JP2010252617A - Charging control method in feeder voltage compensator for electric railways - Google Patents

Charging control method in feeder voltage compensator for electric railways Download PDF

Info

Publication number
JP2010252617A
JP2010252617A JP2009171755A JP2009171755A JP2010252617A JP 2010252617 A JP2010252617 A JP 2010252617A JP 2009171755 A JP2009171755 A JP 2009171755A JP 2009171755 A JP2009171755 A JP 2009171755A JP 2010252617 A JP2010252617 A JP 2010252617A
Authority
JP
Japan
Prior art keywords
value
voltage
current command
current
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009171755A
Other languages
Japanese (ja)
Other versions
JP5391900B2 (en
Inventor
Masanori Hiramatsu
正宣 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009171755A priority Critical patent/JP5391900B2/en
Publication of JP2010252617A publication Critical patent/JP2010252617A/en
Application granted granted Critical
Publication of JP5391900B2 publication Critical patent/JP5391900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/08Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a feeder failure due to overvoltage and charge an electric double-layer capacitor up to the maximum possible level. <P>SOLUTION: In the method of charge control, a current command value obtained by inputting a current command value output from a PI amplifier 23 to a limiter 24 to be controlled is compared with a new current command value refined by a filter 34 for refining a current command value in consideration of internal resistance of an electric double-layer capacitor using a comparator 32, and outputs a smaller current command value as a charging current command value. A deviation output between the charging current command value output from the comparator 32 and a detected value of the charging current value of the electric double-layer capacitor is obtained. The output is input to an amplifier 28 for controlling a duty ratio through a PI amplifier 26 after obtaining a PI control output for determining a duty of a bidirectional chopper means. A PWM signal corresponding to the duty ratio is created in a CMP creation part 29 from the amplifier 28. From the PWM signal and a condition signal when regenerative electric power is generated, a gate signal is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気鉄道におけるき電線電圧補償装置に関する発明で、特に、き電線電圧補償装置の電力貯蔵装置に使用される電気二重層キャパシタの充電制御方法に関するものである。   The present invention relates to a feeder voltage compensation device in an electric railway, and more particularly to a method for controlling charging of an electric double layer capacitor used in a power storage device of a feeder voltage compensation device.

電気鉄道においては、電気車の力行、回生時に、き電電圧の電圧降下、電圧上昇の発生を抑えるために、き電線電圧補償装置が設けられている。このき電線電圧補償装置は、電力変換装置と電力貯蔵装置から構成され、電力貯蔵装置には、電気二重層キャパシタ(EDLC)が使用され、この電気二重層キャパシタは、電気車の回生電力を電力変換装置によってき電電圧一定制御にて充電されるように構成されている。   In electric railways, feeder voltage compensators are provided to suppress the occurrence of voltage drop and voltage rise during power running and regeneration of electric vehicles. This feeder voltage compensation device is composed of a power conversion device and a power storage device, and an electric double layer capacitor (EDLC) is used for the power storage device, and this electric double layer capacitor uses the regenerative power of the electric vehicle as power. The converter is configured to be charged with constant feed voltage control.

上記電力変換装置にてEDLCが、満充電に近づいた場合の制御方式には、後述する図10に示すEDLCのみを用いる第1方式と第2方式と、後述する図11に示すEDLCと抵抗を併用して回生電力を吸収する第3方式とがある。   In the power converter, when the EDLC is close to full charge, the first method and the second method using only the EDLC shown in FIG. 10 described later, and the EDLC and resistance shown in FIG. 11 described later are used. There is a third system that absorbs regenerative power in combination.

前記第1方式と第2方式は、回生電力を満充電にて充電停止する制御方式であり、前記第3方式は、回生電力を吸収する制御方式である(特許文献1参照。)。   The first method and the second method are control methods for stopping the regenerative power when fully charged, and the third method is a control method for absorbing the regenerative power (see Patent Document 1).

図10は前記第1方式を示す概略構成図で、図10において、1はき電線、2はレールで、き電線1とレール2との間には、電力変換装置60が設けられ、この電力変換装置60は、リアクトル3とコンデンサ4からなるスイッチング成分除去フィルタ5と、リアクトル3とコンデンサ4の共通接続点とレール2間に設けられる双方向チョッパ手段6とから構成され、双方向チョッパ手段6の上下2個の半導体スイッチング素子6a,6bの共通接続点とレール2の間に平滑化リアクトル7を介して電力貯蔵装置61であるEDLC8が設けられている。   FIG. 10 is a schematic configuration diagram showing the first method. In FIG. 10, reference numeral 1 is a feeder line, 2 is a rail, and a power converter 60 is provided between the feeder line 1 and the rail 2. The converter 60 includes a switching component removal filter 5 including a reactor 3 and a capacitor 4, and a bidirectional chopper means 6 provided between a common connection point of the reactor 3 and the capacitor 4 and the rail 2. Between the common connection point of the two upper and lower semiconductor switching elements 6 a and 6 b and the rail 2, an EDLC 8, which is a power storage device 61, is provided via the smoothing reactor 7.

なお、10はき電電流検出部、11はき電電圧検出部、12はEDLC電流検出部および13はEDLC電圧検出部である。   In addition, 10 is a feeding current detection unit, 11 is a feeding voltage detection unit, 12 is an EDLC current detection unit, and 13 is an EDLC voltage detection unit.

この従来から使用されている回生電力吸収制御として図12の制御ブロック構成図を用いて、図10に示す概略構成図の第1方式の制御動作について述べる。   As the regenerative power absorption control conventionally used, the control operation of the first method of the schematic configuration diagram shown in FIG. 10 will be described using the control block configuration diagram of FIG.

図12において、き電電圧検出値と、き電基準電圧値との偏差を偏差部21で求め、その偏差部21の偏差出力を規格化演算部22に入力して、この規格化演算部22で入力された値を定格値で割り算して規格演算出力値(例えば、定格電圧2000Vで、入力電圧が1000Vの場合、規格演算出力値として0.5となる。)を得る。この出力値は、PIアンプ23に入力されて、出力に電流指令値を得る。この電流指令値は、リミッタ24に入力されて「0〜1」に制限処理された後、この制限処理された電流指令値とEDLCの充電電流検出値との偏差を偏差部25で求め、その偏差出力がPIアンプ26に供給され、PIアンプ26により双方向チョッパ手段6のデューティを決めるPI制御出力を送出する。   In FIG. 12, the deviation between the feeding voltage detection value and the feeding reference voltage value is obtained by the deviation unit 21, and the deviation output of the deviation unit 21 is input to the standardization computation unit 22. The standard input value is divided by the rated value to obtain a standard calculation output value (for example, when the rated voltage is 2000 V and the input voltage is 1000 V, the standard calculation output value is 0.5). This output value is input to the PI amplifier 23 to obtain a current command value as an output. The current command value is input to the limiter 24 and subjected to a limit process of “0 to 1”, and then the deviation between the current command value subjected to the limit process and the charge current detection value of the EDLC is obtained by the deviation unit 25. The deviation output is supplied to the PI amplifier 26, and the PI amplifier 26 sends out a PI control output that determines the duty of the bidirectional chopper means 6.

PIアンプ26から送出されたPI制御出力は、リミッタ27で「0〜1」に制限処理されて双方向チョッパ手段6のデューティ比を制御するDUTYアンプ28に入力される。このDUTYアンプ28から出力されるデューティ比に見合ったPWM信号をCMP生成部29で生成する。   The PI control output sent from the PI amplifier 26 is limited to “0 to 1” by the limiter 27 and is inputted to the DUTY amplifier 28 that controls the duty ratio of the bidirectional chopper means 6. The CMP generator 29 generates a PWM signal corresponding to the duty ratio output from the DUTY amplifier 28.

30はAND回路部で、このAND回路部30には、回生電力が発生したときに図示しないシステムなどから送出される充電許可条件信号とゲート許可条件信号(充放電許可モード)が供給され、これら充電許可条件信号とゲート許可条件信号が満たされたとき、そのAND回路部30から出力信号が、AND回路部31の第1入力端子に供給される。また、CMP生成部29で生成されたPWM信号が、AND回路部31の第2入力端子に供給される。これら両入力端子に信号が供給された時に、AND回路部31の出力からは、双方向チョッパ手段6を制御するゲート信号が送出され、そのゲート信号により双方向チョッパ手段6が制御されてEDLC8への充電電流が制御される。   An AND circuit unit 30 is supplied with a charge permission condition signal and a gate permission condition signal (charge / discharge permission mode) sent from a system (not shown) when regenerative power is generated. When the charge permission condition signal and the gate permission condition signal are satisfied, an output signal is supplied from the AND circuit section 30 to the first input terminal of the AND circuit section 31. The PWM signal generated by the CMP generation unit 29 is supplied to the second input terminal of the AND circuit unit 31. When signals are supplied to both of these input terminals, a gate signal for controlling the bi-directional chopper means 6 is sent from the output of the AND circuit unit 31, and the bi-directional chopper means 6 is controlled by the gate signal to the EDLC 8. The charging current is controlled.

上記のように第1方式の制御動作を行う回生電力吸収制御では、単にEDLCの電圧条件だけで充電を行っている。   In the regenerative power absorption control in which the control operation of the first method is performed as described above, charging is performed only by the voltage condition of EDLC.

そこで、図13の制御ブロック構成図に示す第2方式の回生電力吸収制御が考案された。図13に示す制御ブロック構成図は、EDLC電圧を考慮し充電電流を絞って回生電力吸収制御を行うように改良したもので、以下図12と異なる構成と動作について述べる。   Therefore, the second type regenerative power absorption control shown in the control block configuration diagram of FIG. 13 has been devised. The control block configuration diagram shown in FIG. 13 is improved so that regenerative power absorption control is performed by limiting the charging current in consideration of the EDLC voltage, and the configuration and operation different from those in FIG. 12 will be described below.

図13において、リミッタ24と偏差部25との電路に比較器32を介挿し、この比較器32と図14に示すEDLC電圧に依存して電流指令値を絞るフィルタ33の出力を供給する。この比較器32は、リミッタ24を介して供給されるPI制御からの電流指令値と、フィルタ33により絞られた電流指令値(フィルタ出力α)とを比較して、比較器32からは、小さい方の電流指令値が出力される。   In FIG. 13, a comparator 32 is inserted in the electric path between the limiter 24 and the deviation unit 25, and the output of the filter 33 that narrows down the current command value is supplied depending on the comparator 32 and the EDLC voltage shown in FIG. The comparator 32 compares the current command value from the PI control supplied via the limiter 24 with the current command value (filter output α) narrowed down by the filter 33, and the comparator 32 has a smaller value. One current command value is output.

比較器32から出力された電流指令値とEDLCの充電電流検出値との偏差を偏差部25で求める。求められた偏差出力は、PIアンプ26に供給されて、出力にPI制御出力を得る。得られたPI制御出力は、双方向チョッパ手段6のデューティを決めるもので、リミッタ27を介して双方向チョッパ手段6のデューティ比を制御するDUTYアンプ28に入力され、その後の処理は図12に述べたように行われる。   The deviation unit 25 obtains a deviation between the current command value output from the comparator 32 and the charge current detection value of the EDLC. The obtained deviation output is supplied to the PI amplifier 26 to obtain a PI control output as an output. The obtained PI control output determines the duty of the bidirectional chopper means 6, and is input to the DUTY amplifier 28 for controlling the duty ratio of the bidirectional chopper means 6 via the limiter 27, and the subsequent processing is shown in FIG. Done as described.

また、図11は第3方式を示す概略構成図で、図10と同一部分には同一符号を付して説明を省略する。この第3方式においては、EDLC8とスイッチ14との第1直列体15と、この第1直列体15に抵抗16とスイッチ17との第2直列体18とを並列接続して、両直列体15,18は双方向チョッパ手段6の上下2個の半導体スイッチング素子6a,6bの共通接続点とレール2の間に平滑化リアクトル7を介して構成されたものである。   FIG. 11 is a schematic configuration diagram showing the third system. The same parts as those in FIG. In this third system, a first series body 15 of the EDLC 8 and the switch 14 and a second series body 18 of a resistor 16 and a switch 17 are connected in parallel to the first series body 15 so that both series bodies 15 are connected. , 18 is formed between the common connection point of the upper and lower semiconductor switching elements 6a, 6b of the bidirectional chopper means 6 and the rail 2 via the smoothing reactor 7.

この第3方式は、スイッチ14、17を閉じてEDLC8と抵抗16とを並列接続した後、更にEDLC8の電圧が上昇し、かつ電気車の回生電力により、き電線電圧が閾値よりも高くなる場合、EDLC8のみを解列し、抵抗16で回生電力を吸収する動作を行うものである。   In this third method, after the switches 14 and 17 are closed and the EDLC 8 and the resistor 16 are connected in parallel, the voltage of the EDLC 8 further increases, and the feeder voltage becomes higher than the threshold value due to the regenerative power of the electric vehicle. Only the EDLC 8 is disconnected, and the regenerative power is absorbed by the resistor 16.

上記の他に、EDLCの電力貯蔵(蓄電)能力を最大限に発揮するために、定電流制御による充電を行い、EDLCが満充電電圧V1に到達した後に、定電圧制御による充電(緩和充電)を行う方式がある(特許文献2参照。)。   In addition to the above, in order to maximize the power storage (storage) capability of the EDLC, charging is performed by constant current control, and charging by the constant voltage control (relaxation charging) after the EDLC reaches the full charge voltage V1. There is a method of performing (see Patent Document 2).

特開2001−206110号JP 2001-206110 A 特許4022362号Japanese Patent No. 4022362

次に、電気車からの回生電力吸収時の問題点について述べる。
(1)まず、充電電流絞り無しの問題点(第1方式の問題点)
電圧条件だけで充電を行う場合、EDLC電圧が満充電の電圧を超えた時点で、回生電力吸収動作を突然停止してしまうと、次のような不具合が発生する。
Next, the problem at the time of regenerative power absorption from an electric vehicle is described.
(1) First, the problem of no charging current restriction (problem of the first method)
When charging is performed only under voltage conditions, if the regenerative power absorption operation is suddenly stopped when the EDLC voltage exceeds the fully charged voltage, the following problem occurs.

き電電圧の上昇により、電気車側が回生電流を絞り込み機械ブレーキで制動を行うが、き電電圧の上昇が急な場合は、回生電流の絞り込みが間に合わなくなり、き電電圧が上昇しているにもかかわらず電気車から回生電力が発生するために、き電電圧が過電圧となる恐れがある。
(2)EDLC内部抵抗による問題点(第1、第3方式の問題点)
EDLCには内部抵抗があるため、充電を停止すると、内部抵抗と充電電流によって電圧降下した分、充電停止直前よりもEDLC電圧が低下してしまう恐れがある。
When the feeding voltage rises, the electric vehicle side throttles the regenerative current and brakes with the mechanical brake. If the feeding voltage rises suddenly, the regenerative current cannot be narrowed in time, and the feeding voltage is rising However, since regenerative power is generated from the electric vehicle, the feeding voltage may be overvoltage.
(2) Problems due to EDLC internal resistance (problems of the first and third methods)
Since the EDLC has an internal resistance, when charging is stopped, the EDLC voltage may be lower than that immediately before the charging is stopped due to the voltage drop caused by the internal resistance and the charging current.

図15はEDLCの等価回路図で、図15において、Rは内部抵抗、Iは充電電流、RIは電圧降下分を示す。   FIG. 15 is an equivalent circuit diagram of the EDLC. In FIG. 15, R represents an internal resistance, I represents a charging current, and RI represents a voltage drop.

図16はEDLCには内部抵抗があるため、そのEDLCが充電中に充電を停止すると、内部抵抗と充電電流によって電圧降下したときのEDLC電圧が低下する様子を示す特性図である。   FIG. 16 is a characteristic diagram showing how the EDLC voltage drops when the EDLC has an internal resistance, and when the EDLC stops charging during charging, the voltage drops due to the internal resistance and the charging current.

図16において、上昇中の実線はEDLC電圧V11、破線はEDLC電圧からEDLC内部抵抗による電圧降下分を差し引いた電圧V12で、EDLC電圧V11は、時刻t1でEDLCへの充電が停止になると、前記電圧V11は、充電電流Iが供給されなくなるため、前記電圧V11は、内部抵抗Rでの電圧降下分だけ電圧V13まで低下する。   In FIG. 16, the rising solid line is the EDLC voltage V11, the broken line is the voltage V12 obtained by subtracting the voltage drop due to the internal resistance of the EDLC from the EDLC voltage, and the EDLC voltage V11 is stopped when charging to the EDLC is stopped at time t1. Since the charging current I is not supplied to the voltage V11, the voltage V11 is reduced to the voltage V13 by the voltage drop at the internal resistance R.

このため、充電停止後の電圧低下は、充電電流Iが多いほど、または、内部抵抗Rが高くなるほど、大きくなる。その結果、満充電との電圧差分まで充電可能であるEDLCを電力貯蔵装置として使用するには、不経済な充電方法になってしまう。
(3)EDLC電圧によるフィルタ(図14に示す)での問題点(第2方式の問題点)
EDLC電圧に依存して電流指令値を絞るフィルタを用いた場合、EDLC電圧が充電電圧上限値「Vedlc」に達する前、つまり充電可能容量に余裕があるうちに、EDLCへの充電電流を絞る動作を始めてしまうために、電気車からの回生電流が多いときに、EDLCへ十分な充電ができなくなってしまう問題がある。また、EDLCの内部抵抗が経年変化などにより増加すると、電流指令値による電圧降下により、図17のように本来の電流指令値(フィルタ出力αn)が振動(この振動となる理由は後述する)を始める結果、シミュレーション結果として示す図18のような振動vibが発生して、き電電圧を不安定にする場合がある。
For this reason, the voltage drop after stopping charging increases as the charging current I increases or the internal resistance R increases. As a result, it becomes an uneconomic charging method to use an EDLC that can be charged up to a voltage difference from full charge as a power storage device.
(3) Problems with the EDLC voltage filter (shown in FIG. 14) (problems of the second method)
When a filter that narrows the current command value depending on the EDLC voltage is used, the charge current to the EDLC is narrowed before the EDLC voltage reaches the charge voltage upper limit “Vedlc”, that is, while there is room in the chargeable capacity. Therefore, when the regenerative current from the electric vehicle is large, there is a problem that the EDLC cannot be sufficiently charged. Further, when the internal resistance of the EDLC increases due to secular change or the like, the original current command value (filter output αn) vibrates (the reason for this vibration will be described later) as shown in FIG. 17 due to a voltage drop due to the current command value. As a result of starting, vibration vib as shown in FIG. 18 as a simulation result may occur, and the feeding voltage may become unstable.

次に、上述した振動発生となる理由について述べる。EDLCは、図15に示したように内部抵抗Rがあり、経年変化で内部抵抗Rは上昇する。この内部抵抗RによりEDLCを充電する場合、EDLC電圧[測定値]は、次式のように充電電流無しの場合より電圧は高めになる。   Next, the reason why the above-described vibration is generated will be described. The EDLC has an internal resistance R as shown in FIG. 15, and the internal resistance R increases with aging. When the EDLC is charged by the internal resistance R, the EDLC voltage [measured value] is higher than the case where there is no charging current as shown in the following equation.

Vedlc[測定値]=内部抵抗R×充電電流+Vedlc[電流無]
従って、EDLCの内部抵抗Rが大きくなると、この内部抵抗による電圧降下も大きくなってしまう。
Vedlc [measured value] = internal resistance R × charge current + Vedlc [no current]
Therefore, when the internal resistance R of the EDLC increases, the voltage drop due to the internal resistance also increases.

続いて、EDLCの内部抵抗値が、当初設定より大きくなった場合のフィルタ特性図を、図17に示す。この図17に示すフィルタ特性図は、理解を容易にするために、内部抵抗値が当初設定の2倍になった場合を想定したもので、図17において、傾斜の緩い線分Gの方が大きな内部抵抗値に対応した「望ましい」フィルタ(内部抵抗値が2倍なった場合に修正されるべきフィルタ)で、傾斜の急な線分Sの方が当初設定のフィルタ(当初の内部抵抗値でのフィルタ)である。   Next, FIG. 17 shows a filter characteristic diagram when the internal resistance value of the EDLC becomes larger than the initial setting. The filter characteristic diagram shown in FIG. 17 assumes a case where the internal resistance value is twice the initial setting for easy understanding. In FIG. A "desirable" filter corresponding to a large internal resistance value (a filter that should be corrected when the internal resistance value doubles), and the steep line segment S is the default filter (the initial internal resistance value) Filter).

ここで、EDLCが充電状態で、電圧値Vedlc(n)のときを考える。このとき、電圧値Vedlc(n)は次式のようになる。   Here, consider a case where the EDLC is in a charged state and has a voltage value Vedlc (n). At this time, the voltage value Vedlc (n) is expressed by the following equation.

Vedlc(n)[測定値]=内部抵抗×充電電流(n)+Vedlc(n)[電流無]
図17よりフィルタ出力はαn+1となり、本来は、現在の内部抵抗に即したαnが望ましい値である。このとき、αn<αn+1となり、次式に示すように電流指令値が望ましい値より大きくなる。
Vedlc (n) [measured value] = internal resistance × charge current (n) + Vedlc (n) [no current]
From FIG. 17, the filter output is αn + 1, and αn corresponding to the current internal resistance is originally a desirable value. At this time, αn <αn + 1, and the current command value becomes larger than a desired value as shown in the following equation.

Vedlc(n+1)[測定値]=内部抵抗×充電電流(n+1)+Vedlc(n+1)[電流無]
すると、内部抵抗×電流による電圧降下によりVedlc(n+1)がVedlc’(n)よりも高めの電圧となり、今度は、この高めに出たVedlc(n+1)からスタートすることになる。なお、Vedlc(n+1)は修正前(EDLC内部抵抗による電圧降下分)のフィルタによるEDLC電圧、Vedlc’は修正後(EDLC内部抵抗による電圧降下分)のフィルタによるEDLC電圧である。
Vedlc (n + 1) [measured value] = internal resistance × charge current (n + 1) + Vedlc (n + 1) [no current]
Then, Vedlc (n + 1) becomes a higher voltage than Vedlc ′ (n) due to the voltage drop due to the internal resistance × current, and this time, it starts from this higher Vedlc (n + 1). Vedlc (n + 1) is the EDLC voltage by the filter before correction (voltage drop due to EDLC internal resistance), and Vedlc 'is the EDLC voltage by the filter after correction (voltage drop by EDLC internal resistance).

Vedlc(n+1)での電流指令値がαn+2となり、今度は電流指令値が望ましい値より少なくなり、電圧値Vedlc(n+2)(図17には示していない)は次式に示すようになる。   The current command value at Vedlc (n + 1) becomes αn + 2, this time the current command value becomes smaller than the desired value, and the voltage value Vedlc (n + 2) (not shown in FIG. 17) is expressed by the following equation.

Vedlc(n+2)[測定値]=内部抵抗×充電電流(n+2)+Vedlc(n+2)[電流無]
この時のEDLC電圧は、望ましい値より低くなる。この低い電圧値Vedlc(n+2)に基づく電流指令値αn+3(図示せず)は、今度は修正後のフィルタによる電流指令値よりも大きな電流を流す指令となる。こうして、フィルタの電流指令値が望ましい値よりも大→小→大→小→大→小・・・と繰り返して不安定になって行く。
Vedlc (n + 2) [measured value] = internal resistance × charge current (n + 2) + Vedlc (n + 2) [no current]
At this time, the EDLC voltage is lower than a desired value. A current command value αn + 3 (not shown) based on the low voltage value Vedlc (n + 2) is a command to flow a current larger than the current command value by the corrected filter. In this way, the current command value of the filter repeatedly becomes unstable from a desired value to a larger value, a smaller value, a larger value, a smaller value, a larger value, a smaller value, and so on.

以上より、フィルタの電流指令値が、大小を繰り返し、EDLC電圧が振動する。
(4)EDLCと抵抗併用の問題点(第3方式の問題点)
この場合には、き電電圧安定という点では問題はないが、抵抗とEDLCが並列で充電の時、回生電流が少ないと、EDLCから並列抵抗へ放電してしまい、電気エネルギーを無駄に消費してしまう問題がある。
As described above, the current command value of the filter repeatedly increases and decreases, and the EDLC voltage vibrates.
(4) Problems of combined use of EDLC and resistors (Problems of the third method)
In this case, there is no problem in terms of feeding voltage stability, but when the resistor and the EDLC are charged in parallel, if the regenerative current is small, the EDLC is discharged to the parallel resistor, and electric energy is wasted. There is a problem.

また、EDLC解列直後のEDLC電圧については、内部抵抗分の電圧降下により充電電圧上限値まで充電されにくくなってしまう問題がある。最もEDLC電圧を高く充電完了できる条件は、EDLCが抵抗と並列接続時に、Vedlc=Vr≒Vedlc(充電電圧上限値)、かつIedlc≒0の時EDLC解列のみである。抵抗が固定であることを考えると、ほぼ実現は不可能な条件である。
(5)定電流充電から定電圧放電に切替える方式における問題点(特許文献2の問題点)
この充電方式は、電気車の回生電力を積極的に吸収する制御でないため、き電電圧一定制御を行う制御でなく回生電力に応じた吸収を行わない。そのため、き電電圧変化に対応することができない問題がある。
Further, the EDLC voltage immediately after the EDLC disconnection has a problem that it is difficult to be charged up to the charging voltage upper limit due to a voltage drop corresponding to the internal resistance. The condition for completing the charge with the highest EDLC voltage is only EDLC disconnection when Vedlc = Vr≈Vedlc (charge voltage upper limit) and Iedlc≈0 when EDLC is connected in parallel with the resistor. Considering that the resistance is fixed, it is almost impossible to realize.
(5) Problems in the method of switching from constant current charging to constant voltage discharging (problems of Patent Document 2)
Since this charging method is not control that actively absorbs regenerative power of an electric vehicle, it does not perform control according to constant feeding voltage control but does not perform absorption according to regenerative power. Therefore, there is a problem that it is not possible to cope with a change in feeding voltage.

本発明の目的は、上記の事情に鑑みてなされたもので、EDLCの電圧が充電電圧上限値に達しても、充電を急停止しないで、徐々に充電電流を減少させるために、回生電力によるき電電圧上昇を緩和するとともに、電気車側の回生絞り動作に余裕を持たせることができ、しかも、き電線過電圧故障の発生を防止することができ、また、EDLCを充電電圧上限値に限りなく近くまで充電できるようにした電気鉄道用き電線電圧補償装置における充電制御方法を提供することにある。   The object of the present invention is made in view of the above circumstances, and even if the voltage of the EDLC reaches the upper limit of the charging voltage, the regenerative power is used to gradually reduce the charging current without suddenly stopping the charging. While mitigating the feeding voltage rise, it is possible to provide a margin for the regenerative throttle operation on the electric vehicle side, and it is possible to prevent the occurrence of feeder overvoltage failure, and limit the EDLC to the upper limit of the charging voltage. It is an object of the present invention to provide a charging control method in a feeder voltage compensation device for electric railway that can be charged up to near.

上記の課題を達成するために、請求項1に係る発明は、電気鉄道における電気車の回生、力行時に発生するき電電圧の変動を抑えて、き電電圧の安定化を図るき電線電圧補償装置を設け、このき電線電圧補償装置は、電力変換装置と電力貯蔵装置から構成され、前記電力変換装置には双方向チョッパ手段を設け、前記電力貯蔵装置には電気二重層キャパシタを設けて、前記双方向チョッパ手段の制御により、電気車からの回生電力を前記電気二重層キャパシタに充電する充電制御方法において、
き電電圧検出値とき電基準電圧値との第1偏差を求めた後、この第1偏差の出力をPI制御して第1電流指令値を得、
前記電気二重層キャパシタの充電電流検出値と充電電圧検出値および既知の電気二重層キャパシタの充電電圧上限値とその内部抵抗値から前記充電電圧上限値以下となるその時点での最大充電電流値を求め、前記最大充電電流値が前記電気二重層キャパシタの充電電流上限値以上ならその充電電流上限値を、以下の場合にはその時点での前記最大充電電流値を第2電流指令値とするフィルタを用いて送出し、
前記第1電流指令値と前記フィルタを通して得られた前記第2電流指令値とを比較した後、第1、第2電流指令値の内、小さい方の電流指令値を充電電流指令値として得た後、
この充電電流指令値と前記電気二重層キャパシタの充電電流検出値との第2偏差の出力をPI制御し、そのPI制御出力に基づいた前記双方向チョッパ手段のゲート信号を生成し、生成されたゲート信号により前記双方向チョッパ手段のゲート制御を行って、前記電気車の回生電力を吸収するようにしたことを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is directed to wire voltage compensation for stabilizing the feeding voltage by suppressing fluctuations in the feeding voltage generated during regeneration and power running of the electric vehicle in the electric railway. The feeder voltage compensation device is composed of a power conversion device and a power storage device, the power conversion device is provided with a bidirectional chopper means, the power storage device is provided with an electric double layer capacitor, In the charge control method of charging the electric double layer capacitor with regenerative power from an electric vehicle by controlling the bidirectional chopper means,
After obtaining the first deviation from the feed voltage detection value and the power reference voltage value, PI control is performed on the output of the first deviation to obtain a first current command value,
The charging current detection value and the charging voltage detection value of the electric double layer capacitor and the charging voltage upper limit value of the known electric double layer capacitor and the internal resistance value of the charging current detection value and the maximum charging current value at that time that is less than the charging voltage upper limit value A filter in which the maximum charging current value is equal to or higher than the charging current upper limit value of the electric double layer capacitor, and the charging current upper limit value is set as the second current command value in the following cases. Send out using
After comparing the first current command value and the second current command value obtained through the filter, the smaller one of the first and second current command values was obtained as the charge current command value. rear,
PI control is performed on the output of the second deviation between the charge current command value and the charge current detection value of the electric double layer capacitor, and a gate signal of the bidirectional chopper means is generated based on the PI control output. The bidirectional chopper means is controlled by a gate signal to absorb the regenerative power of the electric vehicle.

請求項2に係る発明は、請求項1において、前記最大充電電流値は、下記式により求めることを特徴とする。   The invention according to claim 2 is characterized in that, in claim 1, the maximum charging current value is obtained by the following equation.

Figure 2010252617
Figure 2010252617

請求項3に係る発明は、電気鉄道における電気車の回生、力行時に発生するき電電圧の変動を抑えて、き電電圧の安定化を図るき電線電圧補償装置を設け、このき電線電圧補償装置は、電力変換装置と電力貯蔵装置から構成され、前記電力変換装置には双方向チョッパ手段を設け、前記電力貯蔵装置には電気二重層キャパシタを設けて、前記双方向チョッパ手段の制御により、電気車からの回生電力を前記電気二重層キャパシタに充電する充電制御方法において、
き電電圧検出値とき電基準電圧値との第1偏差を求めた後、この第1偏差の出力をPI制御して第1電流指令値を得、
前記電気二重層キャパシタの充電電圧検出値とその基準電圧値との第2偏差を求め、電気二重層キャパシタの充電電圧検出値が電流絞り開始電圧値を超えたときに、第2偏差の出力をPI制御して得られた電気二重層キャパシタ電圧による電流絞り値を得、この電流絞り値と前記第1電流指令値との第3偏差を求めて得られた値を第2電流指令値とし、
前記第1電流指令値と第2電流指令値とを比較した後、第1、第2電流指令値の内、小さい方の電流指令値を充電電流指令値として得た後、
この充電電流指令値と前記電気二重層キャパシタの充電電流検出値との第4偏差の出力をPI制御し、そのPI制御出力に基づいた前記双方向チョッパ手段のゲート信号を生成し、生成されたゲート信号により前記双方向チョッパ手段のゲート制御を行って、前記電気車の回生電力を吸収するようにしたことを特徴とする。
According to a third aspect of the present invention, there is provided a wire voltage compensation device for suppressing the fluctuation of the feeding voltage generated during the regeneration and power running of the electric vehicle in the electric railway, thereby stabilizing the feeding voltage. The apparatus is composed of a power conversion device and a power storage device, the power conversion device is provided with a bidirectional chopper means, the power storage device is provided with an electric double layer capacitor, and under the control of the bidirectional chopper means, In the charge control method for charging the electric double layer capacitor with regenerative power from an electric vehicle,
After obtaining the first deviation from the feed voltage detection value and the power reference voltage value, PI control is performed on the output of the first deviation to obtain a first current command value,
A second deviation between the charge voltage detection value of the electric double layer capacitor and its reference voltage value is obtained. When the charge voltage detection value of the electric double layer capacitor exceeds the current throttling start voltage value, an output of the second deviation is obtained. Obtaining a current aperture value based on the electric double layer capacitor voltage obtained by PI control, and obtaining a third deviation between the current aperture value and the first current command value as a second current command value,
After comparing the first current command value and the second current command value, after obtaining the smaller one of the first and second current command values as the charging current command value,
PI control is performed on the output of the fourth deviation between the charge current command value and the charge current detection value of the electric double layer capacitor, and the gate signal of the bidirectional chopper means is generated based on the PI control output. The bidirectional chopper means is controlled by a gate signal to absorb the regenerative power of the electric vehicle.

請求項4に係る発明は、請求項3において、前記第2電流指令値は、電気二重層キャパシタが過電圧にならないように電流絞り値を制御することを特徴とする。   The invention according to claim 4 is characterized in that, in claim 3, the second current command value controls a current aperture value so that the electric double layer capacitor does not become overvoltage.

請求項5に係る発明は、電気鉄道における電気車の回生、力行時に発生するき電電圧の変動を抑えて、き電電圧の安定化を図るき電線電圧補償装置を設け、このき電線電圧補償装置は、電力変換装置と電力貯蔵装置から構成され、前記電力変換装置には双方向チョッパ手段を設け、前記電力貯蔵装置には電気二重層キャパシタを設けて、前記双方向チョッパ手段の制御により、電気車からの回生電力を前記電気二重層キャパシタに充電する充電制御方法において、
一定電流指令部の定電流指令値を第1電流指令値として得、
電気二重層キャパシタの充電電圧検出値とその基準電圧値との第1偏差を求め電気二重層キャパシタの充電電圧検出値が電流絞り開始電圧値を超えたときに、第1偏差の出力をPI制御して得られた電気二重層キャパシタ電圧による電流絞り値と前記第1電流指令値との第2偏差を求めて得られた値を第2電流指令値とし、
前記第1電流指令値と第2電流指令値とを比較した後、両指令値の内、小さい方の指令値を充電電流指令値として得た後、
この充電電流指令値と前記電気二重層キャパシタの充電電流検出値との第3偏差の出力をPI制御し、そのPI制御出力に基づいた前記双方向チョッパ手段のゲート信号を生成し、生成されたゲート信号により前記双方向チョッパ手段のゲート制御を行って、前記電気車の回生電力を吸収するようにしたことを特徴とする。
According to a fifth aspect of the present invention, there is provided a wire voltage compensation device that suppresses fluctuations in the feeding voltage that occurs during regeneration and power running of an electric vehicle in an electric railway, thereby stabilizing the feeding voltage. The apparatus is composed of a power conversion device and a power storage device, the power conversion device is provided with a bidirectional chopper means, the power storage device is provided with an electric double layer capacitor, and under the control of the bidirectional chopper means, In the charge control method for charging the electric double layer capacitor with regenerative power from an electric vehicle,
The constant current command value of the constant current command unit is obtained as the first current command value,
The first deviation between the charge voltage detection value of the electric double layer capacitor and the reference voltage value is obtained, and when the charge voltage detection value of the electric double layer capacitor exceeds the current throttling start voltage value, the output of the first deviation is PI controlled. A value obtained by obtaining a second deviation between the current aperture value obtained by the electric double layer capacitor voltage and the first current command value is defined as a second current command value.
After comparing the first current command value and the second current command value, after obtaining the smaller command value of both command values as the charging current command value,
PI control is performed on the output of the third deviation between the charging current command value and the charging current detection value of the electric double layer capacitor, and a gate signal of the bidirectional chopper means is generated based on the PI control output. The bidirectional chopper means is controlled by a gate signal to absorb the regenerative power of the electric vehicle.

本発明によれば、EDLC電圧が充電電圧上限値に達しても、電力変換装置による制御により充電を急停止しないで、徐々に充電電流を減少させるため、回生電力によるき電電圧上昇を緩和することができるとともに、電気車側の回生絞り動作にも余裕ができるようになり、しかも、き電線過電圧故障の発生を防止することができるようになる。   According to the present invention, even if the EDLC voltage reaches the charging voltage upper limit value, the charging current is gradually reduced without suddenly stopping charging by the control of the power conversion device, so that the feeding voltage rise due to regenerative power is alleviated. In addition, it is possible to afford a regenerative throttle operation on the electric vehicle side, and to prevent occurrence of feeder overvoltage failure.

また、本発明によれば、上記と同様の制御で充電電圧上限値に限りなく近くまで充電することができるとともに、より多くの電気エネルギーが充電できるようになり、抵抗などに無駄に消費する電力が無くなる利点がある。   In addition, according to the present invention, it is possible to charge as close as possible to the upper limit value of the charging voltage by the same control as described above, and more electric energy can be charged, and power consumed wastefully in resistors and the like. There is an advantage that there is no.

さらに、本発明によれば、EDLC電圧が高くなってから、EDLCへの充電電流絞りを動作させることができるために、電気エネルギーを無駄なく充電できるようになる。   Furthermore, according to the present invention, since the charging current restrictor to the EDLC can be operated after the EDLC voltage becomes high, the electric energy can be charged without waste.

さらにまた、本発明によれば、EDLCが経年変化などで内部抵抗値が変化しても、充電電流絞りを内部抵抗値の変化に合わせて変更することなくEDLCに充電電圧上限値まで充電可能とすることができる等の利点が得られる。   Furthermore, according to the present invention, even when the internal resistance value changes due to aging of the EDLC, it is possible to charge the EDLC up to the charging voltage upper limit value without changing the charging current restrictor according to the change of the internal resistance value. And the like.

上記の他、本発明によれば、EDLCが満充電に近づいた場合、EDLCが過電圧にならないように充電を終了させる際、充電電流を絞るための演算にEDLC電圧のみを利用して充電電流を減少させる制御を行って、演算要素・演算回数・使用メモリ量を削減できる利点が得られる。   In addition to the above, according to the present invention, when the EDLC is almost fully charged, when charging is terminated so that the EDLC does not become an overvoltage, the charging current is calculated by using only the EDLC voltage for the calculation for reducing the charging current. By performing the control to decrease, there is an advantage that the calculation element, the number of calculations, and the amount of used memory can be reduced.

図1は、本発明の実施例1で使用される充電電流絞りを採用した回生電力吸収制御ブロック構成図である。FIG. 1 is a block diagram of a regenerative power absorption control block adopting a charging current restrictor used in the first embodiment of the present invention. 図2は、実施例1で使用されるEDLC内部抵抗による電圧降下分を考慮したフィルタ特性図である。FIG. 2 is a filter characteristic diagram in consideration of a voltage drop due to the EDLC internal resistance used in the first embodiment. 図3は、図2のフィルタ特性を具体的な数値を用いて説明する図である。FIG. 3 is a diagram illustrating the filter characteristics of FIG. 2 using specific numerical values. 図4は、実施例1で使用されるフィルタでの動作例を示すシミュレーション結果の説明図である。FIG. 4 is an explanatory diagram of a simulation result illustrating an operation example of the filter used in the first embodiment. 図5は、本発明の実施例2で使用されるEDLC電圧のみで充電電流絞りを行う、き電電圧一定制御での回生電力吸収制御ブロック構成図である。FIG. 5 is a block diagram of a regenerative power absorption control block with constant feeding voltage control that performs charging current throttling only with the EDLC voltage used in Embodiment 2 of the present invention. 図6は、本発明の実施例3で使用されるEDLC電圧のみで充電電流絞りを行う、定電流制御での回生電力吸収制御ブロック構成図である。FIG. 6 is a block diagram of a regenerative power absorption control block in constant current control that performs charging current throttling only with the EDLC voltage used in the third embodiment of the present invention. 図7は、EDLC電圧のみでの電流絞りを述べる説明図である。FIG. 7 is an explanatory diagram for describing current restriction only by the EDLC voltage. 図8は、シミュレーションき電電圧一定制御におけるIedlc(EDLC充電電流値)−Vedlc(EDLC電圧値)軌跡を示す説明図である。FIG. 8 is an explanatory diagram showing an Iedlc (EDLC charging current value) -Vedlc (EDLC voltage value) locus in the simulation feeding voltage constant control. 図9は、従来の第2方式における動作例で、図4と同じ回生電力の場合に、回生絞りが動作してしまう例の説明図である。FIG. 9 is an explanatory diagram of an example of the operation in the conventional second method, in which the regenerative aperture operates in the case of the same regenerative power as in FIG. 図10は、EDLCのみを用いて回生電力を充電する概略構成図である。FIG. 10 is a schematic configuration diagram for charging regenerative power using only EDLC. 図11は、EDLCと抵抗を用いて回生電力を充電する概略構成図である。FIG. 11 is a schematic configuration diagram for charging regenerative power using an EDLC and a resistor. 図12は、従来の回生電力吸収制御ブロック構成図である。FIG. 12 is a block diagram of a conventional regenerative power absorption control block. 図13は、従来のEDLC電圧フィルタを用いた充電電流絞り採用の回生電力吸収制御ブロック構成図である。FIG. 13 is a block diagram of a regenerative power absorption control block employing a charging current restrictor using a conventional EDLC voltage filter. 図14は、従来のEDLC電圧によるフィルタ特性図である。FIG. 14 is a filter characteristic diagram according to a conventional EDLC voltage. 図15は、EDLCの等価回路図である。FIG. 15 is an equivalent circuit diagram of the EDLC. 図16は、充電電流停止によるEDLC電圧の低下を説明する図である。FIG. 16 is a diagram for explaining a decrease in the EDLC voltage due to the stop of the charging current. 図17は、従来のEDLC電圧フィルタにおける内部抵抗値が設定より大きくなった場合の動作例を示す説明図である。FIG. 17 is an explanatory diagram showing an operation example when the internal resistance value in the conventional EDLC voltage filter becomes larger than the setting. 図18は、従来のEDLC電圧フィルタで振動が発生したシミュレーション結果の説明図である。FIG. 18 is an explanatory diagram of a simulation result in which vibration is generated in a conventional EDLC voltage filter. 図19は、実施例1のフィルタを使用したときの動作例を示すシミュレーション結果の説明図である。FIG. 19 is an explanatory diagram of a simulation result illustrating an operation example when the filter of the first embodiment is used. 図20は、図19において、EDLCの内部抵抗が設計時の2倍になったときのシミュレーション結果の説明図である。FIG. 20 is an explanatory diagram of a simulation result when the internal resistance of the EDLC is doubled as designed in FIG.

以下本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1で使用される充電電流絞りを採用した回生電力吸収制御の制御ブロック構成図で、図12,図13と同一部分には同一符号を付して詳細な説明を省略する。   FIG. 1 is a control block diagram of regenerative power absorption control employing the charging current restrictor used in Embodiment 1 of the present invention. The same parts as those in FIGS. Omitted.

図1において、図10に示すき電電圧検出器11で検出されたき電電圧検出値(以下き電圧)とき電基準電圧値との偏差を偏差部21で求め、その偏差部21の偏差出力を規格化演算部22に入力して、この規格演算部22で入力された値を定格値で割り算して規格演算出力値(例えば、定格電圧2000Vで、入力電圧1000Vの場合、規格演算出力値として0.5となる。)得る。この出力値は、PIアンプ23に入力されて、出力に電流指令値を得る。この電流指令値は、リミッタ24に入力されて「0〜1」に制限処理される。   In FIG. 1, a deviation from the power reference voltage value when the feed voltage detection value (hereinafter referred to as feed voltage) detected by the feed voltage detector 11 shown in FIG. 10 is obtained by the deviation unit 21, and the deviation output of the deviation unit 21 is obtained. The value input to the standardization calculation unit 22 is divided by the rated value by dividing the value input by the standard calculation unit 22 (for example, when the rated voltage is 2000V and the input voltage is 1000V, as the standard calculation output value) 0.5). This output value is input to the PI amplifier 23 to obtain a current command value as an output. This current command value is input to the limiter 24 and subjected to a restriction process of “0 to 1”.

このリミッタ24により制限処理された電流指令値と図2に示すEDLCの内部抵抗値を考慮して電流指令値を絞るフィルタ34により絞られた新たな電流指令値とを比較器32により比較して、小さい方の電流指令値を充電電流指令値として出力する。   The comparator 32 compares the current command value limited by the limiter 24 with the new current command value narrowed by the filter 34 that narrows the current command value in consideration of the internal resistance value of the EDLC shown in FIG. The smaller current command value is output as the charging current command value.

比較器32から出力された充電電流指令値とEDLCの充電電流検出値(図10,図11に示すEDLC電流検出器12で検出)との偏差を偏差部25で求め、その偏差出力が、PIアンプ26に供給され、PIアンプ26により双方向チョッパ手段6のデューティを決めるPI制御出力を送出する。   A deviation between the charge current command value output from the comparator 32 and the charge current detection value of the EDLC (detected by the EDLC current detector 12 shown in FIGS. 10 and 11) is obtained by the deviation unit 25. The PI amplifier 26 supplies a PI control output that determines the duty of the bidirectional chopper means 6.

PIアンプ26から送出されたPI制御出力は、リミッタ27で「0〜1」に制限処理されて双方向チョッパ手段6のデューティ比を制御するDUTYアンプ28に入力される。このDUTYアンプ28から出力されるデューティ比に見合ったPWM信号をCMP生成部29で生成する。   The PI control output sent from the PI amplifier 26 is limited to “0 to 1” by the limiter 27 and is inputted to the DUTY amplifier 28 that controls the duty ratio of the bidirectional chopper means 6. The CMP generator 29 generates a PWM signal corresponding to the duty ratio output from the DUTY amplifier 28.

30はAND回路部で、このAND回路部30には、回生電力が発生したときに図示しないシステムなどから送出される充電許可条件信号とゲート許可条件信号(充放電許可モード)が供給され、これら充電許可条件信号とゲート許可条件信号が満たされたとき、そのAND回路部30から出力信号が、AND回路部31の第1入力端子に供給される。また、CMP生成部29で生成されたPWM信号がAND回路部31の第2入力端子に供給される。これら両入力端子に信号が供給された時に、AND回路部31の出力からは、図10、図11に示す双方向チョッパ手段6にゲート信号が与えられて、双方向チョッパ手段6の半導体スイッチング6a,6bが制御される。   An AND circuit unit 30 is supplied with a charge permission condition signal and a gate permission condition signal (charge / discharge permission mode) sent from a system (not shown) when regenerative power is generated. When the charge permission condition signal and the gate permission condition signal are satisfied, an output signal is supplied from the AND circuit section 30 to the first input terminal of the AND circuit section 31. Further, the PWM signal generated by the CMP generating unit 29 is supplied to the second input terminal of the AND circuit unit 31. When signals are supplied to both of these input terminals, a gate signal is given from the output of the AND circuit unit 31 to the bidirectional chopper means 6 shown in FIGS. 10 and 11, and the semiconductor switching 6a of the bidirectional chopper means 6 is performed. , 6b are controlled.

図2は、上記実施例1で使用されるEDLCの内部抵抗による電圧降下分を考慮して電流指令値を絞るフィルタ34のフィルタ特性図で、このフィルタ34は、EDLC電流検出器12(図10、図11に示す)で計測されたEDLC充電電流値iEDLC(測定)と、EDLC電圧検出器13(図10、図11に示す)で計測されたEDLC電圧値VEDLC(測定)、および既知のEDLC最大充電電圧値VEDLC(充電上限)とEDLC内部抵抗値REDLC(内部)から、その時点での最大充電電流値ifilterを次式により求めることにより構成される。 FIG. 2 is a filter characteristic diagram of the filter 34 that narrows down the current command value in consideration of the voltage drop due to the internal resistance of the EDLC used in the first embodiment, and this filter 34 is the EDLC current detector 12 (FIG. 10). EDLC charging current value i EDLC (measurement) measured in FIG. 11), EDLC voltage value V EDLC (measurement) measured in the EDLC voltage detector 13 (shown in FIGS. 10 and 11), and known EDLC maximum charge voltage value V EDLC (charge upper limit) and EDLC internal resistance value R EDLC (internal) are used to obtain the maximum charge current value i filter at that time from the following equation.

Figure 2010252617
Figure 2010252617

なお、最大充電電流値ifilterは、EDLCへの充電電流が最大電流以下になるようにリミッタを掛ける。 Note that the maximum charging current value i filter is limited so that the charging current to the EDLC is less than or equal to the maximum current.

また、図2に示すフィルタ特性において、網線を施した部分は、電流指令値の絞りがかかる範囲である。   Further, in the filter characteristics shown in FIG. 2, the shaded portion is the range where the current command value is restricted.

次に、図2のフィルタ特性の動作を図3に示す具体的な数値を用いて述べる。   Next, the operation of the filter characteristics of FIG. 2 will be described using specific numerical values shown in FIG.

図3において、EDLC電圧(以下Vedlc)[計測値]=850V、EDLC電流=1800Aの場合、
Vedlc[電流無し]=Vedlc[計測]−0.1Ω×1800A=670V
このときEDLCの内部抵抗値が0.1Ωであるとすると、(1000V−670V)/0.1Ω=3300Aまで充電しても、EDLC電圧が1000Vを超えないことが推測できる。
In FIG. 3, in the case of EDLC voltage (hereinafter Vedlc) [measurement value] = 850 V, EDLC current = 1800 A,
Vedlc [no current] = Vedlc [measurement] −0.1Ω × 1800A = 670V
If the internal resistance value of the EDLC is 0.1Ω at this time, it can be estimated that the EDLC voltage does not exceed 1000V even when charged to (1000V−670V) /0.1Ω=3300A.

この値をEDLCの基準値2000Aで規格化したものがフィルタ出力αである。   The filter output α is obtained by standardizing this value with the EDLC reference value 2000A.

α={1800+(1000−850)/0.1}/2000={1800+1500}/3300=1.65
上記のようにして求められたαは、「1.65」であるが、αの最大値は「1」であるからα=1となる。
α = {1800+ (1000−850) /0.1} / 2000 = {1800 + 1500} /3300=1.65
Α obtained as described above is “1.65”, but since the maximum value of α is “1”, α = 1.

次に、Vedlc[計測値]=1020V,EDLC電流800Aの場合
Vedlc[電流無し]=940V、内部抵抗0.1×EDLC電流=80V
このときα={800+(1000−1020)/0.1}/2000=600/2000=0.3
上記からEDLC電流の上限は600Aとなり、αは「0.3」となる。
Next, in the case of Vedlc [measured value] = 1020 V and EDLC current 800 A, Vedlc [no current] = 940 V, internal resistance 0.1 × EDLC current = 80 V
At this time, α = {800+ (1000−1020) /0.1} /2000=600/2000=0.3
From the above, the upper limit of the EDLC current is 600 A, and α is “0.3”.

更に、Vedlc[計測値]=950V、EDLC電流=400Aの場合
Vedlc[電流無し]=910V、内部抵抗0.1×EDLC電流=40V
このときα={400+(1000−950)/0.1}/2000=900/2000=0.45
上記からEDLC電流の上限は900Aとなり、αは「0.45」となる。
Further, when Vedlc [measured value] = 950 V and EDLC current = 400 A, Vedlc [no current] = 910 V, internal resistance 0.1 × EDLC current = 40 V
At this time, α = {400+ (1000−950) /0.1} /2000=900/2000=0.45
From the above, the upper limit of the EDLC current is 900 A, and α is “0.45”.

上記のようなフィルタ出力α特性を用いて、現在のEDLC電圧とEDLC電流から現在のVedlc[電流無し]を推定し、充電電流の上限を求める。なお、フィルタ出力αは、次式から求める。   Using the filter output α characteristic as described above, the current Vedlc [no current] is estimated from the current EDLC voltage and the EDLC current, and the upper limit of the charging current is obtained. The filter output α is obtained from the following equation.

Figure 2010252617
Figure 2010252617

但し、Iedlc:計測されたEDLC充電電流値、Vedlc[計測値]:計測されたEDLC電圧値、Vedlc充電上限値:EDLC最大充電電圧値、Redlc:EDLC内部抵抗値、Iedlc max:EDLC最大充電電流値である。   Where Iedlc: measured EDLC charging current value, Vedlc [measured value]: measured EDLC voltage value, Vedlc charging upper limit value: EDLC maximum charging voltage value, Redlc: EDLC internal resistance value, Iedlc max: EDLC maximum charging current Value.

上記実施例1における充電制御方法は、満充電に近づいてもチョッパ制御に変更を加えないで行う。すなわち、電流指令値の上限をEDLC電圧値[電流無し]を推定することで回生電力を絞る動作であり、Vedlc[計測値]が満充電に”遠い”場合は上限=1、近くなると前記計算式で求めた値が働いてきて、Vedlc[計測値]が満充電近くになっても、チョッパの急激な停止制御を行わないようにゲート信号を送出する。   The charge control method in the first embodiment is performed without changing the chopper control even when the battery is close to full charge. In other words, the operation is to reduce the regenerative power by estimating the EDLC voltage value [no current] as the upper limit of the current command value. When Vedlc [measured value] is “far” to full charge, the upper limit is 1 and the above calculation is performed. Even if the value obtained by the equation is working and Vedlc [measured value] is close to full charge, a gate signal is sent so as not to perform a rapid stop control of the chopper.

なお、本発明の実施例1では、次のような作用効果が得られる。
(a)EDLC電圧値が充電電圧上限値近くになっても充電を急停止しないで、徐々に充電電流を減少させるようにしたため、回生電力によるき電電圧の上昇を緩和させることができ、き電線が過電圧となることを防止することができる。
(b)充電電圧上限値に限りなく近くまでEDLC電圧値を充電できるために、エネルギー効率が上昇する。
(c)図19に示すように、EDLC電圧値が高くなってからEDLC充電電流絞りを動作させるようにしたので、上記と同様にエネルギー効率が向上する。
In addition, in Example 1 of this invention, the following effects are obtained.
(A) Since the charging current is gradually decreased without suddenly stopping charging even when the EDLC voltage value is close to the charging voltage upper limit value, an increase in feeding voltage due to regenerative power can be mitigated. It is possible to prevent the electric wire from being overvoltage.
(B) Since the EDLC voltage value can be charged as close as possible to the charge voltage upper limit value, the energy efficiency is increased.
(C) As shown in FIG. 19, since the EDLC charging current restrictor is operated after the EDLC voltage value is increased, the energy efficiency is improved as described above.

本発明の実施例1におけるフィルタを使用したシミュレーション結果の動作例として、図20に示すように、EDLCの内部抵抗値が設計時の2倍に増加しても、絞りフィルタの修正は不要で、しかも充電絞りの動作も、充電開始から数秒程度(動作例では6〜7秒)経過してからとなり、従来のEDLC電圧フィルタを使用した場合よりは長く回生電力を吸収する動作を行うことができる。   As an operation example of the simulation result using the filter in the first embodiment of the present invention, as shown in FIG. 20, even if the internal resistance value of the EDLC increases twice as much as the design time, no correction of the diaphragm filter is necessary. In addition, the operation of the charging throttle is also after a few seconds (6 to 7 seconds in the operation example) has elapsed since the start of charging, and the operation of absorbing regenerative power can be performed longer than when a conventional EDLC voltage filter is used. .

さらに、図4は実施例1の電圧降下分を考慮したフィルタを使用した充電シミュレーション結果の動作例で、充電シミュレーションの条件としては、EDLC電圧の充電電圧上限値:1250V、EDLC過電圧値:1400V、き電線無負荷電圧値:1650V、き電線過電圧値:1900V、EDLC最大電流2000A、シミュレーション時間15秒相当(150,000サンプル)、回生電流は、回生開始1.5秒で1000Aとなり、5秒継続後6秒かけて「0」Aとなるものを用いている。   Further, FIG. 4 is an operation example of a charge simulation result using a filter that takes into account the voltage drop of the first embodiment. The charge simulation conditions include the charge voltage upper limit value of the EDLC voltage: 1250 V, the EDLC overvoltage value: 1400 V, Feeding line no-load voltage value: 1650V, feeder overvoltage value: 1900V, EDLC maximum current 2000A, simulation time equivalent to 15 seconds (150,000 samples), regenerative current becomes 1000A at 1.5 seconds after starting regeneration, and lasts for 5 seconds The one that becomes “0” A over the next 6 seconds is used.

上記条件における動作例は、回生電力をEDLCに適用した、き電線電圧補償装置のみで吸収(回生絞りは不動作)したケースである。これに対して、図9は、従来の第2方式における動作例で、図4と同じ回生電力の場合には、回生絞りが動作してしまう例を示すもので、図9における絞り開始は、充電電圧上限値Vedlcの80%である。
(d)EDLCの内部抵抗が経年変化などで増加しても、充電電流絞りを、変更しなくて動作可能である。
An example of the operation under the above conditions is a case where regenerative power is applied to EDLC and absorbed only by the feeder voltage compensation device (the regenerative aperture is not activated). On the other hand, FIG. 9 shows an example of operation in the conventional second method. In the case of the same regenerative power as in FIG. 4, an example in which the regenerative diaphragm operates is shown. It is 80% of the charging voltage upper limit value Vedlc.
(D) Even if the internal resistance of the EDLC increases due to secular change or the like, it is possible to operate without changing the charging current restrictor.

この結果、EDLCの内部抵抗が仮に2倍に増加しても、図20に示すように安定して動作を行うことができる。   As a result, even if the internal resistance of the EDLC increases twice, stable operation can be performed as shown in FIG.

図5は、本発明の実施例2を示すき電電圧一定制御での回生電力吸収制御ブロック構成図で、この実施例2はき電電圧一定制御にてEDLCが満充電に近づいた場合、EDLC電圧Vedlcのみで充電電流を減少させる方式である。なお、図5において、図1、図12、図13と同一部分には同一符号を付して詳細な説明は省略する。   FIG. 5 is a block diagram of a regenerative power absorption control block with constant feed voltage control showing Embodiment 2 of the present invention. When the EDLC approaches full charge in this feed voltage constant control, FIG. In this method, the charging current is reduced only by the voltage Vedlc. In FIG. 5, the same parts as those in FIGS. 1, 12, and 13 are denoted by the same reference numerals, and detailed description thereof is omitted.

図5において、図示破線で囲んだき電電圧一定制御部20は、き電電圧検出値とき電基準電圧値との偏差を求める偏差部21と、偏差出力を定格値で割り算して規格演算出力値を得る規格化演算部22と、この出力値から電流指令値を得るPIアンプ23と、この電流指令値を制限処理するリミッタ24とで構成される。そして、リミッタ24の出力には、き電電圧一定制御部20による電流指令値が送出される。なお、このき電電圧一定制御部20の出力値を第1電流指令値Aとする。   In FIG. 5, a feeding voltage constant control unit 20 surrounded by a broken line in the figure includes a deviation unit 21 for obtaining a deviation from the feeding reference voltage value when the feeding voltage detection value, and a standard calculation output value by dividing the deviation output by the rated value. The normalization calculation unit 22 for obtaining the current command value, the PI amplifier 23 for obtaining the current command value from the output value, and the limiter 24 for limiting the current command value. Then, a current command value from the feeding voltage constant control unit 20 is sent to the output of the limiter 24. The output value of the feeding voltage constant control unit 20 is defined as a first current command value A.

図中符号50はEDLC電圧による電流絞り部で、この電流絞り部50は、EDLC電圧Vedlcが電流絞り開始電圧Vfu1を超えて電流絞りの状態であるか判定出力B(後述するがB=1は絞り動作中、B=0は絞り不動作である。)を出力する判定器51と、EDLC電圧VedlcとEDLC基準電圧Vfuとの偏差出力を求める偏差部52と、求めた偏差出力が入力され、出力に演算出力値を得る規格演算部53と、得られた出力値から第2電流指令値Dを得るPIアンプ54と、サンプルホールド器55からの出力と第1電流指令値Aとが与えられる選択器56と、選択器56の出力値Cと前記第2電流指令値Dとの偏差を取る偏差部57とから構成されている。   In the figure, reference numeral 50 denotes a current restricting unit using an EDLC voltage. This current restricting unit 50 determines whether the EDLC voltage Vedlc exceeds the current restricting start voltage Vfu1 and is in the current restricting state B (described later, B = 1 is During the diaphragm operation, B = 0 indicates that the diaphragm is not operated.), A deviation unit 52 for obtaining a deviation output between the EDLC voltage Vedlc and the EDLC reference voltage Vfu, and the obtained deviation output are input. A standard calculation unit 53 that obtains a calculation output value as an output, a PI amplifier 54 that obtains a second current command value D from the obtained output value, an output from the sample hold device 55, and a first current command value A are given. The selector 56 includes a deviation unit 57 that takes a deviation between the output value C of the selector 56 and the second current command value D.

この電流絞り部50からの出力値(偏差部57からの出力値)は、比較器32の一方の端子に供給され、また、比較器32の他方の端子には、リミッタ24により制限処理された第1電流指令値Aが供給されて両者は比較され、比較器32は両者の値の内、小さい方の値を充電電流指令値として送出する。その後の処理は、実施例1の動作と同様に行われる。   The output value from the current restricting unit 50 (the output value from the deviation unit 57) is supplied to one terminal of the comparator 32, and the other terminal of the comparator 32 is subjected to restriction processing by the limiter 24. The first current command value A is supplied and the two are compared, and the comparator 32 sends the smaller one of the two values as the charge current command value. Subsequent processing is performed in the same manner as in the first embodiment.

上記のように構成された実施例2において、EDLC電圧Vedlcが電流絞り開始電圧Vfu1を超えた場合、電流絞り動作が開始される。   In the second embodiment configured as described above, when the EDLC voltage Vedlc exceeds the current throttling start voltage Vfu1, the current throttling operation is started.

なお、電流絞り終了の条件は、次の(1)から(3)の3つである。
(1)図7に示す電流絞り終了電圧Vfu2を下回った場合、
(2)き電電圧一定制御による指令値が電流指令値を下回った場合(比較器32の出力)、
(3)電力貯蔵装置の蓄電媒体であるEDLCが満充電であると判断した場合(充電中止となるので、電流絞りは終了となる。)である。
There are three conditions (1) to (3) for ending current throttling.
(1) When the current throttle end voltage Vfu2 shown in FIG.
(2) When the command value by the feed voltage constant control falls below the current command value (output of the comparator 32),
(3) This is the case where it is determined that the EDLC, which is the power storage medium of the power storage device, is fully charged (since charging is stopped, the current throttling ends).

次に、上記実施例2のき電電圧一定制御部20と電流絞り部50との動作について述べる。上述したように、制御部20の出力を第1電流指令値Aとし、判定器51の出力をEDLC電圧が電流絞り開始電圧Vfu1を超えているのか電流絞りの状態の判定出力Bが、判定器51が「Vedlc>Vfu1(電流絞り開始電圧)」であると判定したとき、判定出力Bは「1」となってPIアンプ54を電流絞り動作中とし、判定器51が「Vedlc<Vfu2(電流絞り終了電圧)」であると判定したとき、判定出力Bは「0」となってPIアンプ54の電流絞り動作を終了(絞り不動作)する。但し、Vfu1≧Vfu2である。   Next, operations of the feeding voltage constant control unit 20 and the current restricting unit 50 according to the second embodiment will be described. As described above, the output of the controller 20 is the first current command value A, and the output of the determiner 51 is the determination output B of whether the EDLC voltage exceeds the current restriction start voltage Vfu1 or the current restriction state. When it is determined that 51 is “Vedlc> Vfu1 (current throttling start voltage)”, the determination output B is “1”, the PI amplifier 54 is in the current throttling operation, and the determiner 51 determines “Vedlc <Vfu2 (current When it is determined that it is “aperture end voltage)”, the determination output B becomes “0”, and the current aperture operation of the PI amplifier 54 is terminated (the aperture is not activated). However, Vfu1 ≧ Vfu2.

また、EDLC電圧による電流絞り部50での選択器56の出力を「C」とすると、判定出力B「0」の時は、選択器56は入力1を選択するように構成されているので、出力は「C=第1電流指令値A」となる。その後、判定出力Bが「0→1」へ変化した場合、選択器56は入力2を選択し、選択器56の出力は、判定出力Bが「0→1」へ変化したときの「C」の値の瞬間値をサンプルホールド器55で保持し、選択器56の出力は「C」の値を保持する。   Further, when the output of the selector 56 at the current restricting unit 50 by the EDLC voltage is “C”, the selector 56 is configured to select the input 1 when the determination output B is “0”. The output is “C = first current command value A”. Thereafter, when the judgment output B changes from “0 → 1”, the selector 56 selects the input 2 and the output of the selector 56 is “C” when the judgment output B changes from “0 → 1”. Is held by the sample hold device 55, and the output of the selector 56 holds the value "C".

さらに、EDLC電圧による電流絞り部50でのPIアンプ54の出力を第2電流指令値Dとすると、この第2電流指令値Dが偏差部57にて選択器56から出力される「C」の値との偏差が取られて、偏差出力が比較器32に供給され、この第2電流指令値Dにて電流絞り動作が行われる。この第2電流指令値Dを次式に示す。なお、第2電流指令値Dは、EDLC電圧Vedlcが、電流絞り開始電圧Vfu1を目標にPI(比例積分)制御するように出力する電流指令値である。   Furthermore, when the output of the PI amplifier 54 at the current restricting unit 50 by the EDLC voltage is the second current command value D, the second current command value D is output from the selector 56 at the deviation unit 57. The deviation from the value is taken, and the deviation output is supplied to the comparator 32, and the current throttling operation is performed with the second current command value D. This second current command value D is shown in the following equation. The second current command value D is a current command value output so that the EDLC voltage Vedlc performs PI (proportional integration) control with the current throttling start voltage Vfu1 as a target.

D=kp*(Vedlc−Vfu1)+ki*∫(Vedlc−Vfu1)dt
但し、これは判定出力Bが「1」の期間のみである。
D = kp * (Vedlc−Vfu1) + ki * ∫ (Vedlc−Vfu1) dt
However, this is only during the period when the determination output B is “1”.

図6は、本発明の実施例3を示す定電流制御での回生電力吸収制御ブロック構成図で、この実施例3は定電流制御にてEDLCが満充電に近づいた場合、EDLC電圧Vedlcのみで充電電流を減少させる方式である。なお、図6において、図1、図5、図12、図13と同一部分には同一符号を付して詳細な説明は省略する。   FIG. 6 is a block diagram of a regenerative power absorption control block in constant current control showing Embodiment 3 of the present invention. In Embodiment 3, when EDLC approaches full charge in constant current control, only EDLC voltage Vedlc is used. This is a method for reducing the charging current. In FIG. 6, the same parts as those in FIGS. 1, 5, 12, and 13 are denoted by the same reference numerals, and detailed description thereof is omitted.

図6に示す実施例3において、電流一定制御部65は、一定電流指令部からの定電流指令値が与えられるリミッタ24から構成される。そして、リミッタ24の出力には、電流一定制御部65による電流指令値が送出される。なお、この電流一定制御部65の出力値を第1電流指令値Aとする。   In the third embodiment shown in FIG. 6, the constant current control unit 65 includes a limiter 24 to which a constant current command value from the constant current command unit is given. A current command value from the constant current control unit 65 is sent to the output of the limiter 24. The output value of the constant current control unit 65 is a first current command value A.

定電流制御の場合は、第1電流指令値Aと実施例2における選択器56の出力値Cとは、同じ値となるため、この実施例3では、実施例2におけるサンプルホールド器55と選択器56を省いている。   In the case of constant current control, since the first current command value A and the output value C of the selector 56 in the second embodiment are the same value, in this third embodiment, the selection is made with the sample hold device 55 in the second embodiment. The vessel 56 is omitted.

図中符号66は、EDLC電圧による電流絞り部で、この電流絞り部66は、実施例2の構成と同様に判定器51、偏差部52、規格演算部53やPIアンプ54が設けられるとともに、PIアンプ54から得られた第2電流指令値Dと前記第1電流指令値Aとの偏差を取る偏差部67が設けられる。なお、判定器51等の動作は、実施例2と同様に行われる。   Reference numeral 66 in the figure denotes a current restricting unit based on an EDLC voltage. The current restricting unit 66 is provided with a determination unit 51, a deviation unit 52, a standard calculating unit 53, and a PI amplifier 54 as in the configuration of the second embodiment. A deviation unit 67 is provided for taking a deviation between the second current command value D obtained from the PI amplifier 54 and the first current command value A. The operation of the determiner 51 and the like is performed in the same manner as in the second embodiment.

電流絞り部66からの出力値(偏差部67からの出力値)は、比較器32の一方の端子に供給され、また、比較器32の他方の端子には、リミッタ24からの第1電流指令値Aが供給されて両者は比較され、比較器32は両者の値の内、小さい方の値を充電電流指令値として送出する。その後の処理は、実施例1の動作と同様に行われる。   The output value from the current restricting unit 66 (the output value from the deviation unit 67) is supplied to one terminal of the comparator 32, and the other terminal of the comparator 32 receives the first current command from the limiter 24. The value A is supplied and the two are compared, and the comparator 32 sends the smaller one of the two values as the charge current command value. Subsequent processing is performed in the same manner as in the first embodiment.

図7はEDLC電圧のみでの電流絞り動作説明図で、図中網線部分は電流絞りがかかる範囲、また、Vfu1は電流絞り開始電圧、Vfu2は電流絞り終了電圧である。   FIG. 7 is an explanatory diagram of the current restricting operation using only the EDLC voltage. In FIG. 7, the shaded area indicates the range where the current restricting is applied, Vfu1 is the current restricting start voltage, and Vfu2 is the current restricting end voltage.

図8は、実施例2におけるシミュレーションき電電圧一定制御Iedlc−Vedlc軌跡を描いた図で、図中STは電流絞り開始電圧、CVは充電上限電圧、SPは電流絞り終了電圧を示す。この図8からEDLC電圧のみによる電流絞りで、充電上限電圧CVまでEDLC電圧が、低下することが確認できた。   FIG. 8 is a diagram depicting a simulation feeding voltage constant control Iedlc-Vedlc locus in Example 2, where ST indicates a current throttling start voltage, CV indicates a charging upper limit voltage, and SP indicates a current throttling end voltage. From FIG. 8, it was confirmed that the EDLC voltage was reduced to the charge upper limit voltage CV by the current throttling only by the EDLC voltage.

1…き電線
6…双方向チョッパ手段
8…電気二重層キャパシタ(EDLC)
10…き電電流検出部
11…き電電圧検出部
12…EDLC電流検出部
13…EDLC電圧検出部
21…偏差部
22…規格化演算部
23…PIアンプ
24…リミッタ
32…比較器
34…EDLCの内部抵抗による電圧降下分を考慮したフィルタ
DESCRIPTION OF SYMBOLS 1 ... Feed wire 6 ... Bidirectional chopper means 8 ... Electric double layer capacitor (EDLC)
DESCRIPTION OF SYMBOLS 10 ... Feeding current detection part 11 ... Feeding voltage detection part 12 ... EDLC current detection part 13 ... EDLC voltage detection part 21 ... Deviation part 22 ... Normalization calculating part 23 ... PI amplifier 24 ... Limiter 32 ... Comparator 34 ... EDLC Filter considering voltage drop due to internal resistance of

Claims (5)

電気鉄道における電気車の回生、力行時に発生するき電電圧の変動を抑えて、き電電圧の安定化を図るき電線電圧補償装置を設け、このき電線電圧補償装置は、電力変換装置と電力貯蔵装置から構成され、前記電力変換装置には双方向チョッパ手段を設け、前記電力貯蔵装置には電気二重層キャパシタを設けて、前記双方向チョッパ手段の制御により、電気車からの回生電力を前記電気二重層キャパシタに充電する充電制御方法において、
き電電圧検出値とき電基準電圧値との第1偏差を求めた後、この第1偏差の出力をPI制御して第1電流指令値を得、
前記電気二重層キャパシタの充電電流検出値と充電電圧検出値および既知の電気二重層キャパシタの充電電圧上限値とその内部抵抗値から前記充電電圧上限値以下となるその時点での最大充電電流値を求め、前記最大充電電流値が前記電気二重層キャパシタの充電電流上限値以上ならその充電電流上限値を、以下の場合にはその時点での前記最大充電電流値を第2電流指令値とするフィルタを用いて送出し、
前記第1電流指令値と前記フィルタを通して得られた前記第2電流指令値とを比較した後、第1、第2電流指令値の内、小さい方の電流指令値を充電電流指令値として得た後、
この充電電流指令値と前記電気二重層キャパシタの充電電流検出値との第2偏差の出力をPI制御し、そのPI制御出力に基づいた前記双方向チョッパ手段のゲート信号を生成し、生成されたゲート信号により前記双方向チョッパ手段のゲート制御を行って、前記電気車の回生電力を吸収するようにしたことを特徴とする電気鉄道用き電線電圧補償装置における充電制御方法。
An electric wire voltage compensator is provided to stabilize the feeder voltage by suppressing fluctuations in the feeder voltage that occurs during the regeneration and power running of electric vehicles in electric railways. The power converter is provided with a bidirectional chopper means, the electric power storage apparatus is provided with an electric double layer capacitor, and regenerative power from an electric vehicle is controlled by the bidirectional chopper means. In the charge control method for charging the electric double layer capacitor,
After obtaining the first deviation from the feed voltage detection value and the power reference voltage value, PI control is performed on the output of the first deviation to obtain a first current command value,
The charging current detection value and the charging voltage detection value of the electric double layer capacitor and the charging voltage upper limit value of the known electric double layer capacitor and the internal resistance value of the charging current detection value and the maximum charging current value at that time that is less than the charging voltage upper limit value A filter in which the maximum charging current value is equal to or higher than the charging current upper limit value of the electric double layer capacitor, and the charging current upper limit value is set as the second current command value in the following cases. Send out using
After comparing the first current command value and the second current command value obtained through the filter, the smaller one of the first and second current command values was obtained as the charge current command value. rear,
PI control is performed on the output of the second deviation between the charge current command value and the charge current detection value of the electric double layer capacitor, and a gate signal of the bidirectional chopper means is generated based on the PI control output. A charging control method for a feeder voltage compensator for an electric railway, wherein the bidirectional chopper means is gate-controlled by a gate signal to absorb regenerative power of the electric vehicle.
前記最大充電電流値は、下記式により求めることを特徴とする請求項1記載の電気鉄道用き電線電圧補償装置における充電制御方法。
Figure 2010252617
2. The charging control method for a feeder voltage compensator for an electric railway according to claim 1, wherein the maximum charging current value is obtained by the following equation.
Figure 2010252617
電気鉄道における電気車の回生、力行時に発生するき電電圧の変動を抑えて、き電電圧の安定化を図るき電線電圧補償装置を設け、このき電線電圧補償装置は、電力変換装置と電力貯蔵装置から構成され、前記電力変換装置には双方向チョッパ手段を設け、前記電力貯蔵装置には電気二重層キャパシタを設けて、前記双方向チョッパ手段の制御により、電気車からの回生電力を前記電気二重層キャパシタに充電する充電制御方法において、
き電電圧検出値とき電基準電圧値との第1偏差を求めた後、この第1偏差の出力をPI制御して第1電流指令値を得、
前記電気二重層キャパシタの充電電圧検出値とその基準電圧値との第2偏差を求め、電気二重層キャパシタの充電電圧検出値が電流絞り開始電圧を超えたときに、第2偏差の出力をPI制御して得られた電気二重層キャパシタ電圧による電流絞り値を得、この電流絞り値と前記第1電流指令値との第3偏差を求めて得られた値を第2電流指令値とし、
前記第1電流指令値と第2電流指令値とを比較した後、第1、第2電流指令値の内、小さい方の電流指令値を充電電流指令値として得た後、
この充電電流指令値と前記電気二重層キャパシタの充電電流検出値との第4偏差の出力をPI制御し、そのPI制御出力に基づいた前記双方向チョッパ手段のゲート信号を生成し、生成されたゲート信号により前記双方向チョッパ手段のゲート制御を行って、前記電気車の回生電力を吸収するようにしたことを特徴とする電気鉄道用き電線電圧補償装置における充電制御方法。
An electric wire voltage compensator is provided to stabilize the feeder voltage by suppressing fluctuations in the feeder voltage that occurs during the regeneration and power running of electric vehicles in electric railways. The power converter is provided with a bidirectional chopper means, the electric power storage apparatus is provided with an electric double layer capacitor, and regenerative power from an electric vehicle is controlled by the bidirectional chopper means. In the charge control method for charging the electric double layer capacitor,
After obtaining the first deviation from the feed voltage detection value and the power reference voltage value, PI control is performed on the output of the first deviation to obtain a first current command value,
A second deviation between the charge voltage detection value of the electric double layer capacitor and its reference voltage value is obtained, and when the charge voltage detection value of the electric double layer capacitor exceeds the current throttling start voltage, the output of the second deviation is PI. A current throttle value by the electric double layer capacitor voltage obtained by control is obtained, and a value obtained by obtaining a third deviation between the current throttle value and the first current command value is defined as a second current command value.
After comparing the first current command value and the second current command value, after obtaining the smaller one of the first and second current command values as the charging current command value,
PI control is performed on the output of the fourth deviation between the charge current command value and the charge current detection value of the electric double layer capacitor, and the gate signal of the bidirectional chopper means is generated based on the PI control output. A charging control method for a feeder voltage compensator for an electric railway, wherein the bidirectional chopper means is gate-controlled by a gate signal to absorb regenerative power of the electric vehicle.
前記第2電流指令値は、電気二重層キャパシタが過電圧にならないように電流絞り値を制御することを特徴とする請求項3記載の電気鉄道用き電線電圧補償装置における充電制御方法。   4. The charging control method for a feeder voltage compensator for an electric railway according to claim 3, wherein the second current command value controls a current throttle value so that the electric double layer capacitor does not become an overvoltage. 電気鉄道における電気車の回生、力行時に発生するき電電圧の変動を抑えて、き電電圧の安定化を図るき電線電圧補償装置を設け、このき電線電圧補償装置は、電力変換装置と電力貯蔵装置から構成され、前記電力変換装置には双方向チョッパ手段を設け、前記電力貯蔵装置には電気二重層キャパシタを設けて、前記双方向チョッパ手段の制御により、電気車からの回生電力を前記電気二重層キャパシタに充電する充電制御方法において、
一定電流指令部の定電流指令値を第1電流指令値として得、
電気二重層キャパシタの充電電圧検出値とその基準電圧値との第1偏差を求め、電気二重層キャパシタの充電電圧検出値が電流絞り開始電圧を超えたときに、第1偏差の出力をPI制御して得られた電気二重層キャパシタ電圧による電流絞り値と前記第1電流指令基準値との第2偏差を求めて得られた値を第2電流指令値とし、
前記第1電流指令値と第2電流指令値とを比較した後、両指令値の内、小さい方の指令値を充電電流指令値として得た後、
この充電電流指令値と前記電気二重層キャパシタの充電電流検出値との第3偏差の出力をPI制御し、そのPI制御出力に基づいた前記双方向チョッパ手段のゲート信号を生成し、生成されたゲート信号により前記双方向チョッパ手段のゲート制御を行って、前記電気車の回生電力を吸収するようにしたことを特徴とする電気鉄道用き電線電圧補償装置における充電制御方法。
An electric wire voltage compensator is provided to stabilize the feeder voltage by suppressing fluctuations in the feeder voltage that occurs during the regeneration and power running of electric vehicles in electric railways. The power converter is provided with a bidirectional chopper means, the electric power storage apparatus is provided with an electric double layer capacitor, and the bidirectional electric chopper means controls the regenerative power from the electric vehicle. In the charge control method for charging the electric double layer capacitor,
The constant current command value of the constant current command unit is obtained as the first current command value,
The first deviation between the charge voltage detection value of the electric double layer capacitor and its reference voltage value is obtained, and when the charge voltage detection value of the electric double layer capacitor exceeds the current throttling start voltage, the output of the first deviation is PI controlled. A value obtained by obtaining a second deviation between the current aperture value obtained by the electric double layer capacitor voltage and the first current command reference value as a second current command value,
After comparing the first current command value and the second current command value, after obtaining the smaller command value of both command values as the charging current command value,
PI control is performed on the output of the third deviation between the charging current command value and the charging current detection value of the electric double layer capacitor, and a gate signal of the bidirectional chopper means is generated based on the PI control output. A charging control method for a feeder voltage compensator for an electric railway, wherein the bidirectional chopper means is gate-controlled by a gate signal to absorb regenerative power of the electric vehicle.
JP2009171755A 2009-03-24 2009-07-23 Charging control method in feeder voltage compensator for electric railway Active JP5391900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171755A JP5391900B2 (en) 2009-03-24 2009-07-23 Charging control method in feeder voltage compensator for electric railway

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009071092 2009-03-24
JP2009071092 2009-03-24
JP2009171755A JP5391900B2 (en) 2009-03-24 2009-07-23 Charging control method in feeder voltage compensator for electric railway

Publications (2)

Publication Number Publication Date
JP2010252617A true JP2010252617A (en) 2010-11-04
JP5391900B2 JP5391900B2 (en) 2014-01-15

Family

ID=43314296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171755A Active JP5391900B2 (en) 2009-03-24 2009-07-23 Charging control method in feeder voltage compensator for electric railway

Country Status (1)

Country Link
JP (1) JP5391900B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2739502A4 (en) * 2011-08-05 2015-12-16 Abb Inc Electrical energy storage system for traction power supply
JP2017140908A (en) * 2016-02-09 2017-08-17 株式会社東芝 Power storage device and power storage method
EP3556594A1 (en) * 2018-04-17 2019-10-23 Siemens Mobility GmbH Vehicle and method for operating a vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087299A (en) * 2005-11-04 2006-03-30 Toshiba Corp Electric vehicle controller
JP2007210513A (en) * 2006-02-10 2007-08-23 Meidensha Corp Dc power storage device
JP2009027763A (en) * 2007-07-17 2009-02-05 Meidensha Corp Dc power storage unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087299A (en) * 2005-11-04 2006-03-30 Toshiba Corp Electric vehicle controller
JP2007210513A (en) * 2006-02-10 2007-08-23 Meidensha Corp Dc power storage device
JP2009027763A (en) * 2007-07-17 2009-02-05 Meidensha Corp Dc power storage unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2739502A4 (en) * 2011-08-05 2015-12-16 Abb Inc Electrical energy storage system for traction power supply
JP2017140908A (en) * 2016-02-09 2017-08-17 株式会社東芝 Power storage device and power storage method
EP3556594A1 (en) * 2018-04-17 2019-10-23 Siemens Mobility GmbH Vehicle and method for operating a vehicle

Also Published As

Publication number Publication date
JP5391900B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
KR101971324B1 (en) Battery system
WO2019155751A1 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
JP5434195B2 (en) Fuel cell system and vehicle equipped with the same
US9669779B2 (en) Method for operating a multi-voltage electrical system of a motor vehicle, a multi-voltage electrical system and means for implementing the method
JP6187377B2 (en) Vehicle charging device
JP4934562B2 (en) Vehicle control device having power storage device
JP2007159370A (en) Bidirectional power conversion device with reverse power flow prevention function
JP2009044862A (en) Power supply controller and power supply system for electric vehicle
JP2019216491A (en) Power controller
JP2012114999A (en) Abnormality detection device for battery charger
JP5391900B2 (en) Charging control method in feeder voltage compensator for electric railway
JP6187180B2 (en) Power conversion system
US10910875B2 (en) Vehicle backup device
JP2019221063A5 (en)
JP4387813B2 (en) DC voltage feeder
JP6969505B2 (en) In-vehicle power control device and in-vehicle power supply system
JP6232133B2 (en) Electronic control unit
JP5347780B2 (en) Discharge control method in feeder voltage compensator for electric railway
JP2005269828A (en) Hybrid system
JP2016213918A (en) Vehicle charge control device
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor
JP2019096565A (en) Fuel cell system and control method for fuel cell system
KR102532333B1 (en) Apparatus and method for controlloing low voltage dc-dc converter of vehicle
JP5482491B2 (en) DC electric railway power storage device
JP5493604B2 (en) DC electric railway power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150