimum allowable charge amount, discharging of the power storage device is prohibited and the minimum allowable charge amount is secured, and when the power storage device 7 is above the maximum allowable charge amount, charging of the power storage device 7 is prohibited and the maximum allowable charge amount is achieved. Is guaranteed.

またIchP4はminL以上(負の値であるから絶対値としては許容値以下)、minLは許容最大充電電流値IchP2以上(負の値であるから絶対値としては許容値以下)であり、かつIchP4はmaxL以下、manLは許容最大放電電流値IchP3以下であるから蓄電装置7の充放電電流は最大充放電許容電流値以内に制限される。   Further, IchP4 is equal to or greater than minL (because it is a negative value, so that the absolute value is less than the allowable value), minL is greater than or equal to the allowable maximum charging current value IchP2 (because it is a negative value, and is less than the allowable value as the absolute value), and IchP4 Is less than maxL, and manL is less than or equal to the allowable maximum discharge current value IchP3, the charge / discharge current of the power storage device 7 is limited within the maximum allowable charge / discharge current value.

図5に上記で説明したSOC下限リミットパターン発生器50の特性を示す。同様に図6に上記で説明したSOC上限リミットパターン発生器48の特性を示す。   FIG. 5 shows the characteristics of the SOC lower limit pattern generator 50 described above. Similarly, FIG. 6 shows the characteristics of the SOC upper limit pattern generator 48 described above.

また、図7に図4による制御を行った場合の蓄電装置7の充放電特性を示す。制御電圧目標値VoよりもVfcが低いところではIchの制御目標値IchP1は正、即ち蓄電装置7から放電の向きに電流を制御するよう目標値が決められ、制御電圧目標値VoよりもVfcが高いところではIchの制御目標値IchP1は負、即ち蓄電装置7へ充電の向きに電流を制御するよう目標値が決められる。   FIG. 7 shows the charge / discharge characteristics of the power storage device 7 when the control according to FIG. 4 is performed. Where Vfc is lower than the control voltage target value Vo, the Ich control target value IchP1 is positive, that is, the target value is determined so as to control the current in the direction of discharge from the power storage device 7, and Vfc is lower than the control voltage target value Vo. The Ich control target value IchP1 is negative at higher points, that is, the target value is determined so as to control the current in the direction of charging the power storage device 7.

またVfcがこの制御電圧目標値Voより大きく離れた時には、このIchP1はリミット機能44により正側はmaxL、負側はminLにリミットされ、図7の特性となる。これをIchP4としてその後段の電流制御部ACR46に入力され、これに追従制御することで図7の特性を得る。   When Vfc is far away from the control voltage target value Vo, the IchP1 is limited by the limit function 44 to maxL on the positive side and minL on the negative side, and has the characteristics shown in FIG. This is input to the subsequent current control unit ACR 46 as IchP4, and the characteristics shown in FIG.

本発明の車両用制御装置を搭載した車両が電車線非設備区間を通過する際の動作を図8で説明する。ここで、Iinvはインバータ装置4の入力電流、Vfcはインバータ装置の入力電圧、Idcは電車線からの供給電流、Ichは蓄電装置7の充放電電流、SOCは蓄電装置の充電率を示す。   The operation when a vehicle equipped with the vehicle control device of the present invention passes through a train line non-equipment section will be described with reference to FIG. Here, Iinv is the input current of the inverter device 4, Vfc is the input voltage of the inverter device, Idc is the supply current from the train line, Ich is the charge / discharge current of the power storage device 7, and SOC is the charge rate of the power storage device.

電車線の設備区間である図8のA点において力行を開始し、(図8a)に示すように所定の電流を取りながら力行の状態でB点で電車線非設備区間に入ったとする。A点では電車線電圧を受けているから(図8b)に示すようにインバータ装置4の入力電圧Vfcは電車線電圧相当である。図7に示すようにこの電圧領域ではチョッパ装置6は充電動作になっているから、このときインバータ装置4の入力電流は(図8c)に示すように電車線から集電装置1を介して供給される。   It is assumed that power running is started at point A in FIG. 8 which is an equipment section of a train line, and a train line non-equipment section is entered at point B in a power running state while taking a predetermined current as shown in FIG. 8A. Since the train line voltage is received at the point A (FIG. 8b), the input voltage Vfc of the inverter device 4 is equivalent to the train line voltage. As shown in FIG. 7, the chopper device 6 is charged in this voltage region. At this time, the input current of the inverter device 4 is supplied from the train line via the current collector 1 as shown in FIG. 8c. Is done.

蓄電装置7は電車線電圧によりチョッパ装置6が充電動作領域にあるので充電状態、または十分充電がなされている時は図4のSOC上限リミットパターン発生器48の働きにより充電電流をほぼ0に絞り込んだ状態となっている。(図8d)にはA点でこの充電電流を絞り込んだ状態になっているとして表記してある。   Since the chopper device 6 is in the charging operation region due to the train line voltage, the power storage device 7 is charged, or when fully charged, the charging current is narrowed down to almost zero by the action of the SOC upper limit pattern generator 48 of FIG. It is in a state. In FIG. 8d, it is indicated that the charging current is narrowed at point A.

したがって(図8e)にはSOCがほぼ上限リミット値付近に図示されている。B点で電車線非設備区間に入ると(図8c)に示すように電車線からの電流の供給が無くなり、Vfcは(図8b)に示すように急降下するが、Vfcがチョッパ装置6の制御目標Voまで降下すると図4の42、43の定電圧制御機能によりVfcをVo近傍に保つよう放電が開始され、(図8d)のB−C区間に示すようにチョッパ装置6より電流が供給される。このとき蓄電装置7は放電を行うので(図8e)のように充電量SOCは減少する。   Accordingly, in FIG. 8e, the SOC is shown in the vicinity of the upper limit value. When a train line non-equipment section is entered at point B (FIG. 8c), no current is supplied from the train line and Vfc drops rapidly as shown in (FIG. 8b), but Vfc is controlled by the chopper device 6. When the voltage drops to the target Vo, discharge is started to keep Vfc in the vicinity of Vo by the constant voltage control functions 42 and 43 in FIG. 4, and current is supplied from the chopper device 6 as shown in the section B-C in FIG. 8d. The At this time, the power storage device 7 discharges, so that the charge amount SOC decreases as shown in FIG. 8e.

さらにインバータ装置4の多くは入力電圧変動に対して定電力を取るよう制御されているものが多いので(図8a)にはB点通過後電圧の降下分に対応して入力電流が増加する様子が示されている。   Further, since many inverter devices 4 are controlled to take constant power with respect to input voltage fluctuations (FIG. 8a), the state in which the input current increases corresponding to the drop in voltage after passing through point B. It is shown.

次に車両がC点において再び電車線設備区間に入るとインバータ装置4には(図8b)に示すように再び電車線電圧が印加されるが、このときチョッパ装置6はVfcの上昇により図5に示すように充電動作に移行し、(図8d)のように充電を開始する。したがって(図8c)に示すごとく、電車線から供給される電流は(図8a)に示すインバータ装置4に入力する電流と(図8d)に示すチョッパ装置6が蓄電装置7に充電するために入力する電流の合計となる。   Next, when the vehicle again enters the train line facility section at the point C, the train line voltage is again applied to the inverter device 4 as shown in FIG. 8B. At this time, the chopper device 6 increases the Vfc as shown in FIG. As shown in Fig. 8, the charging operation is started, and charging is started as shown in Fig. 8d. Therefore, as shown in FIG. 8c, the current supplied from the train line is the current input to the inverter device 4 shown in FIG. 8a and the chopper device 6 shown in FIG. The total current to be

この後、力行をオフすると(図8c)のD点で示すごとくインバータ装置4の力行電流分Iinvが電車線の供給電流Idcから減少し、蓄電装置7への充電が完了するとE点に示すごとく充電電流分が電車線の供給電流Idcから減少する。尚、蓄電装置7への充電完了は充電により充電量SOCが上昇し、図6の閾値3に達することにより図4の48の出力が0を出力し、その結果minLが0となり、一方で電車線が印加されているのでIchP1が負を示しているため制御目標電流値IchP4が0となることにより自動的に行われる。   Thereafter, when the power running is turned off (FIG. 8c), the power running current Iinv of the inverter device 4 decreases from the supply current Idc of the train line as indicated by the point D, and when the charging of the power storage device 7 is completed, as shown by the point E. The charge current is reduced from the supply current Idc of the train line. When the charging of the power storage device 7 is completed, the amount of charge SOC increases due to charging, and when the threshold value 3 in FIG. 6 is reached, the output 48 in FIG. 4 outputs 0, and as a result, minL becomes 0. Since the line is applied, IchP1 is negative, so the control target current value IchP4 is automatically set to 0.

本発明のシステムの適用における注意点として以下の点がある。多くの車両駆動用インバータ装置は車両の乗り心地を考慮し、運転の変更操作が行われていない短時間の範囲では電動機に一定出力を出力するように制御されている。このため入力電力も一定電力を取るよう制御される。本発明の装置を搭載した車両において、電車線非設備区間で車両を運転する際に蓄電装置7が供給できる最大電力以上の電力をインバータ装置4が取るような運転扱いをされた場合、蓄電装置7が最大放電を行ったとしても蓄電装置4からの電力が不足しインバータ入力電圧Vfcを制御目標電圧に保持できなくなる。   There are the following points to note when applying the system of the present invention. Many vehicle drive inverter devices are controlled so as to output a constant output to an electric motor in a short time range in which a driving change operation is not performed in consideration of the riding comfort of the vehicle. For this reason, the input power is also controlled to take a constant power. In a vehicle equipped with the device of the present invention, when the inverter device 4 is operated so that the inverter device 4 takes more power than the maximum power that can be supplied by the power storage device 7 when the vehicle is operated in the non-equipment section of the train line, the power storage device Even if 7 performs maximum discharge, the power from the power storage device 4 is insufficient, and the inverter input voltage Vfc cannot be maintained at the control target voltage.

さらに、インバータ装置4は上記のように一定電力を入力するよう制御されているからインバータ装置4の入力電圧Vfcが制御目標電圧を離れインバータ装置の最低制御電圧Vbo以下となりインバータ装置4が制御不能、運転停止に至ってしまう。これを避ける為に一つの例としては電車線非設備区間においては蓄電装置7の最大放電電力以上の電力を取る運転を取り扱い上行わないという手法も考えられる。しかしながら上記のようなインバータ装置4の最低制御電圧Vbo以下となる状況を自動的に回避できればより有効である。   Further, since the inverter device 4 is controlled to input constant power as described above, the input voltage Vfc of the inverter device 4 leaves the control target voltage and becomes the minimum control voltage Vbo of the inverter device, and the inverter device 4 cannot be controlled. The operation will be stopped. In order to avoid this, as an example, a method of not performing an operation that takes electric power more than the maximum discharge power of the power storage device 7 in the non-equipment section of the train line may be considered. However, it is more effective if the situation where the inverter device 4 is below the minimum control voltage Vbo can be automatically avoided.

図9のグラフは本発明のシステムの適用における、良好なインバータ装置4の特性を示す。即ちインバータ装置4の入力電圧Vfcに関する最大出力特性を図9のごとくインバータ装置4の最低制御電圧値Vboで0、Vboよりやや大きい所定の値Vba以上で通常時の最大出力特性値としてVba、Vbo間を最大出力を漸減させるよう制御するものである。インバータ装置4の出力最大特性をこのようにすることにより、インバータ装置4が蓄電装置7の最大放電電力以上の電力を取っていたとしてもVfcが低下しVboに近づくとインバータ装置4の入力が低減され蓄電装置の放電電力以下となってVfcがVbo以上に保たれるのでインバータ装置4が制御不能、運転停止に至ることを回避できる。   The graph of FIG. 9 shows a favorable characteristic of the inverter device 4 in the application of the system of the present invention. That is, as shown in FIG. 9, the maximum output characteristic related to the input voltage Vfc of the inverter device 4 is 0 at the minimum control voltage value Vbo of the inverter device 4 and is greater than a predetermined value Vba slightly larger than Vbo, and Vba, Vbo as the maximum output characteristic values at normal times. The interval is controlled to gradually decrease the maximum output. By making the maximum output characteristic of the inverter device 4 in this way, even if the inverter device 4 takes more power than the maximum discharge power of the power storage device 7, the input of the inverter device 4 decreases when Vfc decreases and approaches Vbo. Then, since the electric power becomes lower than the discharge power of the power storage device and Vfc is kept higher than Vbo, it is possible to avoid the inverter device 4 from being uncontrollable and being brought to an operation stop.

次に、充放電制御部21の他の実施例を示す。図10は、図2に示した充放電制御部21の他の構成例を示すブロック図である。図11は、図10に示した構成に用いるSOC上限リミットパターン発生器48、48aの特性図である。図12は、図10に示した構成による制御を行った際の電圧電流制御特性を示した図である。   Next, another embodiment of the charge / discharge control unit 21 will be described. FIG. 10 is a block diagram showing another configuration example of the charge / discharge control unit 21 shown in FIG. FIG. 11 is a characteristic diagram of SOC upper limit pattern generators 48 and 48a used in the configuration shown in FIG. FIG. 12 is a diagram showing the voltage / current control characteristics when the control according to the configuration shown in FIG. 10 is performed.

本実施例は蓄電装置7の蓄電容量が大きく、非電車線区間での走行に必要な蓄電容量に対して蓄電容量的に余裕を持つ場合に有効な実施例である。図4の実施例は非電車線区間を確実に走行することを目的とするものであるため、蓄電容量を非電車線区間での走行を確実にすることを最優先とし、図8でも示したように電車線設備区間に入ると充放電制御装置13は蓄電装置へ許容される上限のSOCまで充電するよう動作する。したがって回生時の回生エネルギーを吸収しにくい特性がある。本例は蓄電容量の上記余裕を利用して回生エネルギー吸収を行い易くするものである。   This embodiment is effective when the storage capacity of the power storage device 7 is large and there is a margin in storage capacity with respect to the storage capacity necessary for traveling in the non-train line section. Since the embodiment of FIG. 4 is intended to reliably travel in the non-train line section, the highest priority is to ensure the storage capacity in the non-train line section, as shown in FIG. Thus, when entering the train line facility section, the charge / discharge control device 13 operates to charge up to the upper limit SOC allowed for the power storage device. Therefore, there is a characteristic that it is difficult to absorb regenerative energy during regeneration. In this example, regenerative energy absorption is facilitated by utilizing the above-described margin of the storage capacity.

本実施例の充放電制御部21は、図4の構成に対し以下を追加したものである。具体的には、図4に示す基準値発生器41を第1の基準発生器41とし、これに対して第2の基準値発生器41aと、基準値発生器41の出力と基準値発生器41aの出力を切り替えるスイッチ52と、回生ブレーキ操作がなされたことを検出する回生検出部53と、蓄電装置7の充電量SOCが所定の値を超えたことを検出する比較器54と、回生検出部53の出力と前記比較器54の出力を入力し、回生時以外でかつSOCの値が以下に示す閾値3pを超えているとき前記スイッチ52を第2の基準値発生器41aの出力が選ばれそれ以外では基準値発生器41の出力が選ばれるよう出力する論理積機能55とを追加し、さらに図4に示すSOC上限パターン発生器48を第1のSOC上限パターン発生器48とし、これに対してSOCを入力し充電電流限界IchP2に対する乗算値を発生する第2のSOC上限パターン発生器48aと、回生時にはSOC上限パターン発生器48の出力をそれ以外の条件では第2のSOC上限パターン発生器48aの出力を選択するよう切り替えるスイッチ56と追加したものである。   The charge / discharge control unit 21 of the present embodiment is obtained by adding the following to the configuration of FIG. Specifically, the reference value generator 41 shown in FIG. 4 is used as the first reference generator 41, whereas the second reference value generator 41a, the output of the reference value generator 41 and the reference value generator are used. A switch 52 for switching the output of 41a, a regeneration detection unit 53 for detecting that a regenerative braking operation has been performed, a comparator 54 for detecting that the amount of charge SOC of the power storage device 7 has exceeded a predetermined value, and regeneration detection The output of the unit 53 and the output of the comparator 54 are input, and the output of the second reference value generator 41a is selected for the switch 52 when the SOC value exceeds the threshold value 3p shown below except during regeneration. Otherwise, a logical product function 55 for outputting the output of the reference value generator 41 is added, and the SOC upper limit pattern generator 48 shown in FIG. 4 is used as the first SOC upper limit pattern generator 48. SOC for The second SOC upper limit pattern generator 48a that inputs and generates a multiplication value for the charging current limit IchP2, and the output of the SOC upper limit pattern generator 48 during regeneration and the output of the second SOC upper limit pattern generator 48a under other conditions And a switch 56 for switching to select.

また、回生検出部53は、例えば図示しない運転用装置において運転士により減速にかかる操作がなされたことを示す制御信号が出力された際には、これを検出して回生とみなすものである。さらに第2の基準値発生器41aは電車線に電圧を供給する地上側電源の送り出し電圧値Vsと一致もしくはVsの極近傍の値(Vso)を出力し、第2のSOC上限リミットパターン発生器48aは第1のSOC上限リミットパターン発生器を48に比較して蓄電量SOCが低い上限値を持つもので、図6に示す閾値3よりも低い値の閾値3pを持ちSOCが閾値3p以上のとき0、SOCが閾値3pよりやや小さいもう一つの閾値4p以下の場合は1を出力し、かつ、閾値3p、閾値4pの間は0から1の中間値を出力するよう構成する。第1のSOC上限リミットパターン発生器を48と第2のSOC上限リミットパターン発生器48aの特性の関係を図11に示す。   Further, when a control signal indicating that an operation for deceleration is performed by a driver in a driving device (not shown), for example, the regeneration detection unit 53 detects this and regards it as regeneration. Further, the second reference value generator 41a outputs a value (Vso) that matches or is close to the sending voltage value Vs of the ground-side power supply that supplies the voltage to the train line, and is a second SOC upper limit pattern generator. 48a has an upper limit value in which the amount of stored electricity SOC is lower than that of the first SOC upper limit pattern generator 48, and has a threshold value 3p that is lower than the threshold value 3 shown in FIG. When 0, the SOC is less than the threshold value 4p, which is slightly smaller than the threshold value 3p, 1 is output, and an intermediate value between 0 and 1 is output between the threshold value 3p and the threshold value 4p. FIG. 11 shows the relationship between the characteristics of the first SOC upper limit pattern generator 48 and the second SOC upper limit pattern generator 48a.

本実施例の構成によれば、スイッチ52、56により次の4つの動作状態に切り替わる。
(1)回生時かつSOCが図11の閾値3p以上の時
(2)回生時かつSOCが図11の閾値3p以下の時
(3)非回生時かつSOCが図11の閾値3p以上の時
(4)非回生時かつSOCが図11の閾値3p以下の時
According to the configuration of the present embodiment, the following four operation states are switched by the switches 52 and 56.
(1) When regenerating and SOC is not less than the threshold value 3p in FIG. 11 (2) When regenerating and SOC is not more than the threshold value 3p in FIG. 11 (3) When not regenerating and SOC is not less than the threshold value 3p in FIG. 4) When non-regenerative and SOC is below the threshold value 3p in FIG.

(1)(2)の場合は第1の基準値発生器41の出力Voがスイッチ52により選択され、SOC上限リミットパターン発生器48の出力がスイッチ56により選択される。
したがって図4と同じ制御構成となり動作も図4で説明したように閾値3まで充電が可能である。
(1) In the case of (2), the output Vo of the first reference value generator 41 is selected by the switch 52, and the output of the SOC upper limit pattern generator 48 is selected by the switch 56.
Therefore, the control configuration is the same as in FIG. 4, and the operation can be performed up to the threshold value 3 as described in FIG.

(4)の場合は第1の基準値発生器41の出力Voがスイッチ52により選択され、SOC上限リミットパターン発生器48aの出力がスイッチ56により選択される。したがって図4で説明した動作と同様であるが充電量SOCが閾値3pまでで制限される。即ち蓄電装置7の許容される上限閾値3に対して閾値3と閾値3pの差分余裕を持って充電が停止される。   In the case of (4), the output Vo of the first reference value generator 41 is selected by the switch 52, and the output of the SOC upper limit pattern generator 48a is selected by the switch 56. Therefore, the operation is the same as that described with reference to FIG. 4, but the charge amount SOC is limited to the threshold value 3p. That is, the charging is stopped with a difference margin between the threshold 3 and the threshold 3p with respect to the allowable upper threshold 3 of the power storage device 7.

(3)の場合は第2の基準値発生器41aの出力Vsoがスイッチ52により選択され、SOC上限リミットパターン発生器48の出力がスイッチ56により選択される。この場合減算器42に入力されインバータ装置入力電圧Vfcと比較される信号がVsoとなる。したがって減算器42、係数器43によりVsoを制御目標とする定電圧制御が行われる。   In the case of (3), the output Vso of the second reference value generator 41 a is selected by the switch 52, and the output of the SOC upper limit pattern generator 48 is selected by the switch 56. In this case, the signal input to the subtractor 42 and compared with the inverter device input voltage Vfc is Vso. Therefore, the subtractor 42 and the coefficient unit 43 perform constant voltage control with Vso as a control target.

図12にこのときの定電圧制御の特性を示す。Vsoは電車線送り出し電圧Vsとほぼ同じであるから、図12から明らかなように電車線設備区間においても集電装置1を介して入力されるインバータ装置入力電圧Vfcが電車線送り出し電圧より低い時、即ち当該車両及び付近の当該車両以外の何らかの電気設備が電力を消耗しこれにより電車線電圧が低下していれば上記定電圧制御は放電側に動作する。   FIG. 12 shows the characteristics of the constant voltage control at this time. Since Vso is substantially the same as the train line sending voltage Vs, as is clear from FIG. 12, when the inverter device input voltage Vfc inputted through the current collector 1 is lower than the train line sending voltage even in the train line facility section. That is, if any electric equipment other than the vehicle and the vehicle in the vicinity consumes electric power and thereby the train line voltage is lowered, the constant voltage control operates on the discharge side.

この動作は(4)の場合即ち充電量が閾値3pを超えた非回生時であるから回生していない時を選んで充電量SOCを3pに戻すように動作する。即ち回生時に閾値3pを超えて充電された時、電車線設備区間であっても放電動作を行いSOCを閾値3pに戻すことが可能である。したがって回生時以外は充電量SOCは閾値3pに近づくように動作し、回生時は上記(1)(2)に示したように閾値3まで充電が可能なように制御されているから、回生エネルギーの吸収が可能となる。   This operation is performed so as to return the charge amount SOC to 3p by selecting the case of (4), that is, the non-regenerative time when the charge amount exceeds the threshold value 3p and not being regenerated. That is, when the battery is charged beyond the threshold 3p during regeneration, the SOC can be returned to the threshold 3p by performing a discharging operation even in the train line facility section. Accordingly, the SOC is controlled so that the charge amount SOC approaches the threshold value 3p except at the time of regenerative operation, and the regenerative energy is controlled to be able to be charged up to the threshold value 3 as shown in the above (1) and (2). Can be absorbed.

次に本実施例の動作の例を図13により説明する。ここで、Iinvはインバータ装置4の入力電流、Vfcはインバータ装置4の入力電圧、Idcは電車線からの供給電流、Ichは蓄電装置7の充放電電流、SOCは蓄電装置7の充電率を示す。本例は(図13e)に示すように電車線設備区間で非回生時のSOC上限リミット値閾値3pまで蓄電装置7が充電されている状態で電車線非設備区間に入り回生し、その後電車線設備区間に入り力行したケースを示している。この条件は、図4に示す実施例の場合では最初の電車線設備区間でSOCが許容上限リミット値閾値3まで充電されるから電車線非設備区間での回生では回生エネルギーを吸収できず回生が動作できないケースである。   Next, an example of the operation of this embodiment will be described with reference to FIG. Here, Iinv is the input current of the inverter device 4, Vfc is the input voltage of the inverter device 4, Idc is the current supplied from the train line, Ich is the charge / discharge current of the power storage device 7, and SOC is the charge rate of the power storage device 7. . In this example, as shown in FIG. 13e, in the train line equipment section, the power storage device 7 is charged up to the SOC upper limit threshold value threshold value 3p at the time of non-regeneration, and then enters the train line non-equipment section and regenerates. The case where the equipment section was entered and powered is shown. In the case of the embodiment shown in FIG. 4, this condition is that the SOC is charged up to the allowable upper limit threshold value 3 in the first train line equipment section, and regeneration in the non-train line section cannot absorb regenerative energy and regeneration is performed. It is a case that cannot be operated.

まず最初に、A点で力行を行ったとする。力行により若干電車線電圧が下がり(図13b)のようにVfcが低下するがこの状態は上記(4)の条件に当たるから定電圧制御目標はVoでありチョッパ装置6は充電動作状態であるがSOCが閾値3pにあるので第2のSOC上限リミットパターン発生器48aの出力は0であり、この出力が選択されminLが0となっているため充放電ともに行われず、(図13c)のように電車線からの電流Idcがインバータに供給される。力行オフ後力行電流がなくなることによりVfcは一旦復帰するが、B点において電車線非設備区間に入り図4の場合と同様にチョッパ装置6の定電圧制御目標値Voに低下する。   First, assume that powering is performed at point A. The power line voltage slightly decreases due to power running (FIG. 13b), and Vfc decreases. However, since this state corresponds to the above condition (4), the constant voltage control target is Vo and the chopper device 6 is in the charging operation state. Is at the threshold value 3p, the output of the second SOC upper limit pattern generator 48a is 0, and since this output is selected and minL is 0, charging and discharging are not performed, and the train as shown in FIG. 13c. A current Idc from the line is supplied to the inverter. When the power running current disappears after the power running is turned off, Vfc once returns, but enters the non-equipment section of the train line at the point B and drops to the constant voltage control target value Vo of the chopper device 6 as in the case of FIG.

この状態では惰行状態なのでチョッパ装置6は定電圧制御を行うけれども(図13d)のチョッパ電流Ichはほとんど0である。この後C点において回生が行われると上記(2)の状態即ちスイッチ56によって第1のSOC上限リミットパターン発生器48の出力が選択されるが、SOCは閾値3p付近にあるので図11からもわかるように0ではない有限の値が出力される。これによりminLは負の有限の値が出力され回生によるインバータ装置入力電圧Vfcの上昇を抑えるようチョッパ装置の定電圧制御機能により蓄電装置7への充電即ち回生電力の吸収がおこなわれ、SOCは閾値3pを越えて上記(1)の状態となり閾値3にむかって上昇する。   In this state, since the chopper device 6 is in a coasting state, the chopper device 6 performs constant voltage control, but the chopper current Ich in FIG. 13d is almost zero. Thereafter, when regeneration is performed at the point C, the output of the first SOC upper limit pattern generator 48 is selected by the state (2), that is, the switch 56, but the SOC is in the vicinity of the threshold value 3p. As can be seen, a non-zero finite value is output. As a result, a negative finite value is output for minL, and the constant voltage control function of the chopper device charges the power storage device 7 so as to suppress an increase in the inverter device input voltage Vfc due to regeneration, that is, the regenerative power is absorbed. Above 3p, the state (1) is reached and rises toward the threshold 3.

D点において回生がオフされると上記(3)の状態になるからチョッパ装置6の定電圧制御目標値はスイッチ52によって切り替えられVsoを目標とする定電圧制御に切り替わり(図13b)で示すようにVfcはVs付近に上昇する。また同時にスイッチ56によってSOC上限リミットパターン発生器48aの出力が選択されminLは0となる。   When regeneration is turned off at point D, the state of (3) is reached, so that the constant voltage control target value of the chopper device 6 is switched by the switch 52 and switched to constant voltage control targeting Vso (FIG. 13b). Vfc rises in the vicinity of Vs. At the same time, the output of the SOC upper limit pattern generator 48a is selected by the switch 56 and minL becomes zero.

即ち、蓄電装置7への充電は0となりVfcが電車線の送り出しにほぼ等しいVsoより低ければ放電動作を行う状態となる。この後E点で電車線設備区間に入ると(図13c)、(図13d)で示すごとく自車両以外で電力を消費している場合にはチョッパ装置6からは放電がなされ自車両外に向かってIdcが流れる。F点で自車両が力行を開始しVfcがさらに低下すると(図13d)のF−G間で示されるようにチョッパ装置6の定電圧制御がこれに反応し、より多くの放電がなされる。D−G間の放電によりSOCが低減しSOCが閾値3pに達すると比較器54が反転することによりスイッチ52により制御基準値が切り替えられ上記(4)の状態に切り替わりチョッパ装置6の定電圧制御の制御目標電圧はVoとなる。定電圧制御の制御目標電圧Voは電車線電圧より低い値に設定されているからチョッパ装置6は放電を停止し充電動作状態に戻る。   That is, when the charge to the power storage device 7 is 0 and Vfc is lower than Vso which is substantially equal to the delivery of the train line, the discharge operation is performed. Thereafter, when entering the train line equipment section at point E (FIG. 13c), as shown in FIG. 13d, when power is consumed by other than the own vehicle, the chopper device 6 is discharged and goes outside the own vehicle. Idc flows. When the own vehicle starts power running at point F and Vfc further decreases (FIG. 13d), the constant voltage control of the chopper device 6 reacts to this, and more discharge is performed. When the SOC decreases due to the discharge between D and G and the SOC reaches the threshold value 3p, the comparator 54 is inverted, whereby the control reference value is switched by the switch 52 to switch to the state of (4) above, and the constant voltage control of the chopper device 6 is performed. The control target voltage is Vo. Since the control target voltage Vo of constant voltage control is set to a value lower than the train line voltage, the chopper device 6 stops discharging and returns to the charging operation state.

ただし、G点の直後ではSOCは閾値3p付近にあるのでminLはほぼ0を示しており充電電流はほぼ0となる。この後力行がオフされるH点までの間は蓄電装置7からの充放電がほぼ停止されている状態なので(図13c)に示すようにインバータ装置4には電車線からの電流のみが供給される。   However, immediately after the point G, the SOC is in the vicinity of the threshold value 3p, so minL indicates almost 0 and the charging current becomes almost 0. Since the charging / discharging from the power storage device 7 is substantially stopped until the point H at which powering is turned off thereafter, only the current from the train line is supplied to the inverter device 4 as shown in FIG. 13c. The

尚、G点に達した時点で蓄電装置7の充電状態、スイッチ52、56はすべてA点での状態に復帰しているので繰り返し同様な運転がなされても上記説明と同様に電車線非設備区間での運転が可能であることは明らかである。また図13では示さなかったが、電車線非設備区間での力行動作についてはすべての動作が(4)の状態で行われるので図4で説明したものにおいて閾値3を閾値3pに読み替えることで図4で説明したものと同じに説明できる。   When the point G is reached, the state of charge of the power storage device 7 and the switches 52 and 56 have all returned to the state at the point A. It is clear that it is possible to drive in the section. Although not shown in FIG. 13, all the power running operations in the non-equipment section of the train line are performed in the state (4). Therefore, by replacing the threshold value 3 with the threshold value 3 p in FIG. This can be explained in the same manner as described in 4.

以上、本実施例によれば、電車線設備区間において蓄電装置7の充電量SOCを許容される最大値よりもやや低い値になるよう充電制御を行うので次に電車線非設備区間に入った後、インバータ装置4の力行動作のみでなく回生動作も可能であり、このとき蓄電装置7への充電によるエネルギー吸収が可能である。   As described above, according to the present embodiment, the charging control is performed so that the charge amount SOC of the power storage device 7 is slightly lower than the allowable maximum value in the train line facility section. Thereafter, not only the power running operation of the inverter device 4 but also the regenerative operation is possible, and at this time, energy can be absorbed by charging the power storage device 7.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 図1に示した充放電制御装置13の構成例を示すブロック図である。It is a block diagram which shows the structural example of the charging / discharging control apparatus 13 shown in FIG. 図2に示した充放電制御装置13の動作波形例を示すブロック図である。It is a block diagram which shows the example of an operation | movement waveform of the charging / discharging control apparatus 13 shown in FIG. 図2に示した充放電制御部21の構成例を示すブロック図である。It is a block diagram which shows the structural example of the charging / discharging control part 21 shown in FIG. 図1に示したSOC下限リミットパターン発生器50の特性図である。It is a characteristic view of the SOC lower limit pattern generator 50 shown in FIG. 図1に示したSOC上限リミットパターン発生器48の特性図である。FIG. 2 is a characteristic diagram of the SOC upper limit pattern generator 48 shown in FIG. 1. 図1に示した構成例の制御特性図である。FIG. 2 is a control characteristic diagram of the configuration example shown in FIG. 1. 図4に示した構成の充放電制御部21による制御を行った際の動作波形図である。FIG. 6 is an operation waveform diagram when control by the charge / discharge control unit 21 having the configuration shown in FIG. 4 is performed. 図1に示した構成のインバータ装置4の好ましい特性図である。It is a preferable characteristic view of the inverter apparatus 4 of the structure shown in FIG. 図2に示した充放電制御部21の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the charging / discharging control part 21 shown in FIG. 図10に示した第2のSOC上限リミットパターン発生器48aの特性図である。It is a characteristic view of the 2nd SOC upper limit pattern generator 48a shown in FIG. 図10に示した構成の放電制御部による制御を行った際の動作特性図である。It is an operating characteristic figure at the time of performing control by the discharge control part of the structure shown in FIG. 図10に示した構成の放電制御部による制御を行った際の動作波形図である。It is an operation | movement waveform diagram at the time of performing control by the discharge control part of the structure shown in FIG.

符号の説明Explanation of symbols

1 集電装置
2 フィルタリアクトル
3 フィルタコンデンサ
4 インバータ装置
5 主電動機
6 チョッパ装置
6a、6b IGBT
7 蓄電装置
8 電圧変換用リアクトル
9,11 直流電圧検出器
10,12 直流電流検出器
13 充放電制御装置
14 インバータ制御装置
16 蓄電制御装置
17 情報伝達手段
21 充放電制御部
22,23,55 論理積機能
24 反転機能
41,41a 基準値発生器
42,45 減算器
43 係数器
44 リミット機能
46 ACR(電流制御部)
47 PWM変調器
48,48a,50 パターン発生器
49,51 乗算器
52,56 スイッチ
53 回生検出部
54 比較器
DESCRIPTION OF SYMBOLS 1 Current collector 2 Filter reactor 3 Filter capacitor 4 Inverter device 5 Main motor 6 Chopper device 6a, 6b IGBT
DESCRIPTION OF SYMBOLS 7 Power storage device 8 Voltage conversion reactor 9,11 DC voltage detector 10,12 DC current detector 13 Charge / discharge control device 14 Inverter control device 16 Power storage control device 17 Information transmission means 21 Charge / discharge control unit 22,23,55 Logic Product function 24 Inversion function 41, 41a Reference value generator 42, 45 Subtractor 43 Coefficient unit 44 Limit function 46 ACR (current control unit)
47 PWM modulator 48, 48a, 50 pattern generator 49, 51 multiplier 52, 56 switch 53 regeneration detector 54 comparator

Claims (8)

電車線から集電装置を介して直流電圧の供給を受け主電動機の駆動を制御するインバータ装置と、このインバータ装置の直流側に接続された半導体スイッチング装置と、この半導体スイッチング装置に接続された蓄電装置と、前記半導体スイッチング装置が接続されたインバータ装置の直流側の電圧を計測する直流電圧検出手段と、前記直流電圧検出手段の出力に応じて前記半導体スイッチング装置を制御する充放電制御部とを有し、
前記充放電制御部は、充電量を所定の値に保つように前記半導体スイッチング装置を制御する制御部と、前記インバータ装置の直流側と前記半導体スイッチング装置の接続点の電圧を所定の範囲に保つよう前記半導体スイッチング装置を制御する制御部とを備えており
電車線の設備区間で電車線から集電装置を介して直流電圧の供給を受けて、前記直流電圧検出手段の検出値が電車線電源送り出し電圧以上の場合に、前記インバータ装置との接続点に対して前記蓄電装置から充放電を行い蓄電装置の充電量を所定の値に保つように前記半導体スイッチング装置を制御し、
電車線非設備区間で電車線から分離し集電装置を介して直流電圧の供給を受けられず前記直流電圧検出手段の検出値が電車線電源送り出し電圧と前記インバータ装置の制御可能な最低直流入力電圧との間に設定された特定電圧範囲内となる場合に、前記直流電圧検出手段の出力に応じて、前記蓄電装置から充放電を行い前記インバータ装置の直流側と前記半導体スイッチング装置の接続点の電圧を前記特定電圧範囲内に設定される制御目標電圧値近傍に保つよう前記半導体スイッチング装置を制御することを特徴とする間歇受電を行う車両用制御装置。
An inverter device that controls the driving of the main motor by receiving a DC voltage supplied from the train line via the current collector, a semiconductor switching device connected to the DC side of the inverter device, and a power storage connected to the semiconductor switching device a device, a DC voltage detection means said semiconductor switching device measures the DC side voltage of inverters connected device, and a discharge control unit for controlling the semiconductor switching device in response to the output of the DC voltage detecting means Have
The charge / discharge control unit controls the semiconductor switching device so as to keep a charge amount at a predetermined value, and maintains a voltage at a connection point between the DC side of the inverter device and the semiconductor switching device within a predetermined range. And a control unit for controlling the semiconductor switching device ,
When a DC voltage is supplied from the train line through the current collector in the facility section of the train line, and the detected value of the DC voltage detection means is equal to or higher than the train line power supply voltage , the connection point with the inverter device The semiconductor switching device is controlled so as to charge and discharge from the power storage device and keep the charge amount of the power storage device at a predetermined value,
In the non-equipment section of the train line, it is separated from the train line and is not supplied with a DC voltage via the current collector, and the detected value of the DC voltage detection means is the train line power supply voltage and the minimum DC input controllable by the inverter device When the voltage is within a specific voltage range set between the voltage and the voltage, the charging / discharging is performed from the power storage device according to the output of the DC voltage detection means, and the connection point between the DC side of the inverter device and the semiconductor switching device A vehicle control device for intermittent power reception, characterized in that the semiconductor switching device is controlled so as to maintain a voltage near a control target voltage value set within the specific voltage range .
請求項1に記載の車両用制御装置において、
前記蓄電装置の端子電圧の最大値はインバータ装置が制御可能な最低直流入力電圧値よりも低い電圧となるよう選択され、
かつ前記半導体スイッチング装置は、前記直流電圧検出手段が計測した前記インバータ装置の直流側の電圧が、前記特定電圧範囲においては、前記インバータ装置の直流側と前記半導体スイッチング装置の接続点への電流の出入りを制御し該接続点の電圧を前記特定電圧範囲内に設定された制御目標電圧値近傍に保つように制御する定電圧制御モードの制御を行い
前記直流電圧検出手段が計測した前記インバータ装置の直流側の電圧が、前記特定電圧範囲よりも高い電圧範囲では、前記蓄電装置への充電電流が最大充電許容電流値に制限される定電流充電制御モードの制御を行い前記直流電圧検出手段が計測した前記インバータ装置の直流側の電圧が、前記特定電圧範囲よりも低い電圧範囲では、前記蓄電装置からの放電電流が最大放電許容電流値に制限される定電流放電制御モードの制御を行うことを特徴とする車両用制御装置。
The vehicle control device according to claim 1,
The maximum value of the terminal voltage of the power storage device is selected to be a voltage lower than the lowest DC input voltage value that can be controlled by the inverter device,
In the semiconductor switching device , the voltage on the direct current side of the inverter device measured by the direct current voltage detection means is, in the specific voltage range, the current flowing from the direct current side of the inverter device to the connection point of the semiconductor switching device. Perform control in a constant voltage control mode for controlling the entry and exit and controlling the voltage at the connection point to be close to the control target voltage value set within the specific voltage range,
Voltage of the DC side of the DC voltage detecting means measures said inverter device, wherein in the voltage range higher than the specified voltage range, the constant current charge control the charging current is limited to a maximum permissible charging current value to said power storage device and controls the mode limit, the voltage of the DC side of the DC voltage detecting means measures said inverter device, wherein in the lower voltage range than the specified voltage range, the maximum allowable discharge current value discharge current from said power storage device vehicle control apparatus characterized by controlling the constant current discharge control mode.
請求項2に記載の車両用制御装置において、
前記充電電流に対する定電流充電制御モードにおける制御目標値は、前記蓄電装置に許容される最大充電電流値に係わる値であり、前記放電電流に対する定電流放電制御モードにおける制御目標値は、前記蓄電装置に許容される最大放電電流値に係わる値であることを特徴とする車両用制御装置。
The vehicle control device according to claim 2,
Control target value in the constant current charging control mode for the charging current is a value related to the maximum charging current value allowed to the power storage device, the control target value in the constant current discharge control mode for the discharge current, the electric storage device A control device for a vehicle, characterized in that it is a value relating to a maximum discharge current value allowed for the vehicle.
請求項3に記載の車両用制御装置において、
前記充電電流に対する定電流充電制御モードにおける前記制御目標値は、前記蓄電装置の蓄電量が許容される上限値以上となった時には零とされ、前記放電電流に対する定電流放電制御モードにおける前記制御目標値は、前記蓄電装置の蓄電量が許容される下限値以下となった時には零とされることを特徴とする車両用制御装置。
The vehicle control device according to claim 3,
Wherein said control target value in the constant current charging control mode for the charging current is zero when the storage amount of the power storage device is equal to or larger than the upper limit value allowed, the control target in the constant current discharge control mode for the discharge current value, the vehicle control device, characterized in that is zero when the storage amount of the power storage device is equal to or less than the lower limit value allowed.
請求項4に記載の車両用制御装置において、
前記充電電流に対する定電流充電制御モードにおける制御目標値は、前記蓄電装置の蓄電量が許容内で、前記蓄電量が許容される上限値近傍となった時には前記蓄電装置に許容される最大充電電流値に係わる値よりも低減され、前記放電電流に対する定電流放電制御モードにおける制御目標値は、前記蓄電装置の蓄電量が許容内で、前記蓄電量が許容される下限値近傍となった時には前記蓄電装置に許容される最大充電電流値に係わる値よりも低減されることを特徴とする車両用制御装置。
The vehicle control device according to claim 4,
Control target value in the constant current charging control mode for the charging current, the maximum charging current storage amount of the power storage device is within the allowable, the when the storage amount reaches the upper limit vicinity allowed allowed for said power storage device than the value related to the value is reduced, the control target value in the constant current discharge control mode for the discharge current, the charged amount is within the allowable of the electric storage device, wherein when said storage amount becomes the lower limit proximity allowed A vehicular control device characterized by being reduced from a value related to a maximum charging current value allowed for a power storage device.
請求項2に記載の車両用制御装置において、
前記インバータ装置は制御可能な最低直流入力電圧値の高電圧側近傍で入力電圧と制御可能な最低直流入力電圧値との差分に対応して前記インバータ装置の出力を低減する機能を有することを特徴とする車両用制御装置。
The vehicle control device according to claim 2,
Characterized in that said inverter apparatus having a function corresponding to the difference between the lowest DC input voltage controllable input voltage at a high voltage side near the controllable minimum DC input voltage value to reduce the output of the inverter device A vehicle control device.
請求項4に記載の車両用制御装置において、
前記蓄電装置の蓄電量の上限値は回生ブレーキ作用時以外の場合と回生ブレーキ作用時の場合を区別して設定され、回生ブレーキ作用時以外の前記蓄電装置の蓄電量が許容される上限値は、回生ブレーキ作用時の前記蓄電装置の蓄電量が許容される上限値より低く設定されることを特徴とする車両用制御装置。
The vehicle control device according to claim 4,
The upper limit of the charged amount of the power storage device is set to distinguish the case of the regenerative braking effect and otherwise during regenerative braking, upper limit storage amount of the electric storage device other than the time of regenerative braking is permitted, The vehicular control device, wherein a power storage amount of the power storage device during regenerative braking is set lower than an allowable upper limit value.
請求項7に記載の車両用制御装置において、
前記回生ブレーキ作用時以外で、かつ前記蓄電装置の蓄電量が回生ブレーキ作用時以外の場合における蓄電量の許容される上限値を超えている時、前記インバータ装置の直流側と前記半導体スイッチング装置の接続点の電圧に対する定電圧制御モードにおける制御目標電圧を送り出し電圧近傍の値に切り替えることを特徴とする車両用制御装置。
The vehicle control device according to claim 7,
Except when the regenerative braking, and when the storage amount of the electric storage device exceeds the acceptable upper limit of the charged amount in the cases other than the regenerative braking action, the DC side of the inverter device of the semiconductor switching device A control apparatus for a vehicle, characterized in that a control target voltage in a constant voltage control mode for a voltage at a connection point is switched to a value in the vicinity of a delivery voltage.
JP2008146090A 2008-06-03 2008-06-03 Vehicle control device for intermittent power reception Active JP4958846B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008146090A JP4958846B2 (en) 2008-06-03 2008-06-03 Vehicle control device for intermittent power reception
GB0909390A GB2460743B (en) 2008-06-03 2009-06-01 Control system of vehicle performing intermittent power receive operation
KR1020090048343A KR101254370B1 (en) 2008-06-03 2009-06-02 Vehicle control device for performing intermittent power reception
CN200910146620.5A CN101596871B (en) 2008-06-03 2009-06-03 Control system for vehicle receiving power intermittently

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146090A JP4958846B2 (en) 2008-06-03 2008-06-03 Vehicle control device for intermittent power reception

Publications (2)

Publication Number Publication Date
JP2009296731A JP2009296731A (en) 2009-12-17
JP4958846B2 true JP4958846B2 (en) 2012-06-20

Family

ID=40902398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146090A Active JP4958846B2 (en) 2008-06-03 2008-06-03 Vehicle control device for intermittent power reception

Country Status (4)

Country Link
JP (1) JP4958846B2 (en)
KR (1) KR101254370B1 (en)
CN (1) CN101596871B (en)
GB (1) GB2460743B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE535869C2 (en) 2010-04-01 2013-01-22 Elways Ab One or more electrically propulsive, vehicle-adapted system (Charging system).
US9035489B2 (en) * 2010-10-20 2015-05-19 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for vehicle
JP5537406B2 (en) * 2010-12-27 2014-07-02 株式会社日立製作所 Vehicle control system
JP5377538B2 (en) 2011-02-14 2013-12-25 株式会社東芝 Power storage device and its installation / operation method
JP5298152B2 (en) 2011-03-07 2013-09-25 株式会社日立製作所 Power conversion device and power conversion device for railway vehicles
CN102514500B (en) * 2011-12-27 2014-04-16 南车株洲电力机车有限公司 Method for controlling dual power engineering maintenance vehicle to pass area without electricity
JP6026225B2 (en) 2012-10-30 2016-11-16 株式会社日立情報通信エンジニアリング Power storage system
CN105083036B (en) * 2014-05-12 2019-03-26 中车大同电力机车有限公司 Realize the system and method for skylight phase motor-car
CN104097527B (en) * 2014-06-13 2017-04-05 郑州宇通客车股份有限公司 A kind of new double source trolleybus and its dynamical system
CN105529690B (en) * 2014-09-28 2019-03-22 三美电机株式会社 Battery protecting circuit, battery protecting apparatus, battery pack and battery protecting method
CN104527459B (en) * 2014-11-27 2016-08-17 中车青岛四方机车车辆股份有限公司 Three rails are powered the high-tension circuit of power supply safety transition in storehouse
CN105904987A (en) * 2016-04-28 2016-08-31 中车大连电力牵引研发中心有限公司 City rail traffic traction system
KR101846682B1 (en) 2016-06-28 2018-04-09 현대자동차주식회사 Charging control method and system for electric vehicle
CN108773301B (en) * 2018-06-13 2021-09-21 株洲时代电子技术有限公司 Control method and application of high-voltage system of power supply of contact network
CN108944474A (en) * 2018-07-25 2018-12-07 合肥市智信汽车科技有限公司 A kind of vehicle transport trailer system
CN110116639A (en) * 2019-05-30 2019-08-13 江苏易飞特科技有限公司 The method of supplying power to of rail vehicle based on super capacitor
US11518248B2 (en) * 2019-12-19 2022-12-06 Transportation Ip Holdings, Llc Vehicle power delivery assembly
KR102173130B1 (en) * 2020-05-20 2020-11-04 (주)그린파워 Automated guided vehicle system
DE102020209176B3 (en) * 2020-07-22 2022-01-20 Volkswagen Aktiengesellschaft Method of operating a vehicle
DE102020211315A1 (en) 2020-09-09 2022-03-10 Siemens Mobility GmbH Arrangement with converter and DC voltage controller
WO2024121965A1 (en) * 2022-12-07 2024-06-13 株式会社日立インダストリアルプロダクツ Electrically driven vehicle, control device for electrically driven vehicle, and control method for electrically driven vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268108B2 (en) * 1994-03-10 2002-03-25 株式会社東芝 Control device for vehicle power supply unit
JP3911621B2 (en) * 2000-06-06 2007-05-09 株式会社日立製作所 Railway system for battery-powered trains
CN1524728A (en) * 2003-02-27 2004-09-01 凌恺夫 Automatic split phase passing machine switching unit of electric locomotive
JP5049456B2 (en) * 2004-05-13 2012-10-17 株式会社東芝 Vehicle control device
JP4639858B2 (en) * 2005-03-07 2011-02-23 Jfeスチール株式会社 Surface defect inspection method and apparatus
JP2006055000A (en) * 2005-11-04 2006-02-23 Toshiba Corp Electric vehicle controller
JP2007210586A (en) * 2006-01-10 2007-08-23 Hitachi Ltd Vehicle drive system
JP4644627B2 (en) * 2006-04-20 2011-03-02 財団法人鉄道総合技術研究所 Device and method for preventing pantograph malfunction of overhead wire / battery hybrid vehicle
JP2008072878A (en) * 2006-09-15 2008-03-27 Toshiba Corp Electric car controlling apparatus
JP4395799B2 (en) * 2007-09-10 2010-01-13 株式会社エクォス・リサーチ Drive control device and hybrid vehicle
JP5209922B2 (en) * 2007-09-14 2013-06-12 川崎重工業株式会社 Electric railway system

Also Published As

Publication number Publication date
JP2009296731A (en) 2009-12-17
KR20090126196A (en) 2009-12-08
GB0909390D0 (en) 2009-07-15
GB2460743B (en) 2010-07-21
KR101254370B1 (en) 2013-04-15
CN101596871A (en) 2009-12-09
CN101596871B (en) 2015-06-03
GB2460743A (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4958846B2 (en) Vehicle control device for intermittent power reception
JP6133817B2 (en) Dual power supply system and electric vehicle
US7221064B2 (en) Power circuit for battery
KR101434772B1 (en) Drive device for railway vehicle
KR101419203B1 (en) Electric-vehicle propulsion power-conversion device
CN109428473A (en) The power-supply system of vehicle
US20130264975A1 (en) Electrically powered vehicle and method for controlling the same
JP3964857B2 (en) Regenerative power absorption control method for electric railways
JP2009273198A (en) Power flow control method and control device of battery-driven vehicle
US20120013181A1 (en) On-board regenerative electric power storage system for dc electric rail car
JP2009072003A (en) Electric railroad system
JP2009072003A5 (en)
JP5119229B2 (en) Vehicle control device
JP4934562B2 (en) Vehicle control device having power storage device
JP5902534B2 (en) Railway vehicle drive system
JP6765208B2 (en) Railroad vehicle
JP5566977B2 (en) Railway vehicle drive system
JP2008228451A (en) Drive system of railway vehicle
JP5514459B2 (en) Charging system
JPWO2016113880A1 (en) Charge / discharge control device
JP3927901B2 (en) Voltage compensation device
JP2001069604A (en) Electric vehicle controller and dc/dc converter
JP5385728B2 (en) Control method and control apparatus
JP6703913B2 (en) Power storage device
JP2006340468A (en) Electric vehicle controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150