WO2009101859A1 - Inverter device and method for controlling the same - Google Patents

Inverter device and method for controlling the same Download PDF

Info

Publication number
WO2009101859A1
WO2009101859A1 PCT/JP2009/051414 JP2009051414W WO2009101859A1 WO 2009101859 A1 WO2009101859 A1 WO 2009101859A1 JP 2009051414 W JP2009051414 W JP 2009051414W WO 2009101859 A1 WO2009101859 A1 WO 2009101859A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
pattern
voltage
deceleration
motor
Prior art date
Application number
PCT/JP2009/051414
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Yamada
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to JP2009553389A priority Critical patent/JPWO2009101859A1/en
Publication of WO2009101859A1 publication Critical patent/WO2009101859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations

Definitions

  • the present invention relates to an inverter device for driving and controlling an AC motor and a control method thereof.
  • FIG. 5 is a block diagram of a conventional inverter device. In FIG.
  • 1 is an inverter
  • 2 is a motor
  • 3 is a battery connected in parallel to the DC bus of the inverter
  • 4 is a voltage level determination unit
  • 5 is a regenerative / reflux mode selector
  • 6 is an inverter control unit
  • 7 is a speed detection. It is a vessel.
  • P is a positive DC bus of the inverter 1
  • N is a negative DC bus of the inverter 1.
  • the voltage level determination unit 4 determines whether or not the battery 3 is in an overcharged state where the regenerative energy of the motor 2 cannot be absorbed.
  • the regeneration / reflux mode selector 5 determines that the battery is in an overcharge state, the regeneration mode is switched to the reflux mode that consumes energy.
  • FIG. 6 is another configuration diagram of a conventional inverter device.
  • 1 is an inverter
  • 2 is a motor
  • 3 is a battery
  • 6 is an inverter control unit
  • 7 is a speed detector
  • 8 is a voltage detector.
  • the terminal voltage of the battery 3 is detected by the voltage detector 8, and the motor torque command is selected or the stop operation of the inverter 1 is selected in the inverter control unit 6 according to the voltage level.
  • the conventional apparatus determines the operation of the inverter 1 while detecting and monitoring the terminal voltage of the battery 3.
  • Japanese Patent Application Publication No. 2002-95105 FIG. 1
  • Japanese Patent No. 3195879 Japanese Patent No. 3195879
  • the terminal voltage of the battery is detected and monitored, and when the battery is almost fully charged, the motor is decelerated or stopped, or the motor torque is changed.
  • the battery voltage is controlled so that it does not become an abnormal value.
  • charging / discharging is greatly influenced by the impedance characteristics of the battery, and this characteristic determines the response and redundancy of the inverter drive system.
  • a smoothing capacitor is installed on the DC bus of the inverter, and the smoothing capacitor and the battery have an overwhelmingly low impedance.
  • the terminal voltage of the smoothing capacitor is higher than the battery terminal voltage.
  • the conventional technique is a method that considers the safety of the battery. However, even if the battery is actually protected, the main circuit IGBT, smoothing capacitor, and the like, which are the electronic components of the inverter, cannot be protected with sufficient reliability.
  • the present invention has been made in view of such problems, and detects a transient potential difference between a battery terminal and a smoothing capacitor terminal to determine the operating state of the inverter, and
  • An object of the present invention is to provide an inverter device that can protect both with sufficient reliability and a control method thereof.
  • the present invention is configured as follows. Separately from the power supply system, the inverter has a battery for power backup on the DC bus of the inverter, and in the inverter device that drives the AC motor, Voltage level determination device for detecting the transient voltage of the DC bus of the inverter and the transient voltage of the battery, a comparison circuit for comparing the transient voltage of the DC bus of the inverter and the transient voltage of the battery, and a comparison result of the comparison circuit And an inverter control unit that switches a deceleration operation pattern of the AC motor based on the difference voltage.
  • the deceleration operation pattern has any one of a normal deceleration pattern that decelerates at a preset deceleration rate, a pattern that extends the deceleration rate more than the normal deceleration pattern, and a zero vector output pattern. It is.
  • the output patterns are switched in order.
  • V ⁇ first set value the vehicle decelerates at a preset deceleration rate.
  • the deceleration rate is longer than the normal deceleration.
  • the second set value ⁇ the difference voltage V ⁇ the third set value
  • a zero voltage vector is output, and when the third set value ⁇ the difference voltage V, the inverter is gate-blocked.
  • the differential voltage exceeds a predetermined protection level
  • the inverter is gate-blocked.
  • the zero vector output pattern is such that only the P-side (positive side) or N-side (negative side) transistors are turned on simultaneously.
  • the difference between the battery terminal voltage and the inverter DC bus voltage can be detected, for example, when the potential difference becomes large to some extent during motor deceleration, before the breakdown voltage of the electronic components mounted on the inverter is exceeded.
  • the electronic components mounted on the inverter can be protected by switching the deceleration method.
  • the difference between the terminal voltage of the battery and the DC bus voltage of the inverter becomes large when the motor is decelerated, it is possible to avoid a situation in which an overvoltage is applied to the electronic components of the inverter.
  • the motor decelerates when the difference between the battery terminal voltage and the inverter DC bus voltage becomes large, the motor is free-run stopped (coast-to-stop).
  • the free-run stop is an operation in which the drive signal to the main circuit transistor is interrupted by an external signal and the power supply to the motor is stopped during the inverter operation. In this case, the motor does not generate a braking force and stops spontaneously while coasting.
  • the block diagram of the inverter apparatus which shows 1st Example of this invention Behavior of smoothing capacitor and battery terminal voltage during motor deceleration according to the present invention Operation explanatory diagram at the time of motor deceleration of the present invention Gate block operation (motor free run) in the case of the winding switching type motor according to the present invention Configuration diagram of conventional inverter device Configuration diagram of conventional inverter device Explanatory drawing of zero vector output (reflux mode) of the present invention
  • FIG. 1 shows the configuration of the inverter device of the present invention.
  • 1 is an inverter
  • 2 is a motor
  • 3 is a battery connected in parallel to the DC bus of the inverter
  • 6 is an inverter control unit
  • 7 is a speed detector
  • 8 is a voltage detector
  • 9 is a comparison circuit
  • 10 is a switching pattern.
  • a generating unit, 11 is a drive circuit
  • 16 is a smoothing capacitor.
  • the inverter control unit 6 includes a switching pattern generation unit 10 and a drive circuit 11.
  • P is a positive side DC bus and N is a negative side DC bus, and is connected to the smoothing capacitor 16.
  • the output side of the inverter 1 is connected to a motor 2 serving as a load to supply electric power.
  • the voltage detector 8 is connected to each of the battery 3 and the positive / negative DC bus PN, measures the voltage every predetermined sampling, and outputs the measurement data to the comparison circuit 9.
  • the comparison circuit 9 is connected to the inverter control unit 6.
  • the inverter control unit 6 inputs the data of the comparison circuit 9 and the speed detector 7 and gives a gate drive signal to the main circuit switching element of the inverter 1 to drive the inverter 1.
  • a switching pattern generated by a switching pattern generation unit for example, an ASIC (Application Specific IC) that is an application specific IC
  • a switching pattern to be selected a normal regenerative braking switching pattern, a switching pattern in which the deceleration rate is increased and the regenerative braking energy is reduced, and a zero vector (reflux mode) are selected.
  • the main circuit switching element of the inverter 1 is switched through the drive circuit 11 according to the selected switching pattern.
  • FIG. 2 is a diagram illustrating a transient behavior of the terminal voltage of the smoothing capacitor of the inverter and the terminal voltage of the battery during regenerative braking of the motor.
  • the horizontal axis represents time
  • the vertical axis represents DC voltage.
  • Time ta is a deceleration start time, and from this moment, the motor becomes a generator and the smoothing capacitor terminal voltage gradually increases from Va due to regenerative power.
  • the smoothing capacitor is overwhelmingly low in impedance between the smoothing capacitor and the battery, as a transient phenomenon during regenerative braking, only the terminal voltage of the smoothing capacitor rises and a large potential difference occurs between the terminal voltage of the battery.
  • the time te is the time when the transient phenomenon ends and becomes a steady state, and after the time te, the smoothing capacitor terminal voltage and the battery terminal voltage have the same value Ve.
  • FIG. 3 is an explanatory diagram showing the relationship between the smoothing capacitor voltage and the deceleration method (deceleration operation pattern of the inverter) during regenerative braking of the motor in the inverter device of the present invention.
  • the horizontal axis represents the time axis
  • the vertical axis represents the DC voltage of the smoothing capacitor.
  • the motor 2 starts decelerating at time ta, which is the constant battery voltage Va, and the electric motor operates as a generator to start supplying regenerative power to the smoothing capacitor and the battery.
  • the voltage difference at the time of transition between the smoothing capacitor and the battery voltage is hereinafter simply referred to as a difference voltage V.
  • the values of the differential voltages (Vb-Va), (Vc-Va), and (Vd-Va) are set in advance before actual operation in consideration of the withstand voltages of the main circuit IGBT and smoothing capacitor that are the electronic components of the inverter. deep.
  • the differential voltages (Vb ⁇ Va), (Vc ⁇ Va), and (Vd ⁇ Va) are defined as a first set value, a second set value, and a third set value, respectively.
  • FIG. 4 shows a case where the motor is a winding switching type motor having a low speed winding and a high speed winding.
  • the low speed winding uses all of the motor windings W1 and W2.
  • the high-speed winding is a short circuit of W2 of a part of the motor winding and uses only the remaining winding W1.
  • the winding changeover switch is indicated by 12 in the figure as a winding changeover unit, and is an example of a combination of semiconductor switches (SSW1, SSW2) and mechanical switches (MSW1, MSW2).
  • the configuration of the winding switching unit is not limited to this.
  • the deceleration method is selected by changing the switching pattern of the inverter based on the potential difference. If a potential difference occurs due to the difference in regenerative braking power absorption capability during motor deceleration, the deceleration method is switched according to the level, and the electronic components mounted on the inverter are protected before the breakdown voltage of the electronic components mounted on the inverter is exceeded. be able to.
  • FIG. 7 is an example of zero vector output (reflux mode). The figure shows a state where only the P-side (positive side) transistors 13 are simultaneously turned on.
  • the regenerative power of the motor flows in a closed loop between the motor and the P-side (positive side) transistor 13, and the regenerative power is mainly consumed by the windings in the motor.
  • the N-side zero vector can be created by simultaneously turning on only the N-side (negative-side) transistor 14.
  • the present invention relates to a machine tool spindle drive, a hoisting / lowering machine drive, a crane, an elevator, an electric vehicle, a hybrid vehicle equipped with both an electric vehicle and a gasoline engine, an electric motor for a wind power generation system, and an electric motor thereof. It can be applied to a drive inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

It is possible to provide an inverter device which can protect electronic parts of both of a battery and an inverter with a sufficient reliability. Provided also is a method for controlling the inverter device. The inverter device includes a battery (3) for power supply backup in a DC bus of the inverter separately from a power supply system and drives an AC motor (2). The inverter device includes: a voltage level judgment device (4) which detects a transient voltage of the inverter DC bus and a transient voltage of the battery; a comparison circuit (9) which compares the transient voltage of the inverter DC bus to the transient voltage of the battery; and an inverter control unit (6) which switches a reduction operation pattern of the AC motor according to a differential voltage as the comparison result obtained by the comparison circuit.

Description

インバータ装置とその制御方法Inverter device and control method thereof
 本発明は交流モータを駆動、制御するインバータ装置とその制御方法に関する。 The present invention relates to an inverter device for driving and controlling an AC motor and a control method thereof.
 従来から、モータ駆動用のインバータ装置の直流部にバッテリを接続して、バックアップ機能を持たせるシステムは存在する。また、電気自動車では、バックアップではなくメインの電源としてバッテリを使用する。バッテリを交流モータの回生エネルギーの吸収要素として考える場合、交流モータの減速運転時には、バッテリが満充電に近いときは所定の回生制動力が得られなくなることがある。この問題を回避するためバッテリの充電状態を監視し、バッテリの充電状態に応じて交流モータの運転状態を調整する方法がある(例えば特許文献1参照)。運転状態の調整としては、バッテリが満充電の場合にインバータで還流モードを作り、バッテリに充電された電荷をモータで放電し、次に充電可能状態にするものである。また、これとは異なり、バッテリの端子電圧を監視し、モータのトルク制限値を操作する方法(例えば特許文献2参照)がある。何れの場合も、モータの減速時にバッテリの充電状態によって回生制動電力を吸収できない場合を想定し対策をとったものである。
 図5は従来のインバータ装置の構成図である。図5において、1はインバータ、2はモータ、3はインバータの直流母線に並列接続したバッテリ、4は電圧レベル判定器、5は回生/還流モード選択器、6はインバータ制御部、7は速度検出器である。Pはインバータ1の正側直流母線、Nはインバータ1の負側直流母線である。バッテリ3がモータ2の回生エネルギーを吸収できない過充電状態であるか否かを電圧レベル判定器4によって判定する。回生/還流モード選択器5が過充電状態と判定した場合は、回生モードからエネルギーを消費する還流モードに切替る。この動作の中で、トルク電流を絞り、励磁電流成分を増やすことでバッテリ3のエネルギーをモータ内部の熱損失として消費する。
 図6は従来のインバータ装置のその他の構成図である。図6において、1はインバータ、2はモータ、3はバッテリ、6はインバータ制御部、7は速度検出器、8は電圧検出器である。バッテリ3の端子電圧を電圧検出器8で検出し、その電圧レベルによってインバータ制御部6の内部で、モータのトルク指令を選択したり、インバータ1の停止動作を選択したりする。
 このように、従来の装置はバッテリ3の端子電圧を検出、監視しながら、インバータ1の動作を決定するものである。
日本国特許出願公開 特開2002-95105号(図1) 日本国特許第3195879号(図1)
Conventionally, there is a system that provides a backup function by connecting a battery to a direct current portion of an inverter device for driving a motor. Moreover, in an electric vehicle, a battery is used as a main power source instead of a backup. When the battery is considered as an absorption element for the regenerative energy of the AC motor, a predetermined regenerative braking force may not be obtained when the AC motor is decelerating and the battery is nearly fully charged. In order to avoid this problem, there is a method of monitoring the state of charge of the battery and adjusting the operating state of the AC motor according to the state of charge of the battery (see, for example, Patent Document 1). As the adjustment of the operation state, when the battery is fully charged, a recirculation mode is created by the inverter, the electric charge charged in the battery is discharged by the motor, and then the chargeable state is made. In contrast to this, there is a method of monitoring the terminal voltage of the battery and operating the torque limit value of the motor (see, for example, Patent Document 2). In either case, countermeasures are taken assuming that regenerative braking power cannot be absorbed depending on the state of charge of the battery when the motor is decelerated.
FIG. 5 is a block diagram of a conventional inverter device. In FIG. 5, 1 is an inverter, 2 is a motor, 3 is a battery connected in parallel to the DC bus of the inverter, 4 is a voltage level determination unit, 5 is a regenerative / reflux mode selector, 6 is an inverter control unit, and 7 is a speed detection. It is a vessel. P is a positive DC bus of the inverter 1, and N is a negative DC bus of the inverter 1. The voltage level determination unit 4 determines whether or not the battery 3 is in an overcharged state where the regenerative energy of the motor 2 cannot be absorbed. When the regeneration / reflux mode selector 5 determines that the battery is in an overcharge state, the regeneration mode is switched to the reflux mode that consumes energy. During this operation, the torque current is reduced and the excitation current component is increased to consume the energy of the battery 3 as a heat loss inside the motor.
FIG. 6 is another configuration diagram of a conventional inverter device. In FIG. 6, 1 is an inverter, 2 is a motor, 3 is a battery, 6 is an inverter control unit, 7 is a speed detector, and 8 is a voltage detector. The terminal voltage of the battery 3 is detected by the voltage detector 8, and the motor torque command is selected or the stop operation of the inverter 1 is selected in the inverter control unit 6 according to the voltage level.
Thus, the conventional apparatus determines the operation of the inverter 1 while detecting and monitoring the terminal voltage of the battery 3.
Japanese Patent Application Publication No. 2002-95105 (FIG. 1) Japanese Patent No. 3195879 (FIG. 1)
 直流部にバッテリを備えた従来のインバータ装置では、バッテリの端子電圧を検出、監視して、バッテリが満充電に近いときなどはモータの減速、または停止方法を変えたり、モータのトルクを変化させたりして、バッテリの電圧が異常値にならないように制御している。
 しかし、インバータの直流母線とバッテリが直結される場合は、充放電はバッテリのインピーダンス特性に大きく左右され、この特性がインバータドライブシステムの応答性や冗長性を左右する。
 通常、インバータの直流母線には平滑コンデンサが設置されており、平滑コンデンサとバッテリのインピーダンスは、平滑コンデンサが圧倒的に低い。したがって、バッテリの電圧だけを判定基準として、モータの減速、または停止方法を変えたり、モータのトルクを変化させたりしても、バッテリの端子電圧よりも平滑コンデンサの端子電圧のほうが高い状態になり、インバータに搭載している電子部品の耐電圧を超えてしまう危険性がある。すなわち、バッテリの端子と平滑コンデンサの端子は電気的には繋がっており定常状態では同電位になるものの、過渡的には電位差が生じてしまう。従来の技術は、バッテリの安全を考えた方法であるが、実際にはバッテリを守れてもインバータの電子部品である主回路IGBT、平滑コンデンサ等を十分な信頼性をもって保護できなかった。
In a conventional inverter device equipped with a battery in the direct current section, the terminal voltage of the battery is detected and monitored, and when the battery is almost fully charged, the motor is decelerated or stopped, or the motor torque is changed. The battery voltage is controlled so that it does not become an abnormal value.
However, when the DC bus of the inverter and the battery are directly connected, charging / discharging is greatly influenced by the impedance characteristics of the battery, and this characteristic determines the response and redundancy of the inverter drive system.
Normally, a smoothing capacitor is installed on the DC bus of the inverter, and the smoothing capacitor and the battery have an overwhelmingly low impedance. Therefore, even if the motor deceleration or stop method is changed or the motor torque is changed using only the battery voltage as a criterion, the terminal voltage of the smoothing capacitor is higher than the battery terminal voltage. There is a risk of exceeding the withstand voltage of the electronic components mounted on the inverter. That is, although the battery terminal and the smoothing capacitor terminal are electrically connected and have the same potential in a steady state, a potential difference occurs transiently. The conventional technique is a method that considers the safety of the battery. However, even if the battery is actually protected, the main circuit IGBT, smoothing capacitor, and the like, which are the electronic components of the inverter, cannot be protected with sufficient reliability.
 本発明はこのような問題点に鑑みてなされたものであり、バッテリの端子と平滑コンデンサの端子の過渡的な電位差を検出して、インバータの運転状態を決定し、バッテリとインバータの電子部品の両方を十分な信頼性をもって保護することができるインバータ装置とその制御方法を提供することを目的とする。 The present invention has been made in view of such problems, and detects a transient potential difference between a battery terminal and a smoothing capacitor terminal to determine the operating state of the inverter, and An object of the present invention is to provide an inverter device that can protect both with sufficient reliability and a control method thereof.
 上記問題を解決するため、本発明は、次のように構成したのである。
 電源系統とは別にインバータの直流母線に電源バックアップ用のバッテリを備え、交流モータを駆動するインバータ装置において、
 前記インバータの直流母線の過渡電圧と前記バッテリの過渡電圧を検出する電圧レベル判定器と、前記インバータの直流母線の過渡電圧と前記バッテリの過渡電圧を比較する比較回路と、前記比較回路の比較結果である差電圧に基づいて前記交流モータの減速動作パターンを切替るインバータ制御部を有するものである。
 また、請求項1において前記減速動作パターンは、予め設定した減速レートで減速する通常減速パターン、通常減速パターンよりも減速レートを伸ばすパターン、ゼロベクトル出力パターンのいずれかを有することを特徴とするものである。
 また、請求項1においてインバータ制御部は、差電圧に基づいて前記交流モータの減速動作パターンを予め設定した減速レートで減速する通常減速パターン、前記通常減速パターンよりも減速レートを伸ばすパターン、ゼロベクトル出力パターンの順に切替ることを特徴とするものである。
 また、0≦差電圧V≦第1設定値の場合は、予め設定した減速レートで減速し、第1設定値≦差電圧V<第2設定値の場合は、減速レートを通常減速よりも延ばし、第2設定値≦差電圧V<第3設定値の場合は、ゼロ電圧ベクトルを出力し、第3設定値≦差電圧Vの場合は、インバータをゲートブロックすることを特徴とするものである。
 また、差電圧が所定の保護レベルを超えた場合、インバータをゲートブロックすることを特徴とするものである。
 また、請求項5において交流モータの巻線が低速高速巻線と高速巻線を有しこれらの巻線を切替ることができる交流モータの場合、インバータをゲートブロックする際に巻線切替用のスイッチをオープンにすることを特徴とするものである。
 また、請求項2乃至4においてゼロベクトル出力パターンはP側(正側)またはN側(負側)のトランジスタのみを全て同時にONするものである。
In order to solve the above problem, the present invention is configured as follows.
Separately from the power supply system, the inverter has a battery for power backup on the DC bus of the inverter, and in the inverter device that drives the AC motor,
Voltage level determination device for detecting the transient voltage of the DC bus of the inverter and the transient voltage of the battery, a comparison circuit for comparing the transient voltage of the DC bus of the inverter and the transient voltage of the battery, and a comparison result of the comparison circuit And an inverter control unit that switches a deceleration operation pattern of the AC motor based on the difference voltage.
Further, in claim 1, the deceleration operation pattern has any one of a normal deceleration pattern that decelerates at a preset deceleration rate, a pattern that extends the deceleration rate more than the normal deceleration pattern, and a zero vector output pattern. It is.
The inverter control unit according to claim 1, wherein the inverter controller decelerates the deceleration operation pattern of the AC motor at a preset deceleration rate based on the differential voltage, a pattern for extending the deceleration rate over the normal deceleration pattern, and a zero vector The output patterns are switched in order.
In addition, when 0 ≦ difference voltage V ≦ first set value, the vehicle decelerates at a preset deceleration rate. When first set value ≦ difference voltage V <second set value, the deceleration rate is longer than the normal deceleration. When the second set value ≦ the difference voltage V <the third set value, a zero voltage vector is output, and when the third set value ≦ the difference voltage V, the inverter is gate-blocked. .
Further, when the differential voltage exceeds a predetermined protection level, the inverter is gate-blocked.
Further, in the case of the AC motor in which the winding of the AC motor has a low-speed high-speed winding and a high-speed winding and can switch between these windings, when the inverter is gate-blocked, It is characterized by opening the switch.
In the second to fourth aspects of the present invention, the zero vector output pattern is such that only the P-side (positive side) or N-side (negative side) transistors are turned on simultaneously.
 本発明によると、バッテリの端子電圧とインバータの直流母線電圧の差を検出できるので、例えばモータの減速時に、その電位差がある程度大きくなったときに、インバータに搭載した電子部品の耐圧を超える前に、減速方法を切替ることによりインバータに搭載した電子部品を保護することができる。
 また、例えばモータの減速時に、バッテリの端子電圧とインバータの直流母線電圧の差が大きくなったときに、インバータの電子部品に過電圧がかかる事態を回避できる。
 また、例えばモータの減速時に、バッテリの端子電圧とインバータの直流母線電圧の差が大きくなったときに、モータをフリーラン停止(惰走停止:Coast-to-stop)させる。これによりバッテリやインバータの直流母線の平滑コンデンサに対してのエネルギーの逆流を最小限に抑えることができる。ここでフリーラン停止とは、インバータ運転中に外部信号によって主回路トランジスタへの駆動信号を遮断し電動機への電力供給を停止させる動作。この場合、モータは制動力を発生せず、惰走しながら自然停止となる。
According to the present invention, since the difference between the battery terminal voltage and the inverter DC bus voltage can be detected, for example, when the potential difference becomes large to some extent during motor deceleration, before the breakdown voltage of the electronic components mounted on the inverter is exceeded. The electronic components mounted on the inverter can be protected by switching the deceleration method.
Further, for example, when the difference between the terminal voltage of the battery and the DC bus voltage of the inverter becomes large when the motor is decelerated, it is possible to avoid a situation in which an overvoltage is applied to the electronic components of the inverter.
Also, for example, when the motor decelerates, when the difference between the battery terminal voltage and the inverter DC bus voltage becomes large, the motor is free-run stopped (coast-to-stop). As a result, the backflow of energy to the smoothing capacitor of the DC bus of the battery or inverter can be minimized. Here, the free-run stop is an operation in which the drive signal to the main circuit transistor is interrupted by an external signal and the power supply to the motor is stopped during the inverter operation. In this case, the motor does not generate a braking force and stops spontaneously while coasting.
本発明の第1実施例を示すインバータ装置の構成図The block diagram of the inverter apparatus which shows 1st Example of this invention 本発明のモータ減速時の平滑コンデンサとバッテリの端子電圧の挙動Behavior of smoothing capacitor and battery terminal voltage during motor deceleration according to the present invention 本発明のモータ減速時の動作説明図Operation explanatory diagram at the time of motor deceleration of the present invention 本発明による巻線切替式モータの場合のゲートブロック動作(モータフリーラン)Gate block operation (motor free run) in the case of the winding switching type motor according to the present invention 従来のインバータ装置の構成図Configuration diagram of conventional inverter device 従来のインバータ装置の構成図Configuration diagram of conventional inverter device 本発明のゼロベクトル出力(還流モード)の説明図Explanatory drawing of zero vector output (reflux mode) of the present invention
符号の説明Explanation of symbols
1 インバータ
2 モータ
3 バッテリ
4 電圧レベル判定器
5 回生/還流モード選択器
6 インバータ制御部
7 速度検出器
8 電圧検出器
9 比較回路
10 SWパターン生成部
11 駆動回路
12 巻線切替部
13 P側トランジスタ
14 N側トランジスタ
15 ゼロベクトル時の電流
16 平滑コンデンサ
SSW1、SSW2 半導体スイッチ
MSW1、MSW2 機械スイッチ
DESCRIPTION OF SYMBOLS 1 Inverter 2 Motor 3 Battery 4 Voltage level determination device 5 Regenerative / reflux mode selector 6 Inverter control unit 7 Speed detector 8 Voltage detector 9 Comparison circuit 10 SW pattern generation unit 11 Drive circuit 12 Winding switching unit 13 P side transistor 14 N-side transistor 15 Current at zero vector 16 Smoothing capacitor
SSW1, SSW2 Semiconductor switch
MSW1, MSW2 mechanical switch
 以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明のインバータ装置の構成を示す。図において、1はインバータ、2はモータ、3はインバータの直流母線に並列接続したバッテリ、6はインバータ制御部、7は速度検出器、8は電圧検出器、9は比較回路、10はスイッチングパターン生成部、11は駆動回路、16は平滑コンデンサである。インバータ制御部6はスイッチングパターン生成部10と駆動回路11を含んでいる。Pは正側直流母線、Nは負側直流母線であり平滑コンデンサ16に接続される。インバータ1の出力側は負荷となるモータ2に接続し電力を供給する。電圧検出器8はバッテリ3と及び正負直流母線PNの各々へ接続され所定のサンプリング毎に電圧を測定し、測定データを比較回路9へ出力する。比較回路9はインバータ制御部6と接続される。インバータ制御部6は比較回路9と速度検出器7のデータを入力しインバータ1の主回路スイッチング素子へゲート駆動信号を与えインバータ1を駆動する。 FIG. 1 shows the configuration of the inverter device of the present invention. In the figure, 1 is an inverter, 2 is a motor, 3 is a battery connected in parallel to the DC bus of the inverter, 6 is an inverter control unit, 7 is a speed detector, 8 is a voltage detector, 9 is a comparison circuit, and 10 is a switching pattern. A generating unit, 11 is a drive circuit, and 16 is a smoothing capacitor. The inverter control unit 6 includes a switching pattern generation unit 10 and a drive circuit 11. P is a positive side DC bus and N is a negative side DC bus, and is connected to the smoothing capacitor 16. The output side of the inverter 1 is connected to a motor 2 serving as a load to supply electric power. The voltage detector 8 is connected to each of the battery 3 and the positive / negative DC bus PN, measures the voltage every predetermined sampling, and outputs the measurement data to the comparison circuit 9. The comparison circuit 9 is connected to the inverter control unit 6. The inverter control unit 6 inputs the data of the comparison circuit 9 and the speed detector 7 and gives a gate drive signal to the main circuit switching element of the inverter 1 to drive the inverter 1.
 次に動作を説明する。モータの回生制動時、モータからインバータ1の直流母線電圧に配置された平滑コンデンサ16と、バッテリ3に電力が回生される。平滑コンデンサ16とバッテリ3のインピーダンスは、平滑コンデンサ16が圧倒的に低く、回生電力を吸収する際には過渡的には平滑コンデンサ16の端子電圧のみ上昇し、バッテリ3の端子電圧との間に電位差が生じる。平滑コンデンサ16の端子電圧とバッテリ3の端子電圧は電圧検出器8によって検出され、この電位差は比較回路9によって算出される。比較回路9によって算出された電位差のレベルによって、スイッチングパターン生成部(例えば特定用途向けICであるASIC(Application Specific IC)など)で生成するスイッチングパターンを選択する。選択するスイッチングパターンとしては、通常の回生制動のスイッチングパターン、減速レートを延ばして回生制動エネルギーを小さくするスイッチングパターン、およびゼロベクトル(還流モード)を選択する。選択されたスイッチングパターンによって駆動回路11を介して、インバータ1の主回路スイッチング素子をスイッチングする。 Next, the operation will be described. At the time of regenerative braking of the motor, power is regenerated from the motor to the smoothing capacitor 16 arranged at the DC bus voltage of the inverter 1 and the battery 3. The impedance of the smoothing capacitor 16 and the battery 3 is overwhelmingly low. When the regenerative power is absorbed, only the terminal voltage of the smoothing capacitor 16 rises transiently and is between the terminal voltage of the battery 3. A potential difference occurs. The terminal voltage of the smoothing capacitor 16 and the terminal voltage of the battery 3 are detected by the voltage detector 8, and this potential difference is calculated by the comparison circuit 9. A switching pattern generated by a switching pattern generation unit (for example, an ASIC (Application Specific IC) that is an application specific IC) is selected according to the level of the potential difference calculated by the comparison circuit 9. As a switching pattern to be selected, a normal regenerative braking switching pattern, a switching pattern in which the deceleration rate is increased and the regenerative braking energy is reduced, and a zero vector (reflux mode) are selected. The main circuit switching element of the inverter 1 is switched through the drive circuit 11 according to the selected switching pattern.
図2は、モータの回生制動時のインバータの平滑コンデンサの端子電圧と、バッテリの端子電圧の過渡的な挙動を示す図である。図において、横軸は時間、縦軸は直流電圧を表す。時刻taは減速開始時刻であり、この瞬間からモータが発電機動作となり回生電力に起因して平滑コンデンサ端子電圧がVaから徐々に上昇する。平滑コンデンサとバッテリのインピーダンスは、平滑コンデンサが圧倒的に低いため、回生制動時の過渡現象としては、平滑コンデンサの端子電圧のみ上昇し、バッテリの端子電圧との間に大きな電位差が生じる。
 時刻teは過渡現象が終わり定常状態となる時刻であり、時刻te以後は平滑コンデンサ端子電圧とバッテリの端子電圧が同じ値Veとなる。
FIG. 2 is a diagram illustrating a transient behavior of the terminal voltage of the smoothing capacitor of the inverter and the terminal voltage of the battery during regenerative braking of the motor. In the figure, the horizontal axis represents time, and the vertical axis represents DC voltage. Time ta is a deceleration start time, and from this moment, the motor becomes a generator and the smoothing capacitor terminal voltage gradually increases from Va due to regenerative power. Since the smoothing capacitor is overwhelmingly low in impedance between the smoothing capacitor and the battery, as a transient phenomenon during regenerative braking, only the terminal voltage of the smoothing capacitor rises and a large potential difference occurs between the terminal voltage of the battery.
The time te is the time when the transient phenomenon ends and becomes a steady state, and after the time te, the smoothing capacitor terminal voltage and the battery terminal voltage have the same value Ve.
 図3は本発明のインバータ装置における、モータの回生制動時における平滑コンデンサ電圧と減速方法(インバータの減速動作パターン)との関係を表す説明図である。図において、横軸は時間軸、縦軸は平滑コンデンサの直流電圧を示す。定常時のバッテリ電圧Vaである時刻taでモータ2が減速を開始し電動機が発電機動作となり回生電力が平滑コンデンサとバッテリへ供給開始される。平滑コンデンサとバッテリ電圧との過渡時電圧差を以下単に差電圧Vと言うことにする。差電圧(Vb-Va)、(Vc-Va)、(Vd-Va)の値はインバータの電子部品である主回路IGBT、平滑コンデンサ等の耐電圧を考慮して実運転前に予め設定しておく。差電圧(Vb-Va)、(Vc-Va)、(Vd-Va)を各々第1設定値、第2設定値、第3設定値とする。
(1)0≦差電圧V≦(Vb-Va)の場合は、通常減速をする。ここで通常減速とは予め設定した減速レートで減速することを意味する。
(2)(Vb-Va)≦差電圧V<(Vc-Va)の場合は、減速レートを通常減速よりも延ばす。減速レートは単位時間当たりの速度である減速度の比率を表す。
(3)(Vc-Va)≦差電圧V<(Vd-Va)の場合は、ゼロ電圧ベクトルを出力する。
(4)(Vd-Va)≦差電圧Vの場合は、インバータ1の主回路トランジスタのゲート遮断(ゲートブロック)をする。
 ここでモータを制御する場合に使用する加減速レートとは、単純にいうと停止状態から起動してある速度に達するまでの傾き(通常時間で設定)および逆の動作時の傾きである。負荷に対してモータを加速或いは減速させるのに要する時間である。実使用時での設定は設定最高速度に対して秒で行う事が殆どである。例えばインバータとかで最高速度を60Hzと設定し、モータが60Hz定格1800rpmの物を使用した場合で加速時間2秒,減速時間1.5秒に設定すると、0~1800rpmまで2秒で到達、1800rpm~停止まで1.5秒になる。
 以上のようにモータの回生制動時に、インバータの平滑コンデンサの端子電圧とバッテリの端子電圧との間に差電圧が生じた場合、その差電圧によって、(1)通常減速、(2)減速レートを延ばす、(3)ゼロベクトル出力(還流モード)、(4)IGBTゲートブロックによる保護動作(モータのフリーラン)を切替る。
FIG. 3 is an explanatory diagram showing the relationship between the smoothing capacitor voltage and the deceleration method (deceleration operation pattern of the inverter) during regenerative braking of the motor in the inverter device of the present invention. In the figure, the horizontal axis represents the time axis, and the vertical axis represents the DC voltage of the smoothing capacitor. The motor 2 starts decelerating at time ta, which is the constant battery voltage Va, and the electric motor operates as a generator to start supplying regenerative power to the smoothing capacitor and the battery. The voltage difference at the time of transition between the smoothing capacitor and the battery voltage is hereinafter simply referred to as a difference voltage V. The values of the differential voltages (Vb-Va), (Vc-Va), and (Vd-Va) are set in advance before actual operation in consideration of the withstand voltages of the main circuit IGBT and smoothing capacitor that are the electronic components of the inverter. deep. The differential voltages (Vb−Va), (Vc−Va), and (Vd−Va) are defined as a first set value, a second set value, and a third set value, respectively.
(1) When 0 ≦ differential voltage V ≦ (Vb−Va), normal deceleration is performed. Here, normal deceleration means decelerating at a preset deceleration rate.
(2) If (Vb−Va) ≦ difference voltage V <(Vc−Va), the deceleration rate is made longer than the normal deceleration. The deceleration rate represents the rate of deceleration that is the speed per unit time.
(3) When (Vc−Va) ≦ difference voltage V <(Vd−Va), a zero voltage vector is output.
(4) When (Vd−Va) ≦ the difference voltage V, the gate of the main circuit transistor of the inverter 1 is cut off (gate block).
Here, the acceleration / deceleration rate used when controlling the motor is simply the slope (set in normal time) until the speed is reached from the stop state and the slope during reverse operation. This is the time required to accelerate or decelerate the motor with respect to the load. Setting in actual use is almost always done in seconds with respect to the set maximum speed. For example, if the maximum speed is set to 60Hz for an inverter and the motor uses a 60Hz rated 1800rpm, and the acceleration time is set to 2 seconds and the deceleration time is set to 1.5 seconds, it will reach 0 to 1800rpm in 2 seconds, and 1800rpm to stop 1.5 seconds.
As described above, during regenerative braking of the motor, if a difference voltage occurs between the terminal voltage of the smoothing capacitor of the inverter and the terminal voltage of the battery, the difference voltage causes (1) normal deceleration and (2) deceleration rate. (3) Zero vector output (reflux mode), (4) Protection operation (motor free run) by IGBT gate block.
 図4はモータが低速巻線と高速巻線を持つ巻線切替式のモータの場合を示す。ここで低速巻線とはモータ巻線W1とW2の全てを使用するものである。一方、高速巻線とはモータ巻線の一部分のW2を短絡して残りの巻線W1だけを使用するものである。この保護動作には、巻線切替スイッチをオープンにすることで、フリーラン状態を作る。巻線切替スイッチは図中の12に巻線切替部として示しており、半導体スイッチ(SSW1、SSW2)と機械スイッチ(MSW1、MSW2)の組み合わせの例である。巻線切替部の構成は、これに縛られるものではない。
 このように、本発明では、バッテリの端子電圧とインバータの直流母線の平滑コンデンサの端子電圧の差を検出し、その電位差を基にインバータのスイッチングパターンを変えることで減速方法を選択するので、例えばモータの減速時に、回生制動電力の吸収能力の差で電位差が発生した場合に、そのレベルによって減速方法を切替、インバータに搭載した電子部品の耐圧を超える前にインバータに搭載した電子部品を保護することができる。
FIG. 4 shows a case where the motor is a winding switching type motor having a low speed winding and a high speed winding. Here, the low speed winding uses all of the motor windings W1 and W2. On the other hand, the high-speed winding is a short circuit of W2 of a part of the motor winding and uses only the remaining winding W1. In this protection operation, a free-run state is created by opening the winding changeover switch. The winding changeover switch is indicated by 12 in the figure as a winding changeover unit, and is an example of a combination of semiconductor switches (SSW1, SSW2) and mechanical switches (MSW1, MSW2). The configuration of the winding switching unit is not limited to this.
In this way, in the present invention, since the difference between the terminal voltage of the battery and the terminal voltage of the smoothing capacitor of the DC bus of the inverter is detected, the deceleration method is selected by changing the switching pattern of the inverter based on the potential difference. If a potential difference occurs due to the difference in regenerative braking power absorption capability during motor deceleration, the deceleration method is switched according to the level, and the electronic components mounted on the inverter are protected before the breakdown voltage of the electronic components mounted on the inverter is exceeded. be able to.
 また、モータが低速巻線と高速巻線を持つ巻線切替式のモータの場合、バッテリの端子電圧とインバータの直流母線の平滑コンデンサの端子電圧の差が大きくなり、前述の減速方法によって減速しても、なお端子電圧の差が大きくなり、あるレベルを超えた場合のモータのフリーラン動作には、巻線切替用のスイッチをオープンにすることで、フリーラン状態を作る。
 図7は、ゼロベクトル出力(還流モード)の一例である。図はP側(正側)のトランジスタ13のみを全て同時にONした状態を示す。この状態ではモータの回生電力はモータとP側(正側)のトランジスタ13との閉ループに電流が流れ、主としてモータ内の巻線で回生電力が消費される。
 この反対に、N側(負側)のトランジスタ14のみを全て同時にONすることでもN側のゼロベクトルを作ることができる。
In addition, when the motor is a winding switching type motor having a low speed winding and a high speed winding, the difference between the terminal voltage of the battery and the terminal voltage of the smoothing capacitor of the DC bus of the inverter increases, and the motor is decelerated by the deceleration method described above. However, the difference in the terminal voltage is still large, and the motor free-run operation when the voltage exceeds a certain level is created by opening the winding switching switch.
FIG. 7 is an example of zero vector output (reflux mode). The figure shows a state where only the P-side (positive side) transistors 13 are simultaneously turned on. In this state, the regenerative power of the motor flows in a closed loop between the motor and the P-side (positive side) transistor 13, and the regenerative power is mainly consumed by the windings in the motor.
On the other hand, the N-side zero vector can be created by simultaneously turning on only the N-side (negative-side) transistor 14.
 本発明は、工作機械主軸駆動用、巻上・巻下機械駆動用、クレーン用、エレベータ用、電気自動車、電気自動車とガソリンエンジンの両方を備えたハイブリッド自動車用、風力発電システム用電動機とその電動機駆動用インバータに適用することができる。 The present invention relates to a machine tool spindle drive, a hoisting / lowering machine drive, a crane, an elevator, an electric vehicle, a hybrid vehicle equipped with both an electric vehicle and a gasoline engine, an electric motor for a wind power generation system, and an electric motor thereof. It can be applied to a drive inverter.

Claims (14)

  1.  電源系統とは別にインバータの直流母線に電源バックアップ用のバッテリを備え、交流モータを駆動するインバータ装置において、
     前記インバータの直流母線の過渡電圧と前記バッテリの過渡電圧を検出する電圧レベル判定器と、前記インバータの直流母線の過渡電圧と前記バッテリの過渡電圧を比較する比較回路と、前記比較回路の比較結果である差電圧に基づいて前記交流モータの減速動作パターンを切替るインバータ制御部を有することを特徴とするインバータ装置。
    Separately from the power supply system, the inverter has a battery for power backup on the DC bus of the inverter, and in the inverter device that drives the AC motor,
    Voltage level determination device for detecting the transient voltage of the DC bus of the inverter and the transient voltage of the battery, a comparison circuit for comparing the transient voltage of the DC bus of the inverter and the transient voltage of the battery, and a comparison result of the comparison circuit An inverter device comprising an inverter control unit that switches a deceleration operation pattern of the AC motor based on the differential voltage.
  2.  前記減速動作パターンは、予め設定した減速レートで減速する通常減速パターン、前記通常減速パターンよりも減速レートを伸ばすパターン、ゼロベクトル出力パターンのいずれかを有することを特徴とする請求項1記載のインバータ装置。 2. The inverter according to claim 1, wherein the deceleration operation pattern has one of a normal deceleration pattern that decelerates at a preset deceleration rate, a pattern that extends the deceleration rate more than the normal deceleration pattern, and a zero vector output pattern. apparatus.
  3.  前記インバータ制御部は、前記差電圧に基づいて前記交流モータの減速動作パターンを予め設定した減速レートで減速する通常減速パターン、前記通常減速パターンよりも減速レートを伸ばすパターン、ゼロベクトル出力パターンの順に切替ることを特徴とする請求項1記載のインバータ装置。 The inverter control unit is configured in the order of a normal deceleration pattern that decelerates the deceleration operation pattern of the AC motor based on the differential voltage at a preset deceleration rate, a pattern that extends the deceleration rate over the normal deceleration pattern, and a zero vector output pattern. The inverter device according to claim 1, wherein the inverter device is switched.
  4.  「0≦差電圧V≦第1設定値」の場合は、予め設定した減速レートで減速し、「第1設定値≦差電圧V<第2設定値」の場合は、減速レートを通常減速よりも延ばし、「第2設定値≦差電圧V<第3設定値」の場合は、ゼロ電圧ベクトル出力パターンを出力し、「第3設定値≦差電圧V」の場合は、インバータの主回路トランジスタをゲートブロックすることを特徴とする請求項1記載のインバータ装置。 When “0 ≦ Differential voltage V ≦ First set value”, the vehicle decelerates at a preset deceleration rate. When “First set value ≦ Differential voltage V <Second set value”, the deceleration rate is set to the normal deceleration rate. If “second setting value ≦ difference voltage V <third setting value”, a zero voltage vector output pattern is output. If “third setting value ≦ difference voltage V”, the main circuit transistor of the inverter is output. 2. The inverter device according to claim 1, wherein the inverter block is gate-blocked.
  5.  前記差電圧が所定の保護レベルを超えた場合、インバータの主回路トランジスタをゲートブロックすることを特徴とする請求項1記載のインバータ装置。 The inverter device according to claim 1, wherein when the differential voltage exceeds a predetermined protection level, the main circuit transistor of the inverter is gate-blocked.
  6.  前記交流モータの巻線が低速高速巻線と高速巻線を有しこれらの巻線を切替ることができる交流モータの場合、インバータの主回路トランジスタをゲートブロックする際に巻線切替用のスイッチをオープンにすることを特徴とする請求項5記載のインバータ装置。 In the case of an AC motor in which the winding of the AC motor has a low-speed high-speed winding and a high-speed winding, and these windings can be switched, a switch for winding switching when the main circuit transistor of the inverter is gate-blocked 6. The inverter device according to claim 5, wherein the inverter device is opened.
  7.  前記ゼロベクトル出力パターンはP側(正側)またはN側(負側)のトランジスタのみを全て同時にONするものである請求項2乃至4のいずれかに記載のインバータ装置。 The inverter device according to any one of claims 2 to 4, wherein the zero vector output pattern is configured to simultaneously turn on only the P-side (positive side) or N-side (negative side) transistors.
  8.  電源系統とは別にインバータの直流母線に電源バックアップ用のバッテリを備え、交流モータを駆動するインバータ装置の制御方法において、
     前記インバータの直流母線の過渡電圧と前記バッテリの過渡電圧を検出し、前記インバータの直流母線の過渡電圧と前記バッテリの過渡電圧を比較し、比較回路の比較結果である差電圧に基づいて前記交流モータの減速動作パターンを切替ることを特徴とするインバータ装置の制御方法。
    In the control method of the inverter device that includes a battery for power backup on the DC bus of the inverter separately from the power system, and drives the AC motor,
    The transient voltage of the DC bus of the inverter and the transient voltage of the battery are detected, the transient voltage of the DC bus of the inverter and the transient voltage of the battery are compared, and the AC is based on the difference voltage which is a comparison result of the comparison circuit A control method for an inverter device, characterized by switching a motor deceleration operation pattern.
  9.  前記減速動作パターンは、予め設定した減速レートで減速する通常減速パターン、前記通常減速パターンよりも減速レートを伸ばすパターン、ゼロベクトル出力パターンのいずれかを有することを特徴とする請求項8記載のインバータ装置の制御方法。 9. The inverter according to claim 8, wherein the deceleration operation pattern includes any one of a normal deceleration pattern that decelerates at a preset deceleration rate, a pattern that extends the deceleration rate more than the normal deceleration pattern, and a zero vector output pattern. Control method of the device.
  10.  インバータ制御部は、前記差電圧に基づいて前記交流モータの減速動作パターンを予め設定した減速レートで減速する通常減速パターン、前記通常減速パターンよりも減速レートを伸ばすパターン、ゼロベクトル出力パターンの順に切替ることを特徴とする請求項8記載のインバータ装置の制御方法。 The inverter control unit switches the deceleration operation pattern of the AC motor based on the differential voltage in the order of a normal deceleration pattern that decelerates at a preset deceleration rate, a pattern that extends the deceleration rate over the normal deceleration pattern, and a zero vector output pattern The method for controlling an inverter device according to claim 8.
  11.  「0≦差電圧V≦第1設定値」の場合は、予め設定した減速レートで減速し、「第1設定値≦差電圧V<第2設定値」の場合は、減速レートを通常減速よりも延ばし、「第2設定値≦差電圧V<第3設定値」の場合は、ゼロ電圧ベクトル出力パターンを出力し、「第3設定値≦差電圧V」の場合は、インバータの主回路トランジスタをゲートブロックすることを特徴とする請求項8記載のインバータ装置の制御方法。 When “0 ≦ Differential voltage V ≦ First set value”, the vehicle decelerates at a preset deceleration rate. When “First set value ≦ Differential voltage V <Second set value”, the deceleration rate is set to the normal deceleration rate. If “second setting value ≦ difference voltage V <third setting value”, a zero voltage vector output pattern is output. If “third setting value ≦ difference voltage V”, the main circuit transistor of the inverter is output. 9. The method of controlling an inverter device according to claim 8, wherein the gate block is performed.
  12.  前記差電圧が所定の保護レベルを超えた場合、インバータの主回路トランジスタをゲートブロックすることを特徴とする請求項8記載のインバータ装置の制御方法。 9. The method of controlling an inverter device according to claim 8, wherein when the differential voltage exceeds a predetermined protection level, the main circuit transistor of the inverter is gate-blocked.
  13.  前記交流モータの巻線が低速高速巻線と高速巻線を有しこれらの巻線を切替ることができる交流モータの場合、インバータをゲートブロックする際に巻線切替用のスイッチをオープンにすることを特徴とする請求項12記載のインバータ装置の制御方法。 In the case of an AC motor in which the winding of the AC motor has a low-speed high-speed winding and a high-speed winding, and these windings can be switched, the winding switching switch is opened when the inverter is gate-blocked. The method of controlling an inverter device according to claim 12.
  14.  前記ゼロベクトル出力パターンはP側(正側)またはN側(負側)のトランジスタのみを全て同時にONするものである請求項9乃至11のいずれかに記載のインバータ装置の制御方法。 12. The method of controlling an inverter device according to claim 9, wherein the zero vector output pattern is such that only the P-side (positive side) or N-side (negative side) transistors are turned on simultaneously.
PCT/JP2009/051414 2008-02-13 2009-01-29 Inverter device and method for controlling the same WO2009101859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553389A JPWO2009101859A1 (en) 2008-02-13 2009-01-29 Inverter device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-031491 2008-02-13
JP2008031491 2008-02-13

Publications (1)

Publication Number Publication Date
WO2009101859A1 true WO2009101859A1 (en) 2009-08-20

Family

ID=40956889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051414 WO2009101859A1 (en) 2008-02-13 2009-01-29 Inverter device and method for controlling the same

Country Status (2)

Country Link
JP (1) JPWO2009101859A1 (en)
WO (1) WO2009101859A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199587A1 (en) * 2013-06-13 2014-12-18 株式会社デンソー Vehicle-mounted motor control device
CN108448999A (en) * 2018-03-26 2018-08-24 浙江德欧电气技术有限公司 A kind of driving control system for servo motor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851775A (en) * 1981-09-24 1983-03-26 Toshiba Corp Voltage type pulse width modulation inverter
JPH04355694A (en) * 1991-06-03 1992-12-09 Fuji Electric Co Ltd Control method for motor by winding tap switching
JPH04365767A (en) * 1991-06-14 1992-12-17 Mitsubishi Electric Corp Control device for elevator
JPH11332006A (en) * 1998-05-15 1999-11-30 Denso Corp Controller of electric vehicle
JP2005006476A (en) * 2003-06-16 2005-01-06 Hitachi Ltd Motor drive system
JP2006101686A (en) * 2004-09-03 2006-04-13 Matsushita Electric Ind Co Ltd Motor drive device and drive method
JP2006320134A (en) * 2005-05-13 2006-11-24 Matsushita Electric Ind Co Ltd Motor drive circuit and electric washing machine therewith
JP2008022665A (en) * 2006-07-14 2008-01-31 Sharp Corp Motor drive unit, compressor drive unit and air-conditioning refrigeration apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851775A (en) * 1981-09-24 1983-03-26 Toshiba Corp Voltage type pulse width modulation inverter
JPH04355694A (en) * 1991-06-03 1992-12-09 Fuji Electric Co Ltd Control method for motor by winding tap switching
JPH04365767A (en) * 1991-06-14 1992-12-17 Mitsubishi Electric Corp Control device for elevator
JPH11332006A (en) * 1998-05-15 1999-11-30 Denso Corp Controller of electric vehicle
JP2005006476A (en) * 2003-06-16 2005-01-06 Hitachi Ltd Motor drive system
JP2006101686A (en) * 2004-09-03 2006-04-13 Matsushita Electric Ind Co Ltd Motor drive device and drive method
JP2006320134A (en) * 2005-05-13 2006-11-24 Matsushita Electric Ind Co Ltd Motor drive circuit and electric washing machine therewith
JP2008022665A (en) * 2006-07-14 2008-01-31 Sharp Corp Motor drive unit, compressor drive unit and air-conditioning refrigeration apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199587A1 (en) * 2013-06-13 2014-12-18 株式会社デンソー Vehicle-mounted motor control device
JP2015019561A (en) * 2013-06-13 2015-01-29 株式会社デンソー On-vehicle motor control device
CN108448999A (en) * 2018-03-26 2018-08-24 浙江德欧电气技术有限公司 A kind of driving control system for servo motor

Also Published As

Publication number Publication date
JPWO2009101859A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
US10187001B2 (en) Motor drive device including shared converter
US9154051B2 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
RU2482599C1 (en) Energy conversion device and method of voltage control on capacitor of energy conversion device
US9287698B2 (en) Power conversion apparatus
JP5113682B2 (en) Power converter
JP4391513B2 (en) Control device for vehicle alternator
WO2012131995A1 (en) Alternating current motor drive device
JP5049456B2 (en) Vehicle control device
JPH092753A (en) Elevator control device
KR20080034721A (en) Re generation energy control device and method for motor driving system
JP4774843B2 (en) Wind power generation equipment
KR101542337B1 (en) Vehicle control device
JP2012115143A (en) Power conversion apparatus
WO2009101859A1 (en) Inverter device and method for controlling the same
CN112994584A (en) Motor driving device
CN113511075A (en) System and method for protecting an inverter in a vehicle from overvoltage
JP4311172B2 (en) Control method of motor control device
EP2845831A1 (en) Elevator control apparatus
JP2005253264A (en) Electric rolling stock controlling device
JP4736781B2 (en) Power system controller
JP2004189482A (en) Elevator system
JPH06165582A (en) Inverter unit
JP2005190775A (en) Fuel cell system
WO2013114602A1 (en) Elevator control device
US20240079981A1 (en) Motor drive system and torque distribution method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009553389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711519

Country of ref document: EP

Kind code of ref document: A1