JPH11332006A - Controller of electric vehicle - Google Patents

Controller of electric vehicle

Info

Publication number
JPH11332006A
JPH11332006A JP10133840A JP13384098A JPH11332006A JP H11332006 A JPH11332006 A JP H11332006A JP 10133840 A JP10133840 A JP 10133840A JP 13384098 A JP13384098 A JP 13384098A JP H11332006 A JPH11332006 A JP H11332006A
Authority
JP
Japan
Prior art keywords
regenerative braking
voltage
electric vehicle
control device
inverter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10133840A
Other languages
Japanese (ja)
Other versions
JP3893744B2 (en
Inventor
Hiroshi Ishiyama
弘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP13384098A priority Critical patent/JP3893744B2/en
Publication of JPH11332006A publication Critical patent/JPH11332006A/en
Application granted granted Critical
Publication of JP3893744B2 publication Critical patent/JP3893744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a controller for an electric vehicle, wherein its brake performance when its regenerative brake is disordered is improved, while suppressing the accuracy reduction of the determination of its regenerative brake being disordered. SOLUTION: When the voltage of a regenerative charging system ranging from a traveling motor 8 to a battery 1 is increased, because the regenerative brake of an electric vehicle becomes disordered by the generation of the nonconformities of the associative circuit thereof, its regenerative brake is determined as being disordered, if the increase rate of an increasing signal voltage Vi or (Vi-Vb), when its regenerative brake is disordered exceeds a predetermined value. In this way, the disorder of the regenerative brake can be determined quickly, while suppressing the accuracy reduction for the determination of its regenerative brake being disordered to make its brake performance improvable, when its regenerative brake is disordered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車の走行
用モータを制御する電気自動車制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle control device for controlling a driving motor of an electric vehicle.

【0002】[0002]

【従来の技術】固定電源又は車載エンジンから充電され
るバッテリにより走行する従来の電気自動車制御装置で
は、走行用モータの回生制動に際し、ヒューズ切れやメ
インリレー開放等の異常により走行用モータからインバ
ータ回路を通じてバッテリへの給電が遮断されると、回
生制動不能となる。
2. Description of the Related Art In a conventional electric vehicle control device that runs on a battery charged from a fixed power supply or an on-board engine, when the running motor is regeneratively braked, an error such as a blown fuse or a main relay is opened. When power supply to the battery is cut off through the power supply, regenerative braking becomes impossible.

【0003】このため、従来では、回生制動に際しイン
バータ回路の入力電圧が所定のしきい値を超えた場合に
回生制動不調と判定し、その後の回生制動動作を禁止す
るとともに、通常のメカニカルブレーキの倍圧を増し
て、制動力を確保している。
For this reason, conventionally, when the input voltage of the inverter circuit exceeds a predetermined threshold value during regenerative braking, it is determined that regenerative braking is malfunctioning, the regenerative braking operation thereafter is prohibited, and the normal mechanical braking operation is performed. Double pressure is increased to secure braking force.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た回生制動不調に対する従来の対処方法では、回生制動
不調発生からブレーキの倍圧増大が完了するまでの間に
時間がかかり、この間の制動力も低下するので制動距離
が伸びてしまうという問題があった。もちろん、しきい
値を小さく設定すれば、回生制動不調検出を早期化する
こともできるが、当然、判定精度が低下してしまう。
However, in the conventional method for regenerative braking malfunction described above, it takes time from the occurrence of regenerative braking malfunction to the completion of the increase in brake pressure, and the braking force during this time also decreases. There is a problem that the braking distance is extended. Of course, if the threshold value is set to a small value, the detection of regenerative braking malfunction can be promptly performed, but the accuracy of the determination naturally decreases.

【0005】本発明は、上記問題点に鑑みなされたもの
であり、回生制動不調判定の精度低下を抑止しつつ回生
制動不調時における制動性能を改善した電気自動車制御
装置を提供することを、その目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide an electric vehicle control device which improves braking performance when regenerative braking is malfunctioning while suppressing a decrease in accuracy of regenerative braking malfunction determination. The purpose is.

【0006】[0006]

【課題を解決するための手段】本発明の第1の構成の電
気自動車制御装置によれば、回路的な不具合の発生によ
り回生制動が不調となり、走行用モータからバッテリに
いたる回生充電回路系の電圧からなる信号電圧は回生制
動不調時に増加するので、この信号電圧の増加率が所定
値を超えた場合に回生制動不調と判定する。
According to the electric vehicle control apparatus of the first configuration of the present invention, the regenerative braking becomes unstable due to the occurrence of a circuit failure, and the regenerative charging circuit system from the driving motor to the battery is provided. Since the signal voltage composed of the voltage increases when the regenerative braking is malfunctioning, it is determined that the regenerative braking is malfunctioning when the rate of increase of the signal voltage exceeds a predetermined value.

【0007】このようにすれば、回生制動不調判定の精
度低下を抑止しつつ回生制動不調を速やかに判定するこ
とができるので回生制動不調時の制動性能を改善するこ
とができる。請求項2記載の構成によれば請求項1記載
の電気自動車制御装置において更に、信号電圧としてイ
ンバータ回路の入力電圧を検出する。
With this configuration, it is possible to quickly determine the regenerative braking malfunction while suppressing a decrease in the accuracy of the regenerative braking malfunction determination, thereby improving the braking performance when the regenerative braking malfunction occurs. According to a second aspect of the present invention, in the electric vehicle control device according to the first aspect, the input voltage of the inverter circuit is further detected as a signal voltage.

【0008】インバータ回路の入力電圧は回路の他の部
位の電圧よりも、回生制動不調時の電圧増加以外の電圧
変動が少ないので回生制動不調判定精度を向上すること
ができる。請求項3記載の構成によれば請求項1記載の
電気自動車制御装置において更に、信号電圧としてイン
バータ回路の入力電圧とバッテリの電圧の電圧差を検出
する。
Since the input voltage of the inverter circuit has less voltage fluctuation than the voltage of other parts of the circuit other than the voltage increase at the time of regenerative braking failure, the accuracy of regenerative braking failure determination can be improved. According to a third aspect of the present invention, in the electric vehicle control device according to the first aspect, a voltage difference between an input voltage of the inverter circuit and a voltage of the battery is further detected as a signal voltage.

【0009】このようにすれば、請求項2記載の作用効
果に加えて更にバッテリ電圧変動の影響を排除できるの
で、判定精度の向上を図ることができる。請求項4記載
の構成によれば請求項1乃至3のいずれか記載の電気自
動車制御装置において更に、インバータ回路の入力電圧
とバッテリの電圧の電圧差が所定のしきい値を超える場
合に回生制動不調と判定する。
With this configuration, in addition to the operation and effect described in the second aspect, the influence of the battery voltage fluctuation can be further eliminated, so that the determination accuracy can be improved. According to a fourth aspect of the present invention, in the electric vehicle control device according to any one of the first to third aspects, further, when the voltage difference between the input voltage of the inverter circuit and the voltage of the battery exceeds a predetermined threshold, regenerative braking is performed. Judge as malfunction.

【0010】このようにすれば、上述した作用効果に加
えて、絶対値が小さいものの、変化率が大きいノイズ電
圧などによる誤判定を防止することができる。請求項5
記載の電気自動車制御装置によれば、回生制動不調検出
時に増大する信号電圧(たとえばインバータ入力電圧)
とバッテリ電圧との電圧差が、回生制動時に所定値を超
えた場合に回生制動不調と判定する。
[0010] In this manner, in addition to the above-described effects, it is possible to prevent erroneous determination due to a noise voltage having a small absolute value but a large change rate. Claim 5
According to the electric vehicle control device described above, a signal voltage (for example, an inverter input voltage) that increases when regenerative braking malfunction is detected
When the voltage difference between the battery voltage and the battery voltage exceeds a predetermined value during regenerative braking, it is determined that regenerative braking is malfunctioning.

【0011】このようにすれば、バッテリ電圧変動の影
響を排除できるので、判定精度の向上を図ることができ
る。請求項6記載の電気自動車制御装置によれば、回路
的な不具合の発生により回生制動が不調となったと判定
すると、機械ブレーキ装置へ制動力増大指令を出力す
る。更に、その後、前記制動力増大指令より所定時間遅
れてインバータ回路へ回生制動の停止を指令する。
With this configuration, the influence of the battery voltage fluctuation can be eliminated, so that the determination accuracy can be improved. According to the electric vehicle control device of the sixth aspect, when it is determined that the regenerative braking has failed due to the occurrence of a circuit failure, a braking force increase command is output to the mechanical brake device. Further, thereafter, a command is issued to the inverter circuit to stop regenerative braking with a predetermined time delay from the braking force increase command.

【0012】このようにすれば、回生制動不調を検出し
て機械制動力増大指令を出した後もなお、回生制動を持
続するので、回生電力をコンデンサに蓄電することがで
き、その結果として走行動力の静電エネルギーへの転換
により電気自動車の制動距離を短縮することができる。
特に、機械制動力増大指令の出力と回生制動停止とを同
時的に行う場合においては、機械制動力増大指令出力か
ら機械制動力の実際の増大までの遅延時間が存在するた
めに、この遅延時間の間、回生制動停止による全体とし
ての総合制動力は低水準となるが、本構成によれば機械
制動力増大指令以後も一時的に回生制動を持続するの
で、この期間においてコンデンサに余分に蓄電される回
生電力分だけ上記総合制動力の向上を図ることができ
る。
With this configuration, even after the regenerative braking malfunction is detected and the mechanical braking force increase command is issued, the regenerative braking is continued, so that the regenerative electric power can be stored in the capacitor. The braking distance of the electric vehicle can be reduced by converting the power into electrostatic energy.
Particularly, when the output of the mechanical braking force increase command and the regenerative braking stop are performed simultaneously, there is a delay time from the output of the mechanical braking force increase command to the actual increase of the mechanical braking force. During this period, the overall braking force as a whole due to the stop of the regenerative braking is low, but according to this configuration, the regenerative braking is temporarily continued even after the mechanical braking force increase command, so that extra charge is stored in the capacitor during this period. The above-mentioned overall braking force can be improved by the amount of the regenerated electric power.

【0013】請求項7記載の構成によれば請求項6記載
の電気自動車制御装置において更に、回生制動の停止
は、インバータ回路の入力電圧がインバータ回路の最大
許容電圧未満の所定のしきい値電圧を超える場合に回生
制動の停止を指令する。このようにすれば、インバータ
回路の安全性を阻害することなく、回生制動不調検出に
基づく機械制動力増大指令以後もコンデンサによる走行
動力の回収を実施することができ、電気自動車の制動距
離短縮を図ることができる。
According to a seventh aspect of the present invention, in the electric vehicle control device according to the sixth aspect, the regenerative braking is stopped when the input voltage of the inverter circuit is less than the maximum allowable voltage of the inverter circuit. When the value exceeds, the stop of the regenerative braking is commanded. With this configuration, the driving power can be recovered by the capacitor even after the mechanical braking force increase command based on the regenerative braking malfunction detection without impairing the safety of the inverter circuit, and the braking distance of the electric vehicle can be reduced. Can be planned.

【0014】[0014]

【発明を実施するための態様】本発明の電気自動車制御
装置の好適な態様を以下の実施例を参照して具体的に説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the electric vehicle control device according to the present invention will be specifically described with reference to the following embodiments.

【0015】[0015]

【実施例1】本発明の電気自動車制御装置を適用した実
施例を図1を参照して説明する。図1はこの電気自動車
制御装置を含む電気自動車の走行用回路装置のブロック
図を示す。1は入力となる車載のバッテリ、2はバッテ
リ電圧検出器、3はヒューズ、4a、4bはメインリレ
ー、5はインバータ入力電圧検出器、6は入力コンデン
サ、7は6アームのブリッジ構成からなる公知の三相イ
ンバータ回路(インバータ回路)、8は走行用モータ、
9はインバータに駆動信号を供給するとともに、過電
圧、過電流等の各種異常状態を判断し、保護を行うマイ
コン内蔵のコントローラ、10は機械式ブレーキ装置
(図示せず)である。
Embodiment 1 An embodiment to which an electric vehicle control device of the present invention is applied will be described with reference to FIG. FIG. 1 is a block diagram of a circuit device for traveling of an electric vehicle including the electric vehicle control device. 1 is a vehicle-mounted battery serving as an input, 2 is a battery voltage detector, 3 is a fuse, 4a and 4b are main relays, 5 is an inverter input voltage detector, 6 is an input capacitor, and 7 is a known 6-arm bridge configuration. Three-phase inverter circuit (inverter circuit), 8 is a traveling motor,
Reference numeral 9 denotes a controller with a built-in microcomputer for supplying a drive signal to the inverter, determining various abnormal states such as overvoltage and overcurrent, and performing protection, and reference numeral 10 denotes a mechanical brake device (not shown).

【0016】次に本実施例の作動を説明する。コントロ
ーラ9は、図示しない車両全体の制御を司る上位コント
ローラからの指令に基づいてインバータ7に駆動信号を
供給すると共に、インバータ回路7及び走行用モータ8
の温度、モータ電流、モータ回転数、バッテリ電圧V
b、インバータ入力電圧Vi等の状態を検出し、図示し
ない上位コントローラにその情報をフィードバックす
る。
Next, the operation of this embodiment will be described. The controller 9 supplies a drive signal to the inverter 7 based on a command from a higher-level controller that controls the entire vehicle (not shown), and also supplies the inverter circuit 7 and the traveling motor 8
Temperature, motor current, motor speed, battery voltage V
b) Detect the state of the inverter input voltage Vi and the like, and feed back the information to a higher-level controller (not shown).

【0017】バッテリ電圧検出器2は、ヒューズ3、メ
インリレー4a、4bよりもバッテリ1側にてバッテリ
電圧を検出し、インバータ入力電圧検出器5は、ヒュー
ズ、メインリレーよりインバータ回路7側にてインバー
タ回路7の入力電圧を検出している。運転者がブレーキ
を踏むと、上位コントローラからの指令によりコントロ
ーラ9は回生制動をかけるようにインバータ回路7に駆
動信号を供給する。
The battery voltage detector 2 detects the battery voltage on the battery 1 side from the fuse 3 and the main relays 4a and 4b. The inverter input voltage detector 5 detects the battery voltage on the inverter circuit 7 side from the fuse and the main relay. The input voltage of the inverter circuit 7 is detected. When the driver steps on the brake, the controller 9 supplies a drive signal to the inverter circuit 7 so as to apply regenerative braking according to a command from the host controller.

【0018】正常時には、バッテリ1はインバータ回路
7に電力授受可能に接続されているので、バッテリ電圧
Vbはインバータ入力電圧Viにほぼ等しく、差として
生じるのは配線の抵抗分による電圧降下のみである。ま
た、この正常状態では、回生電力はバッテリ1に流れ込
むため、回生中におけるインバータ入力電圧Viの変化
率は小さい。
In a normal state, the battery 1 is connected to the inverter circuit 7 so as to be able to exchange power, so that the battery voltage Vb is substantially equal to the inverter input voltage Vi, and the only difference that occurs is a voltage drop due to the resistance of the wiring. . In this normal state, the regenerative electric power flows into the battery 1, so that the rate of change of the inverter input voltage Vi during the regeneration is small.

【0019】これに対して、ヒューズが切れたり、メイ
ンリレーが何らかの異常により開放となった場合には、
回生電力は全て入力コンデンサ5に流れ込むため、イン
バータ入力電圧Viの変化率(増加率)dVi/dtが
急激に増大し、バッテリ電圧Vbの変化率dVb/dt
はほぼ0となる。また、両電圧の差(Vi−Vb)も図
2に示すように大きくなる。そこで、この実施例では、
インバータ入力電圧Viの変化率dVi/dtが所定の
しきい値Vthを超えた場合に、回生制動不調と判定す
ることを特徴としている。
On the other hand, if the fuse is blown or the main relay is opened due to some abnormality,
Since all the regenerative power flows into the input capacitor 5, the change rate (increase rate) dVi / dt of the inverter input voltage Vi sharply increases, and the change rate dVb / dt of the battery voltage Vb.
Becomes almost zero. Further, the difference between the two voltages (Vi-Vb) also increases as shown in FIG. Therefore, in this embodiment,
When the rate of change dVi / dt of the inverter input voltage Vi exceeds a predetermined threshold value Vth, regenerative braking is determined to be malfunctioning.

【0020】コントローラ9により実行される上述した
回生制動モニタルーチンの一例を図3に示すフローチャ
ートを参照して説明する。なお、このルーチンは運転者
がブレーキを踏んだことを示す信号がコントローラ9に
入力されて、コントローラ9が回生制動用の駆動信号を
インバータ回路7に出力する場合に開始される。まず、
インバータ入力電圧Viを検出し(S100)、その変
化率dVi/dtを算出する(S102)。
An example of the regenerative braking monitoring routine executed by the controller 9 will be described with reference to the flowchart shown in FIG. Note that this routine is started when a signal indicating that the driver has depressed the brake is input to the controller 9 and the controller 9 outputs a drive signal for regenerative braking to the inverter circuit 7. First,
The inverter input voltage Vi is detected (S100), and the rate of change dVi / dt is calculated (S102).

【0021】次に、インバータ入力電圧Viの変化率d
Vi/dtが所定のしきい値Vthより正方向に大きい
かどうかを調べ(S104)、大きければ回生制動不調
と判定して機械式ブレーキ装置10にブレーキ倍圧の増
加を指令するとともにインバータ回路7への回生制動用
駆動信号の出力を禁止し(S106)、そうでない場合
には回生制動問題なしと判定してコントローラ9のメイ
ンルーチンにリターンする。
Next, the rate of change d of the inverter input voltage Vi
It is checked whether Vi / dt is greater than a predetermined threshold value Vth in the positive direction (S104). If it is greater, it is determined that regenerative braking is malfunctioning, and the mechanical brake device 10 is instructed to increase the brake double pressure and the inverter circuit 7 is activated. The output of the regenerative braking drive signal to the controller 9 is prohibited (S106). Otherwise, it is determined that there is no regenerative braking problem, and the process returns to the main routine of the controller 9.

【0022】このようにすれば、インバータ入力電圧V
iが所定のしきい値を超えたかどうかを判定する従来判
定方式に比較して、バッテリ電圧Vbの変動やばらつき
の影響を回避しかつ回生制動不調発生直後に確実かつ速
やかに回生制動不調を検出することができ、その結果、
短い遅れ時間でブレーキ倍圧増大を実現することができ
る。
In this way, the inverter input voltage V
Compared with the conventional determination method for determining whether or not i exceeds a predetermined threshold, the influence of the fluctuation or variation of the battery voltage Vb is avoided, and the regenerative braking malfunction is detected reliably and promptly immediately after the regenerative braking malfunction occurs. And as a result,
The brake pressure increase can be realized with a short delay time.

【0023】なお、上記しきい値Vthは、バッテリ電
圧Vbの変化率よりも大きくされる。
The threshold value Vth is set larger than the rate of change of the battery voltage Vb.

【0024】[0024]

【実施例2】本発明の電気自動車制御装置を適用した他
の実施例を図4を参照して説明する。この実施例は、実
施例1で説明した電気自動車制御装置において、図3に
示される回生制動モニタルーチンを変更しただけであ
る。
Embodiment 2 Another embodiment to which the electric vehicle control device of the present invention is applied will be described with reference to FIG. This embodiment is different from the electric vehicle control device described in the first embodiment only in that the regenerative braking monitoring routine shown in FIG. 3 is changed.

【0025】この実施例の回生制動モニタルーチンで
は、図4に示すように、まず、インバータ入力電圧V
i、Vbを検出し(S200)、その変化率d(Vi−
Vb)/dtを算出する(S202)。次に、変化率d
(Vi−Vb)/dtが所定のしきい値Vthより正方
向に大きいかどうかを調べ(S204)、大きければ回
生制動不調と判定してブレーキ倍圧の増加を指令すると
ともにインバータ回路7への回生制動用駆動信号の出力
を禁止し(S206)、そうでない場合には回生制動問
題なしと判定してコントローラ9のメインルーチンにリ
ターンする。
In the regenerative braking monitoring routine of this embodiment, as shown in FIG.
i and Vb are detected (S200), and the rate of change d (Vi−
Vb) / dt is calculated (S202). Next, the rate of change d
It is checked whether (Vi−Vb) / dt is greater than a predetermined threshold value Vth in the positive direction (S204). If it is greater, it is determined that regenerative braking is malfunctioning, and a brake pressure increase is commanded. The output of the regenerative braking drive signal is prohibited (S206). Otherwise, it is determined that there is no regenerative braking problem, and the process returns to the main routine of the controller 9.

【0026】このようにすれば、インバータ入力電圧V
iが所定のしきい値を超えたかどうかを判定する従来判
定方式に比較して、バッテリ電圧Vbの変動やばらつき
の影響を回避しかつ回生制動不調発生直後に確実かつ速
やかに回生制動不調を検出することができ、その結果、
短い遅れ時間でブレーキ倍圧増大を実現することができ
る。
By doing so, the inverter input voltage V
Compared with the conventional determination method for determining whether or not i exceeds a predetermined threshold, the influence of the fluctuation or variation of the battery voltage Vb is avoided, and the regenerative braking malfunction is detected reliably and promptly immediately after the regenerative braking malfunction occurs. And as a result,
The brake pressure increase can be realized with a short delay time.

【0027】特に、この実施例では、ヒューズ3やメイ
ンリレー4a、4bの開放が生じない状態では、バッテ
リ電圧Vbの変動にかかわらず、差電圧(Vi−Vb)
の変化はきわめて小さいので、バッテリ電圧Vbの変動
による誤判定を回避することができるという効果もあ
る。
Particularly, in this embodiment, when the fuse 3 and the main relays 4a and 4b are not opened, the difference voltage (Vi-Vb) is obtained regardless of the fluctuation of the battery voltage Vb.
Is very small, so that an erroneous determination due to a change in the battery voltage Vb can be avoided.

【0028】[0028]

【実施例3】本発明の電気自動車制御装置を適用した他
の実施例を図5を参照して説明する。この実施例は、実
施例2で説明した電気自動車制御装置において、図4に
示される回生制動モニタルーチンにS205を追加した
だけである。
Embodiment 3 Another embodiment to which the electric vehicle control device of the present invention is applied will be described with reference to FIG. This embodiment differs from the electric vehicle control device described in the second embodiment only in that S205 is added to the regenerative braking monitoring routine shown in FIG.

【0029】すなわち、この実施例の回生制動モニタル
ーチンでは、図5に示すように、変化率d(Vi−V
b)/dtが所定のしきい値Vthより正方向に大きい
と判定した場合に(S204)、更に両電圧の差(Vi
−Vb)が所定のしきい値Vth’より大きいかどうか
を調べ(S205)、大きい場合にのみ回生制動不調と
判定する。
That is, in the regenerative braking monitoring routine of this embodiment, as shown in FIG. 5, the rate of change d (Vi-V
b) If it is determined that / dt is greater than the predetermined threshold value Vth in the positive direction (S204), the difference between the two voltages (Vi)
It is determined whether or not −Vb) is greater than a predetermined threshold value Vth ′ (S205).

【0030】このようにすれば、たとえばインバータ回
路7のスイッチング動作などで生じるインバータ入力電
圧Viのリップルや外部電磁ノイズなど、絶対値は小さ
いが変化は高速であるインバータ入力電圧Viの変動
を、回生制動不調と誤判定するのを防止することができ
る。もちろんS205の絶対値判定は図3に示す実施例
1の回生制動不調判定にも適用できることはもちろんで
ある。
In this way, the fluctuation of the inverter input voltage Vi, whose absolute value is small but changes at a high speed, such as ripple of the inverter input voltage Vi and external electromagnetic noise caused by the switching operation of the inverter circuit 7, is regenerated. It is possible to prevent erroneous determination that braking is malfunctioning. Of course, the absolute value determination in S205 can be applied to the regenerative braking malfunction determination in the first embodiment shown in FIG.

【0031】[0031]

【実施例4】本発明の電気自動車制御装置を適用した他
の実施例を図6を参照して説明する。この実施例は、実
施例1で説明した電気自動車制御装置において、図3に
示される回生制動モニタルーチンを変更しただけであ
る。
Embodiment 4 Another embodiment to which the electric vehicle control device of the present invention is applied will be described with reference to FIG. This embodiment is different from the electric vehicle control device described in the first embodiment only in that the regenerative braking monitoring routine shown in FIG. 3 is changed.

【0032】この実施例の回生制動モニタルーチンで
は、図5に示すように、まず、インバータ入力電圧V
i、Vbを検出し(S300)、その差電圧Δ(Vi−
Vb)を算出する(S302)。次に、差電圧Δ(Vi
−Vb)が所定のしきい値Vth’より正方向に大きい
かどうかを調べ(S304)、大きければ回生制動不調
と判定してブレーキ倍圧の増加を指令するとともにイン
バータ回路7への回生制動用駆動信号の出力を禁止し
(S306)、そうでない場合には回生制動問題なしと
判定してコントローラ9のメインルーチンにリターンす
る。
In the regenerative braking monitoring routine of this embodiment, as shown in FIG.
i and Vb are detected (S300), and the difference voltage Δ (Vi−
Vb) is calculated (S302). Next, the difference voltage Δ (Vi
It is checked whether or not −Vb) is larger than a predetermined threshold value Vth ′ in the positive direction (S304). If it is larger, it is determined that regenerative braking is malfunctioning, and an increase in brake pressure is commanded, and regenerative braking to the inverter circuit 7 is performed. The output of the drive signal is prohibited (S306). If not, it is determined that there is no regenerative braking problem, and the process returns to the main routine of the controller 9.

【0033】このようにすれば、インバータ入力電圧V
iが所定のしきい値を超えたかどうかを判定する従来判
定方式に比較して、バッテリ電圧Vbの変動やばらつき
の影響を回避することができるので、より正確に回生制
動不調を判定でき、またその分だけ判定精度を低下させ
ることなくしきい値を小さくすることができるので、判
定を素早く行うことができ、速やかなブレーキ倍圧増加
を期待することができる。
In this way, the inverter input voltage V
Compared with the conventional determination method for determining whether i exceeds a predetermined threshold value, the influence of the fluctuation or variation of the battery voltage Vb can be avoided, so that the regenerative braking malfunction can be determined more accurately. Since the threshold value can be reduced without lowering the determination accuracy by that amount, the determination can be made quickly, and a rapid increase in brake pressure can be expected.

【0034】なお、上述の各実施例において、回生制動
不調判定した後、ブレーキ倍圧増加と回生制動禁止との
動作順序は任意である。なお、上記各実施例では、回生
制動不調検出用に少なくともインバータ入力電圧Viを
用いたが、走行用モータ8の回生制動不調時の電圧増加
に連動する電圧であれば、メインリレー4aから走行用
モータ8までにいたる回路におけるその他の部位の電圧
を用いてもよいことはもちろんである。
In each of the above-described embodiments, the operation sequence of increasing the brake pressure increase and inhibiting the regenerative braking after the regenerative braking malfunction is determined is arbitrary. In each of the above embodiments, at least the inverter input voltage Vi is used for regenerative braking malfunction detection. However, if the voltage is linked to an increase in the voltage of the traveling motor 8 at the time of regenerative braking malfunction, the main relay 4a will It goes without saying that voltages of other parts in the circuit up to the motor 8 may be used.

【0035】[0035]

【実施例5】本発明の電気自動車制御装置を適用した他
の実施例を図7を参照して説明する。この実施例は、実
施例1で説明した電気自動車制御装置において、図3に
示される回生制動モニタルーチンを変更しただけであ
る。
Embodiment 5 Another embodiment to which the electric vehicle control device of the present invention is applied will be described with reference to FIG. This embodiment is different from the electric vehicle control device described in the first embodiment only in that the regenerative braking monitoring routine shown in FIG. 3 is changed.

【0036】この実施例の回生制動モニタルーチンは、
回生制動開始とともに実行され、図7に示すように、ま
ず、回生制動が不調かどうかを判定し、不調でなければ
メインルーチンにリターンする(S400)。なお、こ
の判定自体は上述した実施例1〜4と同じ判定方式を採
用することができる。回生制動が不調であると判定した
場合には、機械式ブレーキ装置10にブレーキ倍圧の増
加を指令し(S402)、次に、入力電圧すなわちコン
デンサ5の端子電圧Viが所定のしきい値電圧Vt
h’’を超えたかどうかを調べ(S404)、超えるま
で待機し、超えればインバータ回路7に回制制動動作の
停止を指令して(S406)、コントローラ9のメイン
ルーチンにリターンする。
The regenerative braking monitoring routine of this embodiment is as follows.
This is executed at the same time as the start of regenerative braking. As shown in FIG. 7, first, it is determined whether regenerative braking is malfunctioning, and if not, the process returns to the main routine (S400). Note that this determination itself can employ the same determination method as in the above-described first to fourth embodiments. If it is determined that the regenerative braking is malfunctioning, the mechanical brake device 10 is instructed to increase the brake double pressure (S402). Then, the input voltage, that is, the terminal voltage Vi of the capacitor 5 is increased to a predetermined threshold voltage. Vt
It is checked whether h '' has been exceeded (S404), and the process waits until the value exceeds h ''. If the value exceeds h '', the inverter circuit 7 is instructed to stop the braking operation (S406), and the process returns to the main routine of the controller 9.

【0037】なお、しきい値電圧Vth’’は、インバ
ータ回路7及びコンデンサ6の許容可能な最大の電圧値
より低い範囲で、できるだけ高く設定される。ただし、
回生制動停止によりその後、入力電圧Viはモータ8か
らの電磁エネルギの放出により多少増大するのでしきい
値電圧Vth’’はこの増大を加味して設定されるべき
である。
The threshold voltage Vth ″ is set as high as possible within a range lower than the maximum allowable voltage value of the inverter circuit 7 and the capacitor 6. However,
After stopping the regenerative braking, the input voltage Vi slightly increases due to the emission of the electromagnetic energy from the motor 8, so that the threshold voltage Vth ″ should be set in consideration of this increase.

【0038】このようにすれば、回生制動不調を検出し
て(S400)、機械制動力増大指令を出した(S40
2)後もなお、入力電圧Viがしきい値電圧Vth’’
を超えるまでは回生電力のコンデンサ5への蓄電により
回生制動を持続するので、回生制動効果の一層の向上を
図ることができる。なお、上記回生制動の超過持続時に
おいて回生電力の一部は配線やインバータ回路などで消
費することができることはもちろんである。
In this way, regenerative braking malfunction is detected (S400), and a mechanical braking force increase command is issued (S40).
2) After that, the input voltage Vi is still higher than the threshold voltage Vth ″.
Until the regenerative electric power is stored in the capacitor 5, the regenerative braking is continued, so that the regenerative braking effect can be further improved. It is needless to say that a part of the regenerative electric power can be consumed by the wiring, the inverter circuit or the like when the regenerative braking is excessively continued.

【0039】更に、本実施例は、メインンリレー4a、
4bの不完全導通や、インバータ回路7とバッテリ1と
を結ぶ配線の一部の部分的開放などにより回生制動が完
全ではないが動作可能である状態においても上記と同様
の効果を奏することができる。
Further, in this embodiment, the main relay 4a,
The same effect as described above can be exerted even in a state where regenerative braking is not complete but operable due to incomplete conduction of 4b or partial opening of wiring connecting inverter circuit 7 and battery 1. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の電気自動車制御装置を含む電気自
動車の走行用回路装置のブロック図である。
FIG. 1 is a block diagram of a driving circuit device of an electric vehicle including an electric vehicle control device according to a first embodiment.

【図2】 実施例1の電気自動車制御装置におけるバッ
テリ電圧Vb、インバータ入力電圧Vi、インバータ入
力電圧Viの変化率dVi/dt、ブレーキ倍圧の時間
変化を示すタイミングチャートである。
FIG. 2 is a timing chart showing a time change of a battery voltage Vb, an inverter input voltage Vi, a change rate dVi / dt of the inverter input voltage Vi, and a brake double pressure in the electric vehicle control device of the first embodiment.

【図3】 実施例1の電気自動車制御装置における回生
制動モニタルーチンを示すフローチャートである。
FIG. 3 is a flowchart illustrating a regenerative braking monitoring routine in the electric vehicle control device according to the first embodiment.

【図4】 実施例2の電気自動車制御装置における回生
制動モニタルーチンを示すフローチャートである。
FIG. 4 is a flowchart illustrating a regenerative braking monitoring routine in the electric vehicle control device according to the second embodiment.

【図5】 実施例3の電気自動車制御装置における回生
制動モニタルーチンを示すフローチャートである。
FIG. 5 is a flowchart illustrating a regenerative braking monitoring routine in the electric vehicle control device according to the third embodiment.

【図6】 実施例4の電気自動車制御装置における回生
制動モニタルーチンを示すフローチャートである。
FIG. 6 is a flowchart illustrating a regenerative braking monitoring routine in the electric vehicle control device according to the fourth embodiment.

【図7】 実施例5の電気自動車制御装置における回生
制動モニタルーチンを示すフローチャートである。
FIG. 7 is a flowchart illustrating a regenerative braking monitoring routine in the electric vehicle control device according to the fifth embodiment.

【符号の説明】[Explanation of symbols]

1はバッテリ、5はインバータ入力電圧検出器(電圧検
出手段)、6はコンデンサ、7はインバータ回路、8は
走行用モータ、9はコントローラ(電圧増加率算出手
段、回生制動不調判定手段、機械制動力増大指令手段
(s402)、回生制動停止手段(s406))
1 is a battery, 5 is an inverter input voltage detector (voltage detection means), 6 is a capacitor, 7 is an inverter circuit, 8 is a running motor, 9 is a controller (voltage increase rate calculation means, regenerative braking malfunction determination means, mechanical control). Power increase command means (s402), regenerative braking stop means (s406))

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 固定電源又は車載エンジンから充電され
るバッテリと走行用モータとの間に介設されて前記走行
用モータの駆動及び回生制動を行うインバータ回路と、 前記回生制動の不調時に増大する信号電圧を求める電圧
検出手段と、 前記信号電圧の増加率を算出する電圧増加率算出手段
と、 回生制動時に前記信号電圧の増加率が所定値を超えた場
合に回生制動不調と判定する回生制動不調判定手段と、 を備えることを特徴とする電気自動車制御装置。
1. An inverter circuit interposed between a battery charged from a fixed power supply or a vehicle-mounted engine and a traveling motor to drive and regeneratively brake the traveling motor, and to increase when the regenerative braking is out of order. Voltage detecting means for obtaining a signal voltage; voltage increasing rate calculating means for calculating an increasing rate of the signal voltage; regenerative braking for determining that regenerative braking is malfunctioning when the increasing rate of the signal voltage exceeds a predetermined value during regenerative braking An electric vehicle control device, comprising: a malfunction determination unit.
【請求項2】 請求項1記載の電気自動車制御装置にお
いて、 前記電圧検出手段は、前記信号電圧として前記インバー
タ回路の入力電圧を検出することを特徴とする電気自動
車制御装置。
2. The electric vehicle control device according to claim 1, wherein said voltage detecting means detects an input voltage of said inverter circuit as said signal voltage.
【請求項3】 請求項1記載の電気自動車制御装置にお
いて、 前記電圧検出手段は、前記信号電圧として前記インバー
タ回路の入力電圧と前記バッテリの電圧の電圧差を検出
することを特徴とする電気自動車制御装置。
3. The electric vehicle control device according to claim 1, wherein said voltage detecting means detects a voltage difference between an input voltage of said inverter circuit and a voltage of said battery as said signal voltage. Control device.
【請求項4】 請求項1乃至3のいずれか記載の電気自
動車制御装置において、 前記回生制動不調判定手段は、前記回生制動時に前記信
号電圧の増加率が所定値を超え、かつ、前記インバータ
回路の入力電圧と前記バッテリの電圧の電圧差が所定の
しきい値を超える場合に、回生制動不調と判定すること
を特徴とする電気自動車制御装置。
4. The electric vehicle control device according to claim 1, wherein the regenerative braking malfunction determination unit determines that the rate of increase of the signal voltage exceeds a predetermined value during the regenerative braking, and the inverter circuit An electric vehicle control device characterized in that when the voltage difference between the input voltage of the battery and the voltage of the battery exceeds a predetermined threshold value, it is determined that regenerative braking is malfunctioning.
【請求項5】 固定電源又は車載エンジンから充電され
るバッテリと走行用モータとの間に介設されて前記走行
用モータの駆動及び回生制動を行うインバータ回路と、 前記回生制動の検出時に増大する信号電圧及びバッテリ
電圧を求める電圧検出手段と、 回生制動時に前記信号電圧とバッテリ電圧との電圧差が
所定値を超えた場合に回生制動不調と判定する回生制動
不調判定手段と、 を備えることを特徴とする電気自動車制御装置。
5. An inverter circuit interposed between a battery charged from a fixed power supply or a vehicle-mounted engine and the traveling motor to drive the regenerative motor and perform regenerative braking, and increases when the regenerative braking is detected. Voltage detecting means for obtaining a signal voltage and a battery voltage, and regenerative braking malfunction determining means for determining regenerative braking malfunction when a voltage difference between the signal voltage and the battery voltage exceeds a predetermined value during regenerative braking. Characteristic electric vehicle control device.
【請求項6】 固定電源又は車載エンジンから充電され
るバッテリと走行用モータとの間に介設されて前記走行
用モータの駆動及び回生制動を行うインバータ回路と、 前記インバータ回路の入力端子対間に接続されるコンデ
ンサと、 前記回生制動の不調を判定する回生制動不調判定手段
と、 前記回生制動の不調判定時に、機械ブレーキ装置へ制動
力増大指令を出力する機械制動力増大指令手段と、 前記回生制動の不調判定時に、前記機械ブレーキ装置へ
の前記制動力増大指令より所定時間遅れて前記インバー
タ回路へ前記回生制動の停止を指令する回生制動停止手
段と、 を備えることを特徴とする電気自動車制御装置。
6. An inverter circuit interposed between a battery charged from a fixed power supply or a vehicle-mounted engine and a traveling motor to drive and regeneratively brake the traveling motor, and between an input terminal pair of the inverter circuit. A regenerative braking malfunction determining means for determining a malfunction of the regenerative braking; a mechanical braking force increasing command means for outputting a braking force increasing command to a mechanical brake device when the regenerative braking malfunction is determined; An electric vehicle, comprising: regenerative braking stop means for instructing the inverter circuit to stop the regenerative braking after a predetermined time delay from the braking force increase command to the mechanical brake device when the regenerative braking malfunction is determined. Control device.
【請求項7】 請求項6記載の電気自動車制御装置にお
いて、 前記インバータ回路の入力電圧を検出する電圧検出手段
を備え、 前記回生制動停止手段は、検出した前記入力電圧が前記
インバータ回路の最大許容電圧未満の所定のしきい値電
圧を超える場合に前記回生制動の停止を指令することを
特徴とする電気自動車制御装置。
7. The electric vehicle control device according to claim 6, further comprising: voltage detection means for detecting an input voltage of the inverter circuit, wherein the regenerative braking stop means has a maximum allowable value of the detected input voltage of the inverter circuit. An electric vehicle control device for commanding stop of the regenerative braking when a predetermined threshold voltage lower than a voltage is exceeded.
JP13384098A 1998-05-15 1998-05-15 Electric vehicle control device Expired - Fee Related JP3893744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13384098A JP3893744B2 (en) 1998-05-15 1998-05-15 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13384098A JP3893744B2 (en) 1998-05-15 1998-05-15 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JPH11332006A true JPH11332006A (en) 1999-11-30
JP3893744B2 JP3893744B2 (en) 2007-03-14

Family

ID=15114277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13384098A Expired - Fee Related JP3893744B2 (en) 1998-05-15 1998-05-15 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3893744B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204924A (en) * 2006-01-31 2007-08-16 Shin Caterpillar Mitsubishi Ltd Device for stopping electric motor when failed
WO2008004418A1 (en) * 2006-07-07 2008-01-10 Toyota Jidosha Kabushiki Kaisha Vehicle power output device and its control method
JP2008193776A (en) * 2007-02-01 2008-08-21 Sanyo Electric Co Ltd Power supply unit for vehicle
WO2009101859A1 (en) * 2008-02-13 2009-08-20 Kabushiki Kaisha Yaskawa Denki Inverter device and method for controlling the same
WO2009119215A1 (en) * 2008-03-25 2009-10-01 アイシン・エィ・ダブリュ株式会社 Revolving electric motor control system, and vehicular drive system having the revolving electric motor control system
USRE41303E1 (en) 2001-10-25 2010-05-04 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP2017017925A (en) * 2015-07-03 2017-01-19 株式会社豊田自動織機 Motor drive device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41303E1 (en) 2001-10-25 2010-05-04 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP2007204924A (en) * 2006-01-31 2007-08-16 Shin Caterpillar Mitsubishi Ltd Device for stopping electric motor when failed
WO2008004418A1 (en) * 2006-07-07 2008-01-10 Toyota Jidosha Kabushiki Kaisha Vehicle power output device and its control method
JP2008193776A (en) * 2007-02-01 2008-08-21 Sanyo Electric Co Ltd Power supply unit for vehicle
JP4740167B2 (en) * 2007-02-01 2011-08-03 三洋電機株式会社 Power supply for vehicle
JP2011139634A (en) * 2007-02-01 2011-07-14 Sanyo Electric Co Ltd Power supply unit for vehicle
JP2011120472A (en) * 2007-02-01 2011-06-16 Sanyo Electric Co Ltd Power supply apparatus for vehicle
WO2009101859A1 (en) * 2008-02-13 2009-08-20 Kabushiki Kaisha Yaskawa Denki Inverter device and method for controlling the same
JP2009232652A (en) * 2008-03-25 2009-10-08 Aisin Aw Co Ltd Rotating electrical machine control system and vehicle driving system including the rotating electrical machine control system
US20090243523A1 (en) * 2008-03-25 2009-10-01 Aisin Aw Co., Ltd. Electric rotating machine control system and vehicle driving system including the electric rotating machine control system
WO2009119215A1 (en) * 2008-03-25 2009-10-01 アイシン・エィ・ダブリュ株式会社 Revolving electric motor control system, and vehicular drive system having the revolving electric motor control system
US8253359B2 (en) 2008-03-25 2012-08-28 Aisin Aw Co., Ltd. Electric rotating machine control system and vehicle driving system including the electric rotating machine control system
JP2017017925A (en) * 2015-07-03 2017-01-19 株式会社豊田自動織機 Motor drive device

Also Published As

Publication number Publication date
JP3893744B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
EP1958851B1 (en) Power source control device for power steering
US6422331B1 (en) Hybrid vehicle
US7432719B2 (en) Abnormality monitoring apparatus in load drive circuit
US11387766B2 (en) Control circuit for electric power converter
JP4961278B2 (en) Electric vehicle control device
CN111656206A (en) Method for monitoring the energy supply of a motor vehicle having an automated driving function
US7165817B2 (en) Electrically driven brake device and control apparatus thereof
WO2017169817A1 (en) On-vehicle power source switch apparatus and control apparatus
US20150097501A1 (en) Electric vehicle power conversion system
JPH0923501A (en) Controller for electric rolling stock
JPH10257778A (en) Controller for electric vehicle
CN102248900B (en) Methods and system for motor torque control for vehicles when current sensor is not operating properly
CN114103838A (en) Power control apparatus and method for autonomous vehicle
JP2006320176A (en) Method and device for diagnosing inverter
US11400917B2 (en) Power supply system for vehicle
JP2005245173A (en) Control device of electric motor and control device of electric brake device
JP2003304604A (en) Method and apparatus for controlling motor
JP3893744B2 (en) Electric vehicle control device
CN114981674A (en) Diagnosis of the state of a vehicle auxiliary battery by means of current pulses
US11077754B2 (en) In-vehicle control apparatus and program
JP4872678B2 (en) Power control system
WO2021039177A1 (en) Energization control device and power supply unit
JP2001078310A (en) Controller of electric vehicle and contactor control method
JP4545514B2 (en) Voltage converter control method
WO2023204081A1 (en) Load driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees