WO2021039177A1 - Energization control device and power supply unit - Google Patents

Energization control device and power supply unit Download PDF

Info

Publication number
WO2021039177A1
WO2021039177A1 PCT/JP2020/027591 JP2020027591W WO2021039177A1 WO 2021039177 A1 WO2021039177 A1 WO 2021039177A1 JP 2020027591 W JP2020027591 W JP 2020027591W WO 2021039177 A1 WO2021039177 A1 WO 2021039177A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
state
inter
value
threshold value
Prior art date
Application number
PCT/JP2020/027591
Other languages
French (fr)
Japanese (ja)
Inventor
竜乃介 力田
祐介 増元
幸幹 松下
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021039177A1 publication Critical patent/WO2021039177A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field

Definitions

  • the disclosure in this specification relates to an energization control device and a power supply unit mounted on a vehicle.
  • power supply can be made redundant by making it possible to supply electric power from either of the two batteries to the load group mounted on the vehicle.
  • This redundant system includes a first system bus, a second system bus, and an intersystem bus.
  • the first system bus transmits the electric power supplied from the first battery to the first load.
  • the second system bus transmits the electric power supplied from the second power source to the second load.
  • the inter-system bus electrically connects the first system bus and the second system bus.
  • the inter-system bus is provided with an inter-system switch for switching between energization and interruption of current. Then, in the normal state where no ground fault has occurred, the inter-system switch is turned on to exert the redundancy function. On the other hand, when the current flowing through the inter-system bus rises beyond the threshold value, it is considered that a ground fault has occurred and the inter-system switch is shut off. As a result, both the first and second system buses reduce the possibility of falling into a state of a large voltage drop (abnormally low voltage state) that causes a malfunction.
  • the threshold value is set to an excessively high value, the response time from the timing when the ground fault actually occurs until the inter-system switch is shut off becomes long. Then, the voltage drop of the system bus caused by the response time becomes large, and there is a concern that the shutoff may not be in time and the operation may malfunction.
  • the threshold value is set to an excessively small value, there is a concern that a ground fault may be erroneously detected and the inter-system switch may be shut off, for example, the inrush current flowing at the start of the load may exceed the threshold value.
  • One purpose to be disclosed is to provide an energization control device that achieves both quick shutoff and suppression of false detection when shutting off the switch between systems when a ground fault occurs.
  • the first system bus that transmits the power supplied from the first power supply to the first load
  • the second system bus that transmits the power supplied from the second power supply to the second load
  • An inter-system bus that electrically connects the first system bus and the second system bus
  • An inter-system switch control unit that controls the operating state of the inter-system switch
  • the inter-system switch control unit A current acquisition unit that acquires the current value flowing through the redundant power supply system, When the current value acquired by the current acquisition unit rises above the abnormal threshold value, it is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state.
  • a status acquisition unit that acquires the system status value that represents the status of the redundant power supply system during normal operation, which is not considered to be a ground fault abnormality. It is an energization control device having a threshold value changing unit that changes an abnormal threshold value according to a system state value acquired by the state acquisition unit.
  • the abnormality threshold value used for detecting the ground fault abnormality is changed according to the state value (system state value) of the redundant power supply system at the normal time. Therefore, even if the response time from the timing when the ground fault actually occurs to the time when the inter-system switch is shut off is long, if the system state value does not cause an abnormally low voltage state, the abnormality threshold is set high. Can be set to a value. As a result, false detection can be suppressed. On the other hand, if the system state value has a high probability of falling into an abnormally low voltage state when the response time is long, the abnormality threshold value can be set to a low value. As a result, quick shutoff can be realized, and the risk of load malfunction can be reduced. That is, it is possible to achieve both quick shutoff and suppression of false positives.
  • the third embodiment it is a time chart showing an example of the correspondence relationship between the time change of a plurality of types of system state values and the time change of the abnormality threshold value IsmrTH. In the third embodiment, it is a time chart showing an example of the correspondence relationship between the time change of a plurality of types of system state values and the time change of the abnormality threshold value IisoTH. In the third embodiment, it is a time chart showing an example of the correspondence relationship between the time change of the discharge current value Ismr and the time change of the abnormal threshold value IsmrTH. It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 4th Embodiment.
  • the redundant power supply system shown in FIG. 1 includes a main power supply B10 and a sub power supply B20 as a first power supply and a second power supply mounted on the vehicle. Although only one main power supply B10 and one sub power supply B20 are shown in FIG. 1, a plurality of main power supplies B10 and / or a plurality of sub power supplies B20 may be provided as vehicle-mounted power supplies.
  • main power supply B10 and sub power supply B20 are secondary batteries that generate a voltage of, for example, about 12V.
  • the charging capacity of the main power supply B10 is larger than the charging capacity of the sub power supply B20.
  • the energy density of the sub power supply B20 is higher than the energy density of the main power supply B10.
  • a lead storage battery is used for the main power supply B10, and a lithium ion battery is used for the sub power supply B20.
  • the redundant power supply system includes a main system bus 10 (first system bus), a sub system bus 20 (second system bus), and an inter-system bus 30.
  • the main system bus 10 transmits the electric power supplied from the main power source B10 to the first loads L10 and L11.
  • the sub system bus 20 transmits the electric power supplied from the sub power source B20 to the second loads L20 and L21.
  • the inter-system bus 30 electrically connects the main system bus 10 and the sub-system bus 20.
  • one end of the inter-system bus 30 is connected to the junction box (JB11) of the main system, and the other end of the inter-system bus 30 is connected to the junction box (JB21) of the sub system.
  • the bus that connects JB11 and the main power supply B10 is called the main power supply side bus 10a
  • the bus that connects JB11 and the first loads L10 and L11 is the main load side bus 10b.
  • the bus connecting the JB 21 and the sub power supply B20 is called the sub power supply side bus 20a
  • the bus connecting the JB 21 with the second loads L20 and L21 is called the sub load side bus 20b.
  • the bus that connects the inter-system switch 31a and JB11, which will be described later, is called the main inter-system bus 30a.
  • the bus that connects the inter-system switch 31b and JB21, which will be described later, is called the sub-side inter-system bus 30b.
  • the JB 11 corresponds to the first node located between the main power supply B10 and the first load in the main system bus 10.
  • the JB 21 corresponds to a second node located between the sub power supply B20 and the second load in the sub system bus 20.
  • a generator G10 (alternator) is connected to the main system bus 10 via JB11.
  • the electric power output from the generator G10 is used for charging the main power source B10, charging the sub power source B20, supplying the first loads L10 and L11 and the second loads L20 and L21. It is also possible to charge the sub power source B20 from the main power source B10 via the inter-system bus 30. It is also possible to charge the main power supply B10 from the sub power supply B20 via the inter-system bus 30.
  • a high-voltage power source may be provided as a power source for the drive motor.
  • the voltage of the high-voltage power supply may be stepped down by a DC-DC converter so that the main power supply B10 or the like can be charged.
  • the redundant power supply system includes a set of inter-system switches 31a and 31b provided on the inter-system bus 30.
  • Each of the set of inter-system switches 31a and 31b is composed of a semiconductor switching element made of MOSFET. Due to the structure of MOSFET, a body diode (parasitic diode) is formed between drain and source. Therefore, even if the MOSFET is cut off, the current flows through the body diode, so that the bidirectional current cannot be cut off with only one MOSFET. In a redundant power supply system, current may flow in both directions between the main system bus 10 and the sub system bus 20.
  • a pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of inter-system switches 31a and 31b.
  • one set of inter-system switches 31a and 31b are both cut off, so that the current can be completely cut off regardless of the direction in which the current flows.
  • the redundant power supply system includes a set of cutoff switches 22a and 22b provided on the sub power supply side bus 20a.
  • Each of the set of cutoff switches 22a and 22b is composed of a semiconductor switching element made of MOSFET.
  • a pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of cutoff switches 22a and 22b.
  • inter-system SW and SMR system main relay
  • the inter-system SW and SMR are not limited to MOSFETs, and other semiconductor switching elements may be used.
  • the semiconductor switching element such as a so-called IGBT in which a body diode does not exist
  • the semiconductor switching element alone can be used as an inter-system SW or SMR.
  • FIG. 1 Only one set of intersystem switches 31a and 31b and one set of cutoff switches 22a and 22b are shown in FIG. 1, a plurality of sets of these switches may be provided.
  • the redundant power supply system is provided with a plurality of power supplies such as the main power supply B10 and the sub power supply B20.
  • the reason is that even if power cannot be supplied from one power source, power can be supplied from the remaining power sources to prevent the in-vehicle load from becoming inoperable.
  • Specific examples of the inability to supply power include the case where the power supply itself fails, the case where a ground fault occurs at any part of the electrical wiring path such as each bus or junction box, and the like.
  • the in-vehicle load corresponds to the first loads L10 and L11 and the second loads L20 and L21 described above. In-vehicle loads are classified into general loads and important loads. These two types of loads are connected to each of the main load side bus 10b and the sub load side bus 20b.
  • the general loads L10 and L20 are loads that have little influence on the running of the vehicle even if the worst operation is stopped when the power supply fails.
  • Specific examples of the general loads L10 and L20 include a power window, an electric fan for cooling the radiator, an audio device, a device for air-conditioning the vehicle interior, and the like.
  • the important loads L11 and L21 are loads that need to be continued even when one of the main power supply B10 and the sub power supply B20 fails and the inter-system SW is turned off (cut off).
  • Specific examples of the important loads L11 and L21 include a drive motor for traveling, a braking device, a power steering device, and the like.
  • a pair of important loads L11 and L21 have different types of functions such as a camera and a distance measuring device for monitoring the front of a vehicle, even if they are made redundant by one component such as completely redundant power steering. It is also possible to use a combination realized by the device. Then, one important load L11 is connected to the main load side bus 10b, and the other important load L21 is connected to the sub load side bus 20b, so that the redundancy of the power supply is ensured.
  • the power supply from the main power supply B10 to the first loads L10 and L11 is normally performed by switching the inter-system SW from the conductive state to the cutoff state. You can continue.
  • the important loads L11 and L21 are components necessary for vehicle traveling and a ground fault occurs in the sub system bus 20
  • the operation is as follows. That is, although the sub system bus 20 cannot supply power to the important load L21, the main system bus 10 can continue to supply power to the important load L11, so that the traveling can be continued.
  • the redundant power supply system includes a switch control circuit (SW control circuit 40) that controls the operation of the inter-system SW and SMR.
  • SW control circuit 40 when controlling the inter-system SW corresponds to the "power switch control unit", and the SW control circuit 40 when controlling the SMR corresponds to the "inter-system switch control unit”.
  • the SW control circuit 40 acquires the inter-system current value Iiso, which is the magnitude of the current flowing through the inter-system SW, and the discharge current value Ismr, which is the magnitude of the current discharged from the sub power supply B20.
  • a shunt resistor 31c is connected to a portion of the inter-system bus 30 between one set of inter-system switches 31a and 31b.
  • a shunt resistor 22c is connected to a portion of the sub power supply side bus 20a between one set of cutoff switches 22a and 22b. Then, the SW control circuit 40 detects the potentials across the shunt resistors 22c and 31c, and calculates the inter-system current value Iiso and the discharge current value Ismr based on the potential difference between the two ends.
  • the inter-system current value Iiso is defined as a positive value in the direction in which the current flows from the side of the main system bus 10 to the side of the sub-system bus 20 through the inter-system bus 30.
  • the discharge current value Ismr is defined as a positive value in the direction of discharge from the sub power supply B20.
  • the cutoff switches 22a and 22b and the shunt resistor 22c are unitized as one SMR device 22.
  • the inter-system switches 31a and 31b and the shunt resistor 31c are unitized as one inter-system device 31.
  • the redundant power supply system includes a higher-level control circuit 50 (upper-level control unit) that commands the control content to the SW control circuit 40.
  • the upper control circuit 50 commands the operation of the inter-system SW and SMR based on the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the vehicle running state, the amount of power required by the load, and the like.
  • the SW control circuit 40 controls the operation of the inter-system SW and SMR according to the command of the host control circuit 50 (normal control).
  • the SW control circuit 40 When a ground fault abnormality or the like is detected, the SW control circuit 40 has priority over the command of the upper control circuit 50, and the SW control circuit 40 has an inter-system SW and SMR based on the acquired inter-system current value Iiso and discharge current value Ismr. Controls the operation of (control in case of abnormality).
  • the SMR In normal control, when the vehicle start switch is turned on, the SMR is turned on (energized) and the on operation is continued. However, when it is predicted that the sub-power supply B20 will fall into an over-discharged state, the SMR is turned off (cut-off operation) to prevent the sub-power supply B20 from being over-discharged. Further, when the sub power supply B20 is in an overheated state, the SMR is turned off to avoid thermal damage to the sub power supply B20. In this case, the power supply to the second loads L20 and L21 is supplied from the main system bus 10 through the intersystem bus 30. In the normal control of the inter-system SW, on operation and off operation are switched according to the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the load required electric energy, and the like.
  • the inter-system SW when charging the sub power supply B20, the inter-system SW is turned on to supply power from the main power supply B10 or the generator G10 to the sub power supply B20. Further, when the sub power source B20 is charged with the regenerative energy generated by the generator G10, the inter-system SW is turned on. Further, when power is supplied from the sub power source B20 to the main power source B10 to charge the main power source B10, the inter-system SW is turned on. Further, the operation of the inter-system SW is controlled so that the terminal voltage (main voltage) of the main power supply B10 becomes higher than the terminal voltage (sub-voltage) of the sub power supply B20. For example, when the sub voltage becomes higher than the main voltage, the inter-system SW is turned off so that the sub power supply B20 is not charged. In normal control, the inter-system SW may be always on.
  • the SW control circuit 40 and the upper control circuit 50 include, for example, a memory as a non-transitional and substantive storage medium in which software is temporarily recorded, a processor that executes the software, an input / output interface, and the like. It can be configured by a equipped microcomputer. Alternatively, these control circuits may be realized by a dedicated hardware logic circuit, or may be realized by a combination of a processor and one or more hardware logic circuits.
  • the upper control circuit 50 may be provided in an ECU different from the control unit (ECU) having the SW control circuit 40, or may be provided in a common ECU.
  • the ground fault occurs at the moment of the ground fault occurrence.
  • a large amount of current flows into the location. That is, a large current flows from the main power supply B10 to the ground fault portion through the main power supply side bus 10a, the inter-system bus 30 and the subload side bus 20b.
  • the voltage of the main system bus 10 is significantly lowered (abnormally low voltage state), and there is a concern that the first load may malfunction.
  • the ground fault occurs at the moment of the ground fault occurrence.
  • a large amount of current flows into the location. That is, a large current flows from the sub power supply B 20 to the ground fault portion through the sub power supply side bus 20a, the inter-system bus 30 and the main load side bus 10b.
  • the voltage of the sub system bus 20 is significantly lowered (abnormally low voltage state), and there is a concern that the second load may malfunction.
  • the inter-system SW is turned off when a ground fault is detected.
  • a ground fault occurs in the main system bus 10
  • the sub system bus 20 it is possible to prevent the sub system bus 20 from falling into an abnormally low voltage state.
  • a ground fault occurs in the sub system bus 20
  • the ON operation is continued. This is to continue the power supply from the sub power supply B20 to the second loads L20 and L21 during the period until the sub power supply B20 falls into the over-discharged state.
  • the SMR may be turned off as soon as the occurrence of a ground fault in the sub system bus 20 is detected.
  • This process starts execution when the SW control circuit 40 is activated, and is repeatedly executed at a predetermined cycle.
  • step S10 the operation of the inter-system SW and SMR is controlled according to the command of the host control circuit 50.
  • the SMR and the system-to-system SW are turned on (energized).
  • the sub power supply voltage Vs (second power supply voltage), which is the output voltage of the sub power supply B20 in consideration of the parasitic resistance RS of the sub power supply B20, is acquired.
  • the sub power supply voltage Vs corresponds to one of the second state values that correlates with the voltage (second supply voltage) supplied to the second loads L20 and L21.
  • the second state value corresponds to one of the system state values representing the state of the redundant power supply system at the normal time when no ground fault has occurred.
  • one of the states of the redundant power supply system is a deteriorated state of the sub power supply B20. As this deterioration progresses, the sub power supply voltage Vs decreases. Further, as the parasitic resistance RS increases, the sub power supply voltage Vs decreases.
  • the abnormality threshold value IsmrTH used in the determination in step S50 is set based on the sub power supply voltage Vs acquired in step S20. Specifically, the higher the sub power supply voltage Vs, the higher the abnormality threshold IsmrTH is set. For example, the abnormal threshold value IsmrTH is changed in proportion to the sub power supply voltage Vs. The abnormal threshold value IsmrTH is set to a positive value.
  • step S40 the discharge current value Ismr is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c.
  • step S50 it is determined whether or not the discharge current value Ismr detected in step S40 is larger than the abnormality threshold value IsmrTH set in step S30.
  • step S60 the inter-system SW is turned off regardless of the content of the command from the host control circuit 50.
  • the above-mentioned "ground fault abnormality" is not limited to the ground fault in the sub system bus 20 (see FIG. 1) and the ground fault in the main system bus 10 (see FIG. 2).
  • the discharge current value Ismr becomes larger than the abnormal threshold value IsmrTH.
  • the main power supply B10, the generator G10, the first load L10, L11, the second load L20, L21, or the like fails, the discharge current value Ismr can be larger than the abnormality threshold value IsmrTH.
  • step S60 When step S60 is executed, unless there is a trigger such as a reset signal, the interruption of the inter-system SW is latched regardless of the command content from the host control circuit 50. That is, the SW control circuit 40 continues to cut off the SW between the systems so that the power is not supplied by the command from the host control circuit 50.
  • a trigger such as a reset signal
  • the discharge current value Ismr becomes a negative value.
  • the abnormal threshold IsmrTH is set to a positive value in step S30. Therefore, when charging the sub power source B20, it is not determined in step S50 that the ground fault is abnormal.
  • step S40 corresponds to the "current acquisition unit” that acquires the discharge current value Ismr.
  • step S60 corresponds to a "cutoff control unit” that shuts off the inter-system SW when the discharge current value Ismr rises above the abnormal threshold value IsmrTH.
  • step S20 corresponds to a "state acquisition unit” that acquires the system state value of the redundant power supply system in the normal state.
  • step S30 corresponds to a "threshold value changing unit” that changes the abnormal threshold value IsmrTH according to the system state value.
  • the energization control device D includes an inter-system SW and a SW control circuit 40 (inter-system switch control unit).
  • the SW control circuit 40 has a current acquisition unit according to step S40, a cutoff control unit according to step S60, a state acquisition unit according to step S20, and a threshold value change unit according to step S30.
  • the response time from the timing when the ground fault actually occurs until the inter-system SW is cut off is long, there is a possibility that an abnormally low voltage state will occur. high.
  • the lower the sub power supply voltage Vs in the normal state the lower the abnormality threshold value IsmrTH is set. Therefore, the response time can be shortened, and the SW between systems can be quickly cut off, so that the possibility of load malfunction due to falling into an abnormally low voltage state can be reduced.
  • the higher the sub power supply voltage Vs in the normal state the higher the abnormality threshold IsmrTH is set. Therefore, it is possible to suppress erroneous detection of a ground fault, for example, the inrush current flowing at the start of the load exceeds the abnormal threshold value IsmrTH. As described above, according to the present embodiment, it is possible to achieve both the rapid shutoff of the SW between systems when a ground fault occurs and the suppression of false detection of the ground fault.
  • the state acquisition unit acquires a second state value (sub power supply voltage Vs) that correlates with the second supply voltage as one of the system state values.
  • the threshold value changing unit changes the abnormal threshold value IsmrTH to a higher value based on the sub power supply voltage Vs as the second supply voltage in the normal state is higher.
  • the time until the second supply voltage, which decreases with the occurrence of a ground fault, reaches the operation guarantee voltage of the second loads L20 and L21 is referred to as a response allowable time. This allowable response time is greatly affected by the second supply voltage at the time of the occurrence of the ground fault.
  • the abnormal threshold value IsmrTH is changed according to the second supply voltage at the normal time, the abnormal threshold value IsmrTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
  • the state acquisition unit acquires the sub power supply voltage Vs as one of the second state values.
  • the threshold value changing unit changes the abnormal threshold value IsmrTH to a higher value as the sub power supply voltage Vs increases.
  • the second supply voltage at the time of the occurrence of the ground fault is greatly affected by the sub power supply voltage Vs. Therefore, according to the present embodiment in which the abnormal threshold value IsmrTH is changed according to the sub power supply voltage Vs at the normal time, the abnormal threshold value IsmrTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
  • the current acquisition unit acquires the discharge current value Ismr, which is the magnitude of the current discharged from the sub power supply B20.
  • the cutoff control unit determines the presence or absence of a ground fault abnormality based on the discharge current value Ismr.
  • the ground fault may be erroneously detected as follows.
  • the presence or absence of a ground fault is determined based on the discharge current value Ismr, focusing on the following points. That is, the discharge current value Ismr becomes a negative value when it is desired to supply power from the main power source B10 or the generator G10 to the sub power source B20 to charge the sub power source B20. Therefore, when the sub power source B20 is charged, the discharge current value Ismr does not exceed the abnormal threshold value IsmrTH. On the other hand, when power is supplied from the sub power source B20 to the second loads L20 and L21, the value becomes a positive value.
  • the discharge current value Ismr rises and exceeds the abnormal threshold value IsmrTH. Therefore, according to the present embodiment, the direction of the discharge current value Ismr used for detecting the ground fault differs between when the sub power source B20 is charged and when the ground fault occurs. Therefore, even if the inter-system current value Iiso increases to the extent that it exceeds the abnormal threshold value IsmrTH as the sub power source B20 is charged, the concern that it may be erroneously detected as a ground fault can be reduced.
  • the main system bus 10 In a state where the redundant power supply system is mounted on an actual vehicle, the main system bus 10, the sub system bus 20, and the inter-system bus 30 have a predetermined physical length. Therefore, it can be said that these buses have equivalent series inductance (ESL) which is a parasitic inductance component.
  • ESL equivalent series inductance
  • FIG. 1 the inductance L1 related to the main side intersystem bus 30a and the inductance L2 related to the sub side intersystem bus 30b are shown.
  • the inter-system current value Iiso does not rise rapidly. Therefore, contrary to the present embodiment, if it is attempted to determine that a ground fault has occurred (ground fault abnormality) when the inter-system current value Iiso exceeds the abnormality threshold value IsmrTH, the ground fault detection is delayed. That is, the detection time from the time when the ground fault occurs to the time when the inter-system current value Iiso rises and reaches the abnormal threshold value IsmrTH becomes long, and the detection responsiveness is poor.
  • the discharge current value Ismr when a ground fault occurs in the sub power supply B20 rises rapidly without being greatly affected by the inductances L1 and L2. Therefore, according to the present embodiment in which the discharge current value Ismr is used for the ground fault detection, the ground fault generated by the sub power supply B20 can be detected more quickly than when the inter-system current value Iiso is used. If the ground fault can be detected quickly, the inter-system SW can be quickly shut off. Therefore, it is possible to quickly avoid a situation in which the voltage of both the main system bus 10 and the sub system bus 20 drops significantly. That is, it is possible to suppress the concern that both the first load and the second load will malfunction.
  • the ground fault when the ground fault is detected by the current value flowing through the redundant power supply system, the ground fault is detected by the discharge current value Ismr.
  • the ground fault is detected by the inter-system current value Iiso.
  • the abnormality threshold value IisoTH set for the inter-system current value Iiso is changed according to the system state value representing the state of the redundant power supply system. Specifically, the processing of steps S20, S30, S40, and S50 shown in FIG. 3 is changed to the processing of steps S20A, S30A, S40A, and S50A shown in FIG.
  • step S20A the main power supply voltage Vp (first power supply voltage), which is the output voltage of the main power supply B10 in consideration of the parasitic resistance RP of the main power supply B10, is acquired.
  • the main power supply voltage Vp corresponds to one of the first state values that correlates with the voltage (first supply voltage) supplied to the first loads L10 and L11.
  • the first state value corresponds to one of the system state values representing the state of the redundant power supply system at the normal time when no ground fault has occurred.
  • one of the states of the redundant power supply system is a deteriorated state of the main power supply B10. As this deterioration progresses, the main power supply voltage Vp decreases. Further, as the parasitic resistance RP increases, the main power supply voltage Vp decreases.
  • the abnormal threshold value IisoTH used in the determination in step S50A is set based on the main power supply voltage Vp acquired in step S20A. Specifically, the higher the main power supply voltage Vp, the higher the abnormality threshold value IisoTH is set. For example, the abnormal threshold value IisoTH is changed in proportion to the main power supply voltage Vp. The abnormal threshold value IisoTH is set to a positive value.
  • step S40A the inter-system current value Iiso is detected (acquired) based on the potential difference between both ends of the shunt resistor 31c.
  • step S50A it is determined whether or not the inter-system current value Iiso detected in step S40A is larger than the abnormality threshold value IisoTH set in step S30A.
  • the inter-system current value Iiso is larger than the abnormality threshold value IisoTH, it is considered that a ground fault abnormality has occurred, and the inter-system SW is turned off (cut off) in the following step S60.
  • the abnormal threshold value IisoTH used for ground fault determination is changed according to the system state value (main power supply voltage Vp).
  • the response time from the timing when the ground fault actually occurs until the inter-system SW is cut off is long, there is a possibility that an abnormally low voltage state will occur. high.
  • the lower the main power supply voltage Vp in the normal state the lower the abnormality threshold value IisoTH is set. Therefore, the response time can be shortened, and the SW between systems can be quickly cut off, so that the possibility of load malfunction due to falling into an abnormally low voltage state can be reduced.
  • the higher the main power supply voltage Vp in the normal state the higher the abnormal threshold value IisoTH is set. Therefore, it is possible to suppress erroneous detection of a ground fault, for example, the inrush current flowing when the load is started exceeds the abnormal threshold value IisoTH. As described above, according to the present embodiment, it is possible to achieve both the rapid shutoff of the SW between systems when a ground fault occurs and the suppression of false detection of the ground fault.
  • the state acquisition unit acquires the first state value (main power supply voltage Vp) that correlates with the first supply voltage as one of the system state values.
  • the threshold value changing unit changes the abnormal threshold value IisoTH to a higher value based on the main power supply voltage Vp as the first supply voltage in the normal state is higher.
  • the time until the first supply voltage, which decreases with the occurrence of a ground fault, reaches the operation guarantee voltage of the first loads L10 and L11 is referred to as a response allowable time. This allowable response time is greatly affected by the first supply voltage at the time of the occurrence of the ground fault.
  • the abnormal threshold value IisoTH is changed according to the first supply voltage in the normal state, the abnormal threshold value IisoTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
  • the state acquisition unit acquires the main power supply voltage Vp as one of the first state values.
  • the threshold value changing unit changes the abnormal threshold value IisoTH to a higher value as the main power supply voltage Vp is higher.
  • the first supply voltage at the time of the occurrence of the ground fault is greatly affected by the main power supply voltage Vp. Therefore, according to the present embodiment in which the abnormal threshold value IisoTH is changed according to the main power supply voltage Vp in the normal state, the abnormal threshold value IisoTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
  • the abnormality threshold value IisoTH may be changed according to the sub power supply voltage Vs instead of the main power supply voltage Vp. Further, in the first embodiment, the abnormality threshold value IsmrTH may be changed according to the main power supply voltage Vp instead of the sub power supply voltage Vs.
  • the sub power supply voltage Vs is acquired as the system state value
  • the main power supply voltage Vp is acquired as the system state value
  • seven kinds of values shown in FIG. 5 are acquired as system state values. These system state values include the sub power supply voltage Vs and the main power supply voltage Vp.
  • the parasitic resistance RP, RS, the discharge current value Ismr, the inter-system current value Iiso, and the power generation amount WH by the generator G10 are also included as the acquired system state values.
  • both the discharge current value Ismr and the inter-system current value Iiso are used as the current values used for short circuit detection. Then, the abnormal threshold value for each current value is changed according to the system state value.
  • the combination No. shown in FIG. 1 to 16 indicate a combination of seven kinds of system state values and two abnormal thresholds IsmrTH and IisoTH.
  • NO. In 1 it means that the higher the sub power supply voltage Vs, the higher the abnormal thresholds IsmrTH and IisoTH are set.
  • NO. In No. 5 the higher the main power supply voltage Vp, the higher the abnormal thresholds IsmrTH and IisoTH are set.
  • the abnormality threshold value is set higher as the system state value is a value that can lengthen the permissible response time.
  • the allowable response time is the time from the occurrence of the ground fault to the guaranteed operation voltage when the supply voltage to the load decreases due to the occurrence of the ground fault.
  • the abnormality threshold value is changed based on the combination of a plurality of types of system state values.
  • the abnormal threshold value is changed based on a combination of three types of sub power supply voltage Vs, parasitic resistance RS, and discharge current value Ismr.
  • a weight is set for each system state value, and the abnormality threshold value is changed based on the total value obtained by adding up the system state values in consideration of the weighting.
  • the weighting of the sub power supply voltage Vs is set to a value larger than other system state values. Therefore, in the example shown in FIG. 5, the abnormal threshold value is set high due to the influence of the high weighted sub-power supply voltage Vs despite the high parasitic resistance RS and low discharge current value Ismr. ..
  • an abnormal threshold value may be set by combining arbitrary state values among a plurality of types of system state values.
  • FIG. 6 shows a case where the sub power supply voltage Vs, the parasitic resistance RS of the sub power supply B20, and the discharge current value Ismr change as system state values.
  • the anomaly threshold IsmrTH set according to the table of FIG. 5 in response to these changes will change as shown in FIG.
  • the horizontal axis of FIG. 6 indicates the elapsed time
  • the reference numeral TYP in FIG. 6 indicates each system state value and a normal value for an abnormal threshold value.
  • the sub system voltage VsJB shown in FIG. 6 is the voltage at JB21 and corresponds to the second supply voltage supplied to the second loads L20 and L21.
  • the parasitic resistance RS and the discharge current value Ismr remain at the normal values, and the sub power supply voltage Vs changes to a value higher than the normal values. Therefore, the sub system voltage VsJB is higher than the normal value. This means that the permissible response time has become longer, and it means that it is effective to raise the abnormal threshold value IsmrTH to suppress false detection.
  • the sub power supply voltage Vs and the parasitic resistance RS remain at the normal values, and the discharge current value Ismr changes to a value lower than the normal value. Therefore, the sub system voltage VsJB is lower than the normal value. This means that the permissible response time has become shorter, and it is effective to lower the abnormal threshold value IsmrTH to quickly shut off the inter-system SW when a ground fault occurs. Based on this idea, during the period when the discharge current value Ismr in FIG. 6 is low, the combination NO. According to 12, the abnormal threshold value IsmrTH is set lower than the normal value.
  • the sub power supply voltage Vs and the parasitic resistance RS are higher than the normal values, and the discharge current value Ismr is changed to a value lower than the normal values. Therefore, the sub system voltage VsJB is higher than the normal value. This means that the permissible response time has become longer, and it means that it is effective to raise the abnormal threshold value IsmrTH to suppress false detection. Based on this idea, the combination NO. According to 15, the abnormal threshold value IsmrTH is set higher than the normal value.
  • FIG. 7 shows a case where the main power supply voltage Vp, the parasitic resistance RP of the main power supply B10, and the inter-system current value Iiso are changed as the system state values.
  • the abnormal threshold value IisoTH set according to the table of FIG. 5 in response to these changes will change as shown in FIG.
  • the horizontal axis of FIG. 7 indicates the elapsed time, and the reference numeral TYP in FIG. 7 indicates each system state value and a normal value for an abnormal threshold value.
  • the main system voltage VpJB shown in FIG. 7 is the voltage at JB11 and corresponds to the first supply voltage supplied to the first loads L10 and L11.
  • the parasitic resistance RP and the inter-system current value Iiso remain at the normal values, and the main power supply voltage Vp changes to a value higher than the normal values. Therefore, the main system voltage VpJB is higher than the normal value. This means that the permissible response time has become longer, and it means that it is effective to raise the abnormal threshold value IisoTH to suppress false detection. Based on this idea, during the period when the main power supply voltage Vp in FIG. 7 is high, the combination NO. According to 5, the abnormal threshold value IisoTH is set higher than the normal value.
  • the main power supply voltage Vp and the inter-system current value Iiso remain at the normal values, and the parasitic resistance RP changes to a value higher than the normal value. Therefore, the main system voltage VpJB is lower than the normal value. This means that the permissible response time has become shorter, and it is effective to lower the abnormal threshold value IisoTH to quickly shut off the inter-system SW when a ground fault occurs. Based on this idea, during the period when the parasitic resistance RP of FIG. 7 is high, the combination NO. According to No. 7, the abnormal threshold value IisoTH is set lower than the normal value.
  • the main power supply voltage Vp and the parasitic resistance RP remain at the normal values, and the inter-system current value Iiso changes to a value lower than the normal value. Therefore, the main system voltage VpJB is lower than the normal value. This means that the permissible response time has become shorter, and it is effective to lower the abnormal threshold value IisoTH to quickly shut off the inter-system SW when a ground fault occurs. Based on this idea, during the period when the inter-system current value Iiso in FIG. 7 is low, the combination NO. According to 10, the abnormal threshold value IisoTH is set lower than the normal value.
  • the solid line in FIG. 8 shows the time change of the discharge current value Ismr as the system state value
  • the alternate long and short dash line shows the time change of the abnormal threshold value IsmrTH.
  • the discharge current value Ismr temporarily rises due to the inrush current flowing with the start of the second load L20.
  • the combination NO. According to 11 and 12, the abnormal threshold value IsmrTH is changed as the discharge current value Ismr changes.
  • the abnormal threshold value IsmrTH is changed by delaying Ta for a predetermined time.
  • the value obtained by adding the predetermined value Ia to the discharge current value Ismr is set as the abnormal threshold value IsmrTH.
  • the abnormal threshold value IsmrTH is changed to I2 when a predetermined time Ta elapses from the time when the discharge current value Ismr becomes I1.
  • I2 is a value obtained by adding a predetermined value Ia to I1.
  • the dotted line in FIG. 8 shows the behavior of the discharge current value Ismr when a ground fault occurs.
  • the rate of increase of the discharge current value Ismr due to the occurrence of a ground fault is faster than the rate of increase of the inrush current.
  • the abnormal threshold value IsmrTH changes with a delay of Ta for a predetermined time. Therefore, when the response time Tb elapses from the time when the ground fault occurs, the discharge current value Ismr exceeds the abnormality threshold value IsmrTH, and it is determined in step S50 of FIG. 3 that the ground fault is abnormal.
  • the abnormal threshold value IsmrTH is set to a value THx larger than the maximum value of the inrush current.
  • the response time Tc from the time of occurrence of the ground fault to the determination of the ground fault abnormality is longer than the response time Tb according to the present embodiment. This means that the response time for detecting a ground fault abnormality can be shortened according to the present embodiment in which the abnormality threshold value IsmrTH is variably set.
  • the predetermined value Ia may be different depending on the value of the discharge current value Ismr. For example, the higher the discharge current value Ismr is, the smaller the predetermined value Ia may be, or conversely, the larger the predetermined value Ia may be.
  • the predetermined time Ta may be different depending on the value of the discharge current value Ismr. For example, the higher the discharge current value Ismr, the longer the predetermined time Ta may be, and conversely, the predetermined time Ta may be shortened.
  • the inter-system current value Iiso and the abnormal threshold value IisoTH as the system state values are also changed by delaying Ta for a predetermined time. Further, a value obtained by adding a predetermined value Ia to the inter-system current value Iiso is set as an abnormal threshold value IisoTH. Further, with respect to the system state values other than these current values, the abnormality threshold value may be changed by delaying Ta for a predetermined time with respect to the change of the system state value in the same manner as in FIG.
  • the abnormal thresholds IsmrTH and IisoTH are changed based on a plurality of types of system state values. Therefore, it is possible to achieve both the rapid shutoff of the SW between systems when a ground fault occurs and the suppression of false detection of the ground fault with higher accuracy.
  • the threshold value changing unit changes the abnormal threshold value to a higher value as the current value acquired by the current acquisition unit in the normal state is larger.
  • the larger the discharge current value Ismr the higher the abnormal threshold value IsmrTH is changed.
  • the larger the inter-system current value Iiso the higher the abnormal threshold value IisoTH is changed. It is highly possible that the longer the allowable response time is, the more current is flowing during normal operation. Therefore, according to the present embodiment in which the abnormality threshold value is increased as the current value is larger, both quick cutoff and false detection suppression can be realized with higher accuracy.
  • the state acquisition unit acquires the power generation amount WH by the generator G10 as one of the system state values.
  • the threshold value changing unit changes the abnormal threshold value to a higher value as the amount of power generation WH acquired by the state acquisition unit increases. The larger the amount of power generated WH in the normal state, the longer the allowable response time is likely to be. Therefore, according to the present embodiment in which the abnormality threshold value is increased as the amount of power generation WH is increased, both rapid shutoff and false detection suppression can be realized with higher accuracy.
  • the SW control circuit 40 includes a state detection unit 41, a threshold value change unit 42, a detection unit 43, and a drive unit 44.
  • the state detection unit 41 has a differential amplifier 41a that outputs an analog signal according to the difference between the acquired system state value and the reference value.
  • the threshold value changing unit 42 includes an AD converter 42a, a logic circuit 42b, and a DA converter 42c.
  • the AD converter 42a converts the analog signals output from the plurality of differential amplifiers 41a into digital signals and outputs them to the logic circuit 42b.
  • the logic circuit 42b sets an abnormality threshold value based on signals output from a plurality of AD converters 42a, that is, a plurality of types of system state values.
  • the system state values are simply expressed as “high” and “low”, but in the present embodiment, the degrees of "high” and “low” are finely divided into multiple stages. .. Then, an abnormality threshold value is set according to the divided system states.
  • the logic circuit 42b outputs the values of the set abnormal thresholds IsmrTH and IisoTH to the DA converter 42c.
  • the DA converter 42c converts the digital signals of the abnormal thresholds IsmrTH and IisoTH output from the logic circuit 42b into analog signals and outputs them to the detection unit 43.
  • the detection unit 43 includes comparators 43a and 43b and a logic circuit 43c.
  • the comparator 43a compares the detected inter-system current value Iiso with the abnormal threshold value IisoTH output from the threshold value changing unit 42.
  • the comparator 43a outputs an on signal when the inter-system current value Iiso is larger than the abnormality threshold value IisoTH.
  • the comparator 43b compares the detected discharge current value Ismr with the abnormal threshold value IsmrTH output from the threshold value changing unit 42.
  • the comparator 43b outputs an on signal when the discharge current value Ismr is larger than the abnormal threshold value IsmrTH.
  • the logic circuit 43c determines whether or not to shut off the inter-system SW based on the signals output from the two comparators 43a and 43b, and outputs a command signal. For example, when both the affirmative determination in step S50 of FIG. 3 and the affirmative determination in step S50A of FIG. 4 are made, a command signal for shutting off the inter-system SW is output. Alternatively, when either of these affirmative determinations is made, a command signal for shutting off the inter-system SW is output.
  • the drive unit 44 outputs a gate signal to the inter-system switches 31a and 31b according to the command signal output from the logic circuit 43c.
  • the state detection unit 41 has a backflow prevention switch 41b in addition to the differential amplifier 41a.
  • the backflow prevention switch 41b is connected between the differential amplifier 41a and the inter-system switches 31a and 31b.
  • the backflow prevention switch 41b is a MOSFET.
  • the anode side of the parasitic diode included in the MOSFET is connected to the source side of the inter-system switches 31a and 31b.
  • the cathode side of the parasitic diode is connected to the input side of the differential amplifier 41a.
  • the above concern is reduced by turning off the backflow prevention switch 41b when a negative surge occurs. That is, the backflow prevention switch 41b is controlled to always turn on when no ground fault has occurred and to turn off when a ground fault is detected. The backflow prevention switch 41b is turned off when the ground fault is detected before the inter-system SW is shut off.
  • the energization control device D includes a set of cutoff switches 12a and 12b provided on the main power supply side bus 10a (see FIG. 11).
  • one set of cutoff switches 12a and 12b may be referred to as SMR1
  • one set of cutoff switches 22a and 22b may be referred to as SMR2.
  • a shunt resistor 12c is connected to a portion of the main power supply side bus 10a between one set of cutoff switches 12a and 12b.
  • the cutoff switches 12a and 12b and the shunt resistor 12c are unitized as one SMR device 12.
  • the SW control circuit 40 detects the potential at both ends of the shunt resistor 12c and calculates the first discharge current value Ismr1 based on the potential difference between both ends.
  • the first discharge current value Ismr1 is defined as a positive value in the direction of discharge from the main power supply B10.
  • the discharge current value Ismr discharged from the sub power source B20 is referred to as the second discharge current value Ismr2.
  • the SW control circuit 40 controls the operation of the inter-system SW based on both the first discharge current value Ismr1 and the second discharge current value Ismr2. Specifically, the SW control circuit 40 detects (acquires) the second discharge current value Ismr2 based on the potential difference between both ends of the shunt resistor 22c. Further, the first discharge current value Ismr1 is detected (acquired) based on the potential difference between both ends of the shunt resistor 12c.
  • the SW control circuit 40 determines whether or not the detected second discharge current value Ismr2 is larger than the abnormal threshold value Ismr2TH (second abnormal threshold value). Further, it is determined whether or not the detected first discharge current value Ismr1 is larger than the abnormal threshold value Ismr1TH (first abnormal threshold value). Then, these abnormal thresholds Ismr1TH and Ismr2TH are changed according to the system state value in the same manner as in each of the above embodiments.
  • the energization control device D is the energization control device D shown in FIG. 1 provided with a case 60 (see FIG. 12).
  • the case 60 houses the SW control circuit 40, the inter-system SW, the SMR, and the shunt resistors 31c and 22c inside.
  • the energization control device D is formed as one current cutoff module.
  • a plurality of terminals 61, 62, 63 are attached to the case 60.
  • One end of the wiring connected to the sub power supply B20 is connected to the terminal 61.
  • One end of the wiring connected to the second loads L20 and L21 is connected to the terminal 62.
  • One end of the wiring connected to the first loads L10 and L11, the main power supply B10, and the generator G10 is connected to the terminal 63.
  • At least one of the sub power supply B20 and the upper control circuit 50 may be housed inside the case 60.
  • the housed power supply and the energization control device D provide a power supply unit.
  • the energization control device D shown in FIG. 11 may be provided with a case 60.
  • the case 60 houses the SW control circuit 40, the inter-system SW, SMR1, SMR2, and shunt resistors 31c, 22c, 12c inside.
  • the state acquisition unit may acquire the sub system voltage VsJB and the main system voltage VpJB as system state values.
  • the SW control circuit 40 may notify the host control circuit 50 that such an abnormality has occurred.
  • the SMR when a ground fault occurs in the sub system bus 20, in addition to the inter-system SW shut-off latch, the SMR may also be cut-off latched. Further, in each of the above embodiments, when a ground fault occurs in the main system bus 10, in addition to shutting off the inter-system SW, the SMR may be energized and latched.
  • the inter-system SW is shut off if the first discharge current value Ismr1 rises beyond the first threshold value.
  • the second discharge current value Ismr2 exceeds the second threshold value and the first discharge current value Ismr1 exceeds the first threshold value, it may be regarded as a ground fault abnormality and the inter-system SW may be shut off. ..
  • the generator G10 is connected to the main system bus 10. Therefore, the sub power supply B20 is configured to be rechargeable by the electric power supplied through the inter-system bus 30. On the other hand, the generator G10 may be connected to the sub system bus 20. Further, the generator G10 may be connected to the high potential side of the main power source B10 or the sub power source B20, or may be connected to the ground side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An energization control device is provided with an inter-system switch (inter-system SW) and a SW control circuit that is an inter-system switch control unit. The inter-system SW switches between conduction and cutoff of an electric current in an inter-system bus. The SW control circuit controls an operating state of the inter-system SW. The SW control circuit has a current acquisition unit (S40), a cutoff control unit (S60), a state acquisition unit (S20), and a threshold change unit (S30). The cutoff control unit deems that a ground fault abnormality has occurred and cuts off the inter-system SW when a current value Ismr acquired by the current acquisition unit rises above an abnormality threshold IsmrTH. The threshold change unit causes the abnormality threshold IsmrTH to be changed according to a sub-power supply voltage Vs (system state value) acquired by the state acquisition unit.

Description

通電制御装置および電源ユニットEnergization control device and power supply unit 関連出願の相互参照Cross-reference of related applications
 この出願は、2019年8月28日に日本に出願された特許出願第2019-156094号に基づくもので、ここにその記載内容を援用する This application is based on Patent Application No. 2019-156094 filed in Japan on August 28, 2019, and the description thereof is incorporated herein by reference.
 この明細書における開示は、車両に搭載される通電制御装置および電源ユニットに関する。 The disclosure in this specification relates to an energization control device and a power supply unit mounted on a vehicle.
 特許文献1に記載の冗長化システムでは、車両に搭載された負荷群に対して、2つのバッテリのいずれからも電力供給可能にすることで、給電の冗長化が図られている。この冗長化システムは、第1系統バス、第2系統バスおよび系統間バスを備える。第1系統バスは、第1バッテリから供給される電力を第1負荷へ送電する。第2系統バスは、第2電源から供給される電力を第2負荷へ送電する。系統間バスは、第1系統バスと第2系統バスとを電気的に接続する。 In the redundancy system described in Patent Document 1, power supply can be made redundant by making it possible to supply electric power from either of the two batteries to the load group mounted on the vehicle. This redundant system includes a first system bus, a second system bus, and an intersystem bus. The first system bus transmits the electric power supplied from the first battery to the first load. The second system bus transmits the electric power supplied from the second power source to the second load. The inter-system bus electrically connects the first system bus and the second system bus.
 このような冗長化システムでは、2つの系統バスのいずれで地絡が生じた場合であっても、第1および第2系統バスの両方ともが大きく電圧低下する。この場合、第1および第2負荷の両方ともが作動不良に陥る懸念がある。この懸念に対し、上記系統間バスには、電流の通電と遮断を切り替える系統間スイッチが設けられている。そして、地絡が生じていない正常時には、系統間スイッチを通電状態にすることで、冗長化機能を発揮させる。一方、系統間バスを流れる電流が閾値を超えて上昇した場合には、地絡異常が生じているとみなして系統間スイッチを遮断状態にする。これにより、第1および第2系統バスの両方ともが、作動不良を生じさせるような大幅な電圧低下の状態(異常低電圧状態)に陥るおそれを低減させている。 In such a redundant system, even if a ground fault occurs in either of the two system buses, the voltage of both the first system bus and the second system bus drops significantly. In this case, there is a concern that both the first and second loads may malfunction. In response to this concern, the inter-system bus is provided with an inter-system switch for switching between energization and interruption of current. Then, in the normal state where no ground fault has occurred, the inter-system switch is turned on to exert the redundancy function. On the other hand, when the current flowing through the inter-system bus rises beyond the threshold value, it is considered that a ground fault has occurred and the inter-system switch is shut off. As a result, both the first and second system buses reduce the possibility of falling into a state of a large voltage drop (abnormally low voltage state) that causes a malfunction.
特許第6432355号公報Japanese Patent No. 6432355
 さて、上記閾値を過剰に高い値に設定すると、実際に地絡異常が生じたタイミングから系統間スイッチが遮断されるまでの応答時間が長くなる。そうすると、その応答時間で生じる系統バスの電圧低下が大きくなり、遮断が間に合わずに作動不良に陥る懸念がある。その一方で、上記閾値を過剰に小さい値に設定すると、例えば負荷の始動時に流れる突入電流が閾値を超えてしまう等、地絡を誤検知して系統間スイッチを遮断する懸念がある。 By the way, if the above threshold value is set to an excessively high value, the response time from the timing when the ground fault actually occurs until the inter-system switch is shut off becomes long. Then, the voltage drop of the system bus caused by the response time becomes large, and there is a concern that the shutoff may not be in time and the operation may malfunction. On the other hand, if the threshold value is set to an excessively small value, there is a concern that a ground fault may be erroneously detected and the inter-system switch may be shut off, for example, the inrush current flowing at the start of the load may exceed the threshold value.
 開示される1つの目的は、地絡発生を検知したら系統間スイッチを遮断するにあたり、迅速な遮断と誤検知抑制の両立を図った通電制御装置を提供することである。 One purpose to be disclosed is to provide an energization control device that achieves both quick shutoff and suppression of false detection when shutting off the switch between systems when a ground fault occurs.
 上記目的を達成するため、開示された1つの態様は、
 第1電源から供給される電力を第1負荷へ送電する第1系統バスと、
 第2電源から供給される電力を第2負荷へ送電する第2系統バスと、
 第1系統バスと第2系統バスとを電気的に接続する系統間バスと、
を備える車両用の冗長電源システムに適用された通電制御装置において、
 系統間バスにおける電流の通電と遮断を切り替える系統間スイッチと、
 系統間スイッチの作動状態を制御する系統間スイッチ制御部と、
を備え、
 系統間スイッチ制御部は、
 冗長電源システムを流れる電流値を取得する電流取得部と、
 電流取得部により取得された電流値が異常閾値を超えて上昇した場合に、地絡異常が生じているとみなして系統間スイッチを遮断状態に制御する遮断制御部と、
 地絡異常とみなされていない正常時における、冗長電源システムの状態を表すシステム状態値を取得する状態取得部と、
 状態取得部により取得されたシステム状態値に応じて異常閾値を変更させる閾値変更部とを有する、通電制御装置とされる。
In order to achieve the above object, one aspect disclosed is
The first system bus that transmits the power supplied from the first power supply to the first load, and
The second system bus that transmits the power supplied from the second power supply to the second load, and
An inter-system bus that electrically connects the first system bus and the second system bus,
In the energization control device applied to the redundant power supply system for vehicles equipped with
An inter-system switch that switches between energizing and shutting off current in the inter-system bus,
An inter-system switch control unit that controls the operating state of the inter-system switch,
With
The inter-system switch control unit
A current acquisition unit that acquires the current value flowing through the redundant power supply system,
When the current value acquired by the current acquisition unit rises above the abnormal threshold value, it is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state.
A status acquisition unit that acquires the system status value that represents the status of the redundant power supply system during normal operation, which is not considered to be a ground fault abnormality.
It is an energization control device having a threshold value changing unit that changes an abnormal threshold value according to a system state value acquired by the state acquisition unit.
 上記通電制御装置によると、冗長電源システムを流れる電流値が異常閾値を超えて上昇した場合に、地絡異常が生じているとみなして系統間スイッチを遮断状態に制御する。そのため、第1および第2系統バスの両方ともが、作動不良を生じさせるような大幅な電圧低下の状態(異常低電圧状態)に陥るおそれを低減できる。 According to the above-mentioned energization control device, when the current value flowing through the redundant power supply system rises beyond the abnormality threshold value, it is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state. Therefore, it is possible to reduce the possibility that both the first and second system buses fall into a state of a large voltage drop (abnormally low voltage state) that causes a malfunction.
 そして、地絡異常の検知に用いられる異常閾値は、正常時における冗長電源システムの状態値(システム状態値)に応じて変更される。そのため、実際に地絡異常が生じたタイミングから系統間スイッチが遮断されるまでの応答時間が長くても、異常低電圧状態に陥らないようなシステム状態値である場合には、異常閾値を高い値に設定できる。これにより、誤検知抑制を図ることができる。その一方で、上記応答時間が長いと異常低電圧状態に陥る蓋然性が高いようなシステム状態値である場合には、異常閾値を低い値に設定できる。これにより、迅速な遮断を実現でき、負荷の作動不良発生のおそれを低減できる。つまり、迅速な遮断と誤検知抑制の両立を図ることができる。 Then, the abnormality threshold value used for detecting the ground fault abnormality is changed according to the state value (system state value) of the redundant power supply system at the normal time. Therefore, even if the response time from the timing when the ground fault actually occurs to the time when the inter-system switch is shut off is long, if the system state value does not cause an abnormally low voltage state, the abnormality threshold is set high. Can be set to a value. As a result, false detection can be suppressed. On the other hand, if the system state value has a high probability of falling into an abnormally low voltage state when the response time is long, the abnormality threshold value can be set to a low value. As a result, quick shutoff can be realized, and the risk of load malfunction can be reduced. That is, it is possible to achieve both quick shutoff and suppression of false positives.
 尚、請求の範囲に記載した括弧内の参照番号は、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、技術的範囲を何ら制限するものではない。 Note that the reference numbers in parentheses described in the claims merely indicate an example of the correspondence with the specific configuration in the embodiment described later, and do not limit the technical scope at all.
第1実施形態に係る冗長電源システム全体の概略を示す構成図であって、サブ系統バスで地絡が生じた場合の作動を示す図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 1st Embodiment, and is the figure which shows the operation when the ground fault occurs in the sub system bus. 第1実施形態において、メイン系統バスで地絡が生じた場合の作動を示す構成図である。It is a block diagram which shows the operation when the ground fault occurs in the main system bus in 1st Embodiment. 第1実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the first embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第2実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the second embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第3実施形態において、複数種類のシステム状態値の組み合わせと閾値との関係を示す図である。In the third embodiment, it is a figure which shows the relationship between the combination of a plurality of kinds of system state values and a threshold value. 第3実施形態において、複数種類のシステム状態値の時間変化と、異常閾値IsmrTHの時間変化との対応関係の一例を示すタイムチャートである。In the third embodiment, it is a time chart showing an example of the correspondence relationship between the time change of a plurality of types of system state values and the time change of the abnormality threshold value IsmrTH. 第3実施形態において、複数種類のシステム状態値の時間変化と、異常閾値IisoTHの時間変化との対応関係の一例を示すタイムチャートである。In the third embodiment, it is a time chart showing an example of the correspondence relationship between the time change of a plurality of types of system state values and the time change of the abnormality threshold value IisoTH. 第3実施形態において、放電電流値Ismrの時間変化と異常閾値IsmrTHの時間変化との対応関係の一例を示すタイムチャートである。In the third embodiment, it is a time chart showing an example of the correspondence relationship between the time change of the discharge current value Ismr and the time change of the abnormal threshold value IsmrTH. 第4実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 4th Embodiment. 第5実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 5th Embodiment. 第6実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 6th Embodiment. 第7実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 7th Embodiment.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In addition, duplicate description may be omitted by assigning the same reference numerals to the corresponding components in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other parts of the configuration.
 (第1実施形態)
 図1に示す本実施形態では、通電制御装置Dが、車両用の冗長電源システムに適用された例について説明する。ただし、通電制御装置Dは、車両用以外の冗長電源システムに適用することも可能である。
(First Embodiment)
In the present embodiment shown in FIG. 1, an example in which the energization control device D is applied to a redundant power supply system for a vehicle will be described. However, the energization control device D can also be applied to a redundant power supply system other than that for vehicles.
 図1に示す冗長電源システムは、車両に搭載された第1電源および第2電源として、メイン電源B10およびサブ電源B20を備えている。図1では、1つのメイン電源B10と1つのサブ電源B20しか示していないが、車載電源として、複数のメイン電源B10、および/または複数のサブ電源B20を設けてもよい。 The redundant power supply system shown in FIG. 1 includes a main power supply B10 and a sub power supply B20 as a first power supply and a second power supply mounted on the vehicle. Although only one main power supply B10 and one sub power supply B20 are shown in FIG. 1, a plurality of main power supplies B10 and / or a plurality of sub power supplies B20 may be provided as vehicle-mounted power supplies.
 これらのメイン電源B10およびサブ電源B20は、例えば約12Vの電圧を発生する二次電池である。メイン電源B10の充電容量はサブ電源B20の充電容量より大きい。サブ電源B20のエネルギ密度はメイン電源B10のエネルギ密度より大きい。例えば、メイン電源B10には鉛蓄電池が用いられ、サブ電源B20にはリチウムイオン電池が用いられている。 These main power supply B10 and sub power supply B20 are secondary batteries that generate a voltage of, for example, about 12V. The charging capacity of the main power supply B10 is larger than the charging capacity of the sub power supply B20. The energy density of the sub power supply B20 is higher than the energy density of the main power supply B10. For example, a lead storage battery is used for the main power supply B10, and a lithium ion battery is used for the sub power supply B20.
 さらに冗長電源システムは、メイン系統バス10(第1系統バス)、サブ系統バス20(第2系統バス)および系統間バス30を備えている。メイン系統バス10は、メイン電源B10から供給される電力を第1負荷L10、L11へ送電する。サブ系統バス20は、サブ電源B20から供給される電力を第2負荷L20、L21へ送電する。系統間バス30は、メイン系統バス10とサブ系統バス20とを電気的に接続する。 Further, the redundant power supply system includes a main system bus 10 (first system bus), a sub system bus 20 (second system bus), and an inter-system bus 30. The main system bus 10 transmits the electric power supplied from the main power source B10 to the first loads L10 and L11. The sub system bus 20 transmits the electric power supplied from the sub power source B20 to the second loads L20 and L21. The inter-system bus 30 electrically connects the main system bus 10 and the sub-system bus 20.
 具体的には、系統間バス30の一端がメイン系統のジャンクションボックス(JB11)に接続され、系統間バス30の他端がサブ系統のジャンクションボックス(JB21)に接続されている。 Specifically, one end of the inter-system bus 30 is connected to the junction box (JB11) of the main system, and the other end of the inter-system bus 30 is connected to the junction box (JB21) of the sub system.
 以下の説明では、メイン系統バス10のうち、JB11とメイン電源B10とを接続するバスをメイン電源側バス10aと呼び、JB11と第1負荷L10、L11とを接続するバスをメイン負荷側バス10bと呼ぶ。サブ系統バス20のうち、JB21とサブ電源B20とを接続するバスをサブ電源側バス20aと呼び、JB21と第2負荷L20、L21とを接続するバスをサブ負荷側バス20bと呼ぶ。系統間バス30のうち、後述する系統間スイッチ31aとJB11とを接続するバスをメイン側系統間バス30aと呼ぶ。系統間バス30のうち、後述する系統間スイッチ31bとJB21とを接続するバスをサブ側系統間バス30bと呼ぶ。JB11は、メイン系統バス10のうちのメイン電源B10と第1負荷の間に位置する第1ノードに相当する。JB21は、サブ系統バス20のうちのサブ電源B20と第2負荷の間に位置する第2ノードに相当する。 In the following description, among the main system buses 10, the bus that connects JB11 and the main power supply B10 is called the main power supply side bus 10a, and the bus that connects JB11 and the first loads L10 and L11 is the main load side bus 10b. Called. Among the sub system buses 20, the bus connecting the JB 21 and the sub power supply B20 is called the sub power supply side bus 20a, and the bus connecting the JB 21 with the second loads L20 and L21 is called the sub load side bus 20b. Of the inter-system buses 30, the bus that connects the inter-system switch 31a and JB11, which will be described later, is called the main inter-system bus 30a. Of the inter-system buses 30, the bus that connects the inter-system switch 31b and JB21, which will be described later, is called the sub-side inter-system bus 30b. The JB 11 corresponds to the first node located between the main power supply B10 and the first load in the main system bus 10. The JB 21 corresponds to a second node located between the sub power supply B20 and the second load in the sub system bus 20.
 メイン系統バス10には、JB11を介して発電機G10(オルタネータ)が接続されている。発電機G10から出力される電力は、メイン電源B10への充電、サブ電源B20への充電、第1負荷L10、L11および第2負荷L20、L21への供給等に用いられる。また、系統間バス30を介してメイン電源B10からサブ電源B20への充電も可能である。系統間バス30を介してサブ電源B20からメイン電源B10への充電も可能である。 A generator G10 (alternator) is connected to the main system bus 10 via JB11. The electric power output from the generator G10 is used for charging the main power source B10, charging the sub power source B20, supplying the first loads L10 and L11 and the second loads L20 and L21. It is also possible to charge the sub power source B20 from the main power source B10 via the inter-system bus 30. It is also possible to charge the main power supply B10 from the sub power supply B20 via the inter-system bus 30.
 なお、動力源としてエンジンと駆動モータを有するハイブリッド車両や、動力源として駆動モータを有する電気車両の場合には、駆動モータの電源として高圧電源を有している場合がある。その高圧電源の電圧をDC-DCコンバータによって降圧してメイン電源B10等を充電可能に構成してもよい。 In the case of a hybrid vehicle having an engine and a drive motor as a power source, or an electric vehicle having a drive motor as a power source, a high-voltage power source may be provided as a power source for the drive motor. The voltage of the high-voltage power supply may be stepped down by a DC-DC converter so that the main power supply B10 or the like can be charged.
 さらに冗長電源システムは、系統間バス30に設けられた1セットの系統間スイッチ31a、31bを備える。1セットの系統間スイッチ31a、31bは、それぞれ、MOSFETからなる半導体スイッチング素子によって構成される。MOSFETは、その構造上、ドレインーソース間にボディダイオード(寄生ダイオード)が形成される。このため、MOSFETを遮断しても、ボディダイオードを介して電流が流れるので、1つのMOSFETだけでは、双方向の電流を遮断することができない。冗長電源システムでは、メイン系統バス10とサブ系統バス20との間で双方向に電流が流れる可能性がある。そのため、本実施形態では、ボディダイオードの順方向となる向きを互いに逆方向とした1対のMOSFETを、1セットの系統間スイッチ31a、31bとして採用している。これにより、電源失陥が生じたときに、1セットの系統間スイッチ31a、31bをともに遮断状態とすることで、電流の流れる方向によらず、電流を完全に遮断することができる。 Further, the redundant power supply system includes a set of inter-system switches 31a and 31b provided on the inter-system bus 30. Each of the set of inter-system switches 31a and 31b is composed of a semiconductor switching element made of MOSFET. Due to the structure of MOSFET, a body diode (parasitic diode) is formed between drain and source. Therefore, even if the MOSFET is cut off, the current flows through the body diode, so that the bidirectional current cannot be cut off with only one MOSFET. In a redundant power supply system, current may flow in both directions between the main system bus 10 and the sub system bus 20. Therefore, in the present embodiment, a pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of inter-system switches 31a and 31b. As a result, when a power failure occurs, one set of inter-system switches 31a and 31b are both cut off, so that the current can be completely cut off regardless of the direction in which the current flows.
 さらに冗長電源システムは、サブ電源側バス20aに設けられた1セットの遮断スイッチ22a、22bを備える。1セットの遮断スイッチ22a、22bは、それぞれ、MOSFETからなる半導体スイッチング素子によって構成される。ボディダイオードの順方向となる向きを互いに逆方向とした1対のMOSFETを、1セットの遮断スイッチ22a、22bとして採用している。 Further, the redundant power supply system includes a set of cutoff switches 22a and 22b provided on the sub power supply side bus 20a. Each of the set of cutoff switches 22a and 22b is composed of a semiconductor switching element made of MOSFET. A pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of cutoff switches 22a and 22b.
 以下の説明では、1セットの系統間スイッチ31a、31bや1セットの遮断スイッチ22a、22bのことを、単に系統間SWやシステムメインリレー(SMR)と記載する場合がある。なお、系統間SWやSMRとして、MOSFETに限らず、他の半導体スイッチング素子を採用してもよい。この際、いわゆるIGBTなどボディダイオードが存在しない半導体スイッチング素子を採用する場合には、その半導体スイッチング素子単独で系統間SWやSMRとして用いることが可能である。なお、図1には、1セットの系統間スイッチ31a、31bや1セットの遮断スイッチ22a、22bしか図示していないが、これらのスイッチのセットを複数設けてもよい。 In the following description, one set of inter-system switches 31a and 31b and one set of cut- off switches 22a and 22b may be simply referred to as inter-system SW and system main relay (SMR). The inter-system SW and SMR are not limited to MOSFETs, and other semiconductor switching elements may be used. At this time, when a semiconductor switching element such as a so-called IGBT in which a body diode does not exist is adopted, the semiconductor switching element alone can be used as an inter-system SW or SMR. Although only one set of intersystem switches 31a and 31b and one set of cutoff switches 22a and 22b are shown in FIG. 1, a plurality of sets of these switches may be provided.
 上述した通り、冗長電源システムは、メイン電源B10およびサブ電源B20のように複数の電源を設けている。その理由は、1つの電源から電力供給できなくなった場合でも、残りの電源で電力供給可能にすることで、車載負荷が動作不能に陥ることを回避するためである。電力供給不可の具体例としては、電源自体が故障した場合や、各バスやジャンクションボックス等の電気配線経路のいずれかの箇所で地絡が生じた場合等が挙げられる。 As described above, the redundant power supply system is provided with a plurality of power supplies such as the main power supply B10 and the sub power supply B20. The reason is that even if power cannot be supplied from one power source, power can be supplied from the remaining power sources to prevent the in-vehicle load from becoming inoperable. Specific examples of the inability to supply power include the case where the power supply itself fails, the case where a ground fault occurs at any part of the electrical wiring path such as each bus or junction box, and the like.
 上記車載負荷は、先述した第1負荷L10、L11および第2負荷L20、L21に相当する。車載負荷には、一般負荷と重要負荷に分類される。これら2種類の負荷は、メイン負荷側バス10bとサブ負荷側バス20bの各々に接続されている。 The in-vehicle load corresponds to the first loads L10 and L11 and the second loads L20 and L21 described above. In-vehicle loads are classified into general loads and important loads. These two types of loads are connected to each of the main load side bus 10b and the sub load side bus 20b.
 一般負荷L10、L20は、電源失陥時に最悪動作を停止しても車両の走行には影響度の少ない負荷である。一般負荷L10、L20の具体例としては、パワーウインドウやラジエータ冷却用の電動ファン、オーディオ機器、車室内を空調する装置等が挙げられる。 The general loads L10 and L20 are loads that have little influence on the running of the vehicle even if the worst operation is stopped when the power supply fails. Specific examples of the general loads L10 and L20 include a power window, an electric fan for cooling the radiator, an audio device, a device for air-conditioning the vehicle interior, and the like.
 重要負荷L11、L21は、メイン電源B10およびサブ電源B20の一方が失陥し、かつ、系統間SWをオフ作動(遮断作動)させた時にも動作を継続させる必要のある負荷である。重要負荷L11、L21の具体例としては、走行用の駆動モータ、ブレーキ装置、パワーステアリング装置等が挙げられる。1対の重要負荷L11、L21は、完全冗長パワーステアリングのように1つのコンポーネントで冗長化しているものでも、車両前方監視を目的としたカメラと測距装置のように同等機能を持つ異なる形式の機器で実現する組み合わせでも可能である。そして、一方の重要負荷L11がメイン負荷側バス10bに接続され、他方の重要負荷L21がサブ負荷側バス20bに接続されることで、電源の冗長性が確保されている。 The important loads L11 and L21 are loads that need to be continued even when one of the main power supply B10 and the sub power supply B20 fails and the inter-system SW is turned off (cut off). Specific examples of the important loads L11 and L21 include a drive motor for traveling, a braking device, a power steering device, and the like. A pair of important loads L11 and L21 have different types of functions such as a camera and a distance measuring device for monitoring the front of a vehicle, even if they are made redundant by one component such as completely redundant power steering. It is also possible to use a combination realized by the device. Then, one important load L11 is connected to the main load side bus 10b, and the other important load L21 is connected to the sub load side bus 20b, so that the redundancy of the power supply is ensured.
 例えば、図1に例示するようにサブ系統バス20が地絡した場合、系統間SWを導通状態から遮断状態に切り替えることにより、メイン電源B10から第1負荷L10、L11への電力供給は正常に継続することができる。これにより、例えば、重要負荷L11、L21が、車両走行に必要なコンポーネントである場合にサブ系統バス20で地絡が生じると、以下のように作動する。すなわち、サブ系統バス20から重要負荷L21への電力供給ができなくなるものの、メイン系統バス10から重要負荷L11へ電力供給を継続できるので走行を継続できる。 For example, when the sub system bus 20 has a ground fault as illustrated in FIG. 1, the power supply from the main power supply B10 to the first loads L10 and L11 is normally performed by switching the inter-system SW from the conductive state to the cutoff state. You can continue. As a result, for example, when the important loads L11 and L21 are components necessary for vehicle traveling and a ground fault occurs in the sub system bus 20, the operation is as follows. That is, although the sub system bus 20 cannot supply power to the important load L21, the main system bus 10 can continue to supply power to the important load L11, so that the traveling can be continued.
 さらに冗長電源システムは、系統間SWおよびSMRの作動を制御するスイッチ制御回路(SW制御回路40)を備える。系統間SWを制御している時のSW制御回路40は「電源スイッチ制御部」に相当し、SMRを制御している時のSW制御回路40は「系統間スイッチ制御部」に相当する。 Further, the redundant power supply system includes a switch control circuit (SW control circuit 40) that controls the operation of the inter-system SW and SMR. The SW control circuit 40 when controlling the inter-system SW corresponds to the "power switch control unit", and the SW control circuit 40 when controlling the SMR corresponds to the "inter-system switch control unit".
 SW制御回路40は、系統間SWを流れる電流の大きさである系統間電流値Iisoと、サブ電源B20から放電される電流の大きさである放電電流値Ismrを取得する。電流値取得の具体的な手法を説明すると、系統間バス30のうち、1セットの系統間スイッチ31a、31bの間の部分には、シャント抵抗31cが接続されている。また、サブ電源側バス20aのうち、1セットの遮断スイッチ22a、22bの間の部分には、シャント抵抗22cが接続されている。そして、SW制御回路40は、これらシャント抵抗22c、31cの両端電位を検出し、両端電位差に基づき系統間電流値Iisoと放電電流値Ismrを算出する。 The SW control circuit 40 acquires the inter-system current value Iiso, which is the magnitude of the current flowing through the inter-system SW, and the discharge current value Ismr, which is the magnitude of the current discharged from the sub power supply B20. Explaining a specific method for acquiring the current value, a shunt resistor 31c is connected to a portion of the inter-system bus 30 between one set of inter-system switches 31a and 31b. Further, a shunt resistor 22c is connected to a portion of the sub power supply side bus 20a between one set of cutoff switches 22a and 22b. Then, the SW control circuit 40 detects the potentials across the shunt resistors 22c and 31c, and calculates the inter-system current value Iiso and the discharge current value Ismr based on the potential difference between the two ends.
 なお、系統間電流値Iisoは、系統間バス30を通じてメイン系統バス10の側からサブ系統バス20の側へ電流が流れる向きを正の値として定義される。放電電流値Ismrは、サブ電源B20から放電される向きを正の値として定義される。また、遮断スイッチ22a、22bおよびシャント抵抗22cは、1つのSMR装置22としてユニット化されている。また、系統間スイッチ31a、31bおよびシャント抵抗31cは、1つの系統間装置31としてユニット化されている。 The inter-system current value Iiso is defined as a positive value in the direction in which the current flows from the side of the main system bus 10 to the side of the sub-system bus 20 through the inter-system bus 30. The discharge current value Ismr is defined as a positive value in the direction of discharge from the sub power supply B20. Further, the cutoff switches 22a and 22b and the shunt resistor 22c are unitized as one SMR device 22. Further, the inter-system switches 31a and 31b and the shunt resistor 31c are unitized as one inter-system device 31.
 さらに冗長電源システムは、SW制御回路40へ制御内容を指令する上位制御回路50(上位制御部)を備える。上位制御回路50は、メイン電源B10やサブ電源B20の充電状態、発電機G10の発電状態、車両走行状態、負荷が要求する電力量等に基づき、系統間SWおよびSMRの作動を指令する。SW制御回路40は、地絡等の異常が検知されていない場合には、上位制御回路50の指令に従って系統間SWおよびSMRの作動を制御(正常時制御)する。地絡異常等が検知されている場合には、上位制御回路50の指令よりも優先して、SW制御回路40は、取得した系統間電流値Iisoおよび放電電流値Ismrに基づき系統間SWおよびSMRの作動を制御(異常時制御)する。 Further, the redundant power supply system includes a higher-level control circuit 50 (upper-level control unit) that commands the control content to the SW control circuit 40. The upper control circuit 50 commands the operation of the inter-system SW and SMR based on the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the vehicle running state, the amount of power required by the load, and the like. When an abnormality such as a ground fault is not detected, the SW control circuit 40 controls the operation of the inter-system SW and SMR according to the command of the host control circuit 50 (normal control). When a ground fault abnormality or the like is detected, the SW control circuit 40 has priority over the command of the upper control circuit 50, and the SW control circuit 40 has an inter-system SW and SMR based on the acquired inter-system current value Iiso and discharge current value Ismr. Controls the operation of (control in case of abnormality).
 正常時制御では、車両の起動スイッチがオン操作されるとSMRをオン作動(通電作動)させ、そのオン作動を継続させる。但し、サブ電源B20が過放電状態に陥ることを予測した場合には、SMRをオフ作動(遮断作動)させて、サブ電源B20の過放電を予防する。また、サブ電源B20が過昇温状態になっている場合には、SMRをオフ作動させて、サブ電源B20の熱損傷回避を図る。この場合、第2負荷L20、L21への電力供給は、系統間バス30を通じてメイン系統バス10から賄われる。系統間SWについての正常時制御では、メイン電源B10やサブ電源B20の充電状態、発電機G10の発電状態、負荷要求電力量等に応じてオン作動とオフ作動が切り替えられる。 In normal control, when the vehicle start switch is turned on, the SMR is turned on (energized) and the on operation is continued. However, when it is predicted that the sub-power supply B20 will fall into an over-discharged state, the SMR is turned off (cut-off operation) to prevent the sub-power supply B20 from being over-discharged. Further, when the sub power supply B20 is in an overheated state, the SMR is turned off to avoid thermal damage to the sub power supply B20. In this case, the power supply to the second loads L20 and L21 is supplied from the main system bus 10 through the intersystem bus 30. In the normal control of the inter-system SW, on operation and off operation are switched according to the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the load required electric energy, and the like.
 例えば、サブ電源B20に充電させる場合には、系統間SWをオン作動させて、メイン電源B10または発電機G10からサブ電源B20へ電力供給させる。また、発電機G10で生じた回生エネルギをサブ電源B20に充電させる場合には、系統間SWをオン作動させる。また、サブ電源B20からメイン電源B10へ電力供給してメイン電源B10を充電させる場合には、系統間SWをオン作動させる。また、メイン電源B10の端子電圧(メイン電圧)がサブ電源B20の端子電圧(サブ電圧)より高くなるように系統間SWの作動を制御する。例えば、サブ電圧がメイン電圧より高くなった場合には、系統間SWをオフ作動させて、サブ電源B20に充電されないようにする。なお、正常時制御において、系統間SWを常時オン作動させておいてもよい。 For example, when charging the sub power supply B20, the inter-system SW is turned on to supply power from the main power supply B10 or the generator G10 to the sub power supply B20. Further, when the sub power source B20 is charged with the regenerative energy generated by the generator G10, the inter-system SW is turned on. Further, when power is supplied from the sub power source B20 to the main power source B10 to charge the main power source B10, the inter-system SW is turned on. Further, the operation of the inter-system SW is controlled so that the terminal voltage (main voltage) of the main power supply B10 becomes higher than the terminal voltage (sub-voltage) of the sub power supply B20. For example, when the sub voltage becomes higher than the main voltage, the inter-system SW is turned off so that the sub power supply B20 is not charged. In normal control, the inter-system SW may be always on.
 なお、SW制御回路40および上位制御回路50は、例えば、ソフトウエアを非一時的に記録した非遷移的かつ実体的な記憶媒体としてのメモリ、ソフトウエアを実行するプロセッサ、および入出力インターフェースなどを備えたマイクロコンピュータによって構成することができる。或いは、これらの制御回路は、専用ハードウエア論理回路により実現されてもよいし、プロセッサと一つ以上のハードウエア論理回路との組み合わせにより実現されてもよい。上位制御回路50は、SW制御回路40を有する制御ユニット(ECU)とは別のECUに設けられていてもよいし、共通のECUに設けられていてもよい。 The SW control circuit 40 and the upper control circuit 50 include, for example, a memory as a non-transitional and substantive storage medium in which software is temporarily recorded, a processor that executes the software, an input / output interface, and the like. It can be configured by a equipped microcomputer. Alternatively, these control circuits may be realized by a dedicated hardware logic circuit, or may be realized by a combination of a processor and one or more hardware logic circuits. The upper control circuit 50 may be provided in an ECU different from the control unit (ECU) having the SW control circuit 40, or may be provided in a common ECU.
 次に、図1、図2および図3を用いて、SW制御回路40が実行する異常時制御について説明する。 Next, the abnormal time control executed by the SW control circuit 40 will be described with reference to FIGS. 1, 2 and 3.
 図1に例示されるように、正常時制御においてSMRと系統間SWがオン作動している時に、サブ負荷側バス20bで地絡が生じた場合、その地絡発生の瞬間には、地絡箇所へ大量の電流が流れ込む。すなわち、メイン電源側バス10a、系統間バス30およびサブ負荷側バス20bを通じて、メイン電源B10から地絡箇所へ大電流が流れ込む。その結果、メイン系統バス10の電圧が大幅に低下した状態(異常低電圧状態)となり、第1負荷の作動不良発生が懸念される。 As illustrated in FIG. 1, when a ground fault occurs in the sub-load side bus 20b while the SMR and the system-to-system SW are on in normal control, the ground fault occurs at the moment of the ground fault occurrence. A large amount of current flows into the location. That is, a large current flows from the main power supply B10 to the ground fault portion through the main power supply side bus 10a, the inter-system bus 30 and the subload side bus 20b. As a result, the voltage of the main system bus 10 is significantly lowered (abnormally low voltage state), and there is a concern that the first load may malfunction.
 また、サブ系統バス20を通じて、サブ電源B20から地絡箇所へ大電流が流れ込む。その結果、サブ系統バス20の電圧が大幅に低下した状態(異常低電圧状態)となり、第2負荷の作動不良発生が懸念される。 In addition, a large current flows from the sub power supply B20 to the ground fault point through the sub system bus 20. As a result, the voltage of the sub system bus 20 is significantly lowered (abnormally low voltage state), and there is a concern that the second load may malfunction.
 図2に例示されるように、正常時制御においてSMRと系統間SWがオン作動している時に、メイン負荷側バス10bで地絡が生じた場合、その地絡発生の瞬間には、地絡箇所へ大量の電流が流れ込む。すなわち、サブ電源側バス20a、系統間バス30およびメイン負荷側バス10bを通じて、サブ電源B20から地絡箇所へ大電流が流れ込む。その結果、サブ系統バス20の電圧が大幅に低下した状態(異常低電圧状態)となり、第2負荷の作動不良発生が懸念される。 As illustrated in FIG. 2, when a ground fault occurs in the main load side bus 10b while the SMR and the system-to-system SW are on in normal control, the ground fault occurs at the moment of the ground fault occurrence. A large amount of current flows into the location. That is, a large current flows from the sub power supply B 20 to the ground fault portion through the sub power supply side bus 20a, the inter-system bus 30 and the main load side bus 10b. As a result, the voltage of the sub system bus 20 is significantly lowered (abnormally low voltage state), and there is a concern that the second load may malfunction.
 また、メイン系統バス10を通じて、メイン電源B10から地絡箇所へ大電流が流れ込む。その結果、メイン系統バス10の電圧が大幅に低下した状態(異常低電圧状態)となり、第1負荷の作動不良発生が懸念される。また、このような異常低電圧状態を放置しておくと、メイン電源B10やサブ電源B20が過放電状態に陥る。 In addition, a large current flows from the main power supply B10 to the ground fault point through the main system bus 10. As a result, the voltage of the main system bus 10 is significantly lowered (abnormally low voltage state), and there is a concern that the first load may malfunction. Further, if such an abnormally low voltage state is left unattended, the main power supply B10 and the sub power supply B20 fall into an over-discharged state.
 異常低電圧状態に起因した作動不良発生の懸念に対し、異常時制御では、地絡発生が検知されると系統間SWをオフ作動させている。これにより、メイン系統バス10で地絡が生じた場合には、サブ系統バス20が異常低電圧状態に陥ることを回避できる。また、サブ系統バス20で地絡が生じた場合には、メイン系統バス10が異常低電圧状態に陥ることを回避できる。つまり、地絡検知に伴い系統間SWをオフ作動させることで、メイン系統バス10およびサブ系統バス20の両方ともが異常低電圧状態に陥ることを回避させている。 In response to concerns about malfunctions caused by abnormally low voltage conditions, in abnormal condition control, the inter-system SW is turned off when a ground fault is detected. As a result, when a ground fault occurs in the main system bus 10, it is possible to prevent the sub system bus 20 from falling into an abnormally low voltage state. Further, when a ground fault occurs in the sub system bus 20, it is possible to prevent the main system bus 10 from falling into an abnormally low voltage state. That is, by turning off the inter-system SW when the ground fault is detected, it is possible to prevent both the main system bus 10 and the sub system bus 20 from falling into an abnormally low voltage state.
 なお、SMRについては、サブ系統バス20での地絡発生が検知された場合であってもオン作動を継続させている。サブ電源B20が過放電状態に陥るまでの期間に、サブ電源B20から第2負荷L20、L21への電力供給を継続させるためである。但し、サブ電源B20が過放電状態に陥ることを回避させるべく、サブ系統バス20での地絡発生が検知されると直ぐにSMRをオフ作動させるようにしてもよい。 Regarding SMR, even if a ground fault is detected on the sub system bus 20, the ON operation is continued. This is to continue the power supply from the sub power supply B20 to the second loads L20 and L21 during the period until the sub power supply B20 falls into the over-discharged state. However, in order to prevent the sub power supply B 20 from falling into an over-discharged state, the SMR may be turned off as soon as the occurrence of a ground fault in the sub system bus 20 is detected.
 次に、図3を用いて、SW制御回路40が実行する異常時制御の処理手順について説明する。本処理は、SW制御回路40の起動とともに実行を開始し、所定周期で繰り返し実行される。 Next, the processing procedure of the abnormal state control executed by the SW control circuit 40 will be described with reference to FIG. This process starts execution when the SW control circuit 40 is activated, and is repeatedly executed at a predetermined cycle.
 先ずステップS10では、上位制御回路50の指令に従って系統間SWとSMRの作動を制御する。図3に示す例では、SMRと系統間SWをオン作動(通電)させている。 First, in step S10, the operation of the inter-system SW and SMR is controlled according to the command of the host control circuit 50. In the example shown in FIG. 3, the SMR and the system-to-system SW are turned on (energized).
 続くステップS20では、サブ電源B20の寄生抵抗RSを考慮したサブ電源B20の出力電圧である、サブ電源電圧Vs(第2電源電圧)を取得する。サブ電源電圧Vsは、第2負荷L20、L21へ供給される電圧(第2供給電圧)と相関のある第2状態値の1つに相当する。第2状態値は、地絡異常が生じていない正常時における冗長電源システムの状態を表すシステム状態値の1つに相当する。例えば、冗長電源システムの状態の1つとしてサブ電源B20の劣化状態が挙げられる。この劣化が進行するとサブ電源電圧Vsが低下してくる。また、寄生抵抗RSの増大が進行すると、サブ電源電圧Vsが低下してくる。 In the following step S20, the sub power supply voltage Vs (second power supply voltage), which is the output voltage of the sub power supply B20 in consideration of the parasitic resistance RS of the sub power supply B20, is acquired. The sub power supply voltage Vs corresponds to one of the second state values that correlates with the voltage (second supply voltage) supplied to the second loads L20 and L21. The second state value corresponds to one of the system state values representing the state of the redundant power supply system at the normal time when no ground fault has occurred. For example, one of the states of the redundant power supply system is a deteriorated state of the sub power supply B20. As this deterioration progresses, the sub power supply voltage Vs decreases. Further, as the parasitic resistance RS increases, the sub power supply voltage Vs decreases.
 続くステップS30では、後述するステップS50の判定で用いられる異常閾値IsmrTHを、ステップS20で取得したサブ電源電圧Vsに基づき設定する。具体的には、サブ電源電圧Vsが高いほど、異常閾値IsmrTHを高い値に設定する。例えば、サブ電源電圧Vsに比例して異常閾値IsmrTHを変更させる。なお、異常閾値IsmrTHはプラスの値に設定される。 In the following step S30, the abnormality threshold value IsmrTH used in the determination in step S50, which will be described later, is set based on the sub power supply voltage Vs acquired in step S20. Specifically, the higher the sub power supply voltage Vs, the higher the abnormality threshold IsmrTH is set. For example, the abnormal threshold value IsmrTH is changed in proportion to the sub power supply voltage Vs. The abnormal threshold value IsmrTH is set to a positive value.
 続くステップS40では、シャント抵抗22cの両端電位差に基づき放電電流値Ismrを検出(取得)する。続くステップS50では、ステップS40で検出した放電電流値Ismrが、ステップS30で設定された異常閾値IsmrTHより大きいか否かを判定する。 In the following step S40, the discharge current value Ismr is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c. In the following step S50, it is determined whether or not the discharge current value Ismr detected in step S40 is larger than the abnormality threshold value IsmrTH set in step S30.
 放電電流値Ismrが異常閾値IsmrTHより大きいと判定された場合には、地絡異常が生じているとみなして、続くステップS60にて系統間SWをオフ作動(遮断)させる。ステップS60では、上位制御回路50からの指令内容に拘らず、系統間SWをオフ作動させる。上述した「地絡異常」は、サブ系統バス20での地絡(図1参照)やメイン系統バス10での地絡(図2参照)に限るものではない。例えば、JB11、21やメイン電源B10、系統間バス30で地絡が生じた場合にも、放電電流値Ismrが異常閾値IsmrTHより大きくなる。また、メイン電源B10や発電機G10、第1負荷L10、L11、第2負荷L20、L21等が故障した場合にも、放電電流値Ismrが異常閾値IsmrTHより大きくなり得る。 When it is determined that the discharge current value Ismr is larger than the abnormality threshold value IsmrTH, it is considered that a ground fault abnormality has occurred, and the inter-system SW is turned off (cut off) in the following step S60. In step S60, the inter-system SW is turned off regardless of the content of the command from the host control circuit 50. The above-mentioned "ground fault abnormality" is not limited to the ground fault in the sub system bus 20 (see FIG. 1) and the ground fault in the main system bus 10 (see FIG. 2). For example, even when a ground fault occurs in JB11, 21, the main power supply B10, and the inter-system bus 30, the discharge current value Ismr becomes larger than the abnormal threshold value IsmrTH. Further, even when the main power supply B10, the generator G10, the first load L10, L11, the second load L20, L21, or the like fails, the discharge current value Ismr can be larger than the abnormality threshold value IsmrTH.
 ステップS60を実行した場合、リセット信号等のトリガがない限り、上位制御回路50からの指令内容に拘らず、系統間SWの遮断をラッチさせる。つまり、上位制御回路50からの指令で通電させることがないように、SW制御回路40は系統間SWの遮断を継続させる。 When step S60 is executed, unless there is a trigger such as a reset signal, the interruption of the inter-system SW is latched regardless of the command content from the host control circuit 50. That is, the SW control circuit 40 continues to cut off the SW between the systems so that the power is not supplied by the command from the host control circuit 50.
 なお、サブ電源B20の充電時には、放電電流値Ismrはマイナスの値になる。その一方で、異常閾値IsmrTHは、ステップS30にてプラスの値に設定される。したがって、サブ電源B20の充電時には、ステップS50で地絡異常と判定されることはない。 When charging the sub power supply B20, the discharge current value Ismr becomes a negative value. On the other hand, the abnormal threshold IsmrTH is set to a positive value in step S30. Therefore, when charging the sub power source B20, it is not determined in step S50 that the ground fault is abnormal.
 上記ステップS40の処理を実行している時のSW制御回路40は、放電電流値Ismrを取得する「電流取得部」に相当する。続いて、ステップS60は、放電電流値Ismrが異常閾値IsmrTHを超えて上昇した場合に系統間SWを遮断する「遮断制御部」に相当する。続いて、ステップS20は、正常時における冗長電源システムのシステム状態値を取得する「状態取得部」に相当する。続いて、ステップS30は、システム状態値に応じて異常閾値IsmrTHを変更させる「閾値変更部」に相当する。 The SW control circuit 40 when the process of step S40 is being executed corresponds to the "current acquisition unit" that acquires the discharge current value Ismr. Subsequently, step S60 corresponds to a "cutoff control unit" that shuts off the inter-system SW when the discharge current value Ismr rises above the abnormal threshold value IsmrTH. Subsequently, step S20 corresponds to a "state acquisition unit" that acquires the system state value of the redundant power supply system in the normal state. Subsequently, step S30 corresponds to a "threshold value changing unit" that changes the abnormal threshold value IsmrTH according to the system state value.
 以上により、本実施形態に係る通電制御装置Dは、系統間SWおよびSW制御回路40(系統間スイッチ制御部)を備える。そして、SW制御回路40は、ステップS40による電流取得部、ステップS60による遮断制御部、ステップS20による状態取得部、およびステップS30による閾値変更部を有する。 As described above, the energization control device D according to the present embodiment includes an inter-system SW and a SW control circuit 40 (inter-system switch control unit). The SW control circuit 40 has a current acquisition unit according to step S40, a cutoff control unit according to step S60, a state acquisition unit according to step S20, and a threshold value change unit according to step S30.
 さて、サブ電源電圧Vsが低い時に地絡異常が生じた場合、実際に地絡異常が生じたタイミングから系統間SWが遮断されるまでの応答時間が長いと、異常低電圧状態に陥る蓋然性が高い。この点を鑑みた本実施形態によれば、正常時におけるサブ電源電圧Vsが低いほど、異常閾値IsmrTHは低い値に設定される。そのため、上記応答時間を短くでき、系統間SWを迅速に遮断できるので、異常低電圧状態に陥ることによる負荷の作動不良発生のおそれを低減できる。 By the way, when a ground fault occurs when the sub power supply voltage Vs is low, if the response time from the timing when the ground fault actually occurs until the inter-system SW is cut off is long, there is a possibility that an abnormally low voltage state will occur. high. According to the present embodiment in view of this point, the lower the sub power supply voltage Vs in the normal state, the lower the abnormality threshold value IsmrTH is set. Therefore, the response time can be shortened, and the SW between systems can be quickly cut off, so that the possibility of load malfunction due to falling into an abnormally low voltage state can be reduced.
 その一方で、正常時におけるサブ電源電圧Vsが高いほど、異常閾値IsmrTHは高い値に設定される。そのため、例えば負荷の始動時に流れる突入電流が異常閾値IsmrTHを超えてしまう等、地絡の誤検知抑制を図ることができる。以上により、本実施形態によれば、地絡発生時に系統間SWを迅速に遮断することと、地絡の誤検知抑制との両立を図ることができる。 On the other hand, the higher the sub power supply voltage Vs in the normal state, the higher the abnormality threshold IsmrTH is set. Therefore, it is possible to suppress erroneous detection of a ground fault, for example, the inrush current flowing at the start of the load exceeds the abnormal threshold value IsmrTH. As described above, according to the present embodiment, it is possible to achieve both the rapid shutoff of the SW between systems when a ground fault occurs and the suppression of false detection of the ground fault.
 さらに本実施形態では、状態取得部は、システム状態値の1つとして第2供給電圧と相関のある第2状態値(サブ電源電圧Vs)を取得する。閾値変更部は、正常時における第2供給電圧が高いほど、サブ電源電圧Vsに基づき異常閾値IsmrTHを高い値に変更する。ここで、地絡発生に伴い低下する第2供給電圧が、第2負荷L20、L21の作動保障電圧に達するまでの時間を、応答許容時間と呼ぶ。この応答許容時間は、地絡発生時点での第2供給電圧に大きく影響を受ける。そのため、正常時の第2供給電圧に応じて異常閾値IsmrTHを変更する本実施形態によれば、異常低電圧状態に陥らないよう、かつ、誤検知しないように異常閾値IsmrTHを設定することを、精度良く実現できる。 Further, in the present embodiment, the state acquisition unit acquires a second state value (sub power supply voltage Vs) that correlates with the second supply voltage as one of the system state values. The threshold value changing unit changes the abnormal threshold value IsmrTH to a higher value based on the sub power supply voltage Vs as the second supply voltage in the normal state is higher. Here, the time until the second supply voltage, which decreases with the occurrence of a ground fault, reaches the operation guarantee voltage of the second loads L20 and L21 is referred to as a response allowable time. This allowable response time is greatly affected by the second supply voltage at the time of the occurrence of the ground fault. Therefore, according to the present embodiment in which the abnormal threshold value IsmrTH is changed according to the second supply voltage at the normal time, the abnormal threshold value IsmrTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
 さらに本実施形態では、状態取得部は、第2状態値の1つとしてサブ電源電圧Vsを取得する。閾値変更部は、サブ電源電圧Vsが高いほど、異常閾値IsmrTHを高い値に変更する。ここで、地絡発生時点での第2供給電圧はサブ電源電圧Vsに大きく影響を受ける。そのため、正常時のサブ電源電圧Vsに応じて異常閾値IsmrTHを変更する本実施形態によれば、異常低電圧状態に陥らないよう、かつ、誤検知しないように異常閾値IsmrTHを設定することを、精度良く実現できる。 Further, in the present embodiment, the state acquisition unit acquires the sub power supply voltage Vs as one of the second state values. The threshold value changing unit changes the abnormal threshold value IsmrTH to a higher value as the sub power supply voltage Vs increases. Here, the second supply voltage at the time of the occurrence of the ground fault is greatly affected by the sub power supply voltage Vs. Therefore, according to the present embodiment in which the abnormal threshold value IsmrTH is changed according to the sub power supply voltage Vs at the normal time, the abnormal threshold value IsmrTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
 さらに本実施形態では、電流取得部は、サブ電源B20から放電される電流の大きさである放電電流値Ismrを取得する。遮断制御部は、放電電流値Ismrに基づき地絡異常の有無を判定する。ここで、本実施形態に反して系統間電流値Iisoに基づき地絡異常の有無を判定しようとすると、以下のように地絡を誤検知する懸念がある。 Further, in the present embodiment, the current acquisition unit acquires the discharge current value Ismr, which is the magnitude of the current discharged from the sub power supply B20. The cutoff control unit determines the presence or absence of a ground fault abnormality based on the discharge current value Ismr. Here, contrary to the present embodiment, if it is attempted to determine the presence or absence of a ground fault abnormality based on the inter-system current value Iiso, there is a concern that the ground fault may be erroneously detected as follows.
 すなわち、第1系統からサブ電源B20に電力供給して充電させる場合には、系統間バス30に大電流が流れる。そのため、地絡異常が原因で系統間バス30に大電流が流れる場合と、上記充電が原因で系統間バス30に大電流が流れる場合との判別が困難になる。よって、系統間電流値Iisoが閾値を超えて上昇した場合に地絡と判定すると、サブ電源B20への充電を地絡と誤検知して系統間SWを遮断する懸念がある。 That is, when power is supplied from the first system to the sub power supply B20 to charge it, a large current flows through the inter-system bus 30. Therefore, it is difficult to distinguish between a case where a large current flows through the inter-system bus 30 due to a ground fault abnormality and a case where a large current flows through the inter-system bus 30 due to the charging. Therefore, if it is determined that a ground fault occurs when the inter-system current value Iiso rises beyond the threshold value, there is a concern that the charging of the sub power supply B20 is erroneously detected as a ground fault and the inter-system SW is cut off.
 この懸念に対し本実施形態では、以下の点に着目して、放電電流値Ismrに基づき地絡異常の有無を判定している。すなわち、放電電流値Ismrは、メイン電源B10や発電機G10からサブ電源B20に電力供給してサブ電源B20を充電させたい場合には、マイナスの値になる。よって、サブ電源B20の充電時には、放電電流値Ismrが異常閾値IsmrTHを超えることはない。一方、サブ電源B20から第2負荷L20、L21へ電力供給する場合にはプラスの値になる。よって、サブ負荷側バス20bで地絡が生じた場合には、放電電流値Ismrが上昇して異常閾値IsmrTHを超えることが見込まれる。したがって、本実施形態によれば、サブ電源B20への充電時と地絡時とで、地絡検知に用いられる放電電流値Ismrの向きが異なるようになる。よって、サブ電源B20への充電に伴い系統間電流値Iisoが異常閾値IsmrTHを超えるほどに増大したとしても、地絡と誤検知する懸念を低減できる。 In response to this concern, in the present embodiment, the presence or absence of a ground fault is determined based on the discharge current value Ismr, focusing on the following points. That is, the discharge current value Ismr becomes a negative value when it is desired to supply power from the main power source B10 or the generator G10 to the sub power source B20 to charge the sub power source B20. Therefore, when the sub power source B20 is charged, the discharge current value Ismr does not exceed the abnormal threshold value IsmrTH. On the other hand, when power is supplied from the sub power source B20 to the second loads L20 and L21, the value becomes a positive value. Therefore, when a ground fault occurs in the sub-load side bus 20b, it is expected that the discharge current value Ismr rises and exceeds the abnormal threshold value IsmrTH. Therefore, according to the present embodiment, the direction of the discharge current value Ismr used for detecting the ground fault differs between when the sub power source B20 is charged and when the ground fault occurs. Therefore, even if the inter-system current value Iiso increases to the extent that it exceeds the abnormal threshold value IsmrTH as the sub power source B20 is charged, the concern that it may be erroneously detected as a ground fault can be reduced.
 ここで、冗長電源システムが実際の車両に搭載された状態では、メイン系統バス10、サブ系統バス20および系統間バス30は所定の物理的長さを持つ。そのため、これらのバスは、寄生的なインダクタンス成分である等価直列インダクタンス(ESL)を有していると言える。図1では、メイン側系統間バス30aに係るインダクタンスL1、およびサブ側系統間バス30bに係るインダクタンスL2が示されている。 Here, in a state where the redundant power supply system is mounted on an actual vehicle, the main system bus 10, the sub system bus 20, and the inter-system bus 30 have a predetermined physical length. Therefore, it can be said that these buses have equivalent series inductance (ESL) which is a parasitic inductance component. In FIG. 1, the inductance L1 related to the main side intersystem bus 30a and the inductance L2 related to the sub side intersystem bus 30b are shown.
 上記インダクタンスL1、L2が存在することに起因して、図1に示すようにサブ系統バス20で地絡が生じた場合には、系統間電流値Iisoは迅速に上昇しない。そのため、本実施形態に反して系統間電流値Iisoが異常閾値IsmrTHを超えた場合に地絡発生(地絡異常)と判定しようとすると、地絡検知が遅くなる。つまり、地絡発生時点から、系統間電流値Iisoが上昇して異常閾値IsmrTHに達する時点までの検知時間が長くなり、検知応答性が悪い。一方、サブ電源B20での地絡発生時の放電電流値Ismrは、インダクタンスL1、L2の影響を大きく受けることなく迅速に上昇する。よって、地絡検知に放電電流値Ismrを用いた本実施形態によれば、系統間電流値Iisoを用いた場合に比べて、サブ電源B20で生じた地絡を迅速に検知できる。なお、地絡を迅速に検知できれば、系統間SWを迅速に遮断することができる。そのため、メイン系統バス10およびサブ系統バス20の両方ともが大きく電圧低下するといった状況を、迅速に回避できる。つまり、第1負荷および第2負荷の両方ともが作動不良に陥る懸念を抑制できる。 When a ground fault occurs in the sub system bus 20 as shown in FIG. 1 due to the existence of the above-mentioned inductances L1 and L2, the inter-system current value Iiso does not rise rapidly. Therefore, contrary to the present embodiment, if it is attempted to determine that a ground fault has occurred (ground fault abnormality) when the inter-system current value Iiso exceeds the abnormality threshold value IsmrTH, the ground fault detection is delayed. That is, the detection time from the time when the ground fault occurs to the time when the inter-system current value Iiso rises and reaches the abnormal threshold value IsmrTH becomes long, and the detection responsiveness is poor. On the other hand, the discharge current value Ismr when a ground fault occurs in the sub power supply B20 rises rapidly without being greatly affected by the inductances L1 and L2. Therefore, according to the present embodiment in which the discharge current value Ismr is used for the ground fault detection, the ground fault generated by the sub power supply B20 can be detected more quickly than when the inter-system current value Iiso is used. If the ground fault can be detected quickly, the inter-system SW can be quickly shut off. Therefore, it is possible to quickly avoid a situation in which the voltage of both the main system bus 10 and the sub system bus 20 drops significantly. That is, it is possible to suppress the concern that both the first load and the second load will malfunction.
 (第2実施形態)
 上記第1実施形態では、冗長電源システムを流れる電流値で地絡検知するにあたり、放電電流値Ismrで地絡検知している。これに対し本実施形態では、系統間電流値Iisoで地絡検知する。そして、系統間電流値Iisoに対して設定される異常閾値IisoTHは、冗長電源システムの状態を表すシステム状態値に応じて変更される。具体的には、図3に示すステップS20、S30、S40、S50の処理を、図4に示すステップS20A、S30A、S40A、S50Aの処理に変更する。
(Second Embodiment)
In the first embodiment, when the ground fault is detected by the current value flowing through the redundant power supply system, the ground fault is detected by the discharge current value Ismr. On the other hand, in the present embodiment, the ground fault is detected by the inter-system current value Iiso. Then, the abnormality threshold value IisoTH set for the inter-system current value Iiso is changed according to the system state value representing the state of the redundant power supply system. Specifically, the processing of steps S20, S30, S40, and S50 shown in FIG. 3 is changed to the processing of steps S20A, S30A, S40A, and S50A shown in FIG.
 ステップS20Aでは、メイン電源B10の寄生抵抗RPを考慮したメイン電源B10の出力電圧である、メイン電源電圧Vp(第1電源電圧)を取得する。メイン電源電圧Vpは、第1負荷L10、L11へ供給される電圧(第1供給電圧)と相関のある第1状態値の1つに相当する。第1状態値は、地絡異常が生じていない正常時における冗長電源システムの状態を表すシステム状態値の1つに相当する。例えば、冗長電源システムの状態の1つとしてメイン電源B10の劣化状態が挙げられる。この劣化が進行するとメイン電源電圧Vpが低下してくる。また、寄生抵抗RPの増大が進行すると、メイン電源電圧Vpが低下してくる。 In step S20A, the main power supply voltage Vp (first power supply voltage), which is the output voltage of the main power supply B10 in consideration of the parasitic resistance RP of the main power supply B10, is acquired. The main power supply voltage Vp corresponds to one of the first state values that correlates with the voltage (first supply voltage) supplied to the first loads L10 and L11. The first state value corresponds to one of the system state values representing the state of the redundant power supply system at the normal time when no ground fault has occurred. For example, one of the states of the redundant power supply system is a deteriorated state of the main power supply B10. As this deterioration progresses, the main power supply voltage Vp decreases. Further, as the parasitic resistance RP increases, the main power supply voltage Vp decreases.
 続くステップS30Aでは、後述するステップS50Aの判定で用いられる異常閾値IisoTHを、ステップS20Aで取得したメイン電源電圧Vpに基づき設定する。具体的には、メイン電源電圧Vpが高いほど、異常閾値IisoTHを高い値に設定する。例えば、メイン電源電圧Vpに比例して異常閾値IisoTHを変更させる。なお、異常閾値IisoTHはプラスの値に設定される。 In the following step S30A, the abnormal threshold value IisoTH used in the determination in step S50A, which will be described later, is set based on the main power supply voltage Vp acquired in step S20A. Specifically, the higher the main power supply voltage Vp, the higher the abnormality threshold value IisoTH is set. For example, the abnormal threshold value IisoTH is changed in proportion to the main power supply voltage Vp. The abnormal threshold value IisoTH is set to a positive value.
 続くステップS40Aでは、シャント抵抗31cの両端電位差に基づき系統間電流値Iisoを検出(取得)する。続くステップS50Aでは、ステップS40Aで検出した系統間電流値Iisoが、ステップS30Aで設定された異常閾値IisoTHより大きいか否かを判定する。系統間電流値Iisoが異常閾値IisoTHより大きいと判定された場合には、地絡異常が生じているとみなして、続くステップS60にて系統間SWをオフ作動(遮断)させる。 In the following step S40A, the inter-system current value Iiso is detected (acquired) based on the potential difference between both ends of the shunt resistor 31c. In the following step S50A, it is determined whether or not the inter-system current value Iiso detected in step S40A is larger than the abnormality threshold value IisoTH set in step S30A. When it is determined that the inter-system current value Iiso is larger than the abnormality threshold value IisoTH, it is considered that a ground fault abnormality has occurred, and the inter-system SW is turned off (cut off) in the following step S60.
 以上により、本実施形態によっても、地絡判定に用いる異常閾値IisoTHがシステム状態値(メイン電源電圧Vp)に応じて変更される。 From the above, also in this embodiment, the abnormal threshold value IisoTH used for ground fault determination is changed according to the system state value (main power supply voltage Vp).
 さて、メイン電源電圧Vpが低い時に地絡異常が生じた場合、実際に地絡異常が生じたタイミングから系統間SWが遮断されるまでの応答時間が長いと、異常低電圧状態に陥る蓋然性が高い。この点を鑑みた本実施形態によれば、正常時におけるメイン電源電圧Vpが低いほど、異常閾値IisoTHは低い値に設定される。そのため、上記応答時間を短くでき、系統間SWを迅速に遮断できるので、異常低電圧状態に陥ることによる負荷の作動不良発生のおそれを低減できる。 By the way, when a ground fault occurs when the main power supply voltage Vp is low, if the response time from the timing when the ground fault actually occurs until the inter-system SW is cut off is long, there is a possibility that an abnormally low voltage state will occur. high. According to the present embodiment in view of this point, the lower the main power supply voltage Vp in the normal state, the lower the abnormality threshold value IisoTH is set. Therefore, the response time can be shortened, and the SW between systems can be quickly cut off, so that the possibility of load malfunction due to falling into an abnormally low voltage state can be reduced.
 その一方で、正常時におけるメイン電源電圧Vpが高いほど、異常閾値IisoTHは高い値に設定される。そのため、例えば負荷の始動時に流れる突入電流が異常閾値IisoTHを超えてしまう等、地絡の誤検知抑制を図ることができる。以上により、本実施形態によれば、地絡発生時に系統間SWを迅速に遮断することと、地絡の誤検知抑制との両立を図ることができる。 On the other hand, the higher the main power supply voltage Vp in the normal state, the higher the abnormal threshold value IisoTH is set. Therefore, it is possible to suppress erroneous detection of a ground fault, for example, the inrush current flowing when the load is started exceeds the abnormal threshold value IisoTH. As described above, according to the present embodiment, it is possible to achieve both the rapid shutoff of the SW between systems when a ground fault occurs and the suppression of false detection of the ground fault.
 さらに本実施形態では、状態取得部は、システム状態値の1つとして第1供給電圧と相関のある第1状態値(メイン電源電圧Vp)を取得する。閾値変更部は、正常時における第1供給電圧が高いほど、メイン電源電圧Vpに基づき異常閾値IisoTHを高い値に変更する。ここで、地絡発生に伴い低下する第1供給電圧が、第1負荷L10、L11の作動保障電圧に達するまでの時間を、応答許容時間と呼ぶ。この応答許容時間は、地絡発生時点での第1供給電圧に大きく影響を受ける。そのため、正常時の第1供給電圧に応じて異常閾値IisoTHを変更する本実施形態によれば、異常低電圧状態に陥らないよう、かつ、誤検知しないように異常閾値IisoTHを設定することを、精度良く実現できる。 Further, in the present embodiment, the state acquisition unit acquires the first state value (main power supply voltage Vp) that correlates with the first supply voltage as one of the system state values. The threshold value changing unit changes the abnormal threshold value IisoTH to a higher value based on the main power supply voltage Vp as the first supply voltage in the normal state is higher. Here, the time until the first supply voltage, which decreases with the occurrence of a ground fault, reaches the operation guarantee voltage of the first loads L10 and L11 is referred to as a response allowable time. This allowable response time is greatly affected by the first supply voltage at the time of the occurrence of the ground fault. Therefore, according to the present embodiment in which the abnormal threshold value IisoTH is changed according to the first supply voltage in the normal state, the abnormal threshold value IisoTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
 さらに本実施形態では、状態取得部は、第1状態値の1つとしてメイン電源電圧Vpを取得する。閾値変更部は、メイン電源電圧Vpが高いほど、異常閾値IisoTHを高い値に変更する。ここで、地絡発生時点での第1供給電圧はメイン電源電圧Vpに大きく影響を受ける。そのため、正常時のメイン電源電圧Vpに応じて異常閾値IisoTHを変更する本実施形態によれば、異常低電圧状態に陥らないよう、かつ、誤検知しないように異常閾値IisoTHを設定することを、精度良く実現できる。 Further, in the present embodiment, the state acquisition unit acquires the main power supply voltage Vp as one of the first state values. The threshold value changing unit changes the abnormal threshold value IisoTH to a higher value as the main power supply voltage Vp is higher. Here, the first supply voltage at the time of the occurrence of the ground fault is greatly affected by the main power supply voltage Vp. Therefore, according to the present embodiment in which the abnormal threshold value IisoTH is changed according to the main power supply voltage Vp in the normal state, the abnormal threshold value IisoTH is set so as not to fall into an abnormally low voltage state and to prevent false detection. It can be realized with high accuracy.
 なお、本実施形態において、メイン電源電圧Vpではなくサブ電源電圧Vsに応じて異常閾値IisoTHを変更するようにしてもよい。また、上記第1実施形態において、サブ電源電圧Vsではなくメイン電源電圧Vpに応じて異常閾値IsmrTHを変更するようにしてもよい。 In the present embodiment, the abnormality threshold value IisoTH may be changed according to the sub power supply voltage Vs instead of the main power supply voltage Vp. Further, in the first embodiment, the abnormality threshold value IsmrTH may be changed according to the main power supply voltage Vp instead of the sub power supply voltage Vs.
 (第3実施形態)
 上記第1実施形態ではサブ電源電圧Vsをシステム状態値として取得し、上記第2実施形態ではメイン電源電圧Vpをシステム状態値として取得している。これに対し本実施形態では、図5に示す7種類の値をシステム状態値として取得している。これらのシステム状態値には、サブ電源電圧Vsおよびメイン電源電圧Vpが含まれている。また、寄生抵抗RP、RS、放電電流値Ismr、系統間電流値Iiso、および発電機G10による発電量WHも、取得されるシステム状態値として含まれている。
(Third Embodiment)
In the first embodiment, the sub power supply voltage Vs is acquired as the system state value, and in the second embodiment, the main power supply voltage Vp is acquired as the system state value. On the other hand, in the present embodiment, seven kinds of values shown in FIG. 5 are acquired as system state values. These system state values include the sub power supply voltage Vs and the main power supply voltage Vp. In addition, the parasitic resistance RP, RS, the discharge current value Ismr, the inter-system current value Iiso, and the power generation amount WH by the generator G10 are also included as the acquired system state values.
 さらに本実施形態では、短絡検知に用いる電流値として、放電電流値Ismrと系統間電流値Iisoの両方を用いている。そして、各々の電流値に対する異常閾値を、システム状態値に応じて変更させている。 Further, in the present embodiment, both the discharge current value Ismr and the inter-system current value Iiso are used as the current values used for short circuit detection. Then, the abnormal threshold value for each current value is changed according to the system state value.
 図5に記載の組み合わせNO.1~16は、7種類のシステム状態値と、2つの異常閾値IsmrTH、IisoTHとの組み合わせを示す。例えばNO.1では、サブ電源電圧Vsが高いほど、異常閾値IsmrTH、IisoTHを高い値に設定することを意味する。NO.5では、メイン電源電圧Vpが高いほど異常閾値IsmrTH、IisoTHを高い値に設定する。 The combination No. shown in FIG. 1 to 16 indicate a combination of seven kinds of system state values and two abnormal thresholds IsmrTH and IisoTH. For example, NO. In 1, it means that the higher the sub power supply voltage Vs, the higher the abnormal thresholds IsmrTH and IisoTH are set. NO. In No. 5, the higher the main power supply voltage Vp, the higher the abnormal thresholds IsmrTH and IisoTH are set.
 また、NO.4では、サブ電源B20の寄生抵抗RSが低いほど異常閾値IsmrTH、IisoTHを高い値に設定する。NO.8では、メイン電源B10の寄生抵抗RPが低いほど異常閾値IsmrTH、IisoTHを高い値に設定する。 Also, NO. In No. 4, the lower the parasitic resistance RS of the sub power supply B20, the higher the abnormal thresholds IsmrTH and IisoTH are set. NO. In No. 8, the lower the parasitic resistance RP of the main power supply B10, the higher the abnormal thresholds IsmrTH and IisoTH are set.
 また、NO.9では、系統間電流値Iisoが高いほど異常閾値IisoTHを高い値に設定し、異常閾値IsmrTHについては変更しない。NO.11では、放電電流値Ismrが高いほど異常閾値IsmrTHを高い値に設定し、異常閾値IisoTHについては変更しない。 Also, NO. In No. 9, the higher the inter-system current value Iiso, the higher the abnormal threshold value IisoTH is set, and the abnormal threshold value IsmrTH is not changed. NO. In No. 11, the higher the discharge current value Ismr is, the higher the abnormal threshold value IsmrTH is set, and the abnormal threshold value IisoTH is not changed.
 また、NO.13では、発電量WHが高いほど異常閾値IsmrTH、IisoTHを高い値に設定する。要するに、NO.1~NO.14では、システム状態値が応答許容時間を長くし得る値であるほど、異常閾値を高く設定している。応答許容時間とは、先述した通り、地絡発生に伴い負荷への供給電圧が低下するにあたり、地絡発生から作動保障電圧にまで低下する時間のことである。 Also, NO. In No. 13, the higher the power generation amount WH, the higher the abnormal thresholds IsmrTH and IisoTH are set. In short, NO. 1 to NO. In No. 14, the abnormality threshold value is set higher as the system state value is a value that can lengthen the permissible response time. As described above, the allowable response time is the time from the occurrence of the ground fault to the guaranteed operation voltage when the supply voltage to the load decreases due to the occurrence of the ground fault.
 NO.15では、複数種類のシステム状態値の組み合わせに基づき、異常閾値を変更している。例えば、サブ電源電圧Vs、寄生抵抗RSおよび放電電流値Ismrの3種類の組み合わせに基づき、異常閾値を変更している。例えば、システム状態値毎に重み付けを設定しておき、重み付けを考慮したシステム状態値を合算して得られた合算値に基づいて、異常閾値を変更する。なお、サブ電源電圧Vsの重み付けは、他のシステム状態値よりも大きい値に設定されている。そのため、図5に示す例では、寄生抵抗RSが高く、かつ、放電電流値Ismrが低いにも拘らず、重み付けの大きいサブ電源電圧Vsが高いことの影響で、異常閾値を高く設定している。 NO. In 15, the abnormality threshold value is changed based on the combination of a plurality of types of system state values. For example, the abnormal threshold value is changed based on a combination of three types of sub power supply voltage Vs, parasitic resistance RS, and discharge current value Ismr. For example, a weight is set for each system state value, and the abnormality threshold value is changed based on the total value obtained by adding up the system state values in consideration of the weighting. The weighting of the sub power supply voltage Vs is set to a value larger than other system state values. Therefore, in the example shown in FIG. 5, the abnormal threshold value is set high due to the influence of the high weighted sub-power supply voltage Vs despite the high parasitic resistance RS and low discharge current value Ismr. ..
 図5に示す15通りの組み合わせは1つの例示にすぎず、複数種類のシステム状態値のうち、任意の状態値を組み合わせて異常閾値を設定してもよい。 The 15 combinations shown in FIG. 5 are merely an example, and an abnormal threshold value may be set by combining arbitrary state values among a plurality of types of system state values.
 図6は、サブ電源電圧Vs、サブ電源B20の寄生抵抗RSおよび放電電流値Ismrの3つがシステム状態値として変化した場合を示す。これらの変化に対応して図5の表に従って設定される異常閾値IsmrTHは、図6に示すように変化していくことになる。なお、図6の横軸は経過時間を示し、図6中の符号TYPは、各システム状態値および異常閾値に対する通常値を示す。また、図6中に示すサブ系統電圧VsJBとは、JB21での電圧のことであり、第2負荷L20、L21へ供給される第2供給電圧に相当する。 FIG. 6 shows a case where the sub power supply voltage Vs, the parasitic resistance RS of the sub power supply B20, and the discharge current value Ismr change as system state values. The anomaly threshold IsmrTH set according to the table of FIG. 5 in response to these changes will change as shown in FIG. The horizontal axis of FIG. 6 indicates the elapsed time, and the reference numeral TYP in FIG. 6 indicates each system state value and a normal value for an abnormal threshold value. Further, the sub system voltage VsJB shown in FIG. 6 is the voltage at JB21 and corresponds to the second supply voltage supplied to the second loads L20 and L21.
 図6では先ず、寄生抵抗RSおよび放電電流値Ismrが通常値のままで、サブ電源電圧Vsが通常値より高い値に変化している。そのため、サブ系統電圧VsJBが通常値より高くなっている。このことは、応答許容時間が長くなったことを意味しており、異常閾値IsmrTHを高くして誤検知抑制を図ることが有効であることを意味する。この考えに基づき、図6のサブ電源電圧Vsが高くなっている期間では、図5の組み合わせNO.1に従って異常閾値IsmrTHを通常値より高くしている。 In FIG. 6, first, the parasitic resistance RS and the discharge current value Ismr remain at the normal values, and the sub power supply voltage Vs changes to a value higher than the normal values. Therefore, the sub system voltage VsJB is higher than the normal value. This means that the permissible response time has become longer, and it means that it is effective to raise the abnormal threshold value IsmrTH to suppress false detection. Based on this idea, during the period when the sub power supply voltage Vs of FIG. 6 is high, the combination NO. According to 1, the abnormal threshold value IsmrTH is set higher than the normal value.
 次に、サブ電源電圧Vsおよび寄生抵抗RSが通常値のままで、放電電流値Ismrが通常値より低い値に変化している。そのため、サブ系統電圧VsJBが通常値より低くなっている。このことは、応答許容時間が短くなったことを意味しており、異常閾値IsmrTHを低くして、地絡発生時に系統間SWを迅速に遮断させることが有効であることを意味する。この考えに基づき、図6の放電電流値Ismrが低くなっている期間では、図5の組み合わせNO.12に従って異常閾値IsmrTHを通常値より低くしている。 Next, the sub power supply voltage Vs and the parasitic resistance RS remain at the normal values, and the discharge current value Ismr changes to a value lower than the normal value. Therefore, the sub system voltage VsJB is lower than the normal value. This means that the permissible response time has become shorter, and it is effective to lower the abnormal threshold value IsmrTH to quickly shut off the inter-system SW when a ground fault occurs. Based on this idea, during the period when the discharge current value Ismr in FIG. 6 is low, the combination NO. According to 12, the abnormal threshold value IsmrTH is set lower than the normal value.
 次に、サブ電源電圧Vsおよび寄生抵抗RSが通常値より高く、放電電流値Ismrが通常値より低い値に変化している。そのため、サブ系統電圧VsJBが通常値より高くなっている。このことは、応答許容時間が長くなったことを意味しており、異常閾値IsmrTHを高くして誤検知抑制を図ることが有効であることを意味する。この考えに基づき、図5の組み合わせNO.15に従って異常閾値IsmrTHを通常値より高くしている。 Next, the sub power supply voltage Vs and the parasitic resistance RS are higher than the normal values, and the discharge current value Ismr is changed to a value lower than the normal values. Therefore, the sub system voltage VsJB is higher than the normal value. This means that the permissible response time has become longer, and it means that it is effective to raise the abnormal threshold value IsmrTH to suppress false detection. Based on this idea, the combination NO. According to 15, the abnormal threshold value IsmrTH is set higher than the normal value.
 図7は、メイン電源電圧Vp、メイン電源B10の寄生抵抗RPおよび系統間電流値Iisoの3つがシステム状態値として変化した場合を示す。これらの変化に対応して図5の表に従って設定される異常閾値IisoTHは、図6に示すように変化していくことになる。なお、図7の横軸は経過時間を示し、図7中の符号TYPは、各システム状態値および異常閾値に対する通常値を示す。また、図7中に示すメイン系統電圧VpJBとは、JB11での電圧のことであり、第1負荷L10、L11へ供給される第1供給電圧に相当する。 FIG. 7 shows a case where the main power supply voltage Vp, the parasitic resistance RP of the main power supply B10, and the inter-system current value Iiso are changed as the system state values. The abnormal threshold value IisoTH set according to the table of FIG. 5 in response to these changes will change as shown in FIG. The horizontal axis of FIG. 7 indicates the elapsed time, and the reference numeral TYP in FIG. 7 indicates each system state value and a normal value for an abnormal threshold value. The main system voltage VpJB shown in FIG. 7 is the voltage at JB11 and corresponds to the first supply voltage supplied to the first loads L10 and L11.
 図7では先ず、寄生抵抗RPおよび系統間電流値Iisoが通常値のままで、メイン電源電圧Vpが通常値より高い値に変化している。そのため、メイン系統電圧VpJBが通常値より高くなっている。このことは、応答許容時間が長くなったことを意味しており、異常閾値IisoTHを高くして誤検知抑制を図ることが有効であることを意味する。この考えに基づき、図7のメイン電源電圧Vpが高くなっている期間では、図5の組み合わせNO.5に従って異常閾値IisoTHを通常値より高くしている。 In FIG. 7, first, the parasitic resistance RP and the inter-system current value Iiso remain at the normal values, and the main power supply voltage Vp changes to a value higher than the normal values. Therefore, the main system voltage VpJB is higher than the normal value. This means that the permissible response time has become longer, and it means that it is effective to raise the abnormal threshold value IisoTH to suppress false detection. Based on this idea, during the period when the main power supply voltage Vp in FIG. 7 is high, the combination NO. According to 5, the abnormal threshold value IisoTH is set higher than the normal value.
 次に、メイン電源電圧Vpおよび系統間電流値Iisoが通常値のままで、寄生抵抗RPが通常値より高い値に変化している。そのため、メイン系統電圧VpJBが通常値より低くなっている。このことは、応答許容時間が短くなったことを意味しており、異常閾値IisoTHを低くして、地絡発生時に系統間SWを迅速に遮断させることが有効であることを意味する。この考えに基づき、図7の寄生抵抗RPが高くなっている期間では、図5の組み合わせNO.7に従って異常閾値IisoTHを通常値より低くしている。 Next, the main power supply voltage Vp and the inter-system current value Iiso remain at the normal values, and the parasitic resistance RP changes to a value higher than the normal value. Therefore, the main system voltage VpJB is lower than the normal value. This means that the permissible response time has become shorter, and it is effective to lower the abnormal threshold value IisoTH to quickly shut off the inter-system SW when a ground fault occurs. Based on this idea, during the period when the parasitic resistance RP of FIG. 7 is high, the combination NO. According to No. 7, the abnormal threshold value IisoTH is set lower than the normal value.
 次に、メイン電源電圧Vpおよび寄生抵抗RPが通常値のままで、系統間電流値Iisoが通常値より低い値に変化している。そのため、メイン系統電圧VpJBが通常値より低くなっている。このことは、応答許容時間が短くなったことを意味しており、異常閾値IisoTHを低くして、地絡発生時に系統間SWを迅速に遮断させることが有効であることを意味する。この考えに基づき、図7の系統間電流値Iisoが低くなっている期間では、図5の組み合わせNO.10に従って異常閾値IisoTHを通常値より低くしている。 Next, the main power supply voltage Vp and the parasitic resistance RP remain at the normal values, and the inter-system current value Iiso changes to a value lower than the normal value. Therefore, the main system voltage VpJB is lower than the normal value. This means that the permissible response time has become shorter, and it is effective to lower the abnormal threshold value IisoTH to quickly shut off the inter-system SW when a ground fault occurs. Based on this idea, during the period when the inter-system current value Iiso in FIG. 7 is low, the combination NO. According to 10, the abnormal threshold value IisoTH is set lower than the normal value.
 図8中の実線は、システム状態値としての放電電流値Ismrの時間変化を示し、一点鎖線は異常閾値IsmrTHの時間変化を示す。図8の例では、第2負荷L20の始動に伴い突入電流が流れることで、放電電流値Ismrが一時的に上昇している。そして、組み合わせNO.11、12に従って、放電電流値Ismrが変化することに伴い異常閾値IsmrTHを変化させる。但し、所定時間Ta遅らせて異常閾値IsmrTHを変化させる。 The solid line in FIG. 8 shows the time change of the discharge current value Ismr as the system state value, and the alternate long and short dash line shows the time change of the abnormal threshold value IsmrTH. In the example of FIG. 8, the discharge current value Ismr temporarily rises due to the inrush current flowing with the start of the second load L20. And the combination NO. According to 11 and 12, the abnormal threshold value IsmrTH is changed as the discharge current value Ismr changes. However, the abnormal threshold value IsmrTH is changed by delaying Ta for a predetermined time.
 図8では、放電電流値Ismrに所定値Iaを加算した値を異常閾値IsmrTHとして設定している。例えば、放電電流値IsmrがI1になった時点から所定時間Ta経過した時点で、異常閾値IsmrTHをI2に変更する。I2は、所定値IaをI1に加算した値である。 In FIG. 8, the value obtained by adding the predetermined value Ia to the discharge current value Ismr is set as the abnormal threshold value IsmrTH. For example, the abnormal threshold value IsmrTH is changed to I2 when a predetermined time Ta elapses from the time when the discharge current value Ismr becomes I1. I2 is a value obtained by adding a predetermined value Ia to I1.
 図8中の点線は、地絡が発生した場合における放電電流値Ismrの挙動を示す。なお、地絡発生に伴う放電電流値Ismrの上昇速度は、突入電流の上昇速度より速い。地絡発生に伴い放電電流値Ismrが急上昇した際、異常閾値IsmrTHは所定時間Ta遅れて変化する。そのため、地絡発生時点から応答時間Tbが経過した時点で、放電電流値Ismrは異常閾値IsmrTHを超え、図3のステップS50にて地絡異常と判定される。 The dotted line in FIG. 8 shows the behavior of the discharge current value Ismr when a ground fault occurs. The rate of increase of the discharge current value Ismr due to the occurrence of a ground fault is faster than the rate of increase of the inrush current. When the discharge current value Ismr suddenly rises due to the occurrence of a ground fault, the abnormal threshold value IsmrTH changes with a delay of Ta for a predetermined time. Therefore, when the response time Tb elapses from the time when the ground fault occurs, the discharge current value Ismr exceeds the abnormality threshold value IsmrTH, and it is determined in step S50 of FIG. 3 that the ground fault is abnormal.
 仮に、本実施形態に反して異常閾値IsmrTHを一定値に固定した比較例の場合には、突入電流の最大値より大きい値THxに異常閾値IsmrTHを設定することになる。この場合、地絡発生時点から地絡異常と判定されるまでの応答時間Tcは、本実施形態に係る応答時間Tbよりも長くなる。このことは、異常閾値IsmrTHを可変設定する本実施形態によれば、地絡異常検知の応答時間を短くできることを意味する。 In the case of a comparative example in which the abnormal threshold value IsmrTH is fixed to a constant value contrary to the present embodiment, the abnormal threshold value IsmrTH is set to a value THx larger than the maximum value of the inrush current. In this case, the response time Tc from the time of occurrence of the ground fault to the determination of the ground fault abnormality is longer than the response time Tb according to the present embodiment. This means that the response time for detecting a ground fault abnormality can be shortened according to the present embodiment in which the abnormality threshold value IsmrTH is variably set.
 なお、所定値Iaは、放電電流値Ismrの値に応じて異なっていてもよい。例えば、放電電流値Ismrが高い場合であるほど所定値Iaを小さくしてもよいし、その逆に所定値Iaを大きくしてもよい。また、所定時間Taは、放電電流値Ismrの値に応じて異なっていてもよい。例えば、放電電流値Ismrが高い場合であるほど所定時間Taを長くしてもよいし、その逆に所定時間Taを短くしてもよい。 The predetermined value Ia may be different depending on the value of the discharge current value Ismr. For example, the higher the discharge current value Ismr is, the smaller the predetermined value Ia may be, or conversely, the larger the predetermined value Ia may be. Further, the predetermined time Ta may be different depending on the value of the discharge current value Ismr. For example, the higher the discharge current value Ismr, the longer the predetermined time Ta may be, and conversely, the predetermined time Ta may be shortened.
 図8と同様にして、システム状態値としての系統間電流値Iisoおよび異常閾値IisoTHについても、所定時間Ta遅らせて変化させる。また、系統間電流値Iisoに所定値Iaを加算した値を異常閾値IisoTHとして設定している。また、これらの電流値以外のシステム状態値についても、図8と同様にして、システム状態値の変化に対して所定時間Ta遅らせて異常閾値を変化させてもよい。 In the same manner as in FIG. 8, the inter-system current value Iiso and the abnormal threshold value IisoTH as the system state values are also changed by delaying Ta for a predetermined time. Further, a value obtained by adding a predetermined value Ia to the inter-system current value Iiso is set as an abnormal threshold value IisoTH. Further, with respect to the system state values other than these current values, the abnormality threshold value may be changed by delaying Ta for a predetermined time with respect to the change of the system state value in the same manner as in FIG.
 以上により、本実施形態によれば、複数種類のシステム状態値に基づき異常閾値IsmrTH、IisoTHが変更される。そのため、地絡発生時に系統間SWを迅速に遮断することと、地絡の誤検知抑制との両立を図ることを、より高精度で実現できる。 As described above, according to the present embodiment, the abnormal thresholds IsmrTH and IisoTH are changed based on a plurality of types of system state values. Therefore, it is possible to achieve both the rapid shutoff of the SW between systems when a ground fault occurs and the suppression of false detection of the ground fault with higher accuracy.
 さらに本実施形態では、閾値変更部は、電流取得部により取得された正常時での電流値が大きいほど、異常閾値を高い値に変更する。具体的には、放電電流値Ismrが大きいほど異常閾値IsmrTHを高い値に変更している。また、系統間電流値Iisoが大きいほど異常閾値IisoTHを高い値に変更している。正常時に電流が多く流れている状態であるほど応答許容時間が長い可能性が高い。そのため、電流値が大きいほど異常閾値を高くする本実施形態によれば、迅速遮断と誤検知抑制との両立を、より高精度で実現できる。 Further, in the present embodiment, the threshold value changing unit changes the abnormal threshold value to a higher value as the current value acquired by the current acquisition unit in the normal state is larger. Specifically, the larger the discharge current value Ismr, the higher the abnormal threshold value IsmrTH is changed. Further, the larger the inter-system current value Iiso, the higher the abnormal threshold value IisoTH is changed. It is highly possible that the longer the allowable response time is, the more current is flowing during normal operation. Therefore, according to the present embodiment in which the abnormality threshold value is increased as the current value is larger, both quick cutoff and false detection suppression can be realized with higher accuracy.
 さらに本実施形態では、状態取得部は、システム状態値の1つとして、発電機G10による発電量WHを取得する。また、閾値変更部は、状態取得部により取得された発電量WHが多いほど、異常閾値を高い値に変更する。正常時での発電量WHが多い状態であるほど応答許容時間が長い可能性が高い。そのため、発電量WHが多いほど異常閾値を高くする本実施形態によれば、迅速遮断と誤検知抑制との両立を、より高精度で実現できる。 Further, in the present embodiment, the state acquisition unit acquires the power generation amount WH by the generator G10 as one of the system state values. Further, the threshold value changing unit changes the abnormal threshold value to a higher value as the amount of power generation WH acquired by the state acquisition unit increases. The larger the amount of power generated WH in the normal state, the longer the allowable response time is likely to be. Therefore, according to the present embodiment in which the abnormality threshold value is increased as the amount of power generation WH is increased, both rapid shutoff and false detection suppression can be realized with higher accuracy.
 (第4実施形態)
 図9に示すように、本実施形態に係るSW制御回路40は状態検出部41、閾値変更部42、検出部43および駆動部44を有する。
(Fourth Embodiment)
As shown in FIG. 9, the SW control circuit 40 according to the present embodiment includes a state detection unit 41, a threshold value change unit 42, a detection unit 43, and a drive unit 44.
 状態検出部41は、取得したシステム状態値と参照値との差に応じたアナログ信号を出力する差動増幅器41aを有する。 The state detection unit 41 has a differential amplifier 41a that outputs an analog signal according to the difference between the acquired system state value and the reference value.
 閾値変更部42は、AD変換器42a、ロジック回路42bおよびDA変換器42cを有する。AD変換器42aは、複数の差動増幅器41aから出力されたアナログ信号をデジタル信号に変換して、ロジック回路42bへ出力する。 The threshold value changing unit 42 includes an AD converter 42a, a logic circuit 42b, and a DA converter 42c. The AD converter 42a converts the analog signals output from the plurality of differential amplifiers 41a into digital signals and outputs them to the logic circuit 42b.
 ロジック回路42bは、複数のAD変換器42aから出力された信号、つまり複数種類のシステム状態値に基づき、異常閾値を設定する。なお、図5の表では、システム状態値が「高」「低」と簡易的に表現されているが、本実施形態では、「高」「低」の度合いが多段階で細かく区分けされている。そして、それらの区分けされたシステム状態に応じて異常閾値が設定されている。ロジック回路42bは、設定した異常閾値IsmrTH、IisoTHの値をDA変換器42cへ出力する。 The logic circuit 42b sets an abnormality threshold value based on signals output from a plurality of AD converters 42a, that is, a plurality of types of system state values. In the table of FIG. 5, the system state values are simply expressed as "high" and "low", but in the present embodiment, the degrees of "high" and "low" are finely divided into multiple stages. .. Then, an abnormality threshold value is set according to the divided system states. The logic circuit 42b outputs the values of the set abnormal thresholds IsmrTH and IisoTH to the DA converter 42c.
 DA変換器42cは、ロジック回路42bから出力された異常閾値IsmrTH、IisoTHのデジタル信号をアナログ信号に変換して、検出部43へ出力する。 The DA converter 42c converts the digital signals of the abnormal thresholds IsmrTH and IisoTH output from the logic circuit 42b into analog signals and outputs them to the detection unit 43.
 検出部43は、比較器43a、43bおよびロジック回路43cを有する。比較器43aは、検出された系統間電流値Iisoと、閾値変更部42から出力された異常閾値IisoTHとを大小比較する。比較器43aは、系統間電流値Iisoが異常閾値IisoTHより大きい場合にオン信号を出力する。比較器43bは、検出された放電電流値Ismrと、閾値変更部42から出力された異常閾値IsmrTHとを大小比較する。比較器43bは、放電電流値Ismrが異常閾値IsmrTHより大きい場合にオン信号を出力する。 The detection unit 43 includes comparators 43a and 43b and a logic circuit 43c. The comparator 43a compares the detected inter-system current value Iiso with the abnormal threshold value IisoTH output from the threshold value changing unit 42. The comparator 43a outputs an on signal when the inter-system current value Iiso is larger than the abnormality threshold value IisoTH. The comparator 43b compares the detected discharge current value Ismr with the abnormal threshold value IsmrTH output from the threshold value changing unit 42. The comparator 43b outputs an on signal when the discharge current value Ismr is larger than the abnormal threshold value IsmrTH.
 ロジック回路43cは、2つの比較器43a、43bから出力された信号に基づき、系統間SWを遮断させるか否かを決定し、指令信号を出力する。例えば、図3のステップS50での肯定判定と、図4のステップS50Aでの肯定判定との両方がなされた場合に、系統間SWを遮断させる指令信号を出力する。或いは、これらの肯定判定のいずれか一方がなされた場合に、系統間SWを遮断させる指令信号を出力する。 The logic circuit 43c determines whether or not to shut off the inter-system SW based on the signals output from the two comparators 43a and 43b, and outputs a command signal. For example, when both the affirmative determination in step S50 of FIG. 3 and the affirmative determination in step S50A of FIG. 4 are made, a command signal for shutting off the inter-system SW is output. Alternatively, when either of these affirmative determinations is made, a command signal for shutting off the inter-system SW is output.
 駆動部44は、ロジック回路43cから出力された指令信号に従って、系統間スイッチ31a、31bへゲート信号を出力する。 The drive unit 44 outputs a gate signal to the inter-system switches 31a and 31b according to the command signal output from the logic circuit 43c.
 (第5実施形態)
 図10に示すように、本実施形態に係る状態検出部41は、差動増幅器41aに加えて、逆流防止スイッチ41bを有する。逆流防止スイッチ41bは、差動増幅器41aと系統間スイッチ31a、31bとの間に接続されている。逆流防止スイッチ41bはMOSFETである。MOSFETに含まれる寄生ダイオードのアノード側が、系統間スイッチ31a、31bのソース側に接続されている。上記寄生ダイオードのカソード側が、差動増幅器41aの入力側に接続されている。
(Fifth Embodiment)
As shown in FIG. 10, the state detection unit 41 according to the present embodiment has a backflow prevention switch 41b in addition to the differential amplifier 41a. The backflow prevention switch 41b is connected between the differential amplifier 41a and the inter-system switches 31a and 31b. The backflow prevention switch 41b is a MOSFET. The anode side of the parasitic diode included in the MOSFET is connected to the source side of the inter-system switches 31a and 31b. The cathode side of the parasitic diode is connected to the input side of the differential amplifier 41a.
 ここで、図10に示す構成において、サブ系統側のインダクタンスL2が大きい場合には、地絡発生に伴い系統間SWを遮断すると、系統間スイッチ31a、31bのソース電位を基準に負サージが発生する。この負サージが大きいと、図10中の矢印に示すように差動増幅器41aに負サージが印加され、差動増幅器41aが損傷する懸念がある。 Here, in the configuration shown in FIG. 10, when the inductance L2 on the sub system side is large, if the inter-system SW is cut off due to the occurrence of a ground fault, a negative surge is generated with reference to the source potentials of the inter-system switches 31a and 31b. To do. If this negative surge is large, a negative surge is applied to the differential amplifier 41a as shown by an arrow in FIG. 10, and there is a concern that the differential amplifier 41a may be damaged.
 この懸念に対し本実施形態では、負サージ発生時には逆流防止スイッチ41bをオフにすることで、上記懸念を低減させている。すなわち、逆流防止スイッチ41bは、地絡が生じていない正常時には常時オン作動し、地絡検知時にはオフ作動するように制御される。なお、地絡検知に伴う逆流防止スイッチ41bのオフ作動は、系統間SWを遮断させる前に行う。 In response to this concern, in the present embodiment, the above concern is reduced by turning off the backflow prevention switch 41b when a negative surge occurs. That is, the backflow prevention switch 41b is controlled to always turn on when no ground fault has occurred and to turn off when a ground fault is detected. The backflow prevention switch 41b is turned off when the ground fault is detected before the inter-system SW is shut off.
 (第6実施形態)
 本実施形態に係る通電制御装置Dは、メイン電源側バス10aに設けられた1セットの遮断スイッチ12a、12bを備える(図11参照)。以下の説明では、1セットの遮断スイッチ12a、12bのことをSMR1と記載し、1セットの遮断スイッチ22a、22bのことをSMR2と記載する場合がある。
(Sixth Embodiment)
The energization control device D according to the present embodiment includes a set of cutoff switches 12a and 12b provided on the main power supply side bus 10a (see FIG. 11). In the following description, one set of cutoff switches 12a and 12b may be referred to as SMR1, and one set of cutoff switches 22a and 22b may be referred to as SMR2.
 メイン電源側バス10aのうち、1セットの遮断スイッチ12a、12bの間の部分には、シャント抵抗12cが接続されている。遮断スイッチ12a、12bおよびシャント抵抗12cは、1つのSMR装置12としてユニット化されている。 A shunt resistor 12c is connected to a portion of the main power supply side bus 10a between one set of cutoff switches 12a and 12b. The cutoff switches 12a and 12b and the shunt resistor 12c are unitized as one SMR device 12.
 SW制御回路40は、シャント抵抗12cの両端電位を検出し、両端電位差に基づき第1放電電流値Ismr1を算出する。なお、第1放電電流値Ismr1は、メイン電源B10から放電される向きを正の値として定義される。なお、本実施形態では、サブ電源B20から放電される放電電流値Ismrを、第2放電電流値Ismr2と記載する。 The SW control circuit 40 detects the potential at both ends of the shunt resistor 12c and calculates the first discharge current value Ismr1 based on the potential difference between both ends. The first discharge current value Ismr1 is defined as a positive value in the direction of discharge from the main power supply B10. In the present embodiment, the discharge current value Ismr discharged from the sub power source B20 is referred to as the second discharge current value Ismr2.
 SW制御回路40は、第1放電電流値Ismr1および第2放電電流値Ismr2の両方に基づいて系統間SWの作動を制御する。具体的には、SW制御回路40は、シャント抵抗22cの両端電位差に基づき第2放電電流値Ismr2を検出(取得)する。また、シャント抵抗12cの両端電位差に基づき第1放電電流値Ismr1を検出(取得)する。 The SW control circuit 40 controls the operation of the inter-system SW based on both the first discharge current value Ismr1 and the second discharge current value Ismr2. Specifically, the SW control circuit 40 detects (acquires) the second discharge current value Ismr2 based on the potential difference between both ends of the shunt resistor 22c. Further, the first discharge current value Ismr1 is detected (acquired) based on the potential difference between both ends of the shunt resistor 12c.
 その後SW制御回路40は、検出した第2放電電流値Ismr2が、異常閾値Ismr2TH(第2異常閾値)より大きいか否かを判定する。また、検出した第1放電電流値Ismr1が、異常閾値Ismr1TH(第1異常閾値)より大きいか否かを判定する。そして、これらの異常閾値Ismr1TH、Ismr2THは、上記各実施形態と同様にして、システム状態値に応じて変更されている。 After that, the SW control circuit 40 determines whether or not the detected second discharge current value Ismr2 is larger than the abnormal threshold value Ismr2TH (second abnormal threshold value). Further, it is determined whether or not the detected first discharge current value Ismr1 is larger than the abnormal threshold value Ismr1TH (first abnormal threshold value). Then, these abnormal thresholds Ismr1TH and Ismr2TH are changed according to the system state value in the same manner as in each of the above embodiments.
 (第7実施形態)
 本実施形態に係る通電制御装置Dは、図1に示す通電制御装置Dにケース60を備えさせたものである(図12参照)。ケース60は、SW制御回路40、系統間SW、SMR、およびシャント抵抗31c、22cを内部に収容する。これにより、通電制御装置Dは、1つの電流遮断モジュールとして形成される。ケース60には、複数の端子61、62、63が取り付けられている。端子61には、サブ電源B20と接続される配線の一端が接続される。端子62には、第2負荷L20、L21と接続される配線の一端が接続される。端子63には、第1負荷L10、L11、メイン電源B10および発電機G10と接続される配線の一端が接続される。
(7th Embodiment)
The energization control device D according to the present embodiment is the energization control device D shown in FIG. 1 provided with a case 60 (see FIG. 12). The case 60 houses the SW control circuit 40, the inter-system SW, the SMR, and the shunt resistors 31c and 22c inside. As a result, the energization control device D is formed as one current cutoff module. A plurality of terminals 61, 62, 63 are attached to the case 60. One end of the wiring connected to the sub power supply B20 is connected to the terminal 61. One end of the wiring connected to the second loads L20 and L21 is connected to the terminal 62. One end of the wiring connected to the first loads L10 and L11, the main power supply B10, and the generator G10 is connected to the terminal 63.
 なお、本実施形態の変形例として、サブ電源B20および上位制御回路50の少なくとも一方についても、ケース60内部に収容させてもよい。なお、メイン電源B10およびサブ電源B20の少なくとも一方をケース60内部に収容させた場合、収容されている電源および通電制御装置Dは電源ユニットを提供する。 As a modification of this embodiment, at least one of the sub power supply B20 and the upper control circuit 50 may be housed inside the case 60. When at least one of the main power supply B10 and the sub power supply B20 is housed inside the case 60, the housed power supply and the energization control device D provide a power supply unit.
 また、本実施形態の変形例として、図11に示す通電制御装置Dにケース60を備えさせてもよい。この場合のケース60は、SW制御回路40、系統間SW、SMR1、SMR2、シャント抵抗31c、22c、12cを内部に収容する。 Further, as a modification of the present embodiment, the energization control device D shown in FIG. 11 may be provided with a case 60. In this case, the case 60 houses the SW control circuit 40, the inter-system SW, SMR1, SMR2, and shunt resistors 31c, 22c, 12c inside.
 (他の実施形態)
 以上、本開示の複数の実施形態について説明したが、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(Other embodiments)
Although the plurality of embodiments of the present disclosure have been described above, not only the combination of the configurations specified in the description of each embodiment but also the plurality of embodiments even if the combination is not specified if there is no problem in the combination. It is possible to partially combine the configurations of. Further, it is assumed that the unspecified combination of the configurations described in the plurality of embodiments and modifications is also disclosed by the following description.
 上記各実施形態において、状態取得部は、サブ系統電圧VsJBやメイン系統電圧VpJBをシステム状態値として取得してもよい。 In each of the above embodiments, the state acquisition unit may acquire the sub system voltage VsJB and the main system voltage VpJB as system state values.
 上記各実施形態において、地絡検知に伴い系統間SWを遮断させている場合に、このように異常が発生している旨を、SW制御回路40が上位制御回路50に通知してもよい。 In each of the above embodiments, when the inter-system SW is shut off due to the ground fault detection, the SW control circuit 40 may notify the host control circuit 50 that such an abnormality has occurred.
 上記各実施形態において、サブ系統バス20で地絡が発生した場合に、系統間SWを遮断ラッチすることに加え、SMRも遮断ラッチさせてもよい。また、上記各実施形態において、メイン系統バス10で地絡が発生した場合に、系統間SWを遮断することに加え、SMRを通電ラッチさせてもよい。 In each of the above embodiments, when a ground fault occurs in the sub system bus 20, in addition to the inter-system SW shut-off latch, the SMR may also be cut-off latched. Further, in each of the above embodiments, when a ground fault occurs in the main system bus 10, in addition to shutting off the inter-system SW, the SMR may be energized and latched.
 上記第6実施形態では、第2放電電流値Ismr2が第2閾値を超えていなくても、第1放電電流値Ismr1が第1閾値を超えて上昇していれば系統間SWを遮断する。これに対し、第2放電電流値Ismr2が第2閾値を超え、かつ、第1放電電流値Ismr1が第1閾値を超えた場合に、地絡異常とみなして系統間SWを遮断してもよい。 In the sixth embodiment, even if the second discharge current value Ismr2 does not exceed the second threshold value, the inter-system SW is shut off if the first discharge current value Ismr1 rises beyond the first threshold value. On the other hand, when the second discharge current value Ismr2 exceeds the second threshold value and the first discharge current value Ismr1 exceeds the first threshold value, it may be regarded as a ground fault abnormality and the inter-system SW may be shut off. ..
 図1等に記載の冗長電源システムでは、発電機G10がメイン系統バス10に接続されている。そのため、サブ電源B20は、系統間バス30を通じて供給される電力によって充電可能に構成されている。これに対し、発電機G10がサブ系統バス20に接続されていてもよい。また、発電機G10は、メイン電源B10またはサブ電源B20の高電位側に接続されていてもよいし、グランド側に接続されていてもよい。 In the redundant power supply system shown in FIG. 1 and the like, the generator G10 is connected to the main system bus 10. Therefore, the sub power supply B20 is configured to be rechargeable by the electric power supplied through the inter-system bus 30. On the other hand, the generator G10 may be connected to the sub system bus 20. Further, the generator G10 may be connected to the high potential side of the main power source B10 or the sub power source B20, or may be connected to the ground side.

Claims (11)

  1.  第1電源(B10)から供給される電力を第1負荷(L10、L11)へ送電する第1系統バス(10)と、
     第2電源(B20)から供給される電力を第2負荷(L20、L21)へ送電する第2系統バス(20)と、
     前記第1系統バスと前記第2系統バスとを電気的に接続する系統間バス(30)と、
    を備える車両用の冗長電源システムに適用された通電制御装置において、
     前記系統間バスにおける電流の通電と遮断を切り替える系統間スイッチ(31a、31b)と、
     前記系統間スイッチの作動状態を制御する系統間スイッチ制御部(40)と、
    を備え、
     前記系統間スイッチ制御部は、
     前記冗長電源システムを流れる電流値(Ismr、Iiso)を取得する電流取得部(S40、S40A)と、
     前記電流取得部により取得された前記電流値が異常閾値(IsmrTH、IisoTH)を超えて上昇した場合に、地絡異常が生じているとみなして前記系統間スイッチを遮断状態に制御する遮断制御部(S60)と、
     前記地絡異常とみなされていない正常時における、前記冗長電源システムの状態を表すシステム状態値を取得する状態取得部(S20、S20A)と、
     前記状態取得部により取得された前記システム状態値(Vs、Rs、Vp、Rp、Iiso、Ismr、WH)に応じて前記異常閾値を変更させる閾値変更部(S30、S30A)とを有する、通電制御装置。
    The first system bus (10) that transmits the electric power supplied from the first power source (B10) to the first load (L10, L11), and
    The second system bus (20) that transmits the electric power supplied from the second power source (B20) to the second load (L20, L21), and
    An inter-system bus (30) that electrically connects the first system bus and the second system bus, and
    In the energization control device applied to the redundant power supply system for vehicles equipped with
    Inter-system switches (31a, 31b) that switch between energization and interruption of current in the inter-system bus, and
    An inter-system switch control unit (40) that controls the operating state of the inter-system switch,
    With
    The inter-system switch control unit
    A current acquisition unit (S40, S40A) that acquires a current value (Ismr, Iiso) flowing through the redundant power supply system, and
    When the current value acquired by the current acquisition unit rises beyond the abnormal threshold value (IsmrTH, IisoTH), it is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state. (S60) and
    A state acquisition unit (S20, S20A) that acquires a system state value indicating the state of the redundant power supply system in a normal state that is not regarded as the ground fault abnormality, and
    Energization control having a threshold value changing unit (S30, S30A) for changing the abnormal threshold value according to the system state value (Vs, Rs, Vp, Rp, Iiso, Ismr, WH) acquired by the state acquisition unit. apparatus.
  2.  前記状態取得部は、前記システム状態値の1つとして、前記第2負荷へ供給される電圧である第2供給電圧と相関のある第2状態値(Vs、Rs)を取得し、
     前記閾値変更部は、前記正常時における前記第2供給電圧が高いほど、前記状態取得部により取得された前記第2状態値に基づき前記異常閾値を高い値に変更する、請求項1に記載の通電制御装置。
    The state acquisition unit acquires a second state value (Vs, Rs) that correlates with the second supply voltage, which is the voltage supplied to the second load, as one of the system state values.
    The first aspect of the present invention, wherein the threshold value changing unit changes the abnormal threshold value to a higher value based on the second state value acquired by the state acquisition unit as the second supply voltage in the normal state becomes higher. Energization control device.
  3.  前記状態取得部は、前記第2状態値の1つとして、前記第2電源の寄生抵抗を考慮した前記第2電源の出力電圧である第2電源電圧(Vs)を取得し、
     前記閾値変更部は、前記状態取得部により取得された前記第2電源電圧が高いほど、前記異常閾値を高い値に変更する、請求項2に記載の通電制御装置。
    The state acquisition unit acquires the second power supply voltage (Vs), which is the output voltage of the second power supply in consideration of the parasitic resistance of the second power supply, as one of the second state values.
    The energization control device according to claim 2, wherein the threshold value changing unit changes the abnormal threshold value to a higher value as the second power supply voltage acquired by the state acquisition unit becomes higher.
  4.  前記電流取得部は、前記電流値の1つとして、前記第2電源から放電される電流の大きさである放電電流値(Ismr)を取得し、
     前記遮断制御部は、前記放電電流値に基づき前記地絡異常の有無を判定する、請求項1~3のいずれか1つに記載の通電制御装置。
    The current acquisition unit acquires a discharge current value (Ismr), which is the magnitude of the current discharged from the second power source, as one of the current values.
    The energization control device according to any one of claims 1 to 3, wherein the cutoff control unit determines the presence or absence of the ground fault abnormality based on the discharge current value.
  5.  前記電流取得部は、前記電流値の1つとして、前記系統間バスを流れる電流の大きさである系統間電流値(Iiso)を取得し、
     前記遮断制御部は、前記系統間電流値に基づき前記地絡異常の有無を判定する、請求項1~4のいずれか1つに記載の通電制御装置。
    The current acquisition unit acquires an inter-system current value (Iiso), which is the magnitude of the current flowing through the inter-system bus, as one of the current values.
    The energization control device according to any one of claims 1 to 4, wherein the cutoff control unit determines the presence or absence of the ground fault abnormality based on the inter-system current value.
  6.  前記状態取得部は、前記システム状態値の1つとして、前記第1負荷へ供給される電圧である第1供給電圧と相関のある第1状態値(Vp、Rp)を取得し、
     前記閾値変更部は、前記正常時における前記第1供給電圧が高いほど、前記状態取得部により取得された前記第1状態値に基づき前記異常閾値を高い値に変更する、請求項1~5のいずれか1つに記載の通電制御装置。
    The state acquisition unit acquires a first state value (Vp, Rp) that correlates with the first supply voltage, which is the voltage supplied to the first load, as one of the system state values.
    The threshold value changing unit changes the abnormal threshold value to a higher value based on the first state value acquired by the state acquisition unit as the first supply voltage in the normal state is higher. The energization control device according to any one.
  7.  前記状態取得部は、前記第1状態値の1つとして、前記第1電源の寄生抵抗を考慮した前記第1電源の出力電圧である第1電源電圧(Vp)を取得し、
     前記閾値変更部は、前記状態取得部により取得された前記第1電源電圧が高いほど、前記異常閾値を高い値に変更する、請求項6に記載の通電制御装置。
    The state acquisition unit acquires the first power supply voltage (Vp), which is the output voltage of the first power supply in consideration of the parasitic resistance of the first power supply, as one of the first state values.
    The energization control device according to claim 6, wherein the threshold value changing unit changes the abnormal threshold value to a higher value as the first power supply voltage acquired by the state acquisition unit increases.
  8.  前記閾値変更部は、前記電流取得部により取得された前記正常時での前記電流値が大きいほど、前記異常閾値を高い値に変更する、請求項1~7のいずれか1つに記載の通電制御装置。 The energization according to any one of claims 1 to 7, wherein the threshold value changing unit changes the abnormal threshold value to a higher value as the current value acquired by the current acquisition unit in the normal state is larger. Control device.
  9.  前記冗長電源システムは、前記第1系統バスまたは前記第2系統バスへ発電電力を供給する発電機(G10)を備え、
     前記状態取得部は、前記システム状態値の1つとして、前記発電機による発電量(WH)を取得し、
     前記閾値変更部は、前記状態取得部により取得された前記発電量が多いほど、前記異常閾値を高い値に変更する、請求項1~8のいずれか1つに記載の通電制御装置。
    The redundant power supply system includes a generator (G10) that supplies generated power to the first system bus or the second system bus.
    The state acquisition unit acquires the amount of power generated by the generator (WH) as one of the system state values.
    The energization control device according to any one of claims 1 to 8, wherein the threshold value changing unit changes the abnormal threshold value to a higher value as the amount of power generation acquired by the state acquisition unit increases.
  10.  前記第2電源と前記第2系統バスとの通電と遮断を切り替える電源スイッチ(22)と、
     前記電源スイッチの作動状態を制御する電源スイッチ制御部(40)と、
    を備える、請求項1~9のいずれか1つに記載の通電制御装置。
    A power switch (22) for switching between energization and disconnection between the second power supply and the second system bus, and
    A power switch control unit (40) that controls the operating state of the power switch, and
    The energization control device according to any one of claims 1 to 9, further comprising.
  11.  請求項1~10のいずれか1つに記載の通電制御装置と、
     前記第1電源および前記第2電源の少なくとも一方と、
    を備える電源ユニット。
     
    The energization control device according to any one of claims 1 to 10 and
    With at least one of the first power supply and the second power supply
    Power supply unit with.
PCT/JP2020/027591 2019-08-28 2020-07-16 Energization control device and power supply unit WO2021039177A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-156094 2019-08-28
JP2019156094A JP2021035272A (en) 2019-08-28 2019-08-28 Electrification control device and power supply unit

Publications (1)

Publication Number Publication Date
WO2021039177A1 true WO2021039177A1 (en) 2021-03-04

Family

ID=74677829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027591 WO2021039177A1 (en) 2019-08-28 2020-07-16 Energization control device and power supply unit

Country Status (2)

Country Link
JP (1) JP2021035272A (en)
WO (1) WO2021039177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021168539A (en) * 2020-04-09 2021-10-21 株式会社デンソー Power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device
JP2015074348A (en) * 2013-10-09 2015-04-20 株式会社オートネットワーク技術研究所 Vehicular power supply device
JP2016128283A (en) * 2015-01-09 2016-07-14 株式会社オートネットワーク技術研究所 Power supply device for automobile and power supply box
JP2018196252A (en) * 2017-05-18 2018-12-06 矢崎総業株式会社 Power Distribution System
JP2019062727A (en) * 2017-09-22 2019-04-18 株式会社デンソー Power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device
JP2015074348A (en) * 2013-10-09 2015-04-20 株式会社オートネットワーク技術研究所 Vehicular power supply device
JP2016128283A (en) * 2015-01-09 2016-07-14 株式会社オートネットワーク技術研究所 Power supply device for automobile and power supply box
JP2018196252A (en) * 2017-05-18 2018-12-06 矢崎総業株式会社 Power Distribution System
JP2019062727A (en) * 2017-09-22 2019-04-18 株式会社デンソー Power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021168539A (en) * 2020-04-09 2021-10-21 株式会社デンソー Power supply system
JP7409206B2 (en) 2020-04-09 2024-01-09 株式会社デンソー power system

Also Published As

Publication number Publication date
JP2021035272A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US11465574B2 (en) Power supply system
US10992165B2 (en) Redundant power supply system
US10399518B2 (en) Relay device and power supply device
JP6662282B2 (en) Power system
CN114103838A (en) Power control apparatus and method for autonomous vehicle
US9889741B1 (en) Vehicle
US20170187179A1 (en) Junction box
US20220097634A1 (en) Power supply system
CN111699605A (en) Battery control device
US11248577B2 (en) Vehicle power supply apparatus
WO2021039177A1 (en) Energization control device and power supply unit
WO2021039130A1 (en) Energization control device and power supply unit
US12109959B2 (en) Power supply device and method that determine location of fault in first and second power supply systems
US11588346B2 (en) Power supply control device and power supply control method
US12051931B2 (en) Onboard power supply device and onboard power supply control method
JP2021040475A (en) Energization control device and power supply unit
US11837911B2 (en) Power supply control apparatus and power supply control method
WO2024185230A1 (en) Power distribution device and wire-disconnect determination method
WO2024166612A1 (en) Switch cutoff device, and program
JP7563994B2 (en) On-board power supply device and on-board power supply control method
JP7437231B2 (en) Power system control device and control method
JP7416027B2 (en) Vehicle power system
US20230264597A1 (en) In-vehicle system, method, and non-transitory storage medium
JP2023043533A (en) Power supply control unit
JP2022081120A (en) Power supply device and power supply control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858283

Country of ref document: EP

Kind code of ref document: A1