WO2008004418A1 - Vehicle power output device and its control method - Google Patents

Vehicle power output device and its control method Download PDF

Info

Publication number
WO2008004418A1
WO2008004418A1 PCT/JP2007/061959 JP2007061959W WO2008004418A1 WO 2008004418 A1 WO2008004418 A1 WO 2008004418A1 JP 2007061959 W JP2007061959 W JP 2007061959W WO 2008004418 A1 WO2008004418 A1 WO 2008004418A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
rotating electrical
electrical machine
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2007/061959
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Hirasawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008004418A1 publication Critical patent/WO2008004418A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • An object of the present invention is to provide a vehicle power unit that improves the quietness of a vehicle while maintaining the reliability of components.
  • the power storage device includes a plurality of power storage cells.
  • the electrical connection path includes a switch that is provided between a plurality of storage cells and that can be opened and closed.
  • the detector detects that the switch is open as an error.
  • control device limits the maximum output of the first rotating electrical machine not only when the internal combustion engine transitions from the operating state to the stopped state but when the detection unit detects an abnormality.
  • an internal combustion engine a first rotating electrical machine connected to the internal combustion engine so that mechanical power can be transmitted, and a current for current control of the first rotating electrical machine
  • a control method for a vehicle power output device comprising a control circuit and a power source for supplying power to a first rotating electrical machine, the step of detecting that the internal combustion engine transitions from an operating state to a stopped state, and current control
  • a step of performing control so that torque is not generated in the first rotating electrical machine when the step to detect detects an abnormality.
  • FIG. 1 is a circuit diagram showing a configuration of a vehicle according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram for explaining the details of the service plug SP of FIG. Figure 4 illustrates the torque limit of motor generator MG 1 or MG 2.
  • FIG. 3 is a circuit diagram for explaining the details of the service plug SP of FIG. Figure 4 illustrates the torque limit of motor generator MG 1 or MG 2.
  • FIG. 5 is a collinear diagram of a power dividing mechanism for explaining vibration suppression control using a motor generator.
  • FIG. 6 is a graph showing the relationship between engine speed (frequency) and vibration gain.
  • FIG. 7 is an operation waveform diagram showing changes in the engine speed when the vibration suppression control is executed and when it is not executed.
  • vehicle 1 0 0 includes a knotter unit 40, an engine 4, motor generators MG 1 and MG 2, a current control circuit 1 0 2, a power split mechanism 3 and wheels. 2 and a control device 30.
  • the battery unit 40 includes a high-voltage battery B1, a system main relay SMRG connected to the negative electrode of the high-voltage battery B1, a system main relay SMRB connected to the positive electrode of the high-voltage battery B1, and an inrush current at system startup. Including limiting resistor R1 and system main relay SMRP. System main relay
  • the limiting resistor R1 and system main relay SMRP are connected in series between the terminals of SMRG.
  • System main relays SMRG and SMRP use mechanical relays, and system main relays with low current SMRP use a single semiconductor element such as an IGBT element.
  • the system main relays SMRG, SMRB, and SMRP are controlled to be in a conductive / non-conductive state in accordance with a control signal SE given from the control device 30.
  • high-voltage battery B secondary batteries such as nickel hydrogen and lithium ion, fuel cells, and the like can be used.
  • the battery unit 40 further includes a service plug SP that cuts off the high voltage when the interlock switch lever is raised, a voltage sensor 10 that measures the voltage VB between the terminals of the high voltage battery B 1, and a current that flows through the high voltage battery B 1.
  • the service plug SP has a built-in fuse F that melts when an overcurrent flows through the high-voltage battery B 1 as will be described later with reference to FIG.
  • the vehicle 100 further detects a smoothing capacitor C 1 connected between the power line PL 1 and the ground line SL, and a voltage VL between both ends of the smoothing capacitor C 1 and outputs a voltage VL to the control device 30. Sensor 21 is included.
  • the current control circuit 102 includes a boost converter 12 that boosts the voltage across the smoothing capacitor C 1, a smoothing capacitor C 2 that smoothes the voltage boosted by the boost converter 12, and a terminal between the smoothing capacitor C 2 terminals.
  • the voltage sensor 13 that detects the voltage VH and outputs it to the control device 30, the discharge resistor R 2 connected between the power supply line PL 2 and the ground line SL, and the DC voltage applied from the boost converter 12 are three.
  • phase Inverter 14 that converts to AC and outputs to motor generator MG.l.
  • the other end of the reactor L 1 is the emitter of the I 08 element 01 and the I 08 element 0 2 Connected to the collector
  • the cathode of diode D 1 is connected to the collector of I GBT element Q 1 and the anode of diode D 1 is connected to the emitter of I GBT element Q 1.
  • the power sword of diode D 2 is I GBT Connected to the collector of element Q 2 and diode D 2
  • the anode is connected to the emitter of the IGBT element Q 2.
  • the inverter i 4 receives the boosted voltage from the boost converter 12 and drives the motor generator MG 1 to start the engine 4, for example.
  • the inverter 14 returns the electric power generated by the motor generator MG 1 by the mechanical power transmitted from the engine 4 to the boost converter 12.
  • U-phase arm 15 consists of I GBT elements Q3 and Q4 connected in series between power line PL 2 and ground line SL. : Includes diodes D3 and D4 connected in parallel with 6-elements 03 and Q4, respectively.
  • the power sword of diode D3 is connected to the collector of I GBT element Q3, and the anode of diode D3 is connected to the emitter of I GBT element Q3.
  • the power sword of diode D4 is connected to the collector of I GBT element Q4, and the anode of diode D4 is connected to the emitter of I GBT element Q4.
  • V phase arm 16 is a diode connected in parallel with I GBT elements Q5., Q6 and I GBT elements Q5, Q 6 connected in series between power line PL 2 and ground line SL. Including D 5:,-D 6.
  • the power sword of diode D 5 is connected to the collector of IGBT element Q 5 and the anode of diode D 5 is connected to the emitter of IG 'BT element Q 5.
  • Diode D The force sword of 6 is connected to the collector of the I GBT element Q 6, and the anode of the diode D 6 is connected to the emitter of the I GBT element Q 6.
  • the current sensor 24 indicates the current flowing through the motor generator MG 1 as the motor current value M.
  • Inverter 22 converts the DC voltage output from step-up converter 12 to motor generator MG 2 that drives wheel 2 into a three-phase alternating current and outputs it. Inverter 22 returns the electric power generated in motor generator MG 2 to boost converter 12 in accordance with the regenerative braking. At this time, step-up converter 12 is controlled by control device 30 so as to operate as a step-down circuit. Although the internal configuration of inverter 22 is not shown, it is the same as inverter 14 and will not be described in detail. Invar The inverter 22 includes an overheat sensor and a current sensor similar to the inverter 14, and the inverter 22 outputs a signal OH 2 indicating overheating and a signal MCRT 2 indicating a current value to the control device 30.
  • Control device 30 also outputs control signal PWU 2 for instructing boosting to D C ZD C converter 50 and control signal PWD 2 for instructing step-down.
  • control device 30 generates a drive instruction PWMI 1 for converting the DC voltage that is the output of step-up converter 12 2 into an AC voltage for driving motor generator MG 1, and inverter 14 generates power using motor generator MG 1.
  • a regenerative instruction PWMC 1 that converts the AC voltage thus converted into a DC voltage and returns it to the boost converter 12 side is output.
  • control device 30 is connected to the motor 22 with the motor generator MG2.
  • Drive instruction PWMI 2 that converts the DC voltage that is the output of the boost converter 12 to an AC voltage for driving the converter, and the AC voltage generated by the motor generator MG 2 is converted to a DC voltage to the boost converter 12 side.
  • the regenerative instruction PWMC 2 to be returned is output.
  • control device 30 receives signal OH0 indicating overheating and signal IL indicating the current value from boost converter 12. Further, the control device 30 receives a signal ⁇ ⁇ 1 indicating overheating from the inverter 14 and a signal MCRT1 indicating the current value.
  • control device 30 receives signal ⁇ 2 indicating overheating from inverter 22 and signal MCRT 2 indicating the current value. From these signals, the control device 30 monitors whether the boost converter 12 and the inverters 14 and 22 are performing overload operation, and holds the result in the RAM 31 as a fail flag.
  • FIG. 2 is a flow chart showing a control structure of a program executed by the control device 30 of FIG. The processing of this flowchart is called and executed from the motor control main routine at regular time intervals or whenever a predetermined condition is satisfied.
  • step S3 If the ignition switch is in the OFF state and the engine speed is greater than a predetermined speed Ne XL, the process proceeds to step S3. On the other hand, if the innovation switch is not in the OF F state or the engine speed is equal to or less than the speed NeXL, the process proceeds to step S10 and the control is transferred to the main routine.
  • step S 3 it is determined whether or not there is a failure in boost converter 12. Whether or not the boost converter 12 has failed can be determined by checking whether or not the file flag corresponding to the RAM 31 in the control device 30 is set.
  • the controller 30 monitors the signal OH0 output from the overheat sensor 32 and the signal IL indicating the current value output from the current sensor 25 and the voltages VH and VL for the boost converter 12.
  • the fail flag corresponding to RAM 3 1 is updated by judging at any time whether the pressure converter l 2 is overloaded or abnormal.
  • step S3 If it is determined in step S3 that the boost converter 12 has a failure, the process proceeds to step S8. If it is determined that the boost converter 12 has no failure, the process proceeds to step S4. move on.
  • the control device 30 detects that the voltage VH is equal to or lower than the predetermined value and the voltage VL is equal to or lower than the predetermined value after the system start-up is completed (after Ready ON), the control device 30 sets a fail flag indicating that the system main relay is open. Stand up. In other words, if the voltage drops abnormally after the driver gives an instruction to start the vehicle and the system once completes, it is determined that the system main relay has failed.
  • step S4 If it is determined in step S4 that there is an open fault in the system main relay, the process proceeds to step S8. If it is determined that there is no fault in the system main relay, the process proceeds to step S5. Proceed to
  • step S5 if it is determined that the power is cut off due to the interlock open, the process proceeds to step S8. If it is determined that no source cutoff has occurred, the process proceeds to step S6.
  • step S6 it is determined whether or not a disconnection fault has occurred in the high-pressure system.
  • the disconnection failure in the high voltage system is a disconnection failure in the electrical connection path from the current control circuit 1 0 2 to the current control circuit 1 0 2 via the power line PL 1, high voltage battery B 1, service plug, and ground line SL. .
  • This disconnection failure includes fusing of fuse F (shown in Fig. 3) included in the service plug SP.
  • Whether or not there is a disconnection fault in the high-voltage system can also be determined by checking whether or not the file flag corresponding to RAM 31 in the control device 30 is set.
  • the control device 30 can detect the voltage VH below the precharge completion determination voltage and the battery current IB below the predetermined value even after a predetermined time elapses after the system start instruction (immediately after operating the start switch).
  • a fail flag for a disconnection fault in the high voltage system is set. In other words, after the driver gives an instruction to start the vehicle, precharge is not completed and the voltage does not reach a predetermined value.
  • step S6 if it is determined that there is a disconnection fault in the high voltage system, the process proceeds to step S8. If it is determined that there is no disconnection fault in the high voltage system, the process proceeds to step S7.
  • step S 7 it is determined whether or not the torque of either motor generator MG 1 or MG 2 is limited to less than the limit upper limit value.
  • FIG. 4 is a diagram for explaining the torque limit of motor generator M G 1 or MG 2.
  • control device 30 limits the magnitude of the upper limit torque of motor generator MG 1 from 100% to 80%. As a result, any one of overheating, overcurrent, and overvoltage detected after a while has passed, but if not, the upper limit torque will be increased from 80% to 60%. Restrict. In addition, the upper limit torque is limited from 60% to 40% unless the problem is solved.
  • the control device 30 decreases the magnitude of the upper limit torque by 20% each time when any one of overheating, overcurrent, and overvoltage is detected. Conversely, when any of the overheat, overcurrent, and overvoltage is no longer detected, the control device 30 increases the upper limit torque by 20% each time until it returns to 100%. When the upper limit torque is less than 30%, the control device 30 deactivates the gate of the IGBT element, which is a switching element in the inverter, to cut off the current and protect the inverter.
  • step S 7 the magnitude of the upper limit torque of motor generator MG 1 is less than a predetermined limit value, or the magnitude of the upper limit torque of motor generator MG 2 is predetermined. If it is less than the limit value, vibration control using a motor generator described later with reference to FIGS. 5 to 7 cannot be performed, and the process proceeds to step S8.
  • this predetermined limit value may be 30%, which is the same as when the inverter current is cut off, or a value between 100% and 30%, and the power required for vibration suppression control. It may be set to an appropriate value in consideration.
  • step S7 if the magnitude of the upper limit torque of motor generator MG 1 is not less than the predetermined limit value and the magnitude of the upper limit torque of motor generator MG 2 is not less than the predetermined limit value, The process proceeds to step S9.
  • step S8 vibration suppression control using a motor generator is prohibited.
  • step S9 vibration suppression control using a motor generator is executed. When one of the processes of step S8 and step S9 is completed, the process proceeds to step S1 0 and control is transferred to the main routine.
  • FIG. 5 is a collinear diagram of a power dividing mechanism for explaining vibration suppression control using a motor generator.
  • the hybrid vehicle 100 can use a planetary gear as the power split mechanism 3.
  • the rotational speed N g of the motor generator MG 1, the rotational speed N e of the engine, and the rotational speed Nm of the motor generator MG 2 move in conjunction so as to be aligned on a straight line as shown in FIG.
  • the engine speed N e is the planetary carrier speed.
  • Motor generator MG 1 speed N g is the sun gear speed.
  • the rotation speed Nm of motor generator MG 2 is the rotation speed of the ring gear.
  • N e Nm X 1 / (1 + p) + N g X p / (1 + p) (1)
  • the driver sets the regeneration switch to OFF, it is normally stopped and the motor generator MG 2 that rotates in conjunction with the wheels has a rotational speed Nm of zero. Then, according to the stop instruction from the driver, the fuel supply to the engine is cut off, and the engine speed decreases from N e 1 toward zero. At this time, the rotational speed of the motor generator MG 1 also decreases from N g 1 toward zero.
  • FIG. 6 is a graph showing the relationship between engine speed (frequency) and vibration gain.
  • the vibration gain is maximum as shown by frequencies ⁇ 1 and f 2.
  • This resonance frequency can be easily obtained by measuring the vibration by varying the rotational speed of the engine, which varies depending on the vehicle model if the engine and power split mechanism are different. For example, if the engine speed is N e 1 during idling, the fuel supply is stopped in response to a stop instruction from the driver. At that time, in the process of decreasing the engine speed, vibration increases at the rotational speed N e X corresponding to the resonance frequency f 0, and noise called “gull noise” is generated from the engine and the power split mechanism.
  • FIG. 7 is an operation waveform diagram showing changes in the engine speed when the vibration suppression control is executed and when it is not executed.
  • the Ready indicator changes from the on state to the off state, the fuel supply to the engine is stopped, and the engine speed N e begins to decrease.
  • system main relay SMRG is switched from on to off, and at time t3, system main relay SMRB is switched from on to off. Thereafter, the system main relay SMR P is turned on for a short period of time between time t4 and t5 to check the voltage and current change in order to determine the welding failure of the system main relay SMRB.
  • step S9 when the process of step S9 for executing the vibration suppression control is executed, the engine speed N e immediately decreases as shown by the waveform W1.
  • the time during which the engine speed N e falls within the rotation range N e XH to N e XL where vibration resonance occurs is shortened to T 1, and vibration and noise become inconspicuous.
  • step S8 if it is determined in step S3 to S7 in FIG. 2 that some abnormality has occurred, the process of step S8 in which the vibration suppression control is prohibited is executed, and slowly as shown in the waveform W0. And the engine speed N e decreases. In this case, vibration and noise cannot be reduced, but in the situation where regenerative power cannot be recovered in the high voltage battery B1, it prevents the capacitors C1 and C2 from becoming overvoltage. be able to.
  • a power output apparatus for a vehicle includes an engine 4, a motor generator MG 1 connected to be able to transmit mechanical power to the engine 4, and first and second connection terminals.
  • a current control circuit 1 0 2 for controlling the current of motor generator MG 1; a high-voltage battery B 1; an electrical connection path from the first connection terminal to the second terminal via high-voltage battery B 1;
  • a detection unit that detects an abnormality in the electrical connection path, and a control device 30 that controls the current control circuit 10 2 and the motor generator MG 1 are provided.
  • the control device 30 causes the motor generator MG 1 to perform a power generation operation that generates a negative torque when the detection unit does not detect an abnormality. The stoppage is promoted and the generated power is collected by the high voltage battery B1.
  • Control device 30 prohibits the power generation operation of motor generator MG 1 when the detection unit detects an abnormality when engine 4 changes from the operating state to the stopped state.
  • the electrical connection path includes system main relays S MR B and S MR G that are opened and closed under the control of control device 30.
  • the detection unit includes, for example, voltage sensors 13 and 21 and detects an abnormality in the system main relays S MR B and S MR G based on the voltages VH and V L.
  • the high voltage battery B 1 includes a plurality of power storage cells.
  • the electrical connection path includes a switch 104 provided between a plurality of power storage cells that can be opened and closed.
  • the detection unit includes, for example, a switch 1 0 6 that connects the pull-up resistor R 3 and the resistor R 3 to the ground potential and opens and closes in conjunction with the switch 1 0 4, and the switch 1 0 4 is in the open state. Is detected as abnormal.
  • current control circuit 10 2 includes inverter 14 connected to motor generator MG 1, a boost converter 12 having a power transistor element, and boosts the voltage of high voltage battery B 1 and supplies the boosted voltage to the inverter. including.
  • Control device 30 performs switching control of the power transistor elements (IGBT elements Q 1, Q 2) in boost converter 12. Control device 30 prohibits power generation operation of motor generator MG 1 when the power transistor element is fixed in a non-conductive state and switching is stopped.
  • the vehicle power output device includes a motor generator MG 2 having a rotor that rotates in synchronization with a drive shaft of a wheel, and a power that divides mechanical power between the engine 4 and the motor generators MG l and MG 2.
  • a split mechanism 3 is further provided.
  • the control device 30 detects that the engine 4 transitions from the driving state to the stop state in response to the vehicle power system stop instruction given by the driver.
  • a power output apparatus for a vehicle performs current control of engine 4, motor generator MG 1 connected to be capable of transmitting mechanical power to engine 4 ⁇ , and motor generator MG 1.
  • a control device 30 for controlling the motor generator MG1.
  • control device 30 detects that the detector detects an abnormality, and if not, generates a negative torque in the motor generator MG 1 to promote the stop of the engine 4 Let When engine 4 transitions from the operating state to the stopped state, control device 30 performs control so that torque is not generated in motor generator MG 1 when the detection unit detects an abnormality.
  • the detection unit includes a current sensor 24 that detects an overcurrent of current control circuit 10 2 or motor generator MG 1.
  • the detection unit is a current control circuit 1 0 2 or a motor generator MG 1 Including an overheat sensor 3 4 to detect overheating.
  • control device 30 is not limited to the case where the engine 4 transitions from the operation state to the stop state, and when the detection unit detects an abnormality, the maximum of the motor generator MG 1 as shown in FIG. Limit output.
  • the current control circuit 10 2 has an inverter 14 connected to the motor generator MG 1 and a power transistor element, and boosts the voltage of the high-voltage battery B 1 and supplies the boosted voltage to the inverter 1 2 and including.
  • Control device 30 further performs switching control of the power transistor element of boost converter 12.
  • Control device 30 prohibits the power generation operation of motor generator MG 1 when the power transistor element is fixed in the non-conductive state and switching is prohibited.
  • the vehicle power output device mechanically connects motor generator MG 2 having a rotor that rotates in synchronization with the drive shaft of wheel 2, engine 4 and motor generators MG 1 and MG 2, And a power split mechanism 3 for splitting power.
  • the control device 30 detects that the engine 4 transitions from the operating state to the stopped state in accordance with the stop instruction of the vehicle power system given by the driver.
  • motor generator MG 1 when the operation of motor generator MG 1 is restricted in advance, it is possible to avoid further loading motor generator MG 1 in order to reduce noise and vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

A vehicle power output device includes: a detection unit for detecting a failure of an electric connection path from a first connection terminal of a current control circuit (102) via a battery (B1) to a second terminal of the current control circuit (102); and a control device (30) for controlling the current control circuit (102) and a motor generator (MG1). When an engine (4) is shifted from an operation state to a stop state and if the detection unit does not detect a failure, the control device (30) causes the motor generator (MG1) to perform generation operation to generate a negative torque to promote stop of the engine (4) and causes the battery (B1) to collect the generated power. If the detection units detects a failure, the control device (30) inhibits the generation operation of the motor generator (MG1).

Description

明細書  Specification
. 車両の動力出力装置およびその制御方法 技術分野 VEHICLE POWER OUTPUT DEVICE AND ITS CONTROL METHOD TECHNICAL FIELD
この発明は、 車両の動力出力装置およびその制御方法に関し、 特に内燃機関と 回転電機とを含む車両の動力出力装置およびその制御方法に関する。 背景技術  The present invention relates to a vehicle power output device and a control method thereof, and more particularly to a vehicle power output device including an internal combustion engine and a rotating electric machine and a control method thereof. Background art
近年、 車両の駆動力源として、 燃料の燃焼により動力を出力するエンジンと、 電力の供給により動力を出力する電動機とを搭載したハイプリッド車が提案され ている。 このハイブリッド車においては、 各種の条件に基づいて、 エンジンおよ び電動機の駆動■停止を制御することにより、 燃費の向上おょぴ騒音の低減なら びに排気ガスの低減を図ることができる。  In recent years, a hybrid vehicle equipped with an engine that outputs power by burning fuel and an electric motor that outputs power by supplying electric power has been proposed as a driving force source for the vehicle. In this hybrid vehicle, by controlling the driving and stopping of the engine and electric motor based on various conditions, it is possible to improve fuel economy and reduce noise and exhaust gas.
近年こうした動力出力装置を採用する車両の静粛性は、 ますます高くなってき ている。 その結果、 従来であれば問題視されていなかった運転時の騒音が問題に されるようになつてきた。 例えば、 車両を停止しようとして運転者が停止指示を した直後に、 エンジン周辺から一瞬あるいは所定時間聞こえる騒音なども、 静粛 性を損なうものとして、 問題視されるようになってきた。 こうした問題は、 特に ハイプリッド車輛のように、 ギヤ機構のギヤ軸に電動機などの大きな慣性質量が 結合されている場合に顕在化することがある。  In recent years, the quietness of vehicles employing such power output devices has been increasing. As a result, noise during operation, which was not regarded as a problem in the past, has become a problem. For example, immediately after a driver gives a stop instruction to stop a vehicle, noise that can be heard from the surroundings of the engine for a moment or for a predetermined time has come to be regarded as a problem because it impairs quietness. Such a problem may become apparent when a large inertial mass such as an electric motor is coupled to the gear shaft of the gear mechanism, particularly in a hybrid vehicle.
このような、 ハイプリッド自動車のエンジン停止時に騒音を低減させる技術が 特開平 1 1— 1 7 3 1 7 1号公報に開示されている。  Such a technique for reducing noise when the engine of a hybrid vehicle is stopped is disclosed in Japanese Patent Application Laid-Open No. 11-1731171.
特開平 1 1一 1 7 3 1 7 1号公幸の実施の形態 3には、 エンジンの停止が指令 されたときに、 モータを制御してプラネタリギヤのサンギヤ軸に負荷を結合し異 音の発生を防止している。 しかしながら、 モータを制御するための電源系統たと えば昇圧コンバータの故障や、 高電圧回路の断線故障等の際に異音発生防止の制 御を行なうことにより電源系統のコンデンサ電圧が上昇し、 部品寿命が短くなる 可能性がある。 発明の開示 In the third embodiment of Koyuki No. 1 No. 1 7 3 1 7 No. 1 in the case of an engine stop command, the motor is controlled to couple a load to the sun gear shaft of the planetary gear to generate noise. It is preventing. However, if the power supply system for controlling the motor, for example, a boost converter failure or a disconnection failure of the high-voltage circuit, the capacitor voltage of the power supply system rises by controlling the generation of abnormal noise, and the component life May be shortened. Disclosure of the invention
この発明の目的は、 部品の信頼性を損なわないようにしつつ、 車両の静粛性を 向上させる車両の動力装置を提供することである。  An object of the present invention is to provide a vehicle power unit that improves the quietness of a vehicle while maintaining the reliability of components.
この発明は、 要約すると、 車両の動力出力装置であって、 内燃機関と、 内燃機 関に対して機械的動力が伝達可能に接続された第 1の回転電機と、 第 1、 第 2の 接続端子を有し、 第 1の回転電機の電流を制御する電流制御回路と、 蓄電装置と、 第 1の接続端子から蓄電装置を経由して第 2の端子に至る電気接続経路と、 電気 接続経路の異常を検知する検知部と、 電流制御回路と第 1の回転電機とを制御す る制御装置とを備える。 制御装置は、 内燃機関が運転状態から停止状態に遷移す る場合に、 検知部が異常を検知していないときには第 1の回転電機に負のトルク を発生させる発電動作を行なわせて内燃機関の停止を促進させるとともに発電し た電力を蓄電装置に回収させる。 制御装置は、 内燃機関が運転状態から停止状態 に遷移する場合に、 検知部が異常を検知しているときには第 1の回転電機の発電 動作を禁止する。 '  In summary, the present invention relates to a power output device for a vehicle, which is an internal combustion engine, a first rotating electrical machine that is connected so that mechanical power can be transmitted to the internal combustion engine, and first and second connection terminals. A current control circuit for controlling the current of the first rotating electrical machine, a power storage device, an electrical connection path from the first connection terminal to the second terminal via the power storage device, and an electrical connection path A detection unit that detects an abnormality, and a control device that controls the current control circuit and the first rotating electric machine are provided. When the internal combustion engine transitions from the operating state to the stopped state, the control device causes the first rotating electrical machine to perform a power generation operation that generates negative torque when the detection unit does not detect an abnormality. Promote the shutdown and allow the power storage device to collect the generated power. The control device prohibits the power generation operation of the first rotating electrical machine when the detection unit detects an abnormality when the internal combustion engine transitions from the operating state to the stopped state. '
好ましくは、 電気接続経路は、 制御装置の制御の下で開閉が行なわれるリレー を含む。 検知部は、 リレーの異常を検知する。  Preferably, the electrical connection path includes a relay that is opened and closed under the control of the control device. The detector detects a relay error.
好ましくは、 蓄電装置は、 複数の蓄電セルを含む。 電気接続経路は、 複数の蓄 電セルの間に設けられ開閉可能なスィッチを含む。 検知部は、 スィッチが開状態 であることを異常として検知する。  Preferably, the power storage device includes a plurality of power storage cells. The electrical connection path includes a switch that is provided between a plurality of storage cells and that can be opened and closed. The detector detects that the switch is open as an error.
好ましくは、 電流制御回路は、 第 1の回転電機に接続されたインバータと、 パ ワートランジスタ素子を有し、 蓄電装置の電圧を昇圧してインパータに供給する 昇圧コンバータとを含む。 制御装置は、 昇圧コンバータ中のパワートランジスタ 素子のスイッチング制御をさらに行なう。 制御装置は、 パワートランジスタ素子 を非導通状態に固定しスイッチングを禁止している場合には、 第 1の回転電機の 発電動作を禁止する。  Preferably, the current control circuit includes an inverter connected to the first rotating electrical machine, and a boost converter having a power transistor element and boosting the voltage of the power storage device and supplying the boosted voltage to the inverter. The control device further performs switching control of the power transistor element in the boost converter. The control device prohibits the power generation operation of the first rotating electrical machine when the power transistor element is fixed in a non-conductive state and switching is prohibited.
好ましくは、 車両の動力出力装置は、 車輪の駆動軸に同期して回転するロータ を有する第 2の'回転電機と、 内燃機関および第 1、 第 2の回転電機の間で機械的 動力の分割を行なう動力分割機構をさらに備える。 制御装置は、 運転者から与え られる車両の動力系の停止指示に応じて内燃機関が運転状態から停止状態に遷移 することを検知する。 Preferably, the power output device of the vehicle is configured to divide the mechanical power between the second 'rotating electric machine having a rotor that rotates in synchronization with the drive shaft of the wheel, and the internal combustion engine and the first and second rotating electric machines. A power split mechanism is further provided. The control device is given by the driver It detects that the internal combustion engine transitions from the operating state to the stopped state in response to a stop instruction of the vehicle power system.
この発明の他の局面に従うと、 車両の動力出力装置であって、 内燃機関と、 内 燃機関に対して機械的動力が伝達可能に接続された第 1の回転電機と、 第 1の回 転電機の電流制御を行なう電流制御回路と、 第 1の回転電機に電力を供給する電 源と、 電流制御回路または第 1の回転電機の異常を検知する検知部と、 電流制御 回路と第 1の回転電機とを制御する制御装置とを備える。 制御装置は、 内燃機関 が運転状態から停止状態に遷移する場合に、 検知部が異常を検知していないとき には第 1の回転電機に負のトルクを発生させて内燃機関の停止を促進させる。 制 御装置は、 内燃機関が運転状態から停止状態に遷移する場合に、 検知部が異常を 検知しているときには第 1の回転電機にトルクを発生させないように制御を行な う。  According to another aspect of the present invention, there is provided a power output device for a vehicle, the internal combustion engine, a first rotating electrical machine connected to be able to transmit mechanical power to the internal combustion engine, and a first rotation A current control circuit for controlling electric current of the electric machine, a power source for supplying electric power to the first rotating electric machine, a detection unit for detecting an abnormality in the current control circuit or the first rotating electric machine, the current control circuit and the first electric motor And a control device for controlling the rotating electrical machine. When the internal combustion engine transitions from the operating state to the stopped state and the detection unit does not detect an abnormality, the control device generates a negative torque in the first rotating electrical machine to promote the stop of the internal combustion engine. . The control device controls the first rotating electrical machine not to generate torque when the detection unit detects an abnormality when the internal combustion engine transitions from the operating state to the stopped state.
好ましくは、 検知部は、 電流制御回路または第 1の回転電機の過電流を検出す る電流センサを含む。  Preferably, the detection unit includes a current control circuit or a current sensor that detects an overcurrent of the first rotating electrical machine.
好ましくは、 検知部は、 電流制御回路または第 1の回転電機の過熱を検出する 温度センサを含む。  Preferably, the detection unit includes a temperature sensor that detects overheating of the current control circuit or the first rotating electrical machine.
好ましくは、 制御装置は、 内燃機関が運転状態から停止状態に遷移する場合に 限らず、 検知部が異常を検知しているときは、 第 1の回転電機の最大出力を制限 する。  Preferably, the control device limits the maximum output of the first rotating electrical machine not only when the internal combustion engine transitions from the operating state to the stopped state but when the detection unit detects an abnormality.
好ましくは、 電流制御回路は、 第 1の回転電機に接続されたインバータと、 パ ワートランジスタ素子を有し、 蓄電装置の.電圧を昇圧してィンバータに供給する 昇圧コンバータとを含む。 制御装置は、 昇圧コンバータのパワートランジスタ素 子のスイッチング制御をさらに行なう。 制御装置は、 パワートランジスタ素子を 非導通状態に固定しスィツチングを禁止している場合には、 第 1の回転電機の発 電動作を禁止する。  Preferably, the current control circuit includes an inverter connected to the first rotating electrical machine, and a boost converter having a power transistor element and boosting the voltage of the power storage device and supplying the boosted voltage to the inverter. The control device further performs switching control of the power transistor element of the boost converter. When the power transistor element is fixed in a non-conductive state and switching is prohibited, the control device prohibits the power generation operation of the first rotating electrical machine.
好ましくは、 車両の動力出力装置は、 車輪の駆動軸に同期して回転するロータ を有する第 2の回転電機と、 内燃機関と第 1、 第 2の回転電機の機械的接続を行 ない、 機械的動力の分割を行なう動力分割機構とをさらに備える。 制御装置は、 運転者から与えられる車両の動力系の停止指示に応じて内燃機関が運転状態から 停止状態に遷移することを検知する。 Preferably, the power output device of the vehicle mechanically connects the second rotating electrical machine having a rotor that rotates in synchronization with the drive shaft of the wheel, the internal combustion engine, and the first and second rotating electrical machines. A power split mechanism for splitting the dynamic power. In response to a vehicle power system stop instruction given by the driver, the control device A transition to the stop state is detected.
この発明のさらに他の局面に従うと、 内燃機関と、 内燃機関に対して機械的動 力が伝達可能に接続された第 1の回転電機と、 第 1、 第 2の接続端子を有し、 第 1の回転電機の電流を制御する電流制御回路と、 蓄電装置と、 第 1の接続端子か ら蓄電装置を経由して第 2の端子に至る電気接続経路とを備える車両の動力出力 装置の制御方法であって、 内燃機関が運転状態から停止状態に遷移することを検 出するステップと、 電気接続経路の異常を検知するステップと、 電気接続経路に 異常がないときに第 1の回転電機に負のトルクを発生させる発電動作を行なわせ て内燃機関の停止を促進させるとともに発電した電力を蓄電装置に回収させるス テツプと、 電気接続経路に異常があるときに第 1の回転電機の発電動作を禁止す るステップとを備える。  According to still another aspect of the present invention, the engine includes an internal combustion engine, a first rotating electrical machine connected to the internal combustion engine so that mechanical power can be transmitted, and first and second connection terminals, Control of a vehicle power output device comprising: a current control circuit that controls a current of a rotating electrical machine of 1; a power storage device; and an electrical connection path from the first connection terminal to the second terminal via the power storage device. A method of detecting that the internal combustion engine transitions from an operating state to a stopped state, a step of detecting an abnormality in the electrical connection path, and a first rotating electric machine when there is no abnormality in the electrical connection path. A step of generating a negative torque to accelerate the stoppage of the internal combustion engine and recovering the generated power to the power storage device, and a power generation operation of the first rotating electrical machine when there is an abnormality in the electrical connection path Step prohibiting and Provided.
この発明のさらに他の局面に従うと、 内燃機関と、 内燃機関に対して機械的動 力が伝達可能に接続された第 1の回転電機と、 第 1の回転電機の電流制御を行な う電流制御回路と、 第 1の回転電機に電力を供給する電源とを備える車両の動力 出力装置の制御方法であって、 内燃機関が運転状態から停止状態に遷移すること を検出するステップと、 電流制御回路または第 1の回転電機の異常を検知するス テツプと、 検知するステップが異常を検知していないときには第 1の回転電機に 負のトルクを発生させて内燃機関の停止を促進させるステップと、 検知するステ ップが異常を検知しているときには第 1の回転電機にトルクを発生させないよう に制御を行なうステップとを備える。  According to still another aspect of the present invention, an internal combustion engine, a first rotating electrical machine connected to the internal combustion engine so that mechanical power can be transmitted, and a current for current control of the first rotating electrical machine A control method for a vehicle power output device comprising a control circuit and a power source for supplying power to a first rotating electrical machine, the step of detecting that the internal combustion engine transitions from an operating state to a stopped state, and current control A step of detecting an abnormality in the circuit or the first rotating electrical machine, and a step of generating a negative torque in the first rotating electrical machine to promote a stop of the internal combustion engine when the detecting step detects no abnormality, And a step of performing control so that torque is not generated in the first rotating electrical machine when the step to detect detects an abnormality.
この発明によれば、 車両の静粛 14を向上させつつ、 部品の信頼性の向上や長寿 命化を両立させることができる。 図面の簡単な説明  According to the present invention, it is possible to improve both the reliability of the parts and the long life while improving the quietness 14 of the vehicle. Brief Description of Drawings
図 1は、 本発明の実施の形態に係る車両の構成を示す回路図である。  FIG. 1 is a circuit diagram showing a configuration of a vehicle according to an embodiment of the present invention.
図 2は、 図 1の制御装置 3 0が実行するプログラムの制御構造を示すフローチ ヤートである。  FIG. 2 is a flowchart showing a control structure of a program executed by the control device 30 of FIG.
図 3は、 図 1のサービスプラグ S Pの詳細を説明するための回路図である。 図 4は、 モータジェネレータ MG 1または MG 2のトルク制限について説明す るための図である。 FIG. 3 is a circuit diagram for explaining the details of the service plug SP of FIG. Figure 4 illustrates the torque limit of motor generator MG 1 or MG 2. FIG.
図 5は、 モータジエネレータを使用した振動抑制制御を説明するための動力分 割機構の共線図である。  FIG. 5 is a collinear diagram of a power dividing mechanism for explaining vibration suppression control using a motor generator.
図 6は、 エンジン回転数 (周波数) と振動のゲインの関係を示す図である。 図 7は、 振動抑制制御を実行したときと実行しなかったときのェンジン回転数 の変化を示した動作波形図である。 発明を実施するための最良の形態  FIG. 6 is a graph showing the relationship between engine speed (frequency) and vibration gain. FIG. 7 is an operation waveform diagram showing changes in the engine speed when the vibration suppression control is executed and when it is not executed. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照しながら詳細に説明する。 なお、 図中同一または相当部分には同一符号を付してその説明は繰返さない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
図 1は、 本発明の実施の形態に係る車両の構成を示す回路図である。  FIG. 1 is a circuit diagram showing a configuration of a vehicle according to an embodiment of the present invention.
図 1を参照して、 車両 1 0 0は、 ノくッテリュニット 4 0と、 エンジン 4と、 モ ータジェネレータ MG 1, MG 2と、 電流制御回路 1 0 2と、 動力分割機構 3と、 車輪 2と、 制御装置 3 0とを含む。  Referring to FIG. 1, vehicle 1 0 0 includes a knotter unit 40, an engine 4, motor generators MG 1 and MG 2, a current control circuit 1 0 2, a power split mechanism 3 and wheels. 2 and a control device 30.
たとえば、 バッテリユニット 4 0は、 後部座席の下や車室の運転席と助手席の 間等に配置され、 電流制御回路 1 0 2、 モータジェネレータ MG 1、 MG 2、 動 力分割機構 3およびェンジン 4は、 車両前方のエンジンルーム内に配置される。 バッテリユニット 4 0と電流制御回路 1 0 2とは高圧ケーブ^ ·である電源ライン P L 1と接地ライン S Lとによって接続されている。 電流制御回路 1 0 2には第 1、 第 2の端子が設けられており、 これらにそれぞれ電源ライン P L 1と接地ラ イン S Lの高圧ケーブルが接続されている。  For example, the battery unit 40 is arranged under a rear seat or between a driver seat and a passenger seat in a passenger compartment, etc., and includes a current control circuit 10 0 2, motor generators MG 1 and MG 2, a power split mechanism 3 and an engine 4 is arranged in the engine room in front of the vehicle. The battery unit 40 and the current control circuit 10 2 are connected to each other by a power line P L 1 and a ground line S L that are high-voltage cables. The current control circuit 10 2 is provided with first and second terminals, to which a power line P L 1 and a ground line S L high-voltage cable are connected, respectively.
動力分割機構 3は、 エンジン 4とモータジェネレータ MG 1 , MG 2に結合さ れ、 これらの間で動力を分配する機構である。 たとえば動力分配機構としてはサ ンギヤ、 ブラネタリキヤリャ、 リングギヤの 3つの回転軸を有する遊星歯車機構 を用いることができる。 この 3つの回転軸がエンジン 4、 モータジェネレータ M G 1 , MG 2の各回転軸にそれぞれ接続される。 たとえば、 モータジェネレータ MG 1の回転シャフトを中空にし、 その中をエンジン 4の動力シャフトを貫通さ せることでモータジェネレータ MG 2、 動力分割機構 3、 モータジェネレータ M G 1、 エンジン 4を直線上に配置することができる。 なおモータジェネレータ MG 2の回転軸は、 車輪 2に図示しない減速ギヤや差 動ギヤによって結合されている。 また動力分割機構 3の内部に、 モータジエネレ ータ MG 2の回転軸に対する減速ギヤ機構や変速ギヤ機構をさらに組み込んでも よい。 Power split device 3 is a mechanism that is coupled to engine 4 and motor generators MG 1 and MG 2 and distributes power between them. For example, a planetary gear mechanism having three rotating shafts, a sun gear, a planetary carrier, and a ring gear, can be used as the power distribution mechanism. These three rotating shafts are connected to the rotating shafts of engine 4 and motor generators MG 1 and MG 2, respectively. For example, the motor generator MG 1, the rotary shaft of the motor generator MG 1 is hollowed, and the power shaft of the engine 4 is passed through it, so that the motor generator MG 2, the power split mechanism 3, the motor generator MG 1, and the engine 4 are arranged in a straight line. be able to. The rotating shaft of motor generator MG 2 is coupled to wheel 2 by a reduction gear and a differential gear (not shown). Further, a reduction gear mechanism and a transmission gear mechanism for the rotation shaft of motor generator MG 2 may be further incorporated in power split mechanism 3.
ノ ッテリユニット 40は、 高圧バッテリ B 1と、 高圧バッテリ B 1の負極に接 続されるシステムメインリレー SMRGと、 高圧バッテリ B 1の正極に接続され るシステムメインリレ SMRBと、 システム起動時の突入電流を制限する制限 抵抗 R 1およびシステムメインリレー SMRPとを含む。 システムメインリレー The battery unit 40 includes a high-voltage battery B1, a system main relay SMRG connected to the negative electrode of the high-voltage battery B1, a system main relay SMRB connected to the positive electrode of the high-voltage battery B1, and an inrush current at system startup. Including limiting resistor R1 and system main relay SMRP. System main relay
SMRGの端子間に、 制限抵抗 R 1およびシステムメインリ レー SMRPが直列 に接続される。 システムメインリ レー SMRG, SMRPは機械式のリレーが使 用され、 電流の少ないシステムメインリレー S MR Pはたとえば I GBT素子な どのパヮ一半導体素子が使用される。 The limiting resistor R1 and system main relay SMRP are connected in series between the terminals of SMRG. System main relays SMRG and SMRP use mechanical relays, and system main relays with low current SMRP use a single semiconductor element such as an IGBT element.
システムメインリ レー SMRG, SMRB, SMR Pは、 制御装置 30から与 えられる制御信号 S Eに応じて導通/非導通状態が制御される。  The system main relays SMRG, SMRB, and SMRP are controlled to be in a conductive / non-conductive state in accordance with a control signal SE given from the control device 30.
高圧バッテリ B 1としては、 二ッケル水素、 リチウムイオン等の二次電池や燃 料電池などを用いることができる。  As the high-voltage battery B 1, secondary batteries such as nickel hydrogen and lithium ion, fuel cells, and the like can be used.
バッテリユニット 40は、 さらに、 インターロックスィッチのレバーを起こす と高電圧を遮断するサービスプラグ S Pと、 高圧バッテリ B 1の端子間の電圧 V Bを測定する電圧センサ 10と、 高圧バッテリ B 1に流れる電流 I Bを検知する 電流センサ 11とを含む。 サービスプラグ SPには、 後に図 3に説明するように 高圧バッテリ B 1に過電流が流れると溶断するフューズ Fが内蔵されている。 車両 100は、 さらに、 電源ライン PL 1と接地ライン S L間に接続される平 滑コンデンサ C 1と、 平滑コンデンサ C 1の両端間の電圧 VLを検知して制御装 置 30に対して出力する電圧センサ 21とを含む。  The battery unit 40 further includes a service plug SP that cuts off the high voltage when the interlock switch lever is raised, a voltage sensor 10 that measures the voltage VB between the terminals of the high voltage battery B 1, and a current that flows through the high voltage battery B 1. Current sensor 11 for detecting IB. The service plug SP has a built-in fuse F that melts when an overcurrent flows through the high-voltage battery B 1 as will be described later with reference to FIG. The vehicle 100 further detects a smoothing capacitor C 1 connected between the power line PL 1 and the ground line SL, and a voltage VL between both ends of the smoothing capacitor C 1 and outputs a voltage VL to the control device 30. Sensor 21 is included.
電流制御回路 102は、 平滑コンデンサ C 1の端子間電圧を昇圧する昇圧コン バータ 12と、 昇圧コンバータ 1 2によって昇圧された電圧を平滑化する平滑コ ンデンサ C 2と、 平滑コンデンサ C 2の端子間電圧 VHを検知して制御装置 30 に出力する電圧センサ 13と、 電源ライン PL 2と接地ライン S Lとの間に接続 される放電用の抵抗 R 2と、 昇圧コンバータ 12から与えられる直流電圧を三相 交流に変換してモータジェネレータ MG.lに出力するインバータ 14とを含む。 昇圧コンバータ 12は、 一方端が電源ライン PL 1に接続されるリアク トル L 1と、 電源ライン PL 2と接地ライン SL間に直列に接続される I GBT素子 Q' 1, Q2と、 108丁素子(31, Q 2にそれぞれ並列に接続されるダイオード D 1, D2と、 リアタ トル L 1に流れる電流 I Lを測定する電流センサ 25と、 昇 圧コンバータ 12の過熱を検出する過熱センサ 32とを含む。 測定された電流 I Lの測定値や検出された過熱を示す信号 OH0は、 制御装置 30に送信される。 リアクトル L 1の他方端は I 08丁素子01のェミッタおよび I 08丁素子0 2のコレクタに接続される。 ダイォード D 1のカソードは I GBT素子 Q 1のコ レクタと接続され、 ダイオード D 1のアノードは I GBT素子 Q1のェミッタと 接続される。 ダイォード D 2の力ソードは I GBT素子 Q 2のコレクタと接続さ れ、 ダイォード D 2のアノードは I G B T素子 Q 2のェミッタと接続される。 インバータ i 4は、 昇圧コンバータ 1 2から昇圧された電圧を受けて、 たとえ ばエンジン 4を始動させるために、 モータジェネレータ MG 1を駆動する。 また、 インバータ 14は、 エンジン 4から伝達される機械的動力によってモータジエネ レータ MG 1で発電された電力を昇圧コンバータ 12に戻す。 このとき昇圧コン バータ 12は、 降圧回路として動作するように制御装置 30によって制御される。 インバータ 14は、 U相アーム 1 5と、 V相アーム 16と、 W相アーム 17と、 V相アームおよび W相アームからモータジェネレータ MG 1に流れる電流を検出 する電流センサ 24と、 インバータ 14の過熱を検知する過熱センサ 34とを含 む。 U相アーム 15, V相アーム 16, および W相アーム 1 7は、 電源ライン P L 2と接地ライン S Lとの間に並列に接続きれる。 The current control circuit 102 includes a boost converter 12 that boosts the voltage across the smoothing capacitor C 1, a smoothing capacitor C 2 that smoothes the voltage boosted by the boost converter 12, and a terminal between the smoothing capacitor C 2 terminals. The voltage sensor 13 that detects the voltage VH and outputs it to the control device 30, the discharge resistor R 2 connected between the power supply line PL 2 and the ground line SL, and the DC voltage applied from the boost converter 12 are three. phase Inverter 14 that converts to AC and outputs to motor generator MG.l. Boost converter 12 includes a reactor L 1 whose one end is connected to power supply line PL 1, and I GBT elements Q '1 and Q2 connected in series between power supply line PL 2 and ground line SL, 108 elements (Includes diodes D 1 and D 2 connected in parallel with 31 and Q 2, a current sensor 25 for measuring the current IL flowing through the rear tower L 1, and an overheat sensor 32 for detecting overheating of the boost converter 12, respectively. A signal OH0 indicating the measured value of the measured current IL and the detected overheating is transmitted to the control device 30. The other end of the reactor L 1 is the emitter of the I 08 element 01 and the I 08 element 0 2 Connected to the collector The cathode of diode D 1 is connected to the collector of I GBT element Q 1 and the anode of diode D 1 is connected to the emitter of I GBT element Q 1. The power sword of diode D 2 is I GBT Connected to the collector of element Q 2 and diode D 2 The anode is connected to the emitter of the IGBT element Q 2. The inverter i 4 receives the boosted voltage from the boost converter 12 and drives the motor generator MG 1 to start the engine 4, for example. The inverter 14 returns the electric power generated by the motor generator MG 1 by the mechanical power transmitted from the engine 4 to the boost converter 12. At this time, the boost converter 12 is operated by the control device 30 so as to operate as a step-down circuit. The inverter 14 includes a U-phase arm 15, a V-phase arm 16, a W-phase arm 17, a current sensor 24 that detects a current flowing from the V-phase arm and the W-phase arm to the motor generator MG 1, It includes an overheat sensor 34 that detects overheating of the inverter 14. U-phase arm 15, V-phase arm 16, and W-phase arm 1 7 are connected to power line PL 2. It can be connected in parallel with the ground line SL.
U相アーム 15は、 電源ライン PL 2と接地ライン SLとの間に直列接続され た I GBT素子 Q3, Q4と、 1。:6丁素子03, Q 4とそれぞれ並列に接続さ れるダイオード D 3, D 4とを含む。 ダイオード D3の力ソードは I GBT素子 Q3のコレクタと接続され、 ダイオード D 3のアノードは I GBT素子 Q3のェ ミッタと接続される。 ダイオード D 4の力ソードは I GBT素子 Q4のコレクタ と接続され、 ダイオード D4のアノードは I GBT素子 Q4のエミッタと接続さ れる。 V相ア^ "ム 16は、 電源ライン PL 2と接地ライン SLとの間に直列接続され た I GBT素子 Q5., Q6と、 I GBT素子 Q5, Q 6とそれぞれ並列に接続さ •れるダイォード D 5: , - D 6とを含む。 ダイォード D 5の力ソードは I G B T素子 Q 5のコレクタと接続され、 ダイォード D 5のアノードは I G 'B T素子 Q 5のェ ミッタと接続される。 ダイオード D 6の力ソードは I GBT素子 Q 6のコレクタ と接続され、 ダイオード D 6のアノードは I GBT素子 Q6のエミッタと接続さ れる。 U-phase arm 15 consists of I GBT elements Q3 and Q4 connected in series between power line PL 2 and ground line SL. : Includes diodes D3 and D4 connected in parallel with 6-elements 03 and Q4, respectively. The power sword of diode D3 is connected to the collector of I GBT element Q3, and the anode of diode D3 is connected to the emitter of I GBT element Q3. The power sword of diode D4 is connected to the collector of I GBT element Q4, and the anode of diode D4 is connected to the emitter of I GBT element Q4. V phase arm 16 is a diode connected in parallel with I GBT elements Q5., Q6 and I GBT elements Q5, Q 6 connected in series between power line PL 2 and ground line SL. Including D 5:,-D 6. The power sword of diode D 5 is connected to the collector of IGBT element Q 5 and the anode of diode D 5 is connected to the emitter of IG 'BT element Q 5. Diode D The force sword of 6 is connected to the collector of the I GBT element Q 6, and the anode of the diode D 6 is connected to the emitter of the I GBT element Q 6.
W相アーム 17は、 電源ライン PL 2と接地ライン S Lとの間に直列接続きれ た I GBT素子 Q 7, Q 8と、 108丁素子07, Q 8とそれぞれ並列に接続さ れるダイオード D 7, D 8とを含む。 ダイオード D7の力ソードは I GBT素子 Q 7のコレクタと接続され、 ダイオード D 7のアノードは I 08丁素子(37のェ ミッタと接続される。 ダイォード D 8のカソードは I GB T素子 Q 8のコレクタ と接続され、 ダイオード D 8のアノードは I GBT素子 Q 8のェミッタと接続さ れる。  W-phase arm 17 consists of I GBT elements Q 7 and Q 8 connected in series between power line PL 2 and ground line SL, and diodes D 7 and Q 8 connected in parallel with 108 elements 07 and Q 8 respectively. Including D 8. The power sword of the diode D7 is connected to the collector of the I GBT element Q 7, and the anode of the diode D 7 is connected to the I 08 element (37 emitter. The cathode of the diode D 8 is the I GB T element Q 8 The anode of diode D8 is connected to the emitter of IGBT element Q8.
モータジェネレータ MG 1は、 三相の永久磁石同期モータであり、 U, V, W 相の 3つのコイルは各々一方端が中点にともに接続される。 そして、 U相コイル の他方端が I GBT素子 Q3, Q 4の接続ノードに接続される。 また V相コイル の他方端が I GBT素子 Q5, Q 6の接続ノードに接続される。 また W相コイル の他方端が I G B T素子 Q 7, Q 8の接続ノ一ドに接続される。  Motor generator MG 1 is a three-phase permanent magnet synchronous motor, and one end of each of the three coils of U, V, and W phases is connected to the midpoint. The other end of the U-phase coil is connected to the connection node of the IGBT elements Q3 and Q4. The other end of the V-phase coil is connected to the connection node of I GBT elements Q5 and Q6. The other end of the W-phase coil is connected to the connection node of the IGBT elements Q7 and Q8.
電流センサ 24は、 モータジェネレータ MG 1に流れる電流をモータ電流値 M The current sensor 24 indicates the current flowing through the motor generator MG 1 as the motor current value M.
CRT 1として検出し、 モータ電流値 MCRT 1を制御装置 30へ出力する。 車両 100は、 さらに、 昇圧コンバータ 1 2に対してインバータ 14と並列的 に接続されるインバータ 22を含む。 Detect as CRT 1 and output motor current value MCRT 1 to controller 30. Vehicle 100 further includes an inverter 22 connected in parallel with inverter 14 to boost converter 12.
インバータ 22は車輪 2を駆動するモータジェネレータ MG 2に対して昇圧コ ンバータ 1 2の出力する直流電圧を三相交流に変換して出力する。 またインバー タ 22は、 回生制動に伴い、 モータジェネレータ MG 2において発電された電力 を昇圧コンバータ 12に戻す。 このとき昇圧コンバータ 12は降圧回路として動 作するように制御装置 30によって制御される。 インバータ 22の内部の構成は. 図示しないがインバータ 14と同様であり、 詳細な説明は繰返さない。 インバー タ 22には、 インバータ 14と同様の過熱センサと電流センサとが含まれており、 インバータ 22からは過熱を示す信号 OH 2と、 電流値を示す信号 MCRT2が 制御装置 30へ出力されている。 - 車両 ΓΟ Οは、 さらに、 ヘッドランプ等の補機類 52と、 1 2 Vの補機バヅテ リ B 2と、 電源ライン P L 1と捕機バッテリ B 2.および補機類 52どの間に接続 される DCノ DCコンバータ 50とを含む。 電源ライン PL 1と接地ライン SL との間には、 コンデンサ C l、 電動エアコン 54、 DCZDCコンバータ 50が 並列に接続されている。 Inverter 22 converts the DC voltage output from step-up converter 12 to motor generator MG 2 that drives wheel 2 into a three-phase alternating current and outputs it. Inverter 22 returns the electric power generated in motor generator MG 2 to boost converter 12 in accordance with the regenerative braking. At this time, step-up converter 12 is controlled by control device 30 so as to operate as a step-down circuit. Although the internal configuration of inverter 22 is not shown, it is the same as inverter 14 and will not be described in detail. Invar The inverter 22 includes an overheat sensor and a current sensor similar to the inverter 14, and the inverter 22 outputs a signal OH 2 indicating overheating and a signal MCRT 2 indicating a current value to the control device 30. -Vehicle ΓΟ 接 続 is also connected between auxiliary equipment 52 such as headlamps, 12 V auxiliary battery B 2, power line PL 1 and catcher battery B 2. and auxiliary equipment 52 Including a DC converter 50. A capacitor C1, an electric air conditioner 54, and a DCZDC converter 50 are connected in parallel between the power line PL 1 and the ground line SL.
DC/DCコンバータ 50は、 制御装置 30から与えられる降圧指示 PWD 2 に応じて、 電源ライン P L 2の電圧を降圧して捕機バッテリ B 2への充電や捕機 類 52への電力供給を行なうことが可能である。 また、 DCZDCコンバータ 5 0は、 制御装置 30から与えられる昇圧指示 PWU2に応じて、 補機バッテリ B 2の電圧を昇圧して電源ライン P L 2に対して供給することも可能である。  The DC / DC converter 50 reduces the voltage of the power supply line PL 2 in accordance with the step-down instruction PWD 2 given from the control device 30 to charge the catcher battery B 2 and supply power to the catcher 52. It is possible. DCZDC converter 50 can also boost the voltage of auxiliary battery B 2 and supply it to power supply line P L 2 in accordance with boost instruction PWU 2 given from control device 30.
制御装置 30は、 トルク指令値 TR 1, TR2、 モータ回転数 MRN1, MR N2、 電圧 VB, VL, VH、 電流 I Bの各値、 モータ電流値 MCRT l, MC RT 2および起動信号 I GONを受ける。 車両 100は、 エンジン 4の回転数 N eを検出する回転数センサ 5をさらに含み、 制御装置 30に回転数 Neが送信さ れる。 ·  Controller 30 receives torque command values TR1, TR2, motor speed MRN1, MR N2, voltages VB, VL, VH, current IB values, motor current values MCRT l, MC RT 2, and start signal I GON. . The vehicle 100 further includes a rotational speed sensor 5 that detects the rotational speed Ne of the engine 4, and the rotational speed Ne is transmitted to the control device 30. ·
そして制御装置 30は、 昇圧コンバータ 1 2に対して昇圧指示を行なう制御信 号 PWU 1, 降圧指示を行なう制御信号 PWD 1および動作禁止を指示する信号 C SDNを出力する。  Control device 30 outputs control signal PWU 1 for instructing step-up to boost converter 12, control signal PWD 1 for instructing step-down and signal C SDN instructing prohibition of operation.
また制御装置 30は、 D C ZD Cコンバータ 50に対して昇圧指示を行なう制 御信号 PWU 2, 降圧指示を行なう制御信号 PWD 2を出力する。  Control device 30 also outputs control signal PWU 2 for instructing boosting to D C ZD C converter 50 and control signal PWD 2 for instructing step-down.
さらに、 制御装置 30は、 インバータ 14に対して、 モータジェネレータ MG 1を駆動するための交流電圧に昇圧コンバータ 1 2の出力である直流電圧を変換 する駆動指示 PWMI 1と、 モータジェネレータ MG 1で発電された交流電圧を 直流電圧に変換して昇圧コンバータ 12側に戻す回生指示 PWMC 1とを出力す る。  Further, control device 30 generates a drive instruction PWMI 1 for converting the DC voltage that is the output of step-up converter 12 2 into an AC voltage for driving motor generator MG 1, and inverter 14 generates power using motor generator MG 1. A regenerative instruction PWMC 1 that converts the AC voltage thus converted into a DC voltage and returns it to the boost converter 12 side is output.
同様に制御装置 30は、 インパータ 22に対して、 モータジェネレータ MG2 を駆動するための交流電圧に昇圧コンバータ 12の出力である直流電圧を変換す る駆動指示 PWMI 2と、 モータジェネレータ MG 2で発電された交流電圧を直 流電圧に変換して昇圧コンバータ 12側に戻す回生指示 PWMC 2とを出力する。 また、 .制御装置 30は、 昇圧コンバータ 1 2からの過熱 示す信号 OH0、 電 流値を示す信号 I Lを受ける。 さらに制 ί卸装置 30は、 'ィンバータ 14からの過 熱を示す信号 ΟΗ1、 電流値を示す信号 MCRT 1を受ける。 さらに制御装置 3 0は、 インバータ 22からの過熱を示す信号 ΟΗ 2、 電流値を示す信号 MCRT 2を受ける。 制御装置 30は、 これらの信号から、 昇圧コンバータ 12、 インバ ータ 14, 22が過負荷運転を行なっていないか監視して、 その結果を RAM 3 1にフェイルフラグとして保持している。 Similarly, the control device 30 is connected to the motor 22 with the motor generator MG2. Drive instruction PWMI 2 that converts the DC voltage that is the output of the boost converter 12 to an AC voltage for driving the converter, and the AC voltage generated by the motor generator MG 2 is converted to a DC voltage to the boost converter 12 side. The regenerative instruction PWMC 2 to be returned is output. Further, control device 30 receives signal OH0 indicating overheating and signal IL indicating the current value from boost converter 12. Further, the control device 30 receives a signal 示 す 1 indicating overheating from the inverter 14 and a signal MCRT1 indicating the current value. Further, control device 30 receives signal ΟΗ 2 indicating overheating from inverter 22 and signal MCRT 2 indicating the current value. From these signals, the control device 30 monitors whether the boost converter 12 and the inverters 14 and 22 are performing overload operation, and holds the result in the RAM 31 as a fail flag.
図 2は、 図 1の制御装置 30が実行するプログラムの制御構造を示すフローチ ヤートである。 このフローチャートの処理は、 モータ制御のメインルーチンから 一定時間ごとまたは所定の条件が成立するごとに呼出されて実行される。  FIG. 2 is a flow chart showing a control structure of a program executed by the control device 30 of FIG. The processing of this flowchart is called and executed from the motor control main routine at regular time intervals or whenever a predetermined condition is satisfied.
図 1、 図 2を参照して、 処理が開始されると、 最初に騒音抑制処理が必要であ るか否かが判断される。 すなわち、 まずステップ S 1において、 運転者がイダ二 ッシヨンスィッチを OFF状態にしているか否かが判断される。 イダ二ッション スィツチを OFFにする操作は、 運転者から与えられる'車両の動力 の停止指示 に該当する。 続いてステップ S 2においてエンジン回転数 Neが所定のしきい値 である回転数 Ne XLよりも大きいか否かが判断される。  Referring to Fig. 1 and Fig. 2, when processing is started, it is first determined whether noise suppression processing is necessary. That is, first, in step S1, it is determined whether or not the driver has turned the idle switch OFF. The operation to turn off the idle switch corresponds to the 'stop vehicle power instruction' given by the driver. Subsequently, in step S2, it is determined whether or not the engine speed Ne is larger than a predetermined speed Ne XL.
ィグニッシヨンスィッチが OFF状態であり、 かつ、 エンジン回転数が所定の しきい値である回転数 N e XLよりも大きい場合には、 処理はステップ S 3に進 む。 一方、 イダニッシヨンスィッチが OF F状態でないか、 または、 エンジン回 転数が回転数 N e X L以下である場合には、 処理はステップ S 10に進み制御は メインルーチンに移される。  If the ignition switch is in the OFF state and the engine speed is greater than a predetermined speed Ne XL, the process proceeds to step S3. On the other hand, if the innovation switch is not in the OF F state or the engine speed is equal to or less than the speed NeXL, the process proceeds to step S10 and the control is transferred to the main routine.
ステップ S 3では、 昇圧コンバータ 12の故障が有るか否かが判断される。 昇 圧コンバータ 12の故障の有無は、 制御装置 30中の RAM 31に該当するフエ ィルフラグが立っているかどうかを見ることで判断できる。 なお、 制御装置 30 は、 昇圧コンバータ 12について、 過熱センサ 32の出力する信号 OH0、 電流 センサ 25の出力する電流値を示す信号 I L、 電圧 VH、 VLをモニタして、 昇 圧コンバータ l 2が過負荷となっていないか、 異常が生じていないかを随時判断 して R AM 3 1に該当するフェイルフラグを更新している。 In step S 3, it is determined whether or not there is a failure in boost converter 12. Whether or not the boost converter 12 has failed can be determined by checking whether or not the file flag corresponding to the RAM 31 in the control device 30 is set. The controller 30 monitors the signal OH0 output from the overheat sensor 32 and the signal IL indicating the current value output from the current sensor 25 and the voltages VH and VL for the boost converter 12. The fail flag corresponding to RAM 3 1 is updated by judging at any time whether the pressure converter l 2 is overloaded or abnormal.
ステップ S 3において、 昇圧コンバータ 1 2に故障があると判断された場合に は、 処理はステップ S 8に進み、 昇圧コンバータ 1 2に故障が無いと判断された 場合には処理はステップ S 4に進む。  If it is determined in step S3 that the boost converter 12 has a failure, the process proceeds to step S8. If it is determined that the boost converter 12 has no failure, the process proceeds to step S4. move on.
ステップ S 4では、 システムメインリ レー S MR B , S MR Gにオープン故障 が発生したか否かが判断される。 システムメインリレーの故障の有無も、 制御装 置 3 0中の R AM 3 1に該当するフェイルフラグが立っているかどうかを見るこ とで判断できる。  In step S4, it is determined whether or not an open failure has occurred in the system main relays SMRB and SMRG. Whether or not the system main relay has failed can also be determined by checking whether the fail flag corresponding to RAM 3 1 in the control unit 30 is set.
なお、 制御装置 3 0は、 たとえば、 システム起動完了後 (R e a d y O N後) 電圧 VHが所定値以下かつ電圧 V Lが所定値以下であることを検知すると、 シス テムメインリレーオープン故障のフェイルフラグを立てる。 つまり、 運転者が車 両の起動を指示してシステムが一旦起動完了した後に、 電圧が異常に低下した場 合に、 システムメインリ レーの故障と判断される。  For example, when the control device 30 detects that the voltage VH is equal to or lower than the predetermined value and the voltage VL is equal to or lower than the predetermined value after the system start-up is completed (after Ready ON), the control device 30 sets a fail flag indicating that the system main relay is open. Stand up. In other words, if the voltage drops abnormally after the driver gives an instruction to start the vehicle and the system once completes, it is determined that the system main relay has failed.
ステップ S 4において、 システムメインリ レーにオープン故障があると判断さ れた場合には、 処理はステップ S 8に進み、 システムメインリレーに故障が無い と判断された場合には処理はステップ S 5に進む。  If it is determined in step S4 that there is an open fault in the system main relay, the process proceeds to step S8. If it is determined that there is no fault in the system main relay, the process proceeds to step S5. Proceed to
ステップ S 5では、 インター口ックオープンにより電源遮断が発生しているか 否かが判断される。 インターロックは、 修理工場において作業者の作業中に電源 を確実に遮断するために設けられている。  In step S5, it is determined whether or not the power is shut off due to the opening of the interface. The interlock is provided to ensure that the power supply is cut off during the work of the operator at the repair shop.
図 3'は、 図 1のサービスプラグ S Pの詳細を説明するための回路図である。 図 3を参照して、 サービスプラグ S Pは、 高圧バッテリ B 1のバッテリセルが 直列に複数接続された中間部分に挿入されている、 直列接続されたスィッチ 1 0 4およびフューズ Fと、 1 2 Vの補機バッテリから一方端に電圧が与えられてい るプルアップ用の抵抗 R 3と、 抵抗 R 3の他方端とグランド G NDとの間に接続 されるスィッチ 1 0 6と、 スィッチ 1 0 4, 1 0 6を同時に制御するレバー 1 0 8とを含む。'  FIG. 3 ′ is a circuit diagram for explaining the details of the service plug SP of FIG. Referring to FIG. 3, the service plug SP is connected to a series-connected switch 1 0 4 and a fuse F, and 1 2 V inserted in an intermediate portion where a plurality of battery cells of the high-voltage battery B 1 are connected in series. Pull-up resistor R 3 to which voltage is applied from one auxiliary battery to the other end, switch 1 0 6 connected between the other end of resistor R 3 and ground GND, switch 1 0 4 , 1 0 6 and lever 1 0 8 that simultaneously control. '
レバー 1 0 8が横になつている場合には、 スィッチ 1 0 4, 1 0 6はともに閉 じた状態となる。 このとき抵抗 R 3から出力される信号 I L Kはロウ (L ) レべ ルを出力する。 レバー 1 0 8が縦になっている場合には、 スィッチ 1 0 4, 1 0 6はともに開いた状態となる。 このとき抵抗 R 3から出力される信号 I L Kはハ ィ (H) レベルを出力する。 信号 I L Kを図 1の制御装置 3 0が検知することで、 制御装置 3 0はインターロックオープンにより電源遮断が発生しているか否かを 判断することができる。 When lever 1 0 8 is on its side, switches 1 0 4 and 1 0 6 are both closed. At this time, the signal ILK output from the resistor R3 is low (L) level. Output. When lever 1 0 8 is vertical, both switches 1 0 4 and 1 0 6 are open. At this time, the signal ILK output from the resistor R3 outputs a high (H) level. When the control device 30 in FIG. 1 detects the signal ILK, the control device 30 can determine whether or not the power is cut off due to the interlock open.
再び図 1、 図 2を参照して、 ステップ S 5において、 インターロックオープン により電源遮断が発生していると判断された場合には、 処理はステップ S 8に進 み、 インター口ックオープンによる電、源遮断が発生していないと判断された場合 には処理はステップ S 6に進む。  Referring to FIGS. 1 and 2 again, in step S5, if it is determined that the power is cut off due to the interlock open, the process proceeds to step S8. If it is determined that no source cutoff has occurred, the process proceeds to step S6.
ステップ S 6では、 高圧系に断線故障が発生したか否かが判断される。 高圧系 の断線故障は、 電流制御回路 1 0 2から電源ライン P L 1、 高圧バッテリ B 1、 サービスプラグ、 接地ライン S Lを経由して電流制御回路 1 0 2に至る電気接続 経路の断線故障である。 この断線故障には、 サービスプラグ S P中に含まれるフ ユーズ F (図 3で示される) の溶断も含まれる。  In step S6, it is determined whether or not a disconnection fault has occurred in the high-pressure system. The disconnection failure in the high voltage system is a disconnection failure in the electrical connection path from the current control circuit 1 0 2 to the current control circuit 1 0 2 via the power line PL 1, high voltage battery B 1, service plug, and ground line SL. . This disconnection failure includes fusing of fuse F (shown in Fig. 3) included in the service plug SP.
この高圧系の断線故障の有無も、 制御装置 3 0中の R AM 3 1に該当するフエ ィルフラグが立っているかどうかを見ることで判断できる。 なお、 制御装置 3 0 は、 たとえば、 システム起動指示後 (起動スィッチを操作した直後) 所定時間経 過しても電圧 V Hがプリチャージ完了判定電圧以下で、 かつ、 バッテリ電流 I B が所定値以下であることを検知すると、 高圧系の断線故障のフェイルフラグを立 てる。 つまり、 運転者が車両の起動を指示した後に、 いつまでたってもプリチヤ ージが完了せず電圧が所定値に到達しない場合に高圧系の断線故障と判断される。 ステップ S 6において、 高圧系の断線故障と判断された場合には、 処理はステ ップ S 8に進み、 高圧系の断線故障が無いと判断された場合には処理はステップ S 7に進む。  Whether or not there is a disconnection fault in the high-voltage system can also be determined by checking whether or not the file flag corresponding to RAM 31 in the control device 30 is set. For example, the control device 30 can detect the voltage VH below the precharge completion determination voltage and the battery current IB below the predetermined value even after a predetermined time elapses after the system start instruction (immediately after operating the start switch). When it is detected, a fail flag for a disconnection fault in the high voltage system is set. In other words, after the driver gives an instruction to start the vehicle, precharge is not completed and the voltage does not reach a predetermined value. In step S6, if it is determined that there is a disconnection fault in the high voltage system, the process proceeds to step S8. If it is determined that there is no disconnection fault in the high voltage system, the process proceeds to step S7.
ステップ S 7では、 モータジェネレータ MG 1または MG 2のいずれかのトル クが制限上限値未満に制限されているか否かが判断される。  In step S 7, it is determined whether or not the torque of either motor generator MG 1 or MG 2 is limited to less than the limit upper limit value.
図 4は、 モータジェネレータ M G 1または MG 2のトルク制限について説明す るための図である。  FIG. 4 is a diagram for explaining the torque limit of motor generator M G 1 or MG 2.
図 1、 図 4を参照して、 モータジェネレータ MG 1の電流制御を行なうインバ ータ 1 4は、 過熱センサ 3 4で過熱が監視され電流センサ 2 4で過電流が監視さ れ、 また電圧センサ 1 3によって過電圧が監視されている。 過熱、 過電流、 過電 圧のいずれかが検知されると、 制御装置 3 0は、 モータジェネレータ MG 1の上 限トルクの大きさを 1 0 0 %から 8 0 %に制限する。 そしてその結果、 しばらく 時間が経過した後に検出された過熱、 過電流、 過電圧のいずれかが解消すればよ いが、 解消しなければさら,に上限トルクの大きさを 8 0 %から 6 0 %に制限する。 さらに、 解消しなければ上限トルクの大きさを 6 0 %から 4 0 %に制限する。 このように、 制御装置 3 0は、 過熱、 過電流、 過電圧のいずれかが検出される と 1回毎に 2 0 %ずつ上限トルクの大きさを減少させる。 逆に、 制御装置 3 0は、 過熱、 過電流、 過電圧のいずれも検出されなくなったら、 1 0 0 %に戻るまで、 1回毎に 2 0 %ずつ上限トルクの大きさを増加させる。 なお、 制御装置 3 0は、 上限トルクの大きさが 3 0 %未満となったときにはインバータ中のスイッチング 素子である I G B T素子のゲートを非活性化させて電流を遮断しインバータを保 護する。 Referring to Fig. 1 and Fig. 4, the inverter that controls the current of motor generator MG 1 In the data 14, overheat is monitored by the overheat sensor 3 4, overcurrent is monitored by the current sensor 24, and overvoltage is monitored by the voltage sensor 13. When any one of overheat, overcurrent, and overvoltage is detected, control device 30 limits the magnitude of the upper limit torque of motor generator MG 1 from 100% to 80%. As a result, any one of overheating, overcurrent, and overvoltage detected after a while has passed, but if not, the upper limit torque will be increased from 80% to 60%. Restrict. In addition, the upper limit torque is limited from 60% to 40% unless the problem is solved. In this way, the control device 30 decreases the magnitude of the upper limit torque by 20% each time when any one of overheating, overcurrent, and overvoltage is detected. Conversely, when any of the overheat, overcurrent, and overvoltage is no longer detected, the control device 30 increases the upper limit torque by 20% each time until it returns to 100%. When the upper limit torque is less than 30%, the control device 30 deactivates the gate of the IGBT element, which is a switching element in the inverter, to cut off the current and protect the inverter.
同様な制御がモータジエネレータ MG 2の電流制御を行なうィンバーク 2 2に 対しても行なわれている。 そして、 制御装置 3 0が内蔵する R AM 3 1には、 ィ ンバータ 1 4に対する上限トルクの大きさとインバータ 2 2に対する上限トルク の大きさとが、 随時更新されて記憶されている。  Similar control is performed for the inverter 22 that controls the current of the motor generator MG2. In the RAM 31 built in the control device 30, the magnitude of the upper limit torque for the inverter 14 and the magnitude of the upper limit torque for the inverter 22 are updated and stored as needed.
再び図 1、 図 2を参照して、 ステップ S 7において、 モータジェネレータ MG 1の上限トルクの大きさが所定の制限値未満であるか、 またはモータジエネレー タ MG 2の上限トルクの大きさが所定の制限値未満である場合には、 後に図 5〜 図 7で説明するモータジエネレータを使用した振動抑制ができないのでステップ S 8に処理が進む。  Referring to FIGS. 1 and 2 again, in step S 7, the magnitude of the upper limit torque of motor generator MG 1 is less than a predetermined limit value, or the magnitude of the upper limit torque of motor generator MG 2 is predetermined. If it is less than the limit value, vibration control using a motor generator described later with reference to FIGS. 5 to 7 cannot be performed, and the process proceeds to step S8.
なお、 この所定の制限値は、 インバータの電流を遮断する場合と同じ 3 0 %と してもよいし、 1 0 0 %〜 3 0 %の間の値で、 振動抑制制御に必要なパワーを考 慮した適切な値に定めても良い。  Note that this predetermined limit value may be 30%, which is the same as when the inverter current is cut off, or a value between 100% and 30%, and the power required for vibration suppression control. It may be set to an appropriate value in consideration.
—方、 ステップ S 7において、 モータジェネレータ MG 1の上限トルクの大き さが所定の制限値未満でなく、 かつモータジェネレータ MG 2の上限トルクの大 きさが所定の制限値未満でない場合には、 処理はステップ S 9に進む。 ステップ S 8ではモータジェネレータを使用した振動抑制制御が禁止され、 一 方、 ステップ S 9ではモータジェネレータを使用した振動抑制制御が実行される。 ステップ S 8、 ステップ S 9の処理のいずれかが終了すると、 ステップ S 1 0 に処理が進み制御はメィンルーチンに移される。 On the other hand, in step S7, if the magnitude of the upper limit torque of motor generator MG 1 is not less than the predetermined limit value and the magnitude of the upper limit torque of motor generator MG 2 is not less than the predetermined limit value, The process proceeds to step S9. In step S8, vibration suppression control using a motor generator is prohibited. On the other hand, in step S9, vibration suppression control using a motor generator is executed. When one of the processes of step S8 and step S9 is completed, the process proceeds to step S1 0 and control is transferred to the main routine.
図 5は、 モータジェ.ネレータを使用した振動抑制制御を説明するための動力分 割機構の共線図である。  FIG. 5 is a collinear diagram of a power dividing mechanism for explaining vibration suppression control using a motor generator.
. 図 1、 図 5を参照して、 動力分割機構としてプラネタリギヤを用いた場合につ いて説明する。 ハイブリッド車両 1 0 0は、 動力分割機構 3としてプラネタリギ ャを使用することができる。 この場合、 モータジェネレータ MG 1の回転数 N g、 エンジン回転数 N eおよびモータジェネレータ MG 2の回転数 Nmは図 5に示す ように直線上に並ぶように連動して動く。  Referring to Fig. 1 and Fig. 5, the case where a planetary gear is used as the power split mechanism will be described. The hybrid vehicle 100 can use a planetary gear as the power split mechanism 3. In this case, the rotational speed N g of the motor generator MG 1, the rotational speed N e of the engine, and the rotational speed Nm of the motor generator MG 2 move in conjunction so as to be aligned on a straight line as shown in FIG.
エンジン回転数 N eはプラネタリキヤリャの回転数である。 モータジエネレー タ MG 1の回転数 N gは、 サンギヤの回転数である。 モータジェネレータ MG 2 の回転数 Nmは、 リングギヤの回転数である。  The engine speed N e is the planetary carrier speed. Motor generator MG 1 speed N g is the sun gear speed. The rotation speed Nm of motor generator MG 2 is the rotation speed of the ring gear.
すなわち、 ブラネタリギヤで結合されているので、 モータジェネレータ MG 1 の回転数 N g, ェンジン回転数 N eおよびモ—タジェネレータ MG 2の回転数 N mの間には次の式 ( 1 ) で示す関係が成立する。  That is, since it is connected by a planetary gear, the relationship expressed by the following equation (1) is between the motor generator MG 1 rotational speed N g, engine rotational speed N e, and motor generator MG 2 rotational speed N m. Is established.
N e = Nm X 1 / ( 1 + p ) + N g X p / ( 1 + p ) ··· ( 1 ) N e = Nm X 1 / (1 + p) + N g X p / (1 + p) (1)
ィダニッションスィツチを運転者がオフに設定するときは、 通常は停車中であ り、 車輪と連動して回転するモータジェネレータ MG 2の回転数 Nmはゼロであ る。 そして、 運転者からの停止指示に応じてエンジンへの燃料供給が遮断されェ ンジン回転数が N e 1からゼロに向かって減少する。 このときモータジエネレー タ MG 1の回転数も N g 1からゼロに向かって減少する。  When the driver sets the regeneration switch to OFF, it is normally stopped and the motor generator MG 2 that rotates in conjunction with the wheels has a rotational speed Nm of zero. Then, according to the stop instruction from the driver, the fuel supply to the engine is cut off, and the engine speed decreases from N e 1 toward zero. At this time, the rotational speed of the motor generator MG 1 also decreases from N g 1 toward zero.
図 6は、 エンジン回転数 (周波数) と振動のゲインの関係を示す図である。 図 6を参照して、 エンジン回転数が減少していく過程において、 エンジン、 動 力分割機構を含めた全体の振動を考えると、 周波数 ί 1、 f 2のように振動のゲ インが極大となる共振周波数が存在する。 この共振周波数は、 エンジンや動力分 割機構が異なれば車種ごとに異なる力 エンジンの回転数をゆつくり変化させて 振動を測定することで容易に求めることができる。 たとえば、 アイドリング時にエンジン回転数が N e 1であったとすると、 運転 者からの停止指示に応じて燃料供給が停止される。 そのとき、 エンジン回転数が 減少していく過程で共振周波数 f 0に対応する回転数 N e Xにおいて振動が増大 し、 エンジンや動力分割機構から 「ガラ音」 と呼ばれる騒音が発生する。 FIG. 6 is a graph showing the relationship between engine speed (frequency) and vibration gain. Referring to Fig. 6, in the process of decreasing the engine speed, considering the overall vibration including the engine and the power split mechanism, the vibration gain is maximum as shown by frequencies ί 1 and f 2. There exists a resonance frequency. This resonance frequency can be easily obtained by measuring the vibration by varying the rotational speed of the engine, which varies depending on the vehicle model if the engine and power split mechanism are different. For example, if the engine speed is N e 1 during idling, the fuel supply is stopped in response to a stop instruction from the driver. At that time, in the process of decreasing the engine speed, vibration increases at the rotational speed N e X corresponding to the resonance frequency f 0, and noise called “gull noise” is generated from the engine and the power split mechanism.
この騒音を低減させる'には、 共振周波数 f 'Oに対応する回転数 N e X付近を早 'く通過させることが有効である。 ハイブリッド車両では、 エンジンに燃料供給を 行なっていないときもモータジェネレータは独立して制御可能である。 そこで、 図 5においてモータジェネレータ MG 1で発電を行ない負のトルクを発生させる ことでエンジン回転数の共振する回転域 N e X L〜N e X Hを早く通過させる。 また、 その反力で車両が動き出さないようにモータジェネレータ MG 2には車両 静止状態を維持させるためのトルクを発生させる。  In order to reduce this noise, it is effective to quickly pass the vicinity of the rotational speed NeX corresponding to the resonance frequency f'O. In a hybrid vehicle, the motor generator can be controlled independently even when fuel is not being supplied to the engine. Therefore, in FIG. 5, the motor generator MG1 generates electric power and generates a negative torque, so that the rotational range N e X L to N e X H in which the engine speed resonates is passed quickly. In addition, the motor generator MG 2 generates torque for maintaining the vehicle stationary so that the reaction force does not cause the vehicle to move.
そうすることによって、 ェンジン停止時の不快な振動と騒音を低減させるごと ができる。 また、 エンジンの慣性による回転エネルギーが電気エネルギーとして 回収されるので、 燃費向上の面からも好ましい。  By doing so, it is possible to reduce unpleasant vibration and noise when stopping the engine. Also, rotational energy due to engine inertia is recovered as electric energy, which is preferable from the viewpoint of improving fuel efficiency.
図 7は、 振動抑制制御を実行したときと実行しなかったときのエンジン回転数 の変化を示した動作波形図である。  FIG. 7 is an operation waveform diagram showing changes in the engine speed when the vibration suppression control is executed and when it is not executed.
図 1、 図 7を参照して、 時刻 t 1において運転者からの停止指示に応じて、 R e a d yインジケータがオン状態からオフ状態に変化するとともに、 エンジンへ の燃料供給が停止されエンジン回転数 N eは減少し始める。  Referring to FIG. 1 and FIG. 7, at a time t1, in response to a stop instruction from the driver, the Ready indicator changes from the on state to the off state, the fuel supply to the engine is stopped, and the engine speed N e begins to decrease.
時刻 t 2においてはシステムメインリレー S MR Gがオン状態からオフ状態に 切換えられ、 時刻 t 3においてシステムメインリレー S MR Bがオン状態から才 フ状態に切換えられる。 その後、 システムメインリレー S MR Bの溶着故障判定 のために、 時刻 t 4〜t 5の間の短時間システムメインリレー S MR Pが導通さ れ、 電圧および電流変化がチェックされる。  At time t2, system main relay SMRG is switched from on to off, and at time t3, system main relay SMRB is switched from on to off. Thereafter, the system main relay SMR P is turned on for a short period of time between time t4 and t5 to check the voltage and current change in order to determine the welding failure of the system main relay SMRB.
このとき、 図 2で説明したように、 振動抑制制御を実行するステップ S 9の処 理が実行される場合には、 波形 W 1に示すようにすみやかにエンジン回転数 N e が減少する。 これにより、 エンジン回転数 N eが振動の共振が発生する回転域 N e X H〜N e X Lに該当する時間は T 1と短くなり、 振動および騒音も目立たな くなる。 一方、 図 2のステップ S 3〜S 7において何らかの異常が発生していると判断 された場合には、 振動抑制制御を禁止したステップ S 8の処理が実行され、 波形 W 0に示すようにゆっくりとエンジン回転数 N eが減少する。 この場合は、 振動 および騒音の低減をすることはできないが、 回生電力を高圧バッ リ B 1に回収 できないような状況において、 コンデンサ C l、 C 2の電圧が過電圧となってし まうのを防ぐことができる。 At this time, as described with reference to FIG. 2, when the process of step S9 for executing the vibration suppression control is executed, the engine speed N e immediately decreases as shown by the waveform W1. As a result, the time during which the engine speed N e falls within the rotation range N e XH to N e XL where vibration resonance occurs is shortened to T 1, and vibration and noise become inconspicuous. On the other hand, if it is determined in step S3 to S7 in FIG. 2 that some abnormality has occurred, the process of step S8 in which the vibration suppression control is prohibited is executed, and slowly as shown in the waveform W0. And the engine speed N e decreases. In this case, vibration and noise cannot be reduced, but in the situation where regenerative power cannot be recovered in the high voltage battery B1, it prevents the capacitors C1 and C2 from becoming overvoltage. be able to.
最後に、 再び主として図 1を参照して、 本願発明の種々の局面について総括的 に説明する。  Finally, referring again to FIG. 1, various aspects of the present invention will be described generally.
この発明のある局面に従う車両の動力出力装置は、 エンジン 4と、 エンジン 4 に対して機械的動力が伝達可能に接続されたモータジェネレータ MG 1と、 第 1、 第 2の接続端子を有し、 モータジュネレータ MG 1の電流を制御する電流制御回 路 1 0 2と、 高圧バッテリ B 1と、 第 1の接続端子から高圧バッテリ B 1を経由 して第 2の端子に至る電気接続経路と、 電気接続経路の異常を検知する検知部と、 電流制御回路 1 0 2とモータジェネレータ MG 1とを制御する制御装置 3 0とを 備える。 制御装置 3 0は、 エンジン 4が運転状態から停止状態に遷移する場合に、 検知部が異常を検知していないときにはモータジェネレータ MG 1に負のトルク を発生させる発電動作を行なわせてエンジン 4の停止を促進させるとともに発電 した電力を高圧バッテリ B 1に回収させる。 制御装置 3 0は、 エンジン 4が運転 状態から停止状態に遷移する場合に、 検知部が異常を検知しているときにはモー タジェネレータ MG 1の発電動作を禁止する。  A power output apparatus for a vehicle according to an aspect of the present invention includes an engine 4, a motor generator MG 1 connected to be able to transmit mechanical power to the engine 4, and first and second connection terminals. A current control circuit 1 0 2 for controlling the current of motor generator MG 1; a high-voltage battery B 1; an electrical connection path from the first connection terminal to the second terminal via high-voltage battery B 1; A detection unit that detects an abnormality in the electrical connection path, and a control device 30 that controls the current control circuit 10 2 and the motor generator MG 1 are provided. When the engine 4 transitions from the operating state to the stopped state, the control device 30 causes the motor generator MG 1 to perform a power generation operation that generates a negative torque when the detection unit does not detect an abnormality. The stoppage is promoted and the generated power is collected by the high voltage battery B1. Control device 30 prohibits the power generation operation of motor generator MG 1 when the detection unit detects an abnormality when engine 4 changes from the operating state to the stopped state.
好ましくは、 電気接続経路は、 制御装置 3 0の制御の下で開閉が行なわれるシ ステムメインリ レー S MR B , S MR Gを含む。 検知部は、 たとえば電圧センサ 1 3, 2 1を含み、 電圧 VH, V Lに基づいてシステムメインリレー S MR B , S MR Gの異常を検知する。  Preferably, the electrical connection path includes system main relays S MR B and S MR G that are opened and closed under the control of control device 30. The detection unit includes, for example, voltage sensors 13 and 21 and detects an abnormality in the system main relays S MR B and S MR G based on the voltages VH and V L.
図 3に示すように、 好ましくは、 高圧バッテリ B 1は、 複数の蓄電セルを含む。 電気接続経路は、 複数の蓄電セルの間に設けられ開閉可能なスィツチ 1 0 4を含 む。 検知部は、 たとえば、 ブルアップ抵抗 R 3と抵抗 R 3を接地電位に結合しス イッチ 1 0 4と連動して開閉するスィツチ 1 0 6とを含み、 スィツチ 1 0 4が開 状態であることを異常として検知する。 好ましくは、 電流制御回路 1 0 2は、 モータジェネレータ MG 1に接続された インバータ 1 4と、 パワートランジスタ素子を有し、 高圧バッテリ B 1の電圧を 昇圧してインバータに供給する昇圧コンバータ 1 2とを含む。 制御装置 3 0は、 昇圧コンバータ 1 2中のパヮ トランジスタ素子 (I G B T素子 Q l , Q 2 ) の スイッチング制御 ¾さら'に行なう。 制御装置 3 0は、 パワートランジスタ素子を 非導通状態に固定しスィツチングを 止している場合には、 モータジェネレータ MG 1の発電動作を禁止する。 As shown in FIG. 3, preferably, the high voltage battery B 1 includes a plurality of power storage cells. The electrical connection path includes a switch 104 provided between a plurality of power storage cells that can be opened and closed. The detection unit includes, for example, a switch 1 0 6 that connects the pull-up resistor R 3 and the resistor R 3 to the ground potential and opens and closes in conjunction with the switch 1 0 4, and the switch 1 0 4 is in the open state. Is detected as abnormal. Preferably, current control circuit 10 2 includes inverter 14 connected to motor generator MG 1, a boost converter 12 having a power transistor element, and boosts the voltage of high voltage battery B 1 and supplies the boosted voltage to the inverter. including. Control device 30 performs switching control of the power transistor elements (IGBT elements Q 1, Q 2) in boost converter 12. Control device 30 prohibits power generation operation of motor generator MG 1 when the power transistor element is fixed in a non-conductive state and switching is stopped.
好ましくは、 車両の動力出力装置は、 車輪の駆動軸に同期して回転するロータ を有するモータジェネレータ MG 2と、 エンジン 4およびモータジェネレータ M G l , MG 2の間で機械的動力の分割を行なう動力分割機構 3をさらに備える。 制御装置 3 0は、 運転者から与えられる車両の動力系の停止指示に応じてェンジ ン 4が運転状態から停止状態に遷移することを検知する。  Preferably, the vehicle power output device includes a motor generator MG 2 having a rotor that rotates in synchronization with a drive shaft of a wheel, and a power that divides mechanical power between the engine 4 and the motor generators MG l and MG 2. A split mechanism 3 is further provided. The control device 30 detects that the engine 4 transitions from the driving state to the stop state in response to the vehicle power system stop instruction given by the driver.
したがって、 電気接続経路が正常であるときはエンジン停止時の振動や騒音が 低減される一方で、 電気接続経路に異常が検知された場合は、 発電を禁止するこ とにより過電圧が防止され部品の信頼性を損なわずに済む。  Therefore, when the electrical connection path is normal, vibration and noise when the engine is stopped are reduced.On the other hand, when an abnormality is detected in the electrical connection path, overvoltage is prevented by prohibiting power generation and Reliability is not compromised.
この発明の他の局面に従う車両の動力出力装置は、 エンジン 4と、 エンジン 4 - に対して機械的動力が伝達可能に接続されたモータジェネレータ MG 1と、 モー タジェネレータ MG 1の電流制御を行なう電流制御回路 1 0 2と、 モータジエネ レータ MG 1に電力を供給する高圧バッテ B 1と、 電流制御回路 1 0 2または モータジェネレータ MG 1の異常を検知する検知部と、 電流制御回路 1 0 2とモ ータジエネレータ MG 1とを制御する制御装置 3 0とを備える。 制御装置 3 0は、 エンジン 4が運転状態から停止状態に遷移する場合に、 検知部が異常を検知して レ、ないときにはモータジェネレータ MG 1に負のトルクを発生させてエンジン 4 の停止を促進させる。 制御装置 3 0は、 エンジン 4が運転状態から停止状態に遷 移する場合に、 検知部が異常を検知しているときにはモータジェネレータ MG 1 にトルクを発生させないように制御を行なう。  A power output apparatus for a vehicle according to another aspect of the present invention performs current control of engine 4, motor generator MG 1 connected to be capable of transmitting mechanical power to engine 4 −, and motor generator MG 1. A current control circuit 1 0 2; a high-voltage battery B 1 that supplies power to the motor generator MG 1; a detection unit that detects an abnormality in the current control circuit 1 0 2 or the motor generator MG 1; and a current control circuit 1 0 2 And a control device 30 for controlling the motor generator MG1. When the engine 4 transitions from the operating state to the stopped state, the control device 30 detects that the detector detects an abnormality, and if not, generates a negative torque in the motor generator MG 1 to promote the stop of the engine 4 Let When engine 4 transitions from the operating state to the stopped state, control device 30 performs control so that torque is not generated in motor generator MG 1 when the detection unit detects an abnormality.
好ましくは、 検知部は、 電流制御回路 1 0 2またはモータジェネレータ MG 1 の過電流を検出する電流センサ 2 4を含む。  Preferably, the detection unit includes a current sensor 24 that detects an overcurrent of current control circuit 10 2 or motor generator MG 1.
好ましくは、 検知部は、 電流制御回路 1 0 2またはモータジエネレータ MG 1 の過熱を検出する過熱センサ 3 4を含む。 Preferably, the detection unit is a current control circuit 1 0 2 or a motor generator MG 1 Including an overheat sensor 3 4 to detect overheating.
好ましくは、 制御装置 3 0は、 'エンジン 4が運転状態から停止状態に遷移する 場合に限らず、 検知部が異常を検知しているときは、 図 4に示すようにモータジ エネレータ MG 1の最大出力を制限する。  Preferably, the control device 30 is not limited to the case where the engine 4 transitions from the operation state to the stop state, and when the detection unit detects an abnormality, the maximum of the motor generator MG 1 as shown in FIG. Limit output.
好ましくは、 電流制御回路 1 0 2は、 モータジエネレータ MG 1に接続された インバータ 1 4と、 パワートラ.ンジスタ素子を有し、 高圧パッテリ B 1の電圧を 昇圧してインバータに供給する昇圧コンバータ 1 2とを含む。 制御装置 3 0は、 昇圧コンバータ 1 2のパワートランジスタ素子のスィッチング制御をさらに行な う。 制御装置 3 0は、 パワートランジスタ素子を非導通状態に固定しスィッチン グを禁止している場合には、 モータジェネレータ MG 1の発電動作を禁止する。 好ましくは、 車両の動力出力装置は、 車輪 2の駆動軸に同期して回転するロー タを有するモータジェネレータ MG 2と、 エンジン 4とモータジェネレータ MG 1 , MG 2の機械的接続を行ない、 機械的動力の分割を行なう動力分割機構 3と をさらに備える。 制御装置 3 0は、 運転者から与えられる車両の動力系の停止指 示に応じてエンジン 4が運転状態から停止状態に遷移することを検知する。  Preferably, the current control circuit 10 2 has an inverter 14 connected to the motor generator MG 1 and a power transistor element, and boosts the voltage of the high-voltage battery B 1 and supplies the boosted voltage to the inverter 1 2 and including. Control device 30 further performs switching control of the power transistor element of boost converter 12. Control device 30 prohibits the power generation operation of motor generator MG 1 when the power transistor element is fixed in the non-conductive state and switching is prohibited. Preferably, the vehicle power output device mechanically connects motor generator MG 2 having a rotor that rotates in synchronization with the drive shaft of wheel 2, engine 4 and motor generators MG 1 and MG 2, And a power split mechanism 3 for splitting power. The control device 30 detects that the engine 4 transitions from the operating state to the stopped state in accordance with the stop instruction of the vehicle power system given by the driver.
したがって、 モータジェネレータ MG 1の動作が予め制限されている場合に、 騒音や振動を低減させるためにさらにモータジェネレータ MG 1に負荷をかけて しまうことを避けることができる。  Therefore, when the operation of motor generator MG 1 is restricted in advance, it is possible to avoid further loading motor generator MG 1 in order to reduce noise and vibration.
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。  The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims

請求の範囲 The scope of the claims
1 . 内燃機関と、 1. an internal combustion engine,
前記内燃機関.に対して機械的動力が伝達可能に接続された第 1の回転電機と、 第 1、 第 2の 続端子を有し、 前記第 1の回転電機の電流を制御する電流制御 回路と、  A current control circuit which has a first rotating electrical machine connected to be capable of transmitting mechanical power to the internal combustion engine, and first and second connection terminals, and controls a current of the first rotating electrical machine; When,
蓄電装置と、  A power storage device;
前記第 1の接続端子から前記蓄電装置を経由して前記第 2の端子に至る電気接 続経路と、  An electrical connection path from the first connection terminal to the second terminal via the power storage device;
前記電気接続経路の異常を検知する検知部と、  A detection unit for detecting an abnormality in the electrical connection path;
前記電流制御回路と前記第 1の回転電機とを制御する制御装置とを備え、 前記制御装置は、 前記内燃機関が運転状態から停止状態に遷移する場合に、 前 記検知部が異常を検知していないときには前記第 1の回転電機に負のトルクを発 生させる発電動作を行なわせて前記内燃機関の停止を促進させるとともに発電し た電力を前記蓄電装置に回収させ、 前記検知部が異常を検知しているときには前 記第 1の回転電機の発電動佧を禁止する、 車両の動力出力装置。  A controller for controlling the current control circuit and the first rotating electrical machine, wherein the controller detects an abnormality when the internal combustion engine transitions from an operating state to a stopped state. If not, the first rotating electrical machine is caused to perform a power generation operation that generates a negative torque to promote the stop of the internal combustion engine, and the generated power is collected by the power storage device. A vehicle power output device that prohibits power generation motion of the first rotating electrical machine when it is detected.
2 . ·前記電気接続経路は、 前記制御装置の制御の下で開閉が行なわれるリレー を含み、  2. The electrical connection path includes a relay that is opened and closed under the control of the control device;
前記検知部は、 前記リ レーの異常を検知する、 請求の範囲第 1項に記載の車両 の動力出力装置。  The power output apparatus for a vehicle according to claim 1, wherein the detection unit detects an abnormality of the relay.
3 . 前記蓄電装置は、  3. The power storage device
複数の蓄電セルを含み、  Including a plurality of storage cells,
前記電気接続経路は、 前記複数の蓄電セルの間に設けられ開閉可能なスィツチ を含み、  The electrical connection path includes a switch that is provided between the plurality of power storage cells and can be opened and closed,
前記検知部は、 前記スィツチが開状態であることを異常として検知する、 請求 の範囲第 1項に記載の車両の動力出力装置。  The power output device for a vehicle according to claim 1, wherein the detection unit detects that the switch is in an open state as an abnormality.
4 . 前記電流制御回路は、  4. The current control circuit is
前記第 1の回転電機に接続されたィンバータと、  An inverter connected to the first rotating electrical machine;
パワートランジスタ素子を有し、 前記蓄電装置の電圧を昇圧して前記ィンバー タに供給する昇圧コンバータとを含み、 A power transistor element that boosts the voltage of the power storage device and And a boost converter for supplying
前.記制御装置は、 前記昇圧コンバータ中の前記パワートランジスタ素子のスィ ッチング制御をさらに行ない、  The control device further performs switching control of the power transistor element in the boost converter,
前記制御装置は、 前記パワートランジスタ素子を非導通状態に固定しスィッチ. ングを禁止している場合には、 前記第 1の回転電機の発電動作を禁止する、 請求 の範囲第 1項に記載の車両の動力出力装置。  The control device according to claim 1, wherein the control device prohibits power generation operation of the first rotating electrical machine when the power transistor element is fixed in a non-conductive state and switching is prohibited. Vehicle power output device.
5 . 車輪の駆動軸に同期して回転するロータを有する第 2の回転電機と、 前記内燃機関および前記第 1、 第 2の回転電機の間で機械的動力の分割を行な う動力分割機構をさらに備え、  5. A power split mechanism that splits mechanical power between the second rotating electrical machine having a rotor that rotates in synchronization with the drive shaft of the wheel, and the internal combustion engine and the first and second rotating electrical machines. Further comprising
前記制御装置は、 運転者から与えられる車両の動力系の停止指示に応じて前記 内燃機関が運転状態から停止状態に遷移することを検知する、 請求の範囲第 1項 に記載の車両の動力出力装置。  2. The vehicle power output according to claim 1, wherein the control device detects that the internal combustion engine transitions from an operating state to a stopped state in response to a vehicle power system stop instruction given by a driver. apparatus.
6 . 内燃機関と、..  6. With internal combustion engine, ..
前記内燃機関に対して機械的動力が伝達可能に接続された第 1の回転電機と、 前記第 1の回転電機の電流制御を行なう電流制御回路と、  A first rotating electrical machine connected to the internal combustion engine so that mechanical power can be transmitted; and a current control circuit for performing current control of the first rotating electrical machine;
前記第 1の回転電機に電力を供給する電源と、  A power supply for supplying power to the first rotating electrical machine;
前記電流制御回路または前記第 1の回転 機の異常を検知する検知部と、 前記電流制御回路と前記第 1の回転電機とを制御する制御装置とを備え、 前記制御装置は、 前記内燃機関が運転状態から停止状態に遷移する場合に、 前 記検知部が異常を検知していないときには前記第 1の回転電機に負のトルクを発 生させて前記内燃機関の停止を促進させ、 前記検知部が異常を検知しているとき には前記第 1の回転電機にトルクを発生させないように制御を行なう、 車両の動 力出力装置。  A detector that detects an abnormality of the current control circuit or the first rotating machine; and a control device that controls the current control circuit and the first rotating electrical machine, wherein the control device includes the internal combustion engine In the transition from the operating state to the stopped state, when the detection unit does not detect an abnormality, the first rotating electrical machine generates negative torque to promote the stop of the internal combustion engine, and the detection unit A vehicle power output device that performs control so that torque is not generated in the first rotating electrical machine when an abnormality is detected.
7 . 前記検知部は、 前記電流制御回路または前記第 1の回転電機の過電流を検 出する電流センサを含む、 請求の範囲第 6項に記載の車両の動力出力装置。  7. The vehicle power output apparatus according to claim 6, wherein the detection unit includes a current sensor that detects an overcurrent of the current control circuit or the first rotating electrical machine.
8 . 前記検知部は、 前記電流制御回路または前記第 1の回転電機の過熱を検出 する温度センサを含む、 請求の範囲第 6項に記載の車両の動力出力装置。  8. The vehicle power output apparatus according to claim 6, wherein the detection unit includes a temperature sensor that detects overheating of the current control circuit or the first rotating electrical machine.
9 . . 前記制御装置は、 前記内燃機関が運転状態から停止状態に遷移する場合に 限らず、 前記検知部が異常を検知しているときは、 前記第 1の回転電機の最大出 力を制限する、 請求の範囲第 6項に記載の車両の動力出力装置。 9. The control device is not limited to the case where the internal combustion engine transitions from the operating state to the stopped state, and when the detection unit detects an abnormality, the maximum output of the first rotating electrical machine The power output device for a vehicle according to claim 6, wherein the power is limited.
1 0 . 前記電流制御回路は、  1 0. The current control circuit
前記第 1の回転電機に接続されたィンバ一タと、  An inverter connected to the first rotating electrical machine;
パワートランジスタ素子を有し、 前記蓄電装置の電圧を昇圧して前記ィンバー タに供給する昇圧コンバータとを含み、  A boost converter having a power transistor element, and boosting the voltage of the power storage device and supplying the boosted voltage to the inverter;
前記制御装置は、 前記昇圧コンバータのパワートランジスタ素子のスィッチン グ制御をさらに行ない、  The control device further performs switching control of the power transistor element of the boost converter,
前記制御装置は、 前記パワートランジスタ素子を非導通状態に'固定しスィツチ ングを禁止している場合には、 前記第 1の回転電機の発電動作を禁止する、 請求 の範囲第 6項に記載の車両の動力出力装置。  The control device according to claim 6, wherein the control device prohibits power generation operation of the first rotating electrical machine when the power transistor element is fixed in a non-conductive state and switching is prohibited. Vehicle power output device.
1 1 . 車輪の駆動軸に同期して回転するロータを有する第 2の回転電機と、 前記内燃機関と前記第 1、 第 2の回転電機の機械的接続を行ない、 機械的動力 の分割を行なう動力分割機構とをさらに備え、  1 1. Mechanical connection between the second rotating electrical machine having a rotor that rotates in synchronization with the drive shaft of the wheel and the internal combustion engine and the first and second rotating electrical machines is performed to divide the mechanical power A power split mechanism;
前記制御装置は、 運転者から与えられる車両の動力系の停止指示に応じて前記 内燃機関が運転状態から停止状態に遷移することを検知する、 請求の範囲第 6項 に記載の車両の動力出力装置。  The vehicle power output according to claim 6, wherein the control device detects that the internal combustion engine transitions from the operating state to the stopped state in response to a stop instruction of the vehicle power system given by a driver. apparatus.
1 2 . 内燃機関と、 前記内燃機関に対して機械的動力が伝達可能に接続された 第 1の回転電機と、 第 1、 第 2の接続端子を有し、 前記第 1の回転電機の電流を 制御する電流制御回路と、 蓄電装置と、 前記第 1の接続端子から前記蓄電装置を 経由して前記第 2の端子に至る電気接続経路とを備える車両の動力出力装置の制 御方法であって、  1 2. An internal combustion engine, a first rotating electrical machine connected to be able to transmit mechanical power to the internal combustion engine, and first and second connection terminals, the current of the first rotating electrical machine A control method for a power output apparatus for a vehicle, comprising: a current control circuit for controlling power; a power storage device; and an electrical connection path from the first connection terminal to the second terminal via the power storage device. And
前記内燃機関が運転状態から停止状態に遷移することを検出するステップと、 前記電気接続経路の異常を検知するステップと、  Detecting that the internal combustion engine transitions from an operating state to a stopped state; detecting an abnormality in the electrical connection path;
前記電気接続経路に異常がないときに前記第 1の回転電機に負のトルクを発生 させる発電動作を行なわせて前記内燃機関の停止を促進させるとともに発電した 電力を前記蓄電装置に回収させるステップと、  Causing the first rotating electrical machine to generate a negative torque when there is no abnormality in the electrical connection path to promote the stop of the internal combustion engine and causing the power storage device to collect the generated power; ,
前記電気接続経路に異常があるときに前記第 1の回転電機の発電動作を禁止す るステップとを備える、 車両の動力出力装置の制御方法。  And a step of prohibiting the power generation operation of the first rotating electrical machine when there is an abnormality in the electrical connection path.
1 3 . 内燃機関と、 前記内燃機関に対して機械的動力が伝達可能に接続された 第 1の回転電機と、 前記第 1の回転電機の電流制御を行なう電流制御回路と、 前 記第 1の回転電機に電力を供給する電源とを備える車両の動力出力装置の制御方 法であって、 1 3. The internal combustion engine is connected to the internal combustion engine so that mechanical power can be transmitted. A control method for a vehicle power output device comprising: a first rotating electrical machine; a current control circuit that performs current control of the first rotating electrical machine; and a power source that supplies power to the first rotating electrical machine. And
前記内燃機関が運転状態から停止状態に遷移することを検出するステップと、 前記電流制御回路または前記第 1の回転電機の異常を検知するステップと、 前記検知するステップが異常を検知していないときには前記第 1の回転電機に 負のトルクを発生させて前記内燃機関の停止を促進させるステップと、  A step of detecting that the internal combustion engine transitions from an operating state to a stopped state; a step of detecting an abnormality of the current control circuit or the first rotating electrical machine; and a step of detecting no abnormality Generating a negative torque in the first rotating electrical machine to promote a stop of the internal combustion engine;
前記検知するステップが異常を検知しているときには前記第 1の回転電機にト ルクを発生させないように制御を行なうステップとを備える、 車両の動力出力装 置の制御方法。  A control method for a vehicle power output device, comprising: performing control so that torque is not generated in the first rotating electrical machine when the detecting step detects an abnormality.
PCT/JP2007/061959 2006-07-07 2007-06-07 Vehicle power output device and its control method WO2008004418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006188158A JP2008013119A (en) 2006-07-07 2006-07-07 Power output device of vehicle and its control method
JP2006-188158 2006-07-07

Publications (1)

Publication Number Publication Date
WO2008004418A1 true WO2008004418A1 (en) 2008-01-10

Family

ID=38894389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061959 WO2008004418A1 (en) 2006-07-07 2007-06-07 Vehicle power output device and its control method

Country Status (2)

Country Link
JP (1) JP2008013119A (en)
WO (1) WO2008004418A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022674A1 (en) * 2008-08-29 2010-03-04 奇瑞汽车股份有限公司 A safety monitoring system for a hybrid car and a method thereof
US8169177B2 (en) 2007-03-26 2012-05-01 Toyota Jidosha Kabushiki Kaisha Electric vehicle
US8253359B2 (en) 2008-03-25 2012-08-28 Aisin Aw Co., Ltd. Electric rotating machine control system and vehicle driving system including the electric rotating machine control system
EP2810837A4 (en) * 2012-01-31 2016-10-12 Mitsubishi Electric Corp Vehicle control device
CN110103965A (en) * 2019-04-18 2019-08-09 浙江吉利控股集团有限公司 A kind of vehicle auxiliary halt control method, device and terminal

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295035C (en) * 2004-03-30 2007-01-17 东北大学 Method of manufacturing oriented silicon steel strip in razor-thin
JP5109743B2 (en) * 2008-03-21 2012-12-26 トヨタ自動車株式会社 Power system, control method therefor, and vehicle
JP5306834B2 (en) * 2009-01-09 2013-10-02 本田技研工業株式会社 DC / DC converter system and control method at abnormality detection in the system
JP5287351B2 (en) * 2009-02-27 2013-09-11 日産自動車株式会社 Control device for hybrid vehicle
JP5444111B2 (en) * 2009-05-13 2014-03-19 トヨタ自動車株式会社 Vehicle sprung mass damping control device
WO2012029774A1 (en) * 2010-08-31 2012-03-08 三洋電機株式会社 Motor control device and movable object provided with same
WO2016121632A1 (en) * 2015-01-29 2016-08-04 三菱電機株式会社 Power conversion device
JP6421710B2 (en) * 2015-07-02 2018-11-14 株式会社デンソー Inverter control device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208007A (en) * 1990-11-30 1992-07-29 Nissan Motor Co Ltd Power supply for electric automobile
JPH08308003A (en) * 1995-04-28 1996-11-22 Honda Motor Co Ltd Controller for motor car
JPH10191691A (en) * 1996-12-25 1998-07-21 Denso Corp Power control device
JPH10271603A (en) * 1997-03-28 1998-10-09 Mitsubishi Motors Corp Electric vehicle
JPH1127806A (en) * 1997-07-03 1999-01-29 Nissan Motor Co Ltd Controller for hybrid vehicle
JPH11332006A (en) * 1998-05-15 1999-11-30 Denso Corp Controller of electric vehicle
JP2000032602A (en) * 1998-07-10 2000-01-28 Toyota Motor Corp Apparatus and method for controlling motor temperature
JP2001320801A (en) * 2000-05-09 2001-11-16 Toyota Motor Corp Vehicle, power supply controlling device, method of starting vehicle and method of using high-voltage power supply
JP2001342868A (en) * 2000-05-30 2001-12-14 Suzuki Motor Corp Device for controlling in stopping vehicular engine
JP2004222362A (en) * 2003-01-10 2004-08-05 Toyota Motor Corp Voltage converter, recording medium recording program which makes computer perform troubleshooting and is readable by computer, and troubleshooting method
JP2005020854A (en) * 2003-06-25 2005-01-20 Toyota Motor Corp Hybrid automobile, and computer-readable recording medium having recoded program for making computer execute control in hybrid automobile

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208007A (en) * 1990-11-30 1992-07-29 Nissan Motor Co Ltd Power supply for electric automobile
JPH08308003A (en) * 1995-04-28 1996-11-22 Honda Motor Co Ltd Controller for motor car
JPH10191691A (en) * 1996-12-25 1998-07-21 Denso Corp Power control device
JPH10271603A (en) * 1997-03-28 1998-10-09 Mitsubishi Motors Corp Electric vehicle
JPH1127806A (en) * 1997-07-03 1999-01-29 Nissan Motor Co Ltd Controller for hybrid vehicle
JPH11332006A (en) * 1998-05-15 1999-11-30 Denso Corp Controller of electric vehicle
JP2000032602A (en) * 1998-07-10 2000-01-28 Toyota Motor Corp Apparatus and method for controlling motor temperature
JP2001320801A (en) * 2000-05-09 2001-11-16 Toyota Motor Corp Vehicle, power supply controlling device, method of starting vehicle and method of using high-voltage power supply
JP2001342868A (en) * 2000-05-30 2001-12-14 Suzuki Motor Corp Device for controlling in stopping vehicular engine
JP2004222362A (en) * 2003-01-10 2004-08-05 Toyota Motor Corp Voltage converter, recording medium recording program which makes computer perform troubleshooting and is readable by computer, and troubleshooting method
JP2005020854A (en) * 2003-06-25 2005-01-20 Toyota Motor Corp Hybrid automobile, and computer-readable recording medium having recoded program for making computer execute control in hybrid automobile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169177B2 (en) 2007-03-26 2012-05-01 Toyota Jidosha Kabushiki Kaisha Electric vehicle
US8253359B2 (en) 2008-03-25 2012-08-28 Aisin Aw Co., Ltd. Electric rotating machine control system and vehicle driving system including the electric rotating machine control system
WO2010022674A1 (en) * 2008-08-29 2010-03-04 奇瑞汽车股份有限公司 A safety monitoring system for a hybrid car and a method thereof
CN101353044B (en) * 2008-08-29 2011-11-16 奇瑞汽车股份有限公司 Hybrid power automobile safe monitoring system and monitoring method
EP2810837A4 (en) * 2012-01-31 2016-10-12 Mitsubishi Electric Corp Vehicle control device
US9738273B2 (en) 2012-01-31 2017-08-22 Mitsubishi Electric Corporation Vehicle control apparatus
CN110103965A (en) * 2019-04-18 2019-08-09 浙江吉利控股集团有限公司 A kind of vehicle auxiliary halt control method, device and terminal

Also Published As

Publication number Publication date
JP2008013119A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
WO2008004418A1 (en) Vehicle power output device and its control method
US7759817B2 (en) Power supply system for driving vehicle
US8086363B2 (en) Drive control device for vehicle, and vehicle
JP4288333B1 (en) Vehicle power supply
EP1306262B1 (en) Load driver and computer-readable recording medium to execute the control
US9969269B2 (en) Hybrid vehicle and control method of hybrid vehicle
US9873339B2 (en) Vehicle, power source system, and control method of power source system
US20090195199A1 (en) Motor drive device
JP2005020952A (en) Vehicle control device
JP4784339B2 (en) Power supply control device and vehicle
JP2010178595A (en) Device for controlling vehicle
JP2009171644A (en) Power supply unit of vehicle and its control method
JP2010162996A (en) Power supply system for hybrid vehicle
JP5699969B2 (en) Converter fault detection device and converter fault detection method
JP2009189209A (en) Power supply device of vehicle and method of controlling the same
JP2009171645A (en) Power supply system of vehicle and its control method
JP2013051831A (en) Power source control device of electric vehicle
JP2018176970A (en) Hybrid vehicle and control method therefor
JP2007089264A (en) Motor driver
JP2007267445A (en) Load driving unit and automobile equipped therewith
JP6402679B2 (en) Power supply
JP2007228777A (en) Power supply control unit and vehicle
JP2008109724A (en) Power system and vehicle with power system, and diagnostic method of transmission state
JP2014147161A (en) Vehicle
JP2022138959A (en) vehicle

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767121

Country of ref document: EP

Kind code of ref document: A1