JP5209922B2 - Electric railway system - Google Patents

Electric railway system Download PDF

Info

Publication number
JP5209922B2
JP5209922B2 JP2007238830A JP2007238830A JP5209922B2 JP 5209922 B2 JP5209922 B2 JP 5209922B2 JP 2007238830 A JP2007238830 A JP 2007238830A JP 2007238830 A JP2007238830 A JP 2007238830A JP 5209922 B2 JP5209922 B2 JP 5209922B2
Authority
JP
Japan
Prior art keywords
power
current
battery
voltage
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007238830A
Other languages
Japanese (ja)
Other versions
JP2009072003A5 (en
JP2009072003A (en
Inventor
猛 石田
修一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2007238830A priority Critical patent/JP5209922B2/en
Publication of JP2009072003A publication Critical patent/JP2009072003A/en
Publication of JP2009072003A5 publication Critical patent/JP2009072003A5/ja
Application granted granted Critical
Publication of JP5209922B2 publication Critical patent/JP5209922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/14Supplying electric power to auxiliary equipment of vehicles to electric lighting circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/10Temporary overload
    • B60L2260/16Temporary overload of electrical drive trains
    • B60L2260/162Temporary overload of electrical drive trains of electrical cells or capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、電気鉄道システムにおいて、電化区間在線中には架線から駆動系や補機系に給電すると共にバッテリを充電し、電化区間在線中にはバッテリから駆動系や補機系に給電する電気鉄道システムに関する。 The present invention, in an electric railway system, to charge the battery with during electrified sections-rail supplying power to the drive system and auxiliary systems from the overhead wire, it is in a non-electrified section-rail supplying power to the drive system or auxiliary system from the battery It relates to the electric railway system.

ンバータ誘導電動機駆動る電気鉄道において、車両にバッテリを搭載し、電化区間は架線からの給電で運行しつつバッテリを充電し、非電化区間では蓄電されたバッテリから給電して運行する電気鉄道システムが種々提案されている。 In an electric railway you drive the induction motor with inverter, a battery-in vehicles, to charge the battery while operating in the power supply from overhead wires in electrified sections, in the non-electrified sections with power from the power storage to battery electric railway system that runs have been proposed.

許文献1に記載のバッテリ駆動鉄道車両は、バッテリが複数車両に搭載され、昇降圧チョッパとインバータと誘導電動機を備えた鉄道車両である。
非電化区間の力行時は、電化区間在線中に電されたバッテリから電力を、昇降圧チョッパ昇圧して駆動インバータに給電し、電動機駆動する。
また非電化区間の回生制動時は、駆動インバータ回生電力昇降圧チョッパで降圧した後、バッテリ充電る。
Battery-powered Dotetsu road vehicle according to Patent Document 1, battery-is mounted on a plurality of vehicles, a railway vehicle equipped with a buck-boost chopper and the inverter and the induction motor.
Power running of non-electrified section, the power from the battery, which is a charge reservoir into electrified section-rail, and feeding pressurized by the drive inverter in the buck-boost chopper, to drive the electric motor.
Also at the time of regenerative braking of the non-electrified section, after stepping down the regenerative power of the drive inverter in buck-boost chopper, it charges the battery.

許文献2に記載の電気鉄道の駆動システムでは、双方向チョッパと大容量の次電池或いはキャパシタ構成る大容量蓄電装置と、インバータと誘導電動機を備えた車両において、電化区間在線中は蓄電装置の放電電力によりインバータを駆動させると共に、力行時は蓄電装置の電力では足りない分を架線から電、回生制動時は蓄電装置だけでは回収しきれない電力を架線に戻し、総合的に電力量低減るように制御る。
特開2001−352607号公報 特開2003−18702号公報 特開2005−278269号公報 特開2007−68242号公報
The electric railway drive system according to Patent Document 2, a large-capacity power storage device that make up the secondary battery or capacitor of the bidirectional chopper and large, in a vehicle equipped with the inverter and the induction motor, electrified sections-rail with among drives the inverter by discharge electric power of the charge reservoir, receiving-power running is an amount that is not enough for power of the power storage device from the overhead line, the regenerative braking is power have a completely recovered in only charge reservoir It returned to the overhead line, comprehensively that controls the so that to reduce the amount of power.
JP 2001-352607 A JP 2003-18702 A JP 2005-278269 A JP 2007-68242 A

許文献1のバッテリ駆動鉄道車両では、電化区間在線中に架線からの受バッテリ充中に、バッテリ架線の両方らインバータへ給電することができない。
その訳は電化区間電化区間の相互間移行時充放電制御回路の切替が必要なためである。
また行と回制動を替るきも、バッテリとインバータのにある昇降圧チョッパの制御回路替を行う必要があり、制御の煩雑さが増加してしまう。
The battery-powered Dotetsu road vehicles Patent Document 1, in the battery RiTakashi electrodeposition in the powered from overhead wires during electrified sections-rail, can not you to supply power to both or come converter of battery and the overhead line.
The reason is, at the time of the mutual transition of electrified section and the non-electrified section, Ru der for switching is required of the charge and discharge control circuit.
Also when switched power line and regenerative braking liver, it is necessary to perform the exchange switching control circuit of a buck-boost chopper between battery and inverter, complexity of control increases.

許文献2の電気鉄道の駆動システムでは、バッテリに回収しきれない回生電力を架に戻すので架線電圧変動、この近くに別の車両がいないと回生制動の失効が生じて省エネ効率を悪化させ、或いは危険を招くある。
また、架線電圧がそのままインバータに給電されても電圧変換ができないため、複数の架線電圧線区を直通する複電圧車両への対応が難しく共用線区が限定される
In Patent Document 2 electric railway driving system, since returning regenerative power that can not be recovered to the battery in the rack line varies overhead wire side voltage, the near-country vehicle purchase without this, cause expiration of regenerative braking Therefore, there is a possibility of deteriorating energy saving efficiency or causing danger.
Also, since the overhead wire side voltage is unable voltage conversion be powered as it is to the inverter, corresponding to the double voltage vehicle direct a plurality of trolley voltage line section is difficult shared line section is limited.

ところで最近、高電圧で高速充放電可能な大容量のバッテリが開発されている。
回生電力架線に戻すことで架線電圧が変動し、近くを走る車両が無いと回生失効生じる大容量バッテリを車両に組み込むことで回生電力を架線に戻さず、総てバッテリ回収させ、その電力を非電化区間で活用すことで、効率の良い電力システムの構築が可能となる。
Recently in place, large capacity of the battery capable of high-speed charging and discharging at a high voltage has been developed.
Overhead wire-side voltage by returning the regenerative power to the overhead line is varied, but results in a regenerative revocation and vehicles is not that run nearby, without returning the regenerative power to the overhead line by incorporating a large-capacity battery to the vehicles, the total is recovered in the battery Te, that you use the power of that in the non-electrified section, it permits the construction of efficient power system.

そこで、高電圧で充放電可能な耐久性を有するバッテリを使用すれば、昇降圧手段を介し昇圧なしにバッテリから直接インバータに給電、或いは誘導電動機回生電力を降圧なしに直接バッテリに充電(蓄電)することが可能となる。
これにより、バッテリとインバータとの間に昇降圧手段を介設する必要がなくなり、力行時及び回生制動時の回路切換や制御切と、それら機構を省略することが可能となる。
Therefore, the use of batteries with rechargeable durability even at a high voltage power supply to the inverter directly from the battery without boosting via the buck means, or charged with regenerative electric power of the induction motor directly to the battery without buck (Electric storage) can be performed.
This eliminates the need to interposed the step-up and step-down means between the battery and the inverter, when the power running and the circuit switching time of regenerative braking and control SWITCHING, it is possible to omit them mechanism.

本発明の目的は、バッテリの充電、駆動系や補機系への給電を実施する制御装置を纏め、バッテリを介して駆動系と補機系それぞれ並列に接続することで、電化区間電化区間、及びその相互間移行時に回路制御の切替を必要としない電気鉄道システムを提供することある。 An object of the present invention, charging of the battery, summarized to that control device implementing the power supply to the drive system and auxiliary systems, by through the battery is connected in parallel with auxiliary system and drive system, electrification section and the non-electrified section, and to provide an electrical railway system that does not require the switching circuits and the control during the transition between its mutually.

請求項1の電気鉄道システムは、架線から受電した電力を調整して給電する電力調整装置を備えた主給電系、駆動用の導電動機と導電動機を駆動する可変電圧可変周波数インバータとを備えた駆動系と、バッテリと、補機系から成り電化区間では架線からの電力で車両を駆動し、非電化区間では前記バッテリからの電力で車両を駆動するよう構成した電気鉄道システムであって、前記電力調整装置の1位側が前記架線に、2位側前記バッテリを介して前記駆動系と前記機系に夫々接続され、電化区間在線中に前記バッテリへの充電電流を設定する充電電流設定手段と、この充電電流設定手段で設定した充電電流でバッテリに蓄電するよう前記電力調整装置を制御する電力制御手段とを備え、前記充電電流設定手段は、前記バッテリへの充電電流若しくは前記バッテリからの流出電流を検出する第1電流検出手段と、前記駆動系と前記補機系への供給電流を検出し且つ前記電動機の回生電流から前記補機系への供給電流を差し引いた後の電流を検出する第2電流検出手段と、前記架線から前記主給電系への電流を検出する第3電流検出手段と、前記バッテリの電圧を検出する第1電圧検出手段と、前記電力調整装置の1位側の電圧を検出する第2電圧検出手段とを備えたことを特徴としている。 The electric railway system according to claim 1, the variable voltage variable frequency to drive the main power supply system provided with a power adjustment device for feeding by adjusting the electric power received from the overhead line, the induction motor and the induction motor for driving dynamic b a drive system that includes a converter, and a battery composed of a auxiliary system, the vehicle is driven by the power from the overhead line is electrified section, cormorants by a non-electrified section to drive the vehicle by the power from the battery structure an electrical railway systems form, the 1-position side the overhead line of the power conditioner, 2-position side respectively connected to said auxiliary system and the driving system via the battery during said electrified section-rail Charging current setting means for setting a charging current to the battery, and power control means for controlling the power adjustment device to store the battery in the charging current set by the charging current setting means , the charging current setting means , said bar A first current detecting means for detecting a charging current to the battery or an outflow current from the battery; a supply current to the drive system and the auxiliary system; and a regenerative current of the motor to the auxiliary system A second current detecting means for detecting a current after subtracting a supply current; a third current detecting means for detecting a current from the overhead wire to the main power supply system; and a first voltage detecting means for detecting a voltage of the battery. And a second voltage detecting means for detecting a voltage on the first side of the power adjustment device .

この電気鉄道システムでは、電化区間在線中は架線から主給電系電力調整装置に給電し、電力調整装置を介してバッテリを充電すると共に補機系に給電し、力行時には駆動系にも給電する。
但し電力回生時は、電力調整装置線へ逆給電を阻止して、誘導電動機で発電された電力は補機系で消費される分を除いてバッテリに蓄電される。
In this electric railway system, during electrified sections-rail powered from rack line power conditioner main power supply system to power the accessory system which charges the battery-through power adjusting device, the drive system at the time of power running Also power.
However during power regeneration, the power adjusting device and prevents reverse feeding on a frame line, power that is generated by induction motor is stored in the battery except for content consumed in the auxiliary device system.

バッテリを充電する充電電流は、所定の充電電流設定手段により、電化区間在線中に非電化区間で消費される電力分を回復可能な充電電流値が設定される。
非電化区間では架線から電力が供給されないため、電力回生時を除き電力調整装置の充電制御は動作せず、バッテリが自律的に放電して補機系に給電し、力行時には駆動系にも給電する。
As the charging current for charging the battery, a charging current value capable of recovering the power consumed in the non-electrified section during the electrified section existing line is set by predetermined charging current setting means.
In the non-electrified section, power is not supplied from the overhead line, so the charge control of the power adjustment device does not operate except during power regeneration , the battery autonomously discharges and supplies power to the auxiliary system, and also to the drive system during power running Supply power.

請求項2の電気鉄道システムでは、請求項1の発明において、前記充電電流設定手段は、運行テーブルを備えると共に、前記第1電流検出手段と前記第1電圧検出手段から各種状態出力を受けて算出される電化区間在線中の前記バッテリの放電状態情報と、前記運行テーブルに蓄積した線区データと、電化区間の在線実績時間情報に基づいて、前記バッテリへの充電電流を演算する充電電流演算手段とを備えたことを特徴としている。
In the electric railway system according to claim 2, in the invention according to claim 1, the charging current setting means includes an operation table and receives various state outputs from the first current detection means and the first voltage detection means. a discharge state information of the battery in the electrified section-rail that is, the charging current and the line section data stored in the operation table, based on the rail actual time information of electrification interval, calculates the charge current to the battery And an arithmetic means.

請求項3の電気鉄道システムは、請求項2の発明において、前記電力制御手段は、電化区間在線時に前記第1電流検出手段で検出される電流が略一定となるよう、前記電力調整装置を制御することを特徴としている。 In an electric railway system according to a third aspect of the present invention, in the electric railway system according to the second aspect, the power control means may be configured to adjust the power adjustment device so that the current detected by the first current detection means becomes substantially constant when the electrified section is present. It is characterized by control .

請求項4の電気鉄道システムは、請求項2の発明において、前記電力制御手段は、電化区間在線時の電力回生時以外は略一定の充電電流となるよう前記電力調整装置を制御し、電力回生時は前記第1電流検出手段で検出される電流と前記第2電流検出手段で検出される電流との差が略一定となるよう、前記電力調整装置を制御することを特徴としている。 In an electric railway system according to a fourth aspect, in the invention according to the second aspect, the power control means controls the power adjustment device so as to obtain a substantially constant charging current except during power regeneration when the electrified section is present, During regeneration, the power adjustment device is controlled so that the difference between the current detected by the first current detection means and the current detected by the second current detection means becomes substantially constant .

請求項5の電気鉄道システムは、請求項の発明において、前記電力制御手段は、電化区間在線時に前記第3電流検出手段で検出される電流が略一定となるよう、並びに前記第3電流検出手段で検出される電流と前記第2電圧検出手段で検出される電圧の積が略一定となるよう、前記電力調整装置を制御することを特徴としている。 In an electric railway system according to a fifth aspect of the present invention, in the electric railway system according to the second aspect , the power control means is configured such that the current detected by the third current detection means is substantially constant when the electrified section is present, and the third current The power adjustment device is controlled so that the product of the current detected by the detection means and the voltage detected by the second voltage detection means becomes substantially constant .

請求項6の電気鉄道システムは、請求項1〜5の何れか1項の発明において、前記電力調整装置は、電力回生時、回生電力の全量を前記バッテリ及び前記補機系に供給するよう構成したことを特徴としている。 In an electric railway system according to a sixth aspect, in the invention according to any one of the first to fifth aspects , the power adjustment device is configured to supply a total amount of regenerative power to the battery and the auxiliary system during power regeneration. It is characterized by the construction .

請求項7の電気鉄道システムは、請求項1〜6の何れか1項の発明において、基準架線電圧が1500Vdc,750Vdc,600Vdcから選択される複数の電圧に対して使用可能に構成したことを特徴としている。 In the electric railway system of claim 7, in the invention of any one of claims 1 to 6 , the reference overhead line voltage can be used for a plurality of voltages selected from 1500Vdc, 750Vdc, and 600Vdc. It is a feature.

請求項1の発明によれば、この電気鉄道システムは、電力調整装置の1位側架線に接続されると共に、電力調整装置の2位側がバッテリを介して駆動系と補機系に夫々接続されるので、電化区間在線中は常時バッテリ充電可能であると共に機系給電可能で、力行時には駆動系にも給電可能である。
電化区間では、架線から電力が供給されないためバッテリから補機系駆動系に直接給電可能となる。
According to the present invention, the electric railway system, together with the 1-position side of the power conditioning device is connected to the overhead line, the 2-position side auxiliary system and the driving system via the battery of the power regulator Since they are connected to each other, the battery can be charged at all times during the electrification section , and can also supply power to the auxiliary system , and can also supply power to the drive system during powering.
In the non- electrified section, power is not supplied from the overhead wire, so that power can be directly supplied from the battery to the auxiliary system and the drive system .

両が電化区間から非電化区間に移行し、架線から主給電系への給電がなくなると電力調整装置が不動作となる。バッテリと補機系及び駆動系との間には、制御回路が存在せず直接接続されているため、電力調整装置とは無関係にバッテリが放電し機系に、力行時には駆動系に給電される。これにより、車両の電化区間・非電化区間の移行時に制御・回路の切替が不要となり、従来の機器構成の複雑さと切替作業の煩雑さから開放される。 Vehicles are shifted from the electrified section to the non-electrified section, the power adjusting device and the power supply may turn without from the overhead line to the main power supply system that Do inoperative. Between the battery and the auxiliary system and the driving system, since the control circuit is directly Sesse' continue absent, the auxiliary system independent battery discharge electricity to the power conditioner, the power running drive Power is also supplied to the system. Thus, switching of the control-circuit when migrating electrified section and non-electrified section of vehicles is not required, Ru is released from the complexity and complexity of switching operations of a conventional device configuration.

た電化区間在線中は、バッテリに充電される充電電流が、充電電流設定手段により設定された電流値になるよう、電力制御手段により電力調整装置が自動制御される。この設定された充電電流バッテリ充電るので、非電化区間在線中に駆動系や補機系で消費されたバッテリのエネルギーは、電化区間在線中に効率良くバッテリに電され、エネルギーを回復することができる。 During or electrified section-rail, the charging current charged in the battery, cormorants'll become a current value set by charging current setting unit, a power adjusting device Ru is automatically controlled by the power control unit. Runode charge the battery with the set charging current, battery energy consumed by the drive system and auxiliary system in a non-electrified section-rail is a charge reservoir efficiently battery during electrified section-rail, the energy Can be recovered.

電化区間において、駆動系や補機系で消費されたバッテリのエネルギーは、非電化区間の終着駅等に設けた電源から、停車中の短時間(例えば5分)の急速充電により回復させる必要が生じる場合がある。このような場合、電力調整装置は急速充電に対応できる能力が要求され、大電流に耐える大容量素子で構成る。
結果として、電化区間においては電力調整装置による駆動系機系への給電のほか、バッテリへの充電をも制御することが可能となる。
充電電流設定手段が、バッテリへの充電電流若しくはバッテリからの流出電流を検出する第1電流検出手段と、バッテリの電圧を検出する第1電圧検出手段と備えるので、第1電圧検出手段と第1電流検出手段とにより、バッテリの充放電状態を常時把握することが可能となる。
充電電流設定手段が駆動系と補機系への供給電流を検出し、且つ電動機の回生電流から補機系への供給電流を差し引いた後の電流を検出する第2電流検出手段と、架線から主給電系への電流を検出する第3電流検出手段と、電力調整装置の1位側の電圧を検出する第2電圧検出手段とを備えるので、第2,第3電流検出手段及び第2電圧検出手段の何れかで検出される電流値及び電圧値に基づいて電力調整装置を最適に制御することができる。
In non-electrified section, the energy of the battery consumed by the drive system and auxiliary systems, from the power source provided in the terminal station or the like of the non-electrified section, is recovered by rapid charging of short stop the car (for example, 5 minutes) There may be a need. In this case, the power adjustment device is the ability to cope with quick charge request, that make up a large capacitive element to withstand a large current.
As a result, in addition to power supply to the auxiliary system and the drive system by the power adjusting device in electrified sections, it is possible to also control Gosuru the charging of the battery.
Since the charging current setting means includes a first current detecting means for detecting a charging current to the battery or an outflow current from the battery, and a first voltage detecting means for detecting the voltage of the battery, the first voltage detecting means and the first voltage detecting means With the current detection means, it is possible to always grasp the charge / discharge state of the battery.
A charging current setting means for detecting a current supplied to the drive system and the auxiliary system, and a second current detecting means for detecting a current after subtracting the supply current to the auxiliary system from the regenerative current of the motor; Since the third current detecting means for detecting the current to the main power supply system and the second voltage detecting means for detecting the voltage on the first side of the power adjustment device are provided, the second and third current detecting means and the second voltage are provided. based on the current value and the voltage value detected by any detection means, it is possible to optimally control the power conditioner.

請求項2の発明によれば、充電電流設定手段は、運行テーブルと、充電電流を演算する充電電流演算手段とを備えるので、充電電流演算手段によりバッテリの放電状態と、運行テーブルのデータと、電化区間の在線時間を基準にして求めた充電電流値とにより、非電化区間在線中に消費されたバッテリ蓄電エネルギーを、電化区間在線中に効率良く回復することが可能となる。
According to the invention of claim 2, the charging current setting means, and operating table, so and a charging current calculating means for calculating a charge current, a discharging state of the battery by the charging current calculation means, and operation table of data Based on the charging current value obtained on the basis of the current duration of the electrified section, it is possible to efficiently recover the battery stored energy consumed in the non-electrified section present line in the electrified section present line.

請求項3の発明によれば、電力制御手段は、電化区間在線時に第1電流検出手段で検出される電流が略一定となるよう電力調整装置を制御するので、力行時・回生制動時に関わらず、バッテリへ流入する充電電流を常時一定に維持し、バッテリへの充電を効率良く制御出来るため、バッテリへ流入する充電電流に変動がなくなり、バッテリへの負荷を抑制できる。 According to the invention of claim 3, since the power control means controls the power adjustment device so that the current detected by the first current detection means becomes substantially constant when the electrified section is present, regardless of power running or regenerative braking. Since the charging current flowing into the battery is always kept constant and the charging of the battery can be controlled efficiently, there is no fluctuation in the charging current flowing into the battery, and the load on the battery can be suppressed.

請求項4の発明によれば、電力制御手段は、電化区間在線時の電力回生時以外は略一定の充電電流となるよう電力調整装置を制御し、電力回生時は第1電流検出手段で検出される電流と第2電流検出手段で検出される電流との差が略一定となるよう、電力調整装置を制御するので、電力調整装置から供給される充電電流を常時略一定に維持でき、回生電流成分は架線側からの一定値に重畳されて、制動時の回生成分を随意に制御できる。 According to the invention of claim 4, the power control means controls the power adjustment device so that the charging current becomes substantially constant except during power regeneration when the electrified section is on line, and the first current detection means detects during power regeneration. Since the power adjustment device is controlled so that the difference between the detected current and the current detected by the second current detection means is substantially constant, the charging current supplied from the power adjustment device can be maintained substantially constant at all times. The current component is superimposed on a fixed value from the overhead line side, and the amount of generation during braking can be controlled arbitrarily.

請求項5の発明によれば、電力制御手段は、電化区間在線時に第3電流検出手段で検出される電流が略一定となるよう、並びに第3電流検出手段で検出される電流と第2電圧検出手段で検出される電圧の積が略一定となるよう、電力調整装置を制御する。このため従来の力行毎に変電所などの電力供給系からピーク電力を供給する必要がなく、車両への供給電力を平準化できるので、電力会社に対するデマンドの抑制にも効果がある。さらに電力供給系からの電力を有効に使用できると共に、同じ電力供給系からより多くの車両に電力の供給が可能となる。 According to the invention of claim 5, the power control means is configured such that the current detected by the third current detection means is substantially constant when the electrification section is present, and the current detected by the third current detection means and the second voltage. The power adjustment device is controlled so that the product of the voltages detected by the detection means is substantially constant. For this reason, it is not necessary to supply peak power from a power supply system such as a substation for each conventional power running, and the power supplied to the vehicle can be leveled, which is effective in suppressing demand for the power company. Furthermore, the power from the power supply system can be used effectively, and more vehicles can be supplied from the same power supply system.

上記電力制御手段は、電化区間・非電化区間を直通で運用されるシステムを前提としている電力制御手段であるが、電化区間のみで運用されるシステムの場合でも車両にバッテリと電力調整装置を搭載し、この電力制御手段で電力調整装置を制御する場合は、上記デマンド効果が期待できる。 Said power control means is a power control means assumes a system operated the electrified section and non-electrified section direct, battery and power conditioner in vehicles in case of system operated only with electrified section the mounted, when controlling the power adjustment device in this power control means, the demand effect can be expected.

請求項の発明によれば、電力調整装置は、電力回生時の回生電力の全量をバッテリ及び補機系に供給する構成としたので、架線に回生電力が流出ること無く、架線の電圧変動を抑制することができ、電流が架線側からバッテリ、駆動系機系への一方通行となるため、バッテリの充放電や駆動系の制御が容易になる。 According to the invention of claim 6, the power adjusting device, since the supply arrangement the total amount of regenerative electric power during power regeneration to the battery and the auxiliary system, without having to regenerative power flows to the overhead line, overhead wire voltage variation can be suppressed, current is and the battery from the overhead wire side, since the one-way to the drive system and the auxiliary system facilitates the control of charging and discharging and the drive system of the battery.

請求項の発明によれば、基準架線電圧が1500Vdc,750Vdc,600Vdcから選択される複数の電圧に対しても使用可能に構成できるので、電力調整装置の2位側の回路を変更する必要もなく、走行可能な線区の定がなくなり、1500Vdc、750Vdc、600Vdcの複数電圧の電化区間電化区間との間連続して運行できるシステムを構築することができる。 According to the invention of claim 7, reference overhead wire voltage is 1500 Vdc, 750Vdc, since it operably configured with respect to a plurality of voltages selected from the 600 Vdc, necessary to change the circuit at the 2-position side of the power conditioner no, there is no limit constant of drivable track section, 1500 Vdc, 750Vdc, it is possible to construct a system that can travel continuously between the electrified section and the non-electrified section of the plurality voltage 600 Vdc.

施例は、電気鉄道の車両にバッテリ搭載電化区間在線中にバッテリを充電し、非電化区間ではバッテリから放電しながら運行する電気鉄道システムに本発明を適用る。
以下、本発明について図面を参照しながら詳細に説明する。
In the real施例, a battery-in electric railway vehicle, to charge the battery-in electrified sections-rail, that apply the present invention to an electric railway system that runs while the discharge from the battery-in non-electrified sections .
Hereinafter, the present invention will be described in detail with reference to the drawings.

図1に示す電気鉄道システム1の車両2は、架線7から直流電力を受ける主給電系5に含まれる電力調整装置40、駆動系3を構成するVVVFインバータ20と走行駆動用の誘導電動機21、補機系4を構成するCVCFインバータ22空調や照明等の補機類23、電力調整装置40の駆動系3・補機系4側に配置された車載バッテリ35、そのほかに充電電流設定手段55と、これにより設定された充電電流に基づいて電力調整装置40を制御する電力制御手段50等で構成する。
電化区間では架線7からの電力で電動機21を駆動し、非電化区間ではバッテリ35からの電力で電動機21を駆動するように構成ている。
主給電系5の電力調整装置40の1位側(集電装置9側)正極は電力線11aが接続され、電力調整装置40の2位側(駆動系3・補機系4側)正極は、VVVFインバータ20の直流部、CVCFインバータ22の直流部、およびバッテリ35が、電力線11b接続されている。
Car both 2 shows to electric railway system 1 in FIG. 1, the running and V VVF inverter 20 constituting a rack line 7 receives the DC power main power system 5 power adjustment device 4 0 included in the drive system 3 driving induction motor 2 1 for, auxiliary system 4 constitute the CVCF inverter 22 and the air conditioning and lighting, etc. auxiliaries 2 3, arranged in the drive system 3 or auxiliaries system 4 side of the power conditioner 40 vehicle The battery 35 includes a charging current setting unit 55, a power control unit 50 that controls the power adjustment device 40 based on the charging current set by the battery 35, and the like.
The electric motor 21 driven by the power from the overhead line 7 is electrified section, the non-electrified sections are configured to drive the motor 21 by the power from the battery 35.
1 position side of the power conditioner 40 of the main power supply system 5 (current collector 9 side) to the positive power line 11a is connected, 2-position side of the power conditioner 40 (drive system 3 or auxiliaries system 4 side) for the positive electrode, DC portion of the VVVF inverter 20, the DC portion of the CVCF inverter 22, and the battery 35 is connected by power lines 11b.

主給電系5は、図示しない変電所から直流電力を供給する架線7から集電する集電装置(パンタグラフ9と、これ接続される電力調整装置40の1位側に接続され電力線11aと、供給電力を遮断する遮断スイッチ14と、電力調整装置40とで構成る。
電化区間在線中で且つ遮断スイッチ14がオンのとき、主給電系5は電力線11aに接続された電力調整装置40を介してバッテリ35とインバータ20,22に給電し、遮断スイッチ14がオフのとき電化区間在線中は電力調整装置40が動休止となる。
The main power supply system 5 is connected from the rack line 7 to supply direct current power from the substation (not shown) and current collector (pantograph) 9 for collector, connected thereto, at the 1-position side of the power conditioner 40 and the power line 11a has a cut-off switch 14 to cut off the supply feed force, that make up in the power conditioner 40.
When electrified section and cut-off switch 14 in on-rail is on, the main power supply system 5 through the power conditioner 40 connected to the power line 11a, to power the battery 35 and the inverter 20 and 22, cut-off switch 14 when off the non-electrified section Zaisenchu is a power conditioner 40 Gado work rest.

給電系5では、架線7側の電力線11aに介装されたリアクトル16と、電力線11aとグランドライン12との間に介設されたキャパシタ17とが協働し、EMIフィルタとして機能する。電力調整装置40高速で電流をオン/オフするため、供給電流には広範囲の高調波成分まれるので電化区間では高調波成分が架線7及びレールに流出してしまう。
鉄道は通常、レールを軌道回路とする商用周波数等の信号を使用ており、電力調整装置40から当該周波数に近い成分が流出した場合、信号電流と判断して誤検知される虞がある。前記EMIフィルタは、この高調波信号成分を吸収し、架線7側に高調波成分が流出するのを防止する。
In the main feeding system 5 includes a reactor 16 interposed in the power line 11a of the overhead wire 7 side, and the capacitor 17 and cooperate, which is interposed between the power line 11a and the ground line 12, serves as E MI filter . Since the power adjusting unit 40 for turning on / off the current at a high speed, the supply current so extensive harmonic components including Murrell, harmonic components in electrified sections flows out to the overhead line 7 and the rail.
Railway are usually using the signal of the commercial frequency, etc. that the rail and the track circuit, when the component close to the frequency from the power adjusting unit 40 is leaked, there is a possibility to be erroneously detected by determining that the signal current. The EMI filter is to absorb the harmonic signal component, the harmonic components you prevented from flowing out to the overhead wire 7 side.

VVVFインバータ20は、図示しない6つのスイッチング素子と還流ダイオードとをブリッジ状に接続し、可変電圧可変周波数制御が可能な周知のインバータで、バッテリ35や電力調整装置40からリアクトル24を介して供給される直流電力を、「V(電圧)/F(周波数)一定の三相交流に変換して誘導電動機21を駆動可能にしている。 VVVF inverter 20 connects the reflux diode and six switching elements (not shown) like a bridge, with variable voltage-variable frequency control is known inverter capable, reactor 24 from battery-35 and power regulator 40 The induction motor 21 can be driven by converting the direct-current power supplied through the three-phase alternating current into V (voltage) / F (frequency) = constant .

誘導電動機21は、VVVFインバータ20から供給される三相交流の電圧周波数と、誘導電動機21の回転周波数の大小関係に応じて、その動作モードが変わる。
即ち、「VVVFインバータ周波数>誘導電動機周波数」の場合、所謂スリップが「正」の領域で、誘導電動機21には加速トルクが作用し、誘導電動機21の停動トルクを超えない範囲内ではスリップに比例してトルクが増加する。
The operation mode of the induction motor 21 changes according to the magnitude relationship between the three-phase AC voltage / frequency supplied from the VVVF inverter 20 and the rotation frequency of the induction motor 21.
That is, "VVVF inverter frequency> induction motor frequency" cases, so-called slip in the region of the "positive" acceleration torque acts on the induction motor 21, the slip within the range not exceeding the stall torque of the induction motor 21 The torque increases in proportion to

「VVVFインバータ周波数=誘導電動機周波数」の場合、所謂「スリップ=0」の状態で、トルクは発生しない。誘導電動機21はVVVFインバータ20から与えられる周波数で励磁された惰行状態である。
一般に、電気鉄道の制御で言う「惰行」とはこの状態もありうるが、励磁による鉄損の発生ので、VVVFインバータ20の作動を中止した無励磁の場合が多い。
If 'VVVF inverter frequency = induction motor frequency ", in the state of so-called" slip = 0 ", the torque is not generated. Induction motor 21 is line state of being excited at a frequency given from the VVVF inverter 20.
In general, referred to in the electric railway of control and "coasting" there may be this state, since intends disgusting the occurrence of iron loss due to excitation, in the case of a non-excitation was discontinued the operation of the V VVF inverter 20 is high.

「VVVFインバータ周波数<誘導電動機周波数」の場合、所謂スリップが「負」の領域で、誘導電動機21は発電機として作動、制動トルクが作用し、誘導電動機21の最大制動トルクを超えない範囲内ではスリップに比例してトルクが増加する。 If 'VVVF inverter frequency <induction motor frequency ", in the area of so-called slip" negative ", the induction motor 21 is created moving as a generator, the braking torque acts, does not exceed the maximum braking torque of the induction motor 21 range torque is increased in proportion to the slip in the inside.

運転士により図示しないマスターコントローラが操作され、力行指令が出されると、VVVF制御された三相交流により、誘導電動機21の回転周波数より高い周波数の交流電力が出力され、車両2は停止状態から力行指令に基づいて、低速域から中速域を経て高速域まで加速が可能である。
また運転士のマスターコントローラ操作により制動指令が出されると、VVVF制御された三相交流により、誘導電動機21の回転周波数より低い周波数の交流電力が出力され、走行中の車両2は回生制動動作を始、高速域から中速域を経て低速域まで減速る。
の回生制動によって、誘導電動機21発生する回生電力バッテリ35に充電して蓄電する一方補機系4を構成する補機類23を駆動できる。
Is master controller (not shown) by motorman is operated and the power running command is issued, by a three-phase alternating current that is VVVF controlled, output AC power having a frequency higher than the rotational frequency of the induction motor 21, drive both 2 or stopped based on et force line command, it is possible to accelerate to a high speed range through the medium speed region from the low speed region.
Further, when a braking command is issued by the driver's master controller operation, AC power having a frequency lower than the rotational frequency of the induction motor 21 is output by the three-phase AC controlled by VVVF, and the traveling vehicle 2 performs a regenerative braking operation. open started, you decelerated to a low speed range through the medium speed range from the high-speed range.
By the regenerative braking of this, while the power storage charging the regenerative power induction motor 21 is generated in the battery 35, Ru can drive the auxiliary devices 23 constituting the auxiliary system 4.

補機系4内のCVCFインバータ22は、図示しない6つのスイッチング素子と還流ダイオードとをブリッジ状に接続した定電圧・定周波数制御が可能な一般的なインバータで、バッテリ35や電力調整装置40からリアクトル25を介して供給された直流電力を三相交流に変換して空調や照明等の補機類23電力として供給する。 CVCF inverter 22 of the auxiliary system 4 is a six switching elements and a reflux diode and general inverter capable fixed voltage and fixed frequency control connected like a bridge to not shown, battery-35 and power conditioning converts the DC power supplied via the reactor 25 from the device 40 into three-phase AC, it supplies as a power auxiliary machines 23 of the air conditioning and lighting, and the like.

VVFインバータ20とCVCFインバータ22の直流側において、電力線11bとグランドライン12の間に介設されているキャパシタ26,27は、電力線11bに介装されているリアクトル24,25と協働し各インバータ20,22の相互干渉防止と配線からの放射による他機器への電磁波障害を防止するEMIフィルタとして機能する。 On the DC side of the V VVF inverter 20 and the CVCF inverter 22, the capacitors 26 and 27 interposed between the power line 11b and the ground line 12 cooperate with the reactors 24 and 25 interposed in the power line 11b . It functions as an EMI filter that prevents mutual interference between the inverters 20 and 22 and prevents electromagnetic interference to other devices due to radiation from the wiring.

リアクトル24,25の架線7側には、電力線11bから分岐した線28,29が夫々設けられ、その分岐線28,29の途中には、車両2の起動時に無電荷状態のキャパシタ26,27に流入する突入電流の急峻なピークを和らげる抵抗30,31が介装されている。
このため、起動時には、電力線11bと分岐線28,29に設けられたスイッチ32とスイッチ33により抵抗側に電流が流れるように設定る。
両2が一度起動されたあと、キャパシタ26,27の蓄電が完了したら、スイッチ32a,33a抵抗30,31短絡以後の動作では、これらの抵抗は作用しな
The overhead wire 7 side of the reactor 24 and 25, are lines 28, 29 branched from the power line 11b is respectively provided, in the middle of a the branch lines 28 and 29, the uncharged state when starting the vehicle both second capacitor 26, resistor 30, 31 that relieve the sharp peak of the rush current flowing is interposed 27.
Therefore, at the time of startup, to set so that the current in the resistor side flows by the switch 32 and the switch 33 provided to the power line 11b to the branch lines 28 and 29.
After the car both 2 has been activated once, when power storage capacitor 26, 27 is completed, switch 32a, a resistor 30 and 31 by short-circuit 33a, in the subsequent operation, these resistors do not want to act.

ッテリ35は、電力調整装置40の2位側において、電力線11bとグランドライン12との間に介設され、複数の充電セルを直列に接続された高速充放電可能な、例えばニッケル水素電池等からなり、車両駆動用の誘導電動機21や補機類23を駆動可能な大出力の電流時間積例えば250A以上)充電可能に構成ている。
さらにバッテリ35を挟むように電力線11b側とグランドライン12側の両側に2つのヒューズ37,38介装、バッテリの異常接地に備えている。
Battery-35, at 2-position side of the power conditioner 40, is interposed between the power line 11b and the ground line 12, a plurality of charge cells capable fast charging and discharging are connected in series, for example, a nickel hydrogen battery or the like from it, it is chargeable configured by an induction motor 21 and auxiliary devices 23 capable of driving high-power current-time product for driving a vehicle (e.g., 250A h or higher).
Further interposed two fuses 37, 38 on both sides of the power line 11b side and the ground line 12 side so as to sandwich the battery-35, and the abnormal ground battery.

次に、電力調整装置40について説明する。
電力調整装置40の1位側には、電力線11aが接続されると共に、電力調整装置40の2位側にはインバータ20,22とバッテリ35を結ぶ電力線11bが接続されている。
図2に示すように、電力調整装置40には、2つのIGBT41,42と、4つのダイオード43乃至46と、リアクトル47と、キャパシタ49で回路構成る昇降圧チョッパの機能を備えている。
電力線11aとグランドライン12との間の1位側で架線からの電力線11aがIGBT41のコレクタに接続され、IGBT41のエミッタがダイオード43のカソードに接続され、ダイオード43のアノードがグランドライン12に接続されている。
一方電力調整装置40の位側で電力線11bがダイオード44のカソードに接続され、ダイオード44のアノードがIGBT42のコレクタに接続され、IGBT42のエミッタがグランドライン12に接続されている。
Next, the power adjustment device 40 will be described.
The 1-position side of the power conditioner 40, together with the power line 11a is connected to the 2-position side of the power conditioner 40 is connected a power line 11b connecting the inverter 20, 22 and the battery 35.
As shown in FIG. 2, the power conditioner 4 0, and two IGBT41,42, and four diodes 43 to 46, the reactor 47 has a function of buck-you circuit configuration a capacitor 49 .
In position 1 side between the power line 11a and the ground line 12 is connected to the collector of the power line 11a is IGBT41 from the overhead line 7, the emitter of the IGBT41 is connected to the cathode of the diode 43, the anode is a ground line 12 of the diode 43 It is connected to the.
On the other hand, on the second side of the power adjustment device 40 , the power line 11 b is connected to the cathode of the diode 44, the anode of the diode 44 is connected to the collector of the IGBT 42, and the emitter of the IGBT 42 is connected to the ground line 12.

IGBT41とダイオード43、ダイオード44とIGBT42の各接合部分同士リアクトル47を介して接続され、IGBT41,42には、コレクタからエミッタへと流れる電流の向きとは逆方向に電流を導通可能なダイオード45,46が夫々並列に接続されている。
この昇降圧チョッパの1側と2側には、平滑用のキャパシタ17(図1)とキャパシタ49(図2)電力線11a,11bとグランドライン12との間に夫々介設されている。
IGBT41 and a diode 4 3, each junction of the diodes 44 and IGBT 4 2 is connected via a reactor 47, the IGBT41,42, can conduct current in a direction opposite to the direction of the current flowing from the collector to the emitter Diodes 45 and 46 are connected in parallel.
The 1-position side and 2-position side of the buck-boost chopper, the capacitor 17 for smoothing (Fig. 1) and capacitor 49 (FIG. 2) are respectively interposed between the power line 11a, 11b and a ground line 12 Yes.

昇降圧チョッパは、コントローラ51で制御されるゲート駆動回路52から出力されるゲート信号で制御し、降圧チョッパとる場合はIGBT41のゲートを、昇圧チョッパとる場合はIGBT42のゲートを、それぞれオン・オフ駆動させ、ゲート信号のチョッピング周波数の周期に対してゲートのオン時間を変化させることで、2位側電圧を1位側電圧に対して昇降圧る。
尚、この昇降圧チョッパに関しては既知の技術であるのでここでは簡略に説明する。
Buck-boost chopper is controlled by the gate signal outputted from the gate drive circuit 52 which is controlled by the controller 51, the gate of the case shall be the step-down chopper IGBTs 41, the gate of the case shall be the boost chopper IGBT 42, respectively on-off was driven, by changing the gate on-time relative to the period of the chopping frequency of the gate signals, it bucks the 2-position side voltage with respect to 1-position side voltage.
Since respect to this buck chopper is a known technique, it will be described here briefly.

まず図3に示すように、昇降圧チョッパを降圧チョッパ(1側電圧E1>2側電圧E2の場合)として機能させるには、IGBT41にゲート信号付加して制御、IGBT42を常時オとする。
ゲート信号のチョッピング周波数の周期Tに対するIGBT41の導通(オン)時間t1は、1側電圧E1と2側電圧E2の比で次式のように与えられる。
t1=T・(E2/E1)
例えば、第1電圧検出器59検出した電昇圧する場合はオン時間t1を長く、降圧する場合はオン時間t1を短くすれば、2電圧E2を1電圧E1に対して低い範囲で昇降圧して、充電電圧を調整することができる。
First, as shown in FIG. 3, to function the buck chopper as a step-down chopper (if the 1-position side voltage E1> 2-position side voltage E2) is controlled by adding a gate signal to the IGBTs 41, always off the IGBT42 It shall be the.
Conduction IGBT41 to the period T of the chopping frequency of the gate signal (on) time t1 is given by the following equation in a ratio of 1-position side voltage E1 and the 2-position side voltage E2.
t1 = T · (E2 / E1)
For example, to boost the detected beneath voltage at the first voltage detector 59 is rather long the on-time t1, when the step-down short to lever the on-time t1 the 2-position side voltage E2 1-position side buck to a low range with respect to the voltage E1, it is possible to adjust the charging voltage.

次に図4に示すように、昇降圧チョッパを昇圧チョッパ(1側電圧E1<2側電圧E2の場合)として機能させるには、IGBT41は常時オンとし、IGBT42にゲート信号付加して制御、IGBT41とリアクトル47とIGBT42からなる回路電流を流し、リアクトル47にエネルギーを蓄積る。
オン時間t2経過したところでIGBT42をオフすると、リアクトル47電流はそのまま流れ続けるため、リアクトル47に誘導電圧が発生、この誘導電圧が1側電圧E1に重畳負荷され、より高い2側電圧E2を得ることができる。
ゲート信号のチョッピング周波数の周期Tに対するIGBT42の導通(オン)時間t2は、1側電圧E1と2側電圧E2の比で次式のように与えられる。
t2=T・(1−E1/E2)
例えば、第1電圧検出器59で検出した電圧昇圧する場合はオン時間t2を長く、降圧する場合はオン時間t2を短くすれば、2電圧E2を1電圧E1に対して高い範囲で昇降圧して、充電電圧を調整することができる。
Next, as shown in FIG. 4, to function as a chopper boosting the buck-(for 1-position side voltage E1 <2-position side voltage E2) is, IGBTs 41 is always turned on by adding a gate signal to the IGBT42 control, by applying a current to a circuit consisting of IGBT41 a reactor 47 and IGBT 42, accumulate energy in the reactor 47.
On time t2 Then turn off I GBT42 where has elapsed, because the current of the reactor 47 is Keru continues as it flows, the induced voltage is occurs in the reactor 47, the induced voltage is superimposed load in the 1-position side voltage E1, it is possible to obtain a higher 2-position side voltage E2.
Conduction of IGBT 42 to the period T of the chopping frequency of the gate signal (on) time t2 is the ratio of the 1-position side voltage E1 and the 2-position side voltage E2, given by the following equation.
t2 = T · (1−E1 / E2)
For example, to boost the voltage detected by the first voltage detector 59 is rather long the on-time t2, if the case of the step-down is short the on-time t2, the voltage E2 of the 2-position side 1-position of the voltage and buck-boost at higher ranges for E1, it is possible to adjust the charging voltage.

図2に示す昇降圧チョッパのダイオード44は電流の架線7側への流出を防止する弁として機能し、電力回生時に発生する回生電力の全量をバッテリ35及びCVCFインバータ22に供給することが可能となる。そのため、架線7に回生電力が流出すること無く、架線7の電圧変動を抑制することができる。
このように、電流を架線7側からバッテリ35やインバータ20,22へ一方通行とすることで、バッテリ35の充放電やインバータ20,22の駆動制御が容易になる。
Diode 44 buck-boost chopper shown in Figure 2, functions as a valve to prevent outflow of the overhead wire 7 side of the current, the total amount of the regenerative power that occurs during power regeneration, the battery 35 and the CVCF inverter 22 It becomes possible to supply. Therefore, the voltage fluctuation of the overhead line 7 can be suppressed without the regenerative power flowing out to the overhead line 7.
Thus, by the current hand from overhead wire 7 side to the battery 35 and the inverter 20, 22 passing and driving Dosei control is facilitated in the charging and discharging and the inverter 20, 22 of the battery 35.

次に、車載バッテリ35への充電電流を設定する充電電流設定手段55について説明する。
充電電流設定手段55は、電力線11a,11bの電流を検出する第1乃至第3電流検出器56乃至58(第1乃至第3電流検出手段)と、充電電圧と電力調整装置40の2側電圧E2を検出する第1電圧検出器59(第1電圧検出手段)と、架線電圧と電力調整装置40の1側電圧E1を検出する第2電圧検出器60(第2電圧検出手段)と、運行線区の運行テーブル54と、上記の検出器56乃至60からの検出値に基づいて充電電流を演算する充電電流演算手段53とを有している。
Next, the charging current setting means 55 for setting the charging current for the in-vehicle battery 35 will be described.
Charging current setting unit 55, the power line 11a, the first to third current detector 56 to 58 for detecting and 11b of the current (first to third current detection hand stage), the charging voltage and the 2-position of the power conditioner 40 a first voltage detector 59 for detecting a side voltage E2 (first voltage detection hand stage), the second voltage detector 60 for detecting the position 1 side voltage E1 of the overhead wire side voltage and the power conditioner 40 (second voltage detection a manual stage), the operation table 54 of the operating line section, and a charging current calculation means 53 for calculating a charge current based on a detected value from the detector 56 to 60.

第1電流検出器56は、バッテリ35に接続された電力線11bに介装され、バッテリ35への充電電流を検出する。
第2電流検出器57は、バッテリ35とVVVFインバータ20及びCVCFインバータ22との間の電力線11bに介装され、VVVFインバータ20と、CVCFインバータ22への供給電流、あるいは誘導電動機21の回生電流からCVCFインバータ22へ供給される機系4への供給電流を減算した電流を検出する。
第3電流検出器58は、電力調整装置40の架線7側の電力線11aに介装され、架線7から流入してくる供給電流を検出する。
第1電圧検出器59は、バッテリ35近辺の電力線11bとグランドライン12との間の2位側に介設され、バッテリ35の充電電圧を検出する。
第2電圧検出器60は、電力線11aとグランドライン12との間の1位側に介設され、架線電圧を検出する。
The first current detector 56 is interposed in the power line 11 b connected to the battery 35 and detects the charging current to the battery 35.
The second current detector 57 is interposed on the power line 11b between the battery 35 and the VVVF inverter 20 and CVCF inverter 22, a VVVF inverter 20, the supply current or regenerative current of the induction motor 21, to CVCF inverter 22 The current obtained by subtracting the supply current to the auxiliary system 4 supplied to the CVCF inverter 22 is detected.
The third current detector 58 is interposed in the power line 11 a on the overhead line 7 side of the power adjustment device 40 and detects a supply current flowing in from the overhead line 7.
The first voltage detector 59 is interposed on the second side between the power line 11 b near the battery 35 and the ground line 12, and detects the charging voltage of the battery 35.
The second voltage detector 60 is interposed on the first side between the power line 11a and the ground line 12, and detects the overhead line voltage.

充電電流演算手段53は、コントローラ51に内蔵されているCPUやROMを有するコンピュータに充電電流演算プログラムとして格納されている。第1乃至第3電流検出器56乃至58と第1,第2電圧検出器59,60で検出た電流値と電圧値の電気信号コントローラ51へ出力される。充電電流演算手段53は、このコントローラ51にて、電化区間在線中にこれら電圧信号と電流信号から算出るバッテリ35の放電状態と、前記コンピュータに格納された運行線区の運行テーブル54から演算した現在の電化区間に在する時間とに基づいてバッテリ35への充電電流演算る。 The charging current calculation means 53 is stored as a charging current calculation program in a computer having a CPU and a ROM built in the controller 51 . The first to third current detector 56 to 58 first, electrical signal of the current value and the voltage value detected by the second voltage detector 59 and 60 is output to the controller 51. Charging current calculation unit 53, at the controller 51, the arithmetic and discharge state of the battery 35 you calculated from these voltage and current signals into electrified section-rail, the operation table 54 of the stored in a computer operating line section based on the time and the rail to the current electrified section that, you calculates the charging current to the battery 35.

充電電流設定手段55列車を運用電化区間を含む、線区の運行テーブル54にあるデータを充電電流演算手段53に取り込み、車両2が非電化区間から電化区間への進入点を通過する時点で、バッテリ放電状態を検出信号に基づいて把握、充電電流演算手段53で演算して充電電流を設定し、この設定された電流で先ずは電化区間を運行る。
充電電流設定手段55絶えず車両2の線区上の位置情報を把握し、運行テーブル54のデータを基に充電電流演算手段53で電化区間の運行終了までの時間を求めて、電流設定に必要とあればその修正を行う。その結果、電化区間の列車運行が終了し、再度非電化区間に進入する時点では、バッテリ35のエネルギーを回復る。
尚、実際の充電量と演算値とは、必ずしも100%一致しない場合があるので、例えば1日ベースで、バッテリ35の放電状態を確認しつつ、修正をフィードバックするようにすると良い。
Charging current setting unit 55 includes an electrified section you operate train takes the charging current calculation unit 53 the data in the operation table 54 of the track section, passes through the entry point of the vehicle 2 to the electrified section from a non-electrified section at the time of, grasp the basis of the battery discharge state to the detection signal, to set the charge current computed by the charging current calculation unit 53, first, you travel the electrified section in this set current.
Charging current setting unit 55, constantly not grasp the positional information on the vehicle both second track section, seeking time to travel end of the electrified sections in charge current calculation unit 53 data based on the operation table 54, the current perform the correction if necessary to set. As a result, the train service is the end of the electrified section, at the time to enter again the non-electrified section, it recovers the energy of the battery 35.
Note that the actual charge amount and calculated value, since there may not match necessarily 100%, for example daily basis, while confirming the discharge state of the battery 35, to as a result good feedback correction.

次に、電力制御手段50について説明する。
電力制御手段50は、上記の充電電流設定手段55で設定された充電電流値に基づいてゲート駆動回路52へ制御信号を送信するコントローラ51と、IGBT41,42のゲートを駆動するゲート駆動回路52とを備えている。
この電力制御手段50は、電化区間在線中にバッテリ35を充電するため、充電電流設定手段55により設定された充電電流に基づいて、後述する制御方式に従ってバッテリ35に流入する充電電流値が常時一定になるよう、または電力調整装置40が制御する充電電流値が常時一定になるよう、或いは架線7からの供給電流値(充電電流と補機供給電流と駆動電流の合計電流値)が極力一定になるように、コントローラ51とゲート駆動回路52を介して電力調整装置40制御る。
Next, the power control means 50 will be described.
The power control means 50 includes a controller 51 that transmits a control signal to the gate drive circuit 52 based on the charge current value set by the charge current setting means 55, a gate drive circuit 52 that drives the gates of the IGBTs 41 and 42, and It has.
The power control unit 50 in order to charge the battery 35 in electrified sections-rail, on the basis of the charging current set by the charging current setting unit 55, the charging current value flowing I follow the battery 35 to the control method described below cormorant by but becomes constant at all times, or power charging current value adjuster 40 is controlled by power sale by constant at all times, or the value of the current supplied from the overhead wire 7 (charging current and auxiliary electric supply current and the drive current so that the total current value) becomes as constant as possible, that controls the power conditioning unit 40 through the controller 51 and the gate drive circuit 52.

次に電力制御手段50による電力調整装置40(昇降圧チョッパ)の制御方式について説明する。
この電気鉄道システム1は、電力制御手段50電力調整装置40制御して電化区間在線中は、バッテリ35の充電電流とCVCFインバータ22への補機供給電流及びVVVFインバータ20への駆動電流を、電力調整装置40経由で供給る。
また電化区間在線中は、電力調整装置40が不動作となり補機供給電流及び駆動電流バッテリ35から供給る。
Next, a control method of the power adjustment device 40 (step-up / down chopper) by the power control means 50 will be described.
In this electric railway system 1, and the power control unit 50 controls the power conditioner 40, in electrified sections-rail is the battery 35 of the charging current and CVCF auxiliary electric supply current and VVVF inverter 20 to inverter 22 the driving current, supply via power conditioner 40.
The non-electrified section Zaisenchu the power adjustment device 40 becomes inoperative, auxiliary electric supply current and the drive current is you supplied from the battery 35.

先ず、バッテリ充電電流常時一定に制御る方式について説明する。
第1電流検出器56で検出るバッテリ充電電流一定の制御は、非電化区間で消費した電力エネルギー電化間在線中に100%回復させるよう充電電流設定手段55で設定した電流値で供給る。もとより充電電圧は、バッテリの種別とその構成で決まる。
この充電電流とは別に、補系4には常時補機類23への電力が供給される。また車両2を駆動する力行指令が入力されたときは、充電電流とは無関係に補機供給電流と駆動電力を供給るよう電力調整装置40では自律的な制御が為される。
First, a description will be given scheme that controls the battery charging current constant at all times.
It is to battery charging current constant control that detected by the first current detector 56, the power energy consumed by the non-electrified sections in UTakashi DENDEN flow setting unit 55 by recovering about 100% in electrified ku Mazai line It supplied in set beneath current value. Of course, the charging voltage is determined by the type of battery and its configuration.
Apart from the charging current, the auxiliary system 4 Ru electric power is supplied to the constantly auxiliaries 23. Also when the power running command to drive the vehicle 2 is input, so that to supply independent auxiliary electric supply current and the driving power from the charging current, Ru made a power adjustment device 40 in the autonomous control .

電化区間在線中に停止或いは惰行している車両2は、架線7から電力調整装置40を経由して、バッテリ35の充電電流と補機系への供給電流が供給されている。
この状態力行指令が入力された直後は、充電電圧を検出する第1電圧検出器59に変化が起きず、電力調整装置40は瞬時に応答しない。
その後、力行指令に従いVVVFインバータ20に駆動電流が供給されるとバッテリ35の充電電流が駆動電流によって減少し始め、2位側キャパシタ49に蓄電されていた電荷も減少し始め、電力調整装置40の2位側電圧E2が低下してくる。
Car both 2 you are stopped or coasting stop in electrified section-rail, via the power conditioner 40 from the overhead line 7, the supply current of the charging current of the battery 35 to the auxiliary system is supplied.
Immediately after the power running command is input in this state, changes to the first voltage detector 59 is not happening to detect the charging voltage, power conditioner 4 0 does not respond instantaneously.
Then, a drive current to the VVVF inverter 20 is supplied in accordance with the power running command, begins to decrease by the dynamic current driving the charging current of the battery 35, the charge that has been accumulated in the 2-position side capacitor 49 also begins to decrease, the power adjustment The second- side voltage E2 of the device 40 decreases.

このようなバッテリ35の充電電流の減少や、充電電圧変化は、第1電流検出器56と第1電圧検出器59により常時検出される。こうして検出された電流と電圧信号は、コントローラ51にフィードバック、コントローラ51を介してゲート駆動回路52御、電力調整装置40の2側電圧E2調整る。 Reduction and the charging current of such a battery 35, a change in the charging voltage is always detected by the first current detector 56 and the first voltage detector 59. This Ushite detected current and voltage signals are fed back to the controller 51, a control gate driver circuit 52 through the controller 51, adjust the 2-position side voltage E2 of the power conditioner 40.

力調整装置40の昇降圧動は、2側電圧E2を上昇、或いは下降させるが、昇圧チョッパ動作はIGBT42のオン時間t2を長く制御し、降圧チョッパ動作はIGBT41のオン時間t1を長く制御する。
尚、以下の説明では昇圧チョッパ動作の記述する
1電流検出器56で検出される電流値一定に維持すべく、2側電圧E2昇圧るため、バッテリ充電電流一定とする制御が制御ループ外にある回路(誘導電動機21や補機類23など)の負荷変動に関係なく一定の値に維持される。
The lifting pressure operation of the power adjusting unit 40, increasing the 2-position side voltage E2, or it is lowered, the boost chopper operation is controlled lengthening the on time t2 of the IGBT 42, buck chopper operation on time of the IGBT41 Control t1 longer.
It should be noted that, in the following description to describe only the step-up chopper operation.
The first current detector 56 with maintaining a current value detected constant Subeku, order to boost the 2-position side voltage E2, the circuit control is outside the control loop and the battery charging current constant (induction motor 21 And the auxiliary machine 23) are maintained at a constant value regardless of load fluctuations.

このため見かけ上、力行時の駆動電流は電力調整装置40を何の制約も無く通過する、力行指令が終了た場合、インバータ20に供給されていた駆動電流分がバッテリ35に流入し、バッテリ充電電流が増加する。さらに、キャパシタ49にも流入し側電圧E2が増加の傾向を示す。
その結果、第1電流検出器56と第1電圧検出器59が電流と電圧の増加を検出し、各信号をコントローラ51に送信することでゲート駆動回路52が再び制御され、今度は昇圧チョッパのオン時間t2を短くする
これにより、2次側電圧E2が降圧、バッテリ35に流入する充電電流が一定になる。
On over looked For this reason, although during power running of the driving current is passed through without any restrictions power adjuster 40, if the force line directive is completed, the driving current component which has been supplied to the inverter 20 battery 35, the battery charging current increases. Furthermore, 2-position side voltage E2 and also flowing into the capacitor 49 tends to increase.
As a result, the first current detector 56 and the first voltage detector 59 detects the increase in current and voltage, the gate drive circuit 52 is controlled again by sending each signal to the controller 51, in turn, the step-up chopper Is shortened .
Thus, pressure secondary voltage E2 is descending, ing in the a constant charging current flowing into the battery 35.

一方、制動指令が入力されると、回生制動動作行、誘導電動機21による電力回生が始まる。
この電力回生時は、誘導電動機21から発電される回生電流からCVCFインバータ22で消費される補機供給電流を差し引いた電流分が、昇降圧チョッパに設けられたダイオード44の弁作用により、その全量がバッテリ35に流入してくる。この回生電流バッテリ35への入で、一定に維持されていた充電電流が増加、2側電圧E2も増加する。
On the other hand, the braking command is inputted, perform regenerative braking operation, power regeneration Ru begins by the induction motor 21.
During this power regeneration, a current obtained by subtracting the auxiliary electric supply current drawn from the regenerative current that is generated from the induction motor 21 in CVCF inverter 22, the valve action of the diode 44 provided in the step-up and step-down chopper, the The whole amount flows into the battery 35. This influx of the battery 35 of the regenerative current, the charging current is maintained constant increases, the 2-position side voltage E2 also increase.

充電電流常時一定の値に制御るには、バッテリ35を充電する回生電流と架線分電流との優先順位を決めておく必要があるが、優先順位の1位を回生分電力、次位を架線分電力とする。その理由は、列車運転の安全確保を第一優先とすることにある。さらに本発明では非電化区間の運行が可能で、その区間に架線がないことも回生電力優先を自明にしている。
この結果、充電電流の一定制御は、回生電流分から補機系4への給電に必要な電流分を除いた電流分で、バッテリ充電する制御方式が望ましい実施態様となる。
To control the charging current always constant value, it is necessary to prioritize the regenerative component current and overhead wire equivalent current for charging the battery 35, the regenerative amount power at the 1-position of the priority, the following The power is the overhead line power. The reason is that ensuring safety in train operation is the first priority. Furthermore, in the present invention, the operation of the non-electrified section is possible, and the fact that there is no overhead line in the section also makes the regenerative power priority obvious.
As a result, the constant control of the charging current is a desirable embodiment in which a control method for charging the battery with a current component excluding a regenerative current component and a current component necessary for power supply to the auxiliary system 4 is a preferred embodiment.

電化区間において、回生電流のバッテリ35への流入分が既定の充電電流値を超え、この状態が継続する間、電力制御手段50によって電力調整装置40が停止、電力調整装置40から供給電流が出力されなくなる。従ってこ間、バッテリ35の充電電流は補機系供給電流分を減算した回生電流分のみバッテリ35に流入し、充電することになる。この間、バッテリ35の充電は回生電流に依存する In electrified section, the inflow amount of the battery 35 exceeded the predetermined charging current value of the regenerative current, while the condition persists, stop the power conditioner 40 I by the power control unit 50, power conditioner 40 The supply current is not output from. During the lever therefore, the charging current of the battery 35 is only the regenerative current amount obtained by subtracting the auxiliary electric supply current component flows to the battery 35, it will be charging. During this time, the charging of the battery 35 is dependent on the regenerative current.

回生制動が停止し、回生電流が減少して充電電流値以下になると、ゲート駆動回路52により再度IGBT42にゲート信号が付加される。すると架線7からの供給電流が電力調整装置40を介して再度供給され、充電電流を常時一定に維持するよう制御される。 Regenerative braking is stopped, the regenerative current becomes equal to or less than the charge current value decreases, Ru is added gate signal IGBT42 again by the gate drive circuit 52. Then the supply current from the overhead wire 7 is supplied again via the power conditioner 40, earthenware pots by maintaining the charge current at all times constant control is control.

の場合、電力調整装置40から供給される充電電流回生電流の影響を受けないよう、常時一定に制御することも可能である。
すなわち力行時には、第1電流検出器56の検出電流が常時略一定になるように、また回生時には、第2電流検出器57で検出される検出電流と、第1電流検出器56で検出される検出電流との差を求め、この差が常時略一定になるように電力調整装置40を制御する。この回生時の場合、IGBT42のオン時間t2を長くするように制御し、電力調整装置40は2側電圧E2を昇圧させる。これにより、電力調整装置40から出力される充電電流は常時一定に維持されることになる。
このため、必然的に回生電流成分は架線側からの一定値に重畳されることになり、制動時の回生成分を随意的な扱いにすることができる。
In this case, the charging current supplied from the power adjusting unit 40 lest affected by regenerative current, it is also possible that control constant at all times.
That is, when power running, as the detection current of the first current detector 56 is always substantially constant and during regeneration, a detection current detected by the second current detector 57, is detected by the first current detector 56 and it obtains the difference between the detected current, that controls the power conditioner 40 so that the difference becomes always substantially constant. For this during regeneration, it is controlled so as to increase the on time t2 of the IGBT 42, the power adjusting unit 40 boosting the 2-position side voltage E2. As a result, the charging current output from the power adjustment device 40 is always kept constant.
For this reason, the regenerative current component is inevitably superimposed on a constant value from the overhead line side, and the regenerated amount at the time of braking can be treated arbitrarily.

電化区間では架線7からの供給電流がなくなるので、電力調整装置40は不動作となり、駆動電流や補機供給電流はバッテリ35から供給される。
そのため、バッテリ35は電化区間在線中に充電された電流時間積をインバータ20の駆動状況に応じて自的に放電することになる。
Since in the non-electrified section supply current from the rack line 7 is eliminated, the power adjusting unit 40 becomes inoperative, the drive current or auxiliary electric supply current Ru is supplied from the battery-35.
Therefore, the battery 35 will be discharged autonomously in accordance with the driving conditions of the electrified section-rail inverter 20 a current time product that is charged into the.

次に、架線7からの給電による電力制御について説明する。
第3電流検出器58で検出する供給電流を制御する場合、架線7からの電流は、電化区間で作用させるバッテリ充電電流と、駆動電流又は回生電流と、補機系4への供給電流の各時間平均値のベクトル合計で決定する。このときのバッテリ充電電流は、前述の充電電流演算手段53が演算する。
鉄道は通常、運行する線区とその時刻が決まっているので、平均的な運行の典型的パターン(Typical Pattern)を求め、この典型的パターンをもとに駆動電流と回生電流を決定することができる。
更に、1回或いは1日の運行終了後に、バッテリ35の充電状態を確認し、蓄電量が不足する場合には電力制御手段50で追加充電できるようにする。
補機系供給電流は、空調や照明などの補機類23へ供給されるため、電化・非電化区間に関わらず略一定の電流値となる。
Next, power control by power feeding from the overhead line 7 will be described.
When the supply current detected by the third current detector 58 is controlled, the current from the overhead line 7 includes a battery charging current to be applied in the electrification section, a drive current or a regenerative current, and a supply current to the auxiliary system 4. Determined by vector sum of time average values. The battery charging current at this time is calculated by the aforementioned charging current calculation means 53.
Railroads usually have line segments and their times determined, so it is possible to obtain a typical pattern of average operation (typical pattern) and determine drive current and regenerative current based on this typical pattern. it can.
Further, after the operation is completed once or after one day, the state of charge of the battery 35 is confirmed, and when the amount of power storage is insufficient, the power control means 50 can perform additional charging.
Auxiliary electric supply current is to be supplied to the auxiliary machinery 23, such as air conditioning and lighting, ing a substantially constant current value regardless of electrification and non-electrified section.

このような制御方式によって、第3電流検出器58により常時供給電流を検出し、さらには、第2電圧検出器60により架線電圧を検出しこれら電流と電圧を乗算し電力値で電化区間在線中の供給電流、さらには供給電力、電力制御手段50を介した電力調整装置40が制御る。
また運転中、時には駆動電流と補機供給電流の合計値が予定した供給電流を超える場合がある。こうした場合、架線7からの流入分常時一定になるよう電力調整装置40のIGBT42のオン時間t2降圧側に制御して、供給電流の不足分を強制的にバッテリ35から放電するよう制御して、架線系の電力不足が他の列車に及ぶことを予防する。
By such a control scheme, detects the normal supplying current by the third current detector 58, and further, by the second voltage detector 60 also detects the overhead wire side voltage, these current and voltage values in the multiplied power value, the current supplied in the electrified section-rail, further supply power, that controls the power regulator 40 through the power control unit 50.
During operation, sometimes the sum of the drive current and auxiliary system supply current exceeds the planned supply current. If there cow this, so that the inflow amount from the overhead line 7 is always constant, by controlling the IGBT42 on-time t2 of the power conditioner 40 to the step-down side, discharged from forcibly battery 35 for the shortage of the supply current To prevent the shortage of power in the overhead system from reaching other trains.

電力回生時、補機供給電流電動機21の回生電流供給され、バッテリ35への充電電流は、補機系への供給電流を減算した残りの電流成分に架線7からの電流加算されて供給される。この場合、架線7からの電流が常時一定になるよう、電力調整装置40のIGBT42のオン時間t2昇圧側に制御される。供給電流はこのように制御され、全量バッテリ35に流入する。 During power regeneration, auxiliary electric supply current is regenerative current motor 2 1 is supplied, the charge current to the battery 35, current from the overhead line 7 to the rest of the current component obtained by subtracting the current supplied to the auxiliary system There are provided feed is added. In this case, power sale by current from the overhead line 7 is always constant, the on-time t2 of the IGBT42 of the power adjusting device 40 is controlled in the step-up side. Supply current thus controlled, it flows into the total amount battery 35.

上記した架線7から供給される電流(または電力)の制御に関して、バッテリ充放電の様子を図5に基づいて説明する。
図5において電化区間在線中(0秒乃至86秒)は、第3電流検出器58と第2電圧検出器60の検出信号に基づき、架線入力電力(S)は電力調整装置40によって常時略一定に制御されている。また補機供給電力(A)、空調や照明等に消費される電力のため略一定の電力が供給され、架線入力電力(S)は、充電電流設定手段55により設定された一定の充電電力(B)と補機供給電力(A)の和で決められる。
Regard control of the current (or power) supplied from the overhead line 7 as described above, will be described with reference to FIG. 5 how the battery-charging and discharging.
During electrified section-rail 5 (0 seconds to 86 seconds), the third current detector 58-out based on the detection signal of the second voltage detector 60, the overhead line input power (S) to the power conditioner 40 Therefore, it is always controlled to be substantially constant. In addition, the auxiliary system power supply (A) is also supplied with a substantially constant power because it is consumed by air conditioning, lighting, etc., and the overhead line input power (S) is a constant set by the charging current setting means 55 . It is determined by the sum of charge power (B) and auxiliary system supply power (A).

先ず、停車状態の車両2に力行指令が入力された力行時(0秒乃至16秒)は通常、駆動電力として電動機定格値の2倍以上の電力を必要とするため、一定に制御された架線7からの入力電力(S)だけでは、駆動電力と補機供給電力(A)を賄うには不足する。従って不足分バッテリ35から放電してこれを補う。
やがて加速が終了し、車両2が惰行状態(16秒乃至48)に移行すると、駆動電力は必要無くなり、充電電力(B)はバッテリ35からの電に応した充電電力(B)に制御され、バッテリ35が充電される。
First, at the time of power running (0 second to 16 seconds) when a power running command is input to the vehicle 2 in a stopped state, it usually requires more than twice the motor rated value as drive power, so it was controlled to be constant. Only the input power (S) from the overhead line 7 is insufficient to cover the drive power and auxiliary system supply power (A). Therefore, the shortage is discharged from the battery 35 to compensate for this.
Eventually the acceleration is completed, the vehicle 2 is transferred to coasting state (16 seconds to 48 seconds), the driving power RiAfrican Gray Parrot kuna, charging power (B) is charged and that correspond to discharge electricity from the battery-35 Controlled by electric power (B), the battery 35 is charged.

次に、制動指令が出力された電力回生時(48秒乃至62秒)は、充電電力(B)バッテリ35に流入する上に、回生電力分が発生(+方向)するので、充電電力(B)の一定値に回生電力分が重畳された状態でバッテリ35が充電される。
最後に回生制動が終了し、車両2が停車状態(62秒乃至86)に移行すると、再度充電電力(B)はバッテリ放電状態に対応した一定値になり、バッテリ35が充電される。
このようにして架線7からの入力電力(S)一定に維持されるため、力行のときはバッテリ35が放電(下向き三角)し、回生制動のときはバッテリ35の一定の充電電流(B)に回生成分が重畳(上向き三角)され充電される。
Then, when power regeneration the braking command is output (48 seconds to 62 seconds) is on the charging power (B) flows into the battery 35, since the regenerative electric power amount is generated (+ direction), charge battery 35 is Ru is charged in a state where the regenerative power component is superimposed on a constant value of power (B).
Finally the regenerative braking is terminated and the vehicle 2 moves to a stopped state (62 seconds to 86 seconds), again charging power (B) becomes a constant value corresponding to the battery discharge state, the battery 35 is charged.
Because this way the input power from the overhead line 7 (S) is to be kept constant, when the power running battery 35 is discharged (downward triangles), a constant charging current of the battery 35 when the regenerative braking (B ) regeneration component Ru is charged is superimposed (upward triangle) on.

の車両2電化区間在線中は、停車時も含め架線7から略一定電流が給電されるので、先行技術に代表されるような力行に電力供給系側からピーク電力を供給する必要がなく、車両2への供給電力を平準化できるので、電力会社に対するデマンド抑制効果による電力費用の低減が期待できる。
また架線7に代表される電力供給系の電力を平準化できるために、同じ電力供給系からより多くの車両2に電力の供給が可能となる等の更なる効果がある。
This in car two second electrified section-rail, because the overhead line 7 or al substantially a constant current including when the vehicle is stopped is powered, the peak from the power supply system side before each power running, as represented by the prior art power rather name needs to be supplied, it is possible to equalize the power supplied to the vehicle both 2, reduction of power costs by demand inhibitory effect on electric power companies can be expected.
In order to be leveling power of the power supply system typified by the overhead line 7, there is a further effect of such a possible more vehicles both 2 to the power supply from the same power supply system.

本件の電力制御手段50は、電化区間電化区間を直通で運用当該システム1を前提とし電力制御手段50であるが、電化区間のみ運用電気鉄道システム1の場合でも、車両2にバッテリ35と電力調整装置40を搭載すれば当該電力制御手段50で電力調整装置40を制御すれば、上記デマンド削減効果が期待できる。 The power control unit 50 of this matter, albeit at the power control unit 50 assuming the system 1 you operate electrified section and a non-electrified section direct, even if the electric railway system 1 you operate only electrified section if equipped with a battery 35 and a power adjusting unit 40 in the vehicle both 2, lever controls the power conditioner 40 in the power control unit 50, the demand reduction effect can be expected.

次に、この電気鉄道システム1の効果について説明する。
この電気鉄道システム1は、電力調整装置40の1位側架線7を接続ると共に、電力調整装置40の2位側にバッテリ35を介して、VVVFインバータ20とCVCFインバータ22を夫並列に接続したので、電化区間在線中バッテリ35を常時充電可能にすると共にCVCFインバータ22に給電可能とし、力行時はVVVFインバータ20にも給電可能である。
また電化区間在線中は、架線7から力供がないためバッテリ35からVVVFインバータ20やCVCFインバータ22には、直接給電可能となる。
Next, the effect of this electric railway system 1 will be described.
The electric railway system 1, The rewritable connect the overhead line 7 at the 1-position side of the power conditioner 40, through the battery 35 to the 2-position side of the power conditioner 40, respectively parallel VVVF inverter 20 and CVCF inverter 22 Having connected to, in electrified sections-rail is thereby permit charging the battery 35 at all times, also possible feeding the CVCF inverter 22, power running is also power the VVVF inverter 20.
The non-electrified section Zaisenchu is fried Gana Chikarakyo feeding electricity from the overhead line 7, the VVVF inverter 20 and CVCF inverter 22 from the battery 35, it is possible to directly feed.

例えば、車両2が電化区間から非電化区間に移行すると架線7から電力調整装置40への給電停止し、電力調整装置40が不動作となり、バッテリ35とVVVFインバータ20とCVCFインバータ22との間には制御回路が存在せず接接続されているため、電力調整装置40とは無関係にバッテリ35が自的に放電し、補機系4のCVCFインバータ22、力行時には駆動系3のVVVFインバータ20に給電される。
これにより、車両2の電化区間・非電化区間相互間移行時でも制御・回路の切替が不要となり、従来必要であった切替作業の煩雑さから開放される。
For example, when the vehicle both 2 transitions from electrified section to the non-electrified section feeding from the overhead line 7 to the power conditioner 40 is stopped, the power adjustment device 40 becomes inoperative, the battery 35 and the VVVF inverter 20 and CVCF inverter 22 braking absent control circuit between, because it is continued straight Sesse', irrespective battery 35 is discharged autonomously in the power conditioner 40, the CVCF inverter 22 of the auxiliary system 4, the time of power running Power is supplied to the VVVF inverter 20 of the drive system 3 .
Thus, switching of the control-circuit even when the mutual migration of the car both second electrified section and non-electrified section is not required, Ru is released from the complexity which are necessary in the conventional switching work.

また、電化区間在線中に、バッテリ35に供給される充電電流が、所定の充電電流設定手段55で設定た電流値になるよう電力制御手段50電力調整装置40御、の充電電流によりバッテリ35充電るので、非電化区間でCVCFインバータ22やVVVFインバータ20消費たバッテリ35のエネルギーを電化区間で効率良くバッテリ35に充電し、そのエネルギーを回復することができる。 Further, in electrified sections-rail, the charging current supplied to the battery 35, so that the current value set at a predetermined charging current setting unit 55, control the power conditioner 40 by the power control unit 50, this Runode charge the battery 35 by charge current, the energy of the battery 35 to CVCF inverter 22 and VVVF inverter 20 is consumed by non-electrified section, and charged efficiently battery 35 in electrified section, to recover its energy Can do.

この電気鉄道システム1電力調整装置40は、力行時と電力回生時において、第1電流検出器56で検出したバッテリ35への充電電流を略一定に維持、或いは電力回生時において、第1電流検出器56で検出した充電電流と第2電流検出器57で検出した回生電流分との差を略一定に維持、或いは常時第3電流検出器58で検出した架線7からの供給電流、並びに第2電圧検出器60で検出した架線圧を乗算した電力を略一定に維持する3種類の制御方式を有するので、線区や運行ダイヤに応じ制御方式を切り換え、効率良く運行することができる。 Power conditioner 40 of the electric railway system 1, during the time of power regeneration power line, Oite the charging current to the battery 35 detected by the first current detector 56 maintained substantially constant, or at the time of power regeneration, the difference between the regenerative current amount detected by the charging current detected by the first current detector 56 the second current detector 57, maintaining substantially constant, or from the third current detector overhead line 7 detected 58 constantly supply current, as well as to maintain the power, etc. obtained by multiplying the detected overhead wire side voltage at the second voltage detector 60 substantially constant, because it has three control methods, the control method corresponding to the line section and operation schedule switched, it can be efficiently operated.

た電力調整装置40において、非電化区間で駆動系3や補機系4で消費たバッテリ35のエネルギーを、非電化区間の終着駅に設けた電源から、終着駅に停車中の短時間(例えば5分)の急速充電回復させることができる
尚、うした場合の通例では、電力調整装置40は急速充電に対応できる能力要求され、大電流に耐える大容量素子で構成ることになるが、本発明では電化区間において、上記電力調整装置40を使用して、駆動系3、補機系4とバッテリ充電を纏めて制御することが可能となる。
In or power adjuster 40, the energy of the battery 35 consumed by the drive system 3 and auxiliary system 4 in a non-electrified section, the power provided to the terminus of the non-electrified section, the short parked in terminal station It can be recovered with a quick charge of time (for example, 5 minutes).
In the customary case was cow this, the power conditioner 40 is required the ability to cope with quick charge, but will Rukoto configure a large-capacity element to withstand a large current, the present invention in electrified sections, the It is possible to collectively control the drive system 3, the auxiliary system 4 and the battery charging using the power adjustment device 40 .

そのうえ、電力調整装置40、1500Vdc,750Vdc,600Vdcの多様な仕様に適用でき、電力調整装置40の2位側の回路自体を変更することなく、1500Vdc、750Vdc、600Vdcに対応した電化区間、非電化区間を移動できるシステムを構築できる。 Moreover, power regulator 40, 1500 Vdc, 750Vdc, can be applied to various specifications of 600 Vdc, without changing the circuit itself at the 2-position side of the power conditioner 40, 1 500Vdc, 750Vdc, electrified section corresponding to 600 Vdc , turn off the system that the non-electrified section can be moved in the building.

またこの電気鉄道システム1は電化区間・非電化区間の直通システムであるが、電化区間専用で運用電気鉄道システムの車両にも、バッテリ35と電力調整装置40を搭載すること可能である。
つまり、非電化区間の運行を考慮する必要がなく、架線7から常時受電して、力行・惰行・回生制動・停車で構成る運転パターンとなる場合も、駆動電力の平均値と補機供給電力の和が消費電力となり、供給すべき電力エネルギーの根拠となるので、電化・非電化区間直通型のシステムで大きな割合を占める、非電化区間でのバッテリ放電電力を回復するための充電成分考慮する必要はない。
従って、車両に搭載るバッテリの容量は、運行パターンの周期内で出入りする最大容量を確保すれば良く、直通システムと比較してはるかに少ない容量のバッテリで良いことになる。
Electric railway system 1 Matako is a direct system of electrified section and non-electrified section, but the vehicles electric railway system that operated in electrified sections dedicated to be mounted on the battery 35 and the power conditioner 40 Is possible.
In other words, it is not necessary to consider the operation of the non-electrified section, and receiving constantly from overhead line 7, even if the operation pattern that make up at power running, coasting, regenerative braking and stop, etc., and the average value of the driving power accessory the sum of the machine system supply power becomes power consumption, since the basis of the power energy to be supplied, a large proportion electrified and non-electrified section direct type system, in a non-electrified section discharge power for recovering There is no need to consider charging components.
Therefore, the battery capacity you mounted on a vehicle, if ensure maximum capacity and out in a period of luck line patterns rather good, resulting in good battery of much less capacity than straight through the system.

更に、副次的効果として、停電、架線切断等の事故発生には、車両に搭載したバッテリ35を電源として、その容量の範囲内で、最寄り駅への列車の収容と乗客の移送、トンネルからの脱出等の非常事態対応が可能で、長時間の駅間停止を解消できるので、客サービスの改善に繋がる効果も期待できる。 Furthermore, as a side effect, a power failure, when an accident occurs, such as overhead line cutting, a battery 35 mounted on a vehicle as a power source, within its capacity, train housing and transporting passengers to the nearest station, can be very events to Thailand response of the escape or the like from the tunnel, it is possible to eliminate the stop between the long-time station, it can also be expected effect leading to the improvement of the power of Kyakusa-bis.

最後に、前記実施例を部分的に変更した応用例について説明する。
(1)電力調整装置40は、昇降圧チョッパに変えて、DC/DC変換器のような昇降圧手段を有する構成であっても良い。
(2)本発明の趣旨を柱とし、これに追加的要件を付加した実施態様は、本発明の構成要件が実質的に包含されたものとなる。
Finally , an application example in which the above embodiment is partially changed will be described.
(1) power conditioner 40, instead of the buck-boost chopper may I configuration der having a buck-boost means such as a DC / DC converter.
(2) The embodiment in which the gist of the present invention is used as a pillar and additional requirements are added thereto substantially includes the structural requirements of the present invention.

本発明に係る電気鉄道システムの電気配線図である。1 is an electrical wiring diagram of an electric railway system according to the present invention. 電力調整装置の回路構成図である。It is a circuit block diagram of a power adjustment device. 電力調整装置を降圧チョッパとして使用するときの図2のX点における電圧波形を示すグラフである。It is a graph which shows the voltage waveform in the X point of FIG. 2 when using a power adjustment device as a pressure | voltage fall chopper. 電力調整装置を昇圧チョッパとして使用するときの図2のX点における電圧波形を示すグラフである。It is a graph which shows the voltage waveform in the X point of FIG. 2 when using a power adjusting device as a pressure | voltage rise chopper. 架線からの供給電力が略一定に制御されるときの架線電力(S)・補機電力(A)・バッテリ充放電電力(B)を示すグラフである。It is a graph which shows overhead wire electric power (S), auxiliary machine system electric power (A), and battery charging / discharging electric power (B) when the electric power supplied from an overhead wire is controlled substantially constant.

1 電気鉄道システム
車両
3 駆動系
4 補機系
5 主給電系
架線
20 VVVF(可変電圧可変周波数)インバータ
21 誘導電動機
22 CVCF(固定電圧固定周波数)インバータ
23 補機類
35 ッテリ
40 電力調整装置
50 電力制御手段
53 充電電流演算手段
54 運行テーブル
55 充電電流設定手段
56 第1電流検出器(第1電流検出手段)
57 第2電流検出器(第2電流検出手段)
58 第3電流検出器(第3電流検出手段)
59 第1電圧検出器(第1電圧検出手段)
60 第2電圧検出器(第2電圧検出手段)
1 Electric Railway System 2 Vehicle 3 Drive System 4 Auxiliary System 5 Main Power Supply System
7 overhead line 20 VVVF (variable voltage variable frequency) inverter 21 induction motor 22 CVCF (fixed voltage fixed frequency) inverter 23 auxiliary devices 35 battery-<br/> 40 power conditioner 50 power control means
53 charging current calculation means
54 operation table
55 charging current setting means 56 first current detector (first current detecting means)
57 Second current detector (second current detection means)
58 Third current detector (third current detection means)
59 First voltage detector (first voltage detecting means)
60 Second voltage detector (second voltage detection means)

Claims (7)

架線から受電した電力を調整して給電する電力調整装置を備えた主給電系、駆動用の導電動機と導電動機を駆動する可変電圧可変周波数インバータとを備えた駆動系と、バッテリと、補機系から成り電化区間では架線からの電力で車両を駆動し、非電化区間では前記バッテリからの電力で車両を駆動するよう構成した電気鉄道システムであって、
前記電力調整装置の1位側が前記架線に、2位側が前記バッテリを介して前記駆動系と前記機系に夫々接続され、
電化区間在線中に前記バッテリへの充電電流を設定する充電電流設定手段と、この充電電流設定手段で設定した充電電流でバッテリに蓄電するよう前記電力調整装置を制御する電力制御手段とを備え、
前記充電電流設定手段は、前記バッテリへの充電電流若しくは前記バッテリからの流出電流を検出する第1電流検出手段と、前記駆動系と前記補機系への供給電流を検出し且つ前記電動機の回生電流から前記補機系への供給電流を差し引いた後の電流を検出する第2電流検出手段と、前記架線から前記主給電系への電流を検出する第3電流検出手段と、前記バッテリの電圧を検出する第1電圧検出手段と、前記電力調整装置の1位側の電圧を検出する第2電圧検出手段とを備えたことを特徴とする電気鉄道システム。
A main power supply system provided with a power adjustment device for adjusting to feed the electric power received from the overhead line, a drive system that includes a variable voltage variable frequency inverter for driving the induction motor and the induction motor for driving dynamic, a battery composed of a auxiliary system, the vehicle is driven by the power from the overhead line is electrified section, in the non-electrified section an electric railway system form by the Hare configured to drive the vehicle with electric power from the battery,
Wherein the 1-position side the overhead wire power conditioner, 2-position side respectively connected to said auxiliary system and the driving system via the battery,
Charging current setting means for setting the charging current to the battery during electrification section existing line, and power control means for controlling the power adjustment device to store in the battery with the charging current set by the charging current setting means,
The charging current setting unit detects a charging current to the battery or an outflow current from the battery, detects a supply current to the drive system and the auxiliary system, and regenerates the motor. A second current detecting means for detecting a current after subtracting a supply current to the auxiliary system from a current; a third current detecting means for detecting a current from the overhead line to the main power feeding system; and a voltage of the battery An electric railway system comprising: first voltage detecting means for detecting the first voltage detecting means; and second voltage detecting means for detecting a voltage on the first side of the power adjustment device .
前記充電電流設定手段は、運行テーブルを備えると共に、前記第1電流検出手段と前記第1電圧検出手段から各種状態出力を受けて算出される電化区間在線中の前記バッテリの放電状態情報と、前記運行テーブルに蓄積した線区データと、電化区間の在線実績時間情報に基づいて、前記バッテリへの充電電流を演算する充電電流演算手段を備えたことを特徴とする請求項1に記載の電気鉄道システム。
The charging current setting means includes an operation table, and discharge state information of the battery in the electrified section existing line calculated by receiving various state outputs from the first current detection means and the first voltage detection means, and a track section data stored in the operation table, on the basis of the rail actual time information of electrification period, according to claim 1, further comprising a charging current calculating means for calculating a charge current to the battery Electric railway system.
前記電力制御手段は、電化区間在線時に前記第1電流検出手段で検出される電流が略一定となるよう、前記電力調整装置を制御することを特徴とする請求項に記載の電気鉄道システム。 The electric railway system according to claim 2 , wherein the power control unit controls the power adjustment device so that a current detected by the first current detection unit is substantially constant when the electrified section is present . 前記電力制御手段は、電化区間在線時の電力回生時以外は略一定の充電電流となるよう前記電力調整装置を制御し、電力回生時は前記第1電流検出手段で検出される電流と前記第2電流検出手段で検出される電流との差が略一定となるよう、前記電力調整装置を制御することを特徴とする請求項に記載の電気鉄道システム。 The power control means controls the power adjustment device so as to obtain a substantially constant charging current except during power regeneration when the electrified section is present, and during power regeneration, the current detected by the first current detection means and the first The electric railway system according to claim 2 , wherein the power adjustment device is controlled so that a difference from a current detected by the two current detection means is substantially constant . 前記電力制御手段は、電化区間在線時に前記第3電流検出手段で検出される電流が略一定となるよう、並びに前記第3電流検出手段で検出される電流と前記第2電圧検出手段で検出される電圧の積が略一定となるよう、前記電力調整装置を制御することを特徴とする請求項に記載の電気鉄道システム。 The power control means is detected by the second voltage detection means and the current detected by the third current detection means so that the current detected by the third current detection means becomes substantially constant when the electrification section is present. The electric railway system according to claim 2 , wherein the power adjustment device is controlled so that a product of voltage to be substantially constant . 前記電力調整装置は、電力回生時、回生電力の全量を前記バッテリ及び前記補機系に供給するよう構成したことを特徴とする請求項1〜5の何れか1項に記載の電気鉄道システム。 The electric railway system according to any one of claims 1 to 5, wherein the power adjustment device is configured to supply a total amount of regenerative power to the battery and the auxiliary system during power regeneration . 基準架線電圧が1500Vdc,750Vdc,600Vdcから選択される複数の電圧に対して使用可能に構成したことを特徴とする請求項1〜6の何れか1項に記載の電気鉄道システム。
The electric railway system according to any one of claims 1 to 6 , wherein the reference overhead line voltage is configured to be usable for a plurality of voltages selected from 1500 Vdc, 750 Vdc, and 600 Vdc .
JP2007238830A 2007-09-14 2007-09-14 Electric railway system Active JP5209922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238830A JP5209922B2 (en) 2007-09-14 2007-09-14 Electric railway system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238830A JP5209922B2 (en) 2007-09-14 2007-09-14 Electric railway system

Publications (3)

Publication Number Publication Date
JP2009072003A JP2009072003A (en) 2009-04-02
JP2009072003A5 JP2009072003A5 (en) 2010-10-07
JP5209922B2 true JP5209922B2 (en) 2013-06-12

Family

ID=40607681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238830A Active JP5209922B2 (en) 2007-09-14 2007-09-14 Electric railway system

Country Status (1)

Country Link
JP (1) JP5209922B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875633B2 (en) * 2008-01-17 2012-02-15 三菱重工業株式会社 Vehicle and charge control method thereof
JP4958846B2 (en) * 2008-06-03 2012-06-20 株式会社日立製作所 Vehicle control device for intermittent power reception
JP2011004566A (en) * 2009-06-22 2011-01-06 Toshiba Corp Auxiliary power supply apparatus for electric vehicle
WO2011021266A1 (en) 2009-08-17 2011-02-24 三菱電機株式会社 Power converter for propulsion of electric car
JP4846064B2 (en) * 2009-08-17 2011-12-28 三菱電機株式会社 Electric vehicle propulsion power converter
JP5495759B2 (en) * 2009-12-17 2014-05-21 公益財団法人鉄道総合技術研究所 Voltage switching control method and control system for multi-voltage compatible electric vehicle
KR101599555B1 (en) * 2009-12-24 2016-03-03 두산인프라코어 주식회사 Power converter for hybrid
JP5570839B2 (en) * 2010-02-15 2014-08-13 東日本旅客鉄道株式会社 Electric car main circuit
JP5398634B2 (en) * 2010-05-12 2014-01-29 株式会社東芝 AC electric car
WO2012014324A1 (en) * 2010-07-30 2012-02-02 三菱電機株式会社 Electric vehicle propulsion control device, and railway vehicle system
JP5623319B2 (en) * 2011-03-25 2014-11-12 新電元工業株式会社 Bidirectional converter and control method of bidirectional converter
ES2392079B1 (en) * 2011-03-31 2013-11-04 Administrador De Infraestructuras Ferroviarias (Adif) BATTERY CHARGING CONTROL SYSTEM AND PROCEDURE FROM THE RAILWAY ELECTRICAL SYSTEM.
JP5840425B2 (en) * 2011-08-31 2016-01-06 株式会社東芝 Electric railway vehicle charging system
CN103988409B (en) * 2011-12-12 2016-06-29 三菱电机株式会社 Power conversion device
CN103419653B (en) 2012-05-22 2016-04-27 比亚迪股份有限公司 The power system of electronlmobil, electronlmobil and heating of battery method
CN103419659B (en) 2012-05-22 2016-04-13 比亚迪股份有限公司 The power system of electronlmobil, electronlmobil and heating of battery method
CN103419664B (en) 2012-05-22 2015-11-25 比亚迪股份有限公司 The power system of electronlmobil, electronlmobil and heating of battery method
CN103419614B (en) 2012-05-22 2016-09-07 比亚迪股份有限公司 Hybrid vehicle, the dynamical system of hybrid vehicle and battery heating means
EP2868514B1 (en) * 2012-06-28 2017-08-23 Mitsubishi Electric Corporation Control device for alternating current electric vehicle
JP2014155292A (en) * 2013-02-07 2014-08-25 Nabtesco Corp Power regeneration system and vehicle including the same
JP6262002B2 (en) * 2014-02-03 2018-01-17 東芝インフラシステムズ株式会社 Electric vehicle control device
JP6240023B2 (en) * 2014-04-11 2017-11-29 株式会社日立製作所 Power converter and railway vehicle equipped with the same
JP6423741B2 (en) * 2015-02-26 2018-11-14 東洋電機製造株式会社 Power conversion device, power conversion device control method, and electric vehicle
JP7140531B2 (en) * 2018-04-13 2022-09-21 株式会社東芝 electric car control system
US20230045807A1 (en) * 2019-12-16 2023-02-16 Siemens Mobility GmbH Method for controlling the current output of a battery
KR102284445B1 (en) * 2020-02-07 2021-08-03 한국철도기술연구원 Wireless Power Collecting System for Vehicle
KR102277873B1 (en) * 2020-02-07 2021-07-19 한국철도기술연구원 Train Power Receiving Apparatus for Wiress Powwer Transmission System

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989450B2 (en) * 2004-02-20 2007-10-10 財団法人鉄道総合技術研究所 Circuit device and vehicle operation system
JP2005278269A (en) * 2004-03-24 2005-10-06 Railway Technical Res Inst Drive controller for vehicle
JP4167678B2 (en) * 2005-08-26 2008-10-15 株式会社神戸製鋼所 Electric vehicle traveling system
JP2007068242A (en) * 2005-08-29 2007-03-15 Railway Technical Res Inst Rooftop current collector of low-floor lrv

Also Published As

Publication number Publication date
JP2009072003A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5209922B2 (en) Electric railway system
JP2009072003A5 (en)
JP5558022B2 (en) Electric vehicle storage control device and storage control method
JP3911621B2 (en) Railway system for battery-powered trains
JP4841441B2 (en) Battery charger for railway vehicles
CA2657758C (en) Power converter and controller using such converter for electric rolling stock
JP4958846B2 (en) Vehicle control device for intermittent power reception
CN107042762B (en) Vehicle-mounted hybrid energy storage system of railway vehicle and application thereof
US8924051B2 (en) Drive device for railway vehicle
TWI625257B (en) Tram control
JP5485319B2 (en) Power flow control method and control device for vehicle mounted with secondary battery
KR101419203B1 (en) Electric-vehicle propulsion power-conversion device
KR101363701B1 (en) Drive-control device for electric vehicle
JP2008172857A5 (en)
JP5902534B2 (en) Railway vehicle drive system
CN105098868A (en) Dual power supply system and electrically driven vehicle
KR100890951B1 (en) Restoration-electric power storage system of electric railway using electric double layer capacitor
JP2004056934A (en) Auxiliary power unit
CA2771315A1 (en) Electric power converter of electric rolling stock
JP4772718B2 (en) Railway vehicle drive system
JP2006340561A (en) Circuit system
JP5777669B2 (en) Electric vehicle control device
JP2001069604A (en) Electric vehicle controller and dc/dc converter
KR20120029716A (en) Electric power storage device of hybrid electric train
JP7407079B2 (en) Power conversion system, its control method, and railway vehicle equipped with it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5209922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250