JP2007208287A - 基板温度測定のための装置 - Google Patents

基板温度測定のための装置 Download PDF

Info

Publication number
JP2007208287A
JP2007208287A JP2007082609A JP2007082609A JP2007208287A JP 2007208287 A JP2007208287 A JP 2007208287A JP 2007082609 A JP2007082609 A JP 2007082609A JP 2007082609 A JP2007082609 A JP 2007082609A JP 2007208287 A JP2007208287 A JP 2007208287A
Authority
JP
Japan
Prior art keywords
substrate
temperature
probe
emissivity
microcavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007082609A
Other languages
English (en)
Inventor
Bruce W Peuse
ダブリュー. ペウス ブルース
Gary E Miner
イ−. マイナー ガリー
Mark Yam
ヤム マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23413238&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2007208287(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2007208287A publication Critical patent/JP2007208287A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/918Immunological

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】 改善された再現性及び均一性をもつ信頼性の高い温度測定。
【解決手段】 基板の加熱のための熱処理チャンバ内で、温度プローブの読み出しを補正する方法。この方法には、基板をプロセス温度まで加熱するステップと、第1のプローブと第2のプローブを用いて基板温度を測定するステップと、第1の温度により指示される第1の温度と第2の温度により指示される第2の温度とから、第1のプローブに対しての温度読み出しの補正を導出し、これは第1のプローブ及び第2のプローブの双方により生じる補正しない読み出しよりも正確な、基板の実際の温度の指示値である、補正の導出のステップとを有する。
【選択図】 図3

Description

本発明は、基板の放射率を向上させることにより、並びに、基板温度の測定を補正することにより、半導体基板の非接触の温度測定を改良する技術に関する。
半導体デバイスの製造プロセスの多くでは、要求される高いレベルのデバイスの性能、収率及びプロセスの再現性は、処理中に基板の温度(例えば、半導体ウエハ)がきちんと制御された場合に限って達せられる。このような制御のレベルを達するためには、基板温度をリアルタイムに且つインシチュウ(in situ )に測定して不測の温度変動が直ちに検出され補正される必要がある場合がしばしばである。
例えば、急速熱アニーリング(rapid thermal annealing)(RTA)、急速熱クリーニング(rapid thermal cleaning)(RTC)、急速熱化学気相堆積(rapidthermalchemical vapor deposition)(RTCVD)、急速熱酸化(rapid thermal oxidation)(RTO)並びに急速熱窒化(rapidthermal nitridation)(RTN)を含む種々の製造プロセスに用いられる急速熱処理(rapid thermal processing)(RTP)を考える。RTO又はRTNによるCMOSゲート誘電体(CMOSgate dielectrics)の形成という特殊な応用例では、ゲート誘電体厚さ、成長温度及び均一性が、デバイス全体の性能と収率に影響を及ぼす重要なパラメータである。現在では、CMOSデバイスは60〜80オングストローム程度の厚さで厚さの均一性がプラスマイナス2オングストローム以内に収るような誘電体層をもって作られている。この均一性のレベルのためには、高温処理中に基板全体の温度変化が数℃を越えてはならないことが要求される。
高温処理中は、ウエハ自身は小さな温度変化も許されないことがしばしばである。1200℃で温度差が1〜2℃/cmを越えて生じることがあれば、その結果、応力がシリコン結晶内に滑りを生じさせる。このように生じた滑り面は、滑り面が通過する全てのデバイスを破壊するだろう。この温度の均一性のレベルを達するためには、閉ループ温度制御のための、信頼性の高いリアルタイムの多点温度測定が必要である。
光学的放射温度測定は、RTPシステムの温度測定に広く用いられている。放射温度測定は、目的物の一般的な性質を利用し、即ち、目的物は温度を決定する特定のスペクトル成分と強度をもって放射を発している。従って、発せられた放射を測定することにより、目的物の温度を決定できる。発せられた放射の強度をパイロメータが測定し、適切な変換を行って温度(T)を得る。スペクトルの放射強度と温度との関係は、基板のスペクトル放射率と、プランクの法則で与えられる理想黒体の放射温度関係に依存し、プランクの法則は、
Figure 2007208287

である。ここで、C1及びC2は既知の定数、λは着目する放射波長、Tは゜Kで測定された基板温度である。Weinの分布法則として知られている近似により、上記の表現は以下のように書き直せる。
Figure 2007208287

ここで、K(λ)=2C1/λ5である。これは、2700℃よりも低い温度に対しては良い近似である。
目的物のスペクトル放射率ε(λ,T)は、そのスペクトル強度I(λ,T)と同一温度における黒体のそれIb(λ,T)の比である。即ち、
Figure 2007208287

C1とC2は既知の定数であり、理想的な条件下では、ε(λ,T)がわかればウエハの温度は正確に決定できる。
しかし、これは半導体産業において広く用いられているにもかかわらず、光学的放射温度測定はなお、基板の放射率を正確に測定することの不可能さから来る制限を受けている。更に、仮に基板の放射率が所定の温度で既知であっても、温度によって変化する。この変化は通常は、正確に測定することができず、従って、温度測定に対して未知の誤差を招いてしまう。10℃のオーダーの誤差は特別なことではない。
基板の放射率は多くの因子に依存し、これらは、ウエハ自身の性質(例えば、温度、表面粗さ、種々の不純物のドーピングのレベル、材料の組成及び表面層の厚さ)、プロセスチャンバの性能及びウエハのプロセス履歴を含んでいる。従って、基板の放射率の事前の評価は、一般用途の放射温度測定の能力を与えることができない。
温度測定におけるウエハ放射率の変化の影響を減少させる技術は知られている。この技術の1つに、ターゲット基板の裏面の近くに熱反射器を置き、基板からの熱放射が基板に反射し返される反射キャビティを形成することがある。反射器を貫いてキャビティに挿入される光パイプが反射キャビティからの放射を集め、集められた光をパイロメータに与える。理想的な反射器を想定すれば、基板から発せられる全ての熱放射は基板に反射し返されるので、反射キャビティが理想黒体のように振る舞うとして、数学的に示すことが可能である。即ち、反射キャビティ内の熱放射の強度は、基板表面の放射率の関数ではなくなるだろう。換言すれば、理想的なケースでは、反射キャビティは基板の有効放射率の値を1に等しい値まで増加させる。しかし、この反射器は完全よりも劣るであろうことから、基板の有効放射率はウエハの放射率よりも高くなるが1よりも小さくなるだろう。それにもかかわらず、ウエハの実際の放射率の変化は測定された温度にはあまり影響を与えないであろう。
上述の温度測定のスキームが許容されるレベルを達成しているが、改善の余地は大きく残っている。
一般的には、本発明の1つの特徴は、基板の加熱のための熱処理チャンバ内で、温度プローブの読み出しを補正する方法である。この方法には、基板をプロセス温度まで加熱するステップと、第1のプローブと第2のプローブを用いて基板温度を測定するステップと、第1の温度により指示される第1の温度と第2の温度により指示される第2の温度とから、第1のプローブに対しての温度読み出しの補正を導出し、これは第1のプローブ及び第2のプローブの双方により生じる補正しない読み出しよりも正確な、基板の実際の温度の指示値である、補正の導出のステップとを有する。第1のプローブと第2のプローブとは、有効反射率が異なっている。
好ましい具体例では、本発明はまた、第1のプローブのための第1の非接触プローブを用いることと、第2のプローブのための第2の非接触プローブを用いること、例えば光学パイロメータ等、を有している。第1のプローブと第2のプローブとにより実施される温度測定は時間的に近付いて行われ、例えば、同時進行する。第1の有効反射率は第2の有効反射率よりも大きい。導出のステップは、第1のプローブにより指示される温度を、第1の温度指示値と第2の温度指示値との差から導出される補正量を加えることにより補正する操作を含んでいる。更に、導出のステップは、第1の温度指示値と第2の温度指示値の間の差を決定する操作と、この温度差に補正量を発生させる補正係数を掛ける操作とを含んでいる。
一般には、別の特徴として、本発明は、温度測定のシステムの較正(calibration)を行う方法である。この方法は、高い放射率を有する基板を第1のプロセス温度まで加熱するステップと、基板が第1のプロセス温度にある間、第1のプローブと第2のプローブを較正して、これらに実質的に同一の温度指示値を与えるステップと、低い放射率を有する第2の基板を第2のプロセス温度まで加熱するステップと、第2の基板が第2のプロセス温度にある間、第1のプローブと第2のプローブを用いて基板温度を測定するステップと、基板の放射率の変化に対する第1のプローブにより与えられた温度の読み出しの感度を測定するステップと、この測定された感度と、第1のプローブにより与えられた第1の温度指示値と第2のプローブにより与えられた第2の温度指示値とを用いて、第1のプローブのための補正係数を計算するステップとを有する。更に、第1のプローブは第1の有効反射率を有し、第2のプローブは第1の有効反射率とは異なる第2の有効反射率を有している。補正係数は、第1のプローブの温度読み出しに適用されて、補正された温度読み出しを与える。
一般的に、また別の特徴として、本発明は、熱処理加熱チャンバ内の基板温度の測定装置である。この装置は、基板の一方の面の隣に置かれてこれらの間が反射キャビティを形成する反射プレートと、反射キャビティからエネルギーを受容し第1の温度読み出しを与えるように位置が与えられる第1のプローブと、反射キャビティからエネルギーを受容し第2の温度読み出しを与えるように位置が与えられる第2のプローブとを備えている。第1のプローブは、第2のプローブとは異なる、キャビティに対する有効反射率を生じる。
一般的に、別の特徴として、本発明は熱処理チャンバ内で基板上の局所温度を測定するための装置である。この装置は、熱処理チャンバ内に基板を支持する支持構造体と、熱処理中に基板からの放射を受容する端部を有し基板の局所領域の温度の参照信号を与えるエネルギープローブと、エネルギープローブの端部の周囲に形成された窪んだマイクロキャビティとを有している。この窪んだマイクロキャビティは、基板の局所領域と面しプローブ信号を増加させる作用をする放射反射面を有している。
本発明の種々の利点は以下に説明される。マイクロキャビティ構造は、ウエハの裏面と反射プレートとの間に形成されたキャビティ及び反射プレートの有効反射率を向上する傾向があるので、基板の放射率の変化に対する感度が実質的に減少した温度測定を可能にする。更に、本発明は、反射率の変化を温度の関数に適応させるリアルタイム且つインシチュウの温度補償を提供する。この較正の手順は、単純且つ、典型的には、所定のチャンバ構造に対しては一度試行すればよいだけである。本発明に従った温度測定は、安定で再現性の高い固体検出器を用いる事ができる。本発明は、改善された再現性及び均一性をもって信頼性の高い温度測定を可能にする。
その他の特徴及び利点は、以下の説明により更に明らかになるであろう。
(仮想的な黒体キャビティ)
以下の説明では、基板の温度測定に言及する。ここで、「基板」なる語は、熱プロセスチャンバ内で処理されるいかなる物体をも広くカバーし、その温度は処理中に測定されることを意図している。「基板」という語は、例えば、半導体ウエハ、フラットパネルディスプレイ、ガラス板又はディスク、及びプラスチックワークピースを含むものである。
本発明を理解するためには、上記を参照して放射率向上の技術をまずレビューすることが有用であろう。
図1に示されるように、熱反射器22は、基板10の近くの位置が与えられて、反射器と基板の間に仮想的な黒体キャビティ24を形成する。基板裏面が乱反射の場合は、放射エネルギーはランダムなパターンで発せられて、発せられた放射エネルギーは、同様のランダムな(等方的な)パターンでキャビティじゅうに反射される。反射器22のあらゆる場所から到達する放射エネルギーは、多くの成分から成っている。すなわち、第1の成分は、基板から直接飛来し反射を経験していない放射エネルギーから成り、第2の成分は、反射器22と基板10の裏面から1回の反射を経験しており、第3の成分は、反射器22と基板10の裏面から2回の反射を経験しており、等々である。反射器の位置で生じ得る全強度は、入射する放射エネルギーの無限級数の総和として、以下のように見出される。
Figure 2007208287


Figure 2007208287


ここで、冷反射プレートの反射率はRで与えられ、ウエハの放射率はεで与えられ、σはステファン・ボルツマン定数であり、Tは基板温度である。
反射器の反射率が1に等しい(R=1)と仮定すれば、[数5]の式(5B)は簡単になり、
Figure 2007208287

となる。ここで、放射エネルギーITは基板の裏面の放射率に従属していない。換言すれば、反射器は、基板の「有効放射率」が1に等しくなる仮想的な理想黒体を作り出している。
注目すべきことは、この放射率の向上の効果は、ウエハの裏面が乱反射することを必ずしも要さないことである。高度に乱反射する裏面を有する基板だけではなく、完全な鏡面反射性の裏面を有する基板にも有効である。一般的には、半導体ウエハの裏面は、乱反射と鏡面反射の適当な組合わせである。
光パイプ28が、反射器のアパーチャー27を貫通して、キャビティ内の反射エネルギーの抽出に用いられる。抽出された強度は、光ファイバ30を介してパイロメータ33へ通過し、そこで上述の[数4]〜[数6]の式(5)を用いて温度に変換される。仮想的な黒体の効果のため、測定温度は基板の放射率に無関係である。
しかし、現実には、反射器の反射率は、1に近かろうが、1に等しくはならない。少なくとも、反射器のコーティングは完全に反射をしないであろう。例えば、優秀な反射コーティング材料の1つである金は、波長950nm(ナノメートル)に対して0.975の反射率しか有しない。更に、反射器に放射エネルギーの抽出用の1つ以上のアパーチャーが存在することが、キャビティの全体の幾何的関係(即ち寸法と形状)と共に、我々がここで実現しようと試みている仮想的な理想黒体の性能を低めてしまう傾向がある。これらの幾何的な効果は実際の反射率と共に、ひとまとめにして「有効反射率」Reffとすることができる。基板の放射率の変化が抽出された強度に依存する影響を実質的に減少させることは可能ではあるが、測定は、基板の放射率に完全に独立しているわけではない。
反射器22が不透明で、冷たく、高度に反射的(即ちR→1)であると仮定すれば、反射器により発せられる放射エネルギーの効果を無視することができ、基板の有効放射率εeffは、次のように近似できる。
Figure 2007208287


ここで、Reffは反射キャビティの有効反射率である。注目すべきは、Reffが1に等しければ、εeffも1に等しくなるはずであることだ。一方、Reffが1未満であれば、εeffも1未満になり、測定温度は放射率の関数となるだろう。
図2では、有効放射率εeffは、異なるReffの値に対して、実際の放射率εの関数として与えられている。指示されているように、反射キャビティの有効反射率が1に近付くにつれて、基板の有効放射率も1に近付く。また、Reff→1であるので、基板の有効放射率は、基板の実際の放射率の変化に対してあまり敏感ではなくなり、特に、実際の放射率が高い値のときは顕著である。この感度は、次のように定量化される。
Figure 2007208287

これは、[数7]の式(6)をεに関して微分することにより得られる。
温度測定の結果の誤差は、以下のような有効放射率の変化として与えられ、
Figure 2007208287

[数7]の式6と[数8]の式(7)を用いて、以下の式が得られる。
Figure 2007208287

注目すべきは、Reffが1に近付けば、この分子、即ち測定温度の基板放射率の変化に対する感度は、無視できるほどに小さくなることである。逆に言えば、キャビティの有効反射率が充分高く(即ち1に近い)ない場合は、基板の放射率の変化による温度測定の変化も、許容されないほどに大きいままであることがある。
再び図1を参照すれば、アパーチャー27の存在は、反射器と基板の間に形成された仮想特体キャビティ24の局所的な障害を導く。我々は、この障害が反射器により与えられた放射率向上の効果も減少することを認識するに至った。更に、アパーチャーサイズ(D)が大きくなれば、この障害のサイズも大きくなる傾向がある。従って、放射率向上に対するアパーチャーの影響を最小にする1つのアプローチとして、アパーチャーのサイズを小さくすることがあるだろう。しかし、光パイプにより収集された光の量は、アパーチャーの面積に比例しているので、これは光パイプにより収集された光の量を減少させ、よって、検出システムの信号対ノイズ比を低下させる。基板温度が低下すれば放射エネルギーの強度が急速に下がるため、小さなアパーチャーを用いることは、検出器が有用でなくなる温度を上げてしまうことになる。
しかし、我々は、RTPシステムでベース反射器を改良して、光プローブの端部で測定向上の表面の造作(ぞうさく)を含めることにより、反射キャビティの仮想黒体効果を更に向上させつつも抽出信号の信号対ノイズ比も改善されて得られることを見出した。
(RTPシステムの概要の本発明を包含したRTPシステム)
本発明に従って改良されたRTPシステムが図3(a)に示される。このRTPシステムは、ディスク形状の直径8インチ(200mm)のシリコン基板106を処理するための処理チャンバ100を有している。基板106は、チャンバ内で基板支持体108上に載置され、基板の真上に配置された加熱要素110によって加熱される。加熱要素110は、基板の約1インチ(2.5cm)上方の水冷クオーツウィンドウ組立体114を介して、処理チャンバ100に進入する放射エネルギー112を発生させる。基板106の下方には、水冷式のステンレス鋼のベース116上に載置される反射器102が存在する。反射器102は、アルミニウム製であり、高反射性のコーティング120を有している。基板106の下側と反射器102の頂部との間には、基板の有効放射率を増加させるための反射キャビティ118が形成されている。
基板と反射器との間隔は約0.3インチ(7.6mm)であり、従って、幅対高さの比が約27であるキャビティを形成している。8インチのシリコンウエハのために設計された処理システムでは、基板106と反射器102との間の距離は、3mm〜9mmの間であり、好ましくは5mm〜8mmの間であり、また、キャビティ118の幅対高さの比は約20:1よりも大きくなるべきである。この間隔が大きすぎる場合は、形成された仮想黒体キャビティに起因する放射率向上の効果は小さくなるだろう。一方、この間隔が小さすぎた場合、例えば約3mm未満である場合は基板から冷却された反射器に至る熱伝導が小さくなるので、加熱された基板に許容できない大きな熱負荷がかかるであろう。反射プレートへの熱的損失は主なメカニズムは、ガスを介した伝導であるので、熱負荷は当然に、ガスのタイプ及び処理中のチャンバ圧力に依存する。
基板106の局所的領域109での温度は、複数の温度プローブ126(図3(a)にはこの中の2つのみが示される)によって測定される。温度プローブはサファイアの光パイプであり、これらは、ベース116の裏側から反射器102を介して延長する導管124の中を通っている。サファイア光パイプ126は、直径約0.125インチであり、これらを導管内に簡単に挿入せしめるように導管124はこれらよりも僅かに大きくなっている。
(放射率向上の表面の造作)
本発明の特徴の1つに従い、小反射キャビティ42(即ちマイクロキャビティ)が、反射器102の頂面に形成され、ここでは導管が反射器の頂部を貫通している(図4(a)に更に詳細に示されている)。導管は小キャビティに進入して、小キャビティの底部でアパーチャー129が形成される。サファイア光パイプ126は、その最上端部がマイクロキャビティ42の底部と同じ高さ又は僅かに低くなるように、導管124内部に配置される。光パイプ126の他方の端部は、抽出された光をキャビティからパイロメータ128に伝達するフレキシブルな光ファイバ125に結合される。
ここで説明される具体例では、表面マイクロキャビティは、円筒状の形状を有し、半径(R)が約0.100インチ、深さ(L)が約0.300インチである。マイクロキャビティ42及び導管124でのアパーチャー129は、上述の如くサファイア光パイプの直径である約0.125インチよりも僅かに大きい。表面マイクロキャビティ42は、基板106の裏側と反射器102の頂部との間に存在する反射キャビティ118の仮想黒体効果を向上させる機能を有するので、基板の有効放射率を、1に一層近い値まで増加させる。この円筒状のキャビティは、光パイプにより検出された抽出信号の信号対ノイズ比を改善すると共に、基板の有効放射率(又は反射キャビティの有効反射率と等価である)を増加させる機能を有している。我々は更に、この向上の効果は、プローブ端部が表面キャビティ42の底部と同じ高さであるかどうかということや、プローブがこの導管124の内部の窪んだ場所の下に置かれているかどうかということには依存していないようであることに注目している。従って、反射器の組み立て中に導管内にプローブを挿入する操作は、プローブ端部を配置することに関して厳密な臨界許容範囲満足させる必要がないことにより、更に簡単に行われる。しかし、プローブ端部はマイクロキャビティ内に突き出していてはならず、なぜならこのことにより向上の効果を悪化させるだろうからである。
円筒状のマイクロキャビティに、完全に反射する側壁を仮定すれば、円筒状のマイクロキャビティによってもたらされる向上の効果は、マイクロキャビティのL/R比が大きくなるにつれて増加する。しかし、側壁は完全な反射性ではないため、放射エネルギーがキャビティ内を反射により往復する回数が増えるにつれて、各反射に生じる損失によって信号強度は減少していくだろう。従って、実際問題として、円筒状のマイクロキャビティのL/Rアスペクト比をどの程度大きくしてなお性能の向上が得られるかという制限が存在する。
プローブの端部の周囲に形成される表面マイクロキャビティ42は、基板裏側の局所領域の自己放射のレベルを増加させることにより、又は、プローブの収集効率を増加させることにより、又は、これらのメカニズムを組合わせることにより、機能するようである。換言すれば、表面キャビティは、平坦な反射器と比較して、温度が測定される点である基板上の局所領域で反射器から反射し返される光の量を増加させるので、プローブの放射エネルギーの収集も増加させる。
ここに説明される具体例は、反射器にとって望ましい高い反射率を達成するためのものであるが、この具体例では、反射器の頂部に高度に反射性を有する多層のコーティング120が形成されている。コーティングの底部層は、反射器本体の表面上に堆積された金の薄膜である。金は、着目する赤外波長(即ち約950nm)で約0.975の反射率を有するので好ましい。金の層の反射率を更に向上させるために、金の層の頂部に4分の1波長の積み重ね部が形成される。この4分の1波長の積み重ね部は、別の誘電層で構成され、これは異なる屈折指数を有し、パイロメータが最も感度が高くなる波長の1/4(即ち950nmの1/4)に等しい厚さを有している。ここに説明される具体例では、4分の1波長の積み重ね部は、米国カリフォルニア州サンタローザのOCLI社(Optical Coating Laboratory,Inc.)により塗布されるが、このコーティングの塗布には、別の商業的ソースでも可能である。
この多層構造の頂部層は、反射層の金のRTPチャンバを汚染する可能性を防止するパッシベーション層である。このパッシベーション層は、酸化珪素、酸化アルミニウム、窒化珪素、又は、着目する波長で反射特性を損なわずに反射層をパッシベーションするその他の許容される材料であってもよい。
この多層構造体の反射率は、950nmで約0.995であり、これは単一の金薄膜の本来の反射率0.975よりも著しく高い。
金が反射のために許容できない材料である場合は、無論、他の反射材料を用いてもよい。例えば、ニッケルは金よりも不活性であり、金よりも高くはないが良好な反射率を有している。
表面マイクロキャビティには、多くの他の幾何的関係が可能である。例えば、図4(b)に示されているような、半球状のマイクロキャビティ42’を用いてもよい。このマイクロキャビティは、球の形状を有し、その中心は反射器の表面の面上に配置される。上述のRTPの具体例では、球の半径は約6〜8ミリメートルであり、即ち、反射器と基板の裏面との間の間隔に匹敵している。サファイアプローブ126は直径0.125インチであるが、局所領域109でプローブが基板温度に対して生じさせる障害を最小にするため、もっと小さなサイズ(例えば0.050インチ)を採用する事が望ましいだろう。
その他のマイクロキャビティの幾何的関係が、図4(c)〜(d)に示される。図4(c)は、円錐形状のマイクロキャビティが示され、光パイプが円錐のらせんに配置されている。図4(d)は、球状のマイクロキャビティが示され、光パイプが反射の表面の円形アパーチャー161の反対側に配置されている。これらは、用いることができる多くの別の幾何的関係のほんの一部に過ぎない。ある用途に対して最も適した特定のマイクロキャビティの幾何的関係は、実験により決定できる。更に、マイクロキャビティはまた、反射プレートの表面から突き出した材料で形成される突起したマイクロキャビティであってもよい。
(放射率の補正の温度測定)
プローブの端部の周囲の反射器の表面でマイクロキャビティを用いることにより仮想的な黒体に非常に近接した反射キャビティを作り出してはいるにもかかわらず、依然として有効放射率は1に等しくはならないだろう。換言すれば、測定温度は、ある基板から次のものへの放射率の変化に起因する未知の誤差成分を有しているからである。従って、RTPチャンバ内で処理されることになる基板の実際の放射率の変化を測定し且つ補正する事により、温度測定の正確さを更に改善することが望ましい。異なる有効放射率(又は等価な意味で、異なる有効反射率)を有する2つの温度プローブを用いて、基板の特定の局所領域における温度を測定することにより、リアルタイム且つインシチュウの温度測定が改善されてもよい。そして、これらのプローブにより測定された温度を用いて、局所的な温度測定の補正が得られる。
再び図3(a)を参照すれば、それぞれ異なる有効放射率ε1、ε2を有する2つの放射プローブ150、152が用いられている。プローブ150は、前述のようにまた図4(b)で示される如く、円筒状表面マイクロキャビティの内側に配置され、プローブ152は、基板106の裏側で約3〜4ミリメートル以内反射器表面の上方に突き出ている。しかし、第2のプローブは、処理中に熱い基板からの放射により加熱されることを防止するため、基板の裏側に近付き過ぎて(及び、冷却された反射プレートから離れて)配置されてはならない。プローブの温度が高すぎるようにならざるを得ない場合は、プローブはダメージを受け、及び/又は、プローブに材料が堆積してその性能を下げてしまうだろう。更に、プローブを基板裏側に近付け過ぎれば、基板の温度に影響を与えてしまうだろう。
ここに説明した構成では、第1のプローブ(即ちプローブ150)の有効放射率は、第2のプローブ(即ちプローブ152)の有効放射率よりも大きいだろう。プローブ152は、基板106の裏側に近付けて置かれる代りに、その底部が比反射性の材料で覆われている円筒状のマイクロキャビティ内に置かれてもよい。2つのプローブが異なる有効放射率を生じさせるのであれば、他の幾何的関係の組合わせも可能である。後に明らかにするが、2つの選択されたプローブの幾何関係は、協働的な有効放射率の差を最大になるように与える。
ここで説明された具体例では、低い有効放射率を生じさせる穴が他のプローブの有効反射率を阻害又は低下させないように、プローブ150、152は充分な距離の間隔をおいて配置される。しかし、基板の大体同じ領域の温度を測定しなくなるほど、2つのプローブがあまり離れ過ぎていてはならない。ここで説明された具体例では、これらの要求に適合すると思われる典型的な間隔は、1〜3cmである。基板が回転する場合は、このことは、2つのプローブが配置される半径は、この量よりも大きく異なってはならないことを意味する。
(較正)
温度補正を実施するにあたり、2つのプローブはまず較正される。即ち、各プローブに対する有効反射率が最初に決められなければならない。このことは、特別の較正用基板の補助によりなされ、図5にその概略が与えられる手順を用いてなされる。
この較正用基板は、事前に測定されて既知となっている放射率εcalを有し、また、自身に埋め込まれる熱電対を有している標準的な基板である。実際の基板温度は熱電対によって正確に測定され、次いで、パイロメータにより報告される温度と比較される。この様な基板は、例えば米国カリフォルニア州サンタクララのSensArray社により商業的に入手可能である。好ましくは、較正用基板は、RTPチャンバないで処理されることになる基板のタイプと実質的に同じ熱的な性質を有するように選択される。例えば、較正用基板は、少なくともプロセス基板と同じ材料(例えばシリコン)製であり、プロセス基板になされていると同じ裏側のタイプ(例えば、乱反射する窪んだ表面)を有しているべきである。
各プローブ150、152に関係した有効反射率(Re1,Re2)を決定するため、プロセスチャンバ内に較正用基板が移送され(ステップ160)、処理チャンバの温度が所定の設定値まで上げられる(ステップ162)。所望の温度に到達したとき、基板の温度が、そこに埋め込まれた熱電対及び2つのプローブを用いて測定され、3つの別々の温度測定値Treal(基板の実際の温度)、T1(第1のプローブにより測定された温度)及びT2(第2のプローブにより測定された温度)が与えられる。
これらの温度は、強度Ical、I1及びI2に変換される。Icalは、キャビティが実際に理想的な黒体である場合にプローブが受容する強度である。[数1]の式(1)を用い、熱電対によって測定された温度Trealから以下のように計算がなされる。
Figure 2007208287

パイロメータにより記録される温度T1及びT2は、同様の手法で、対応する強度(I1,I2)に変換し直される。
Figure 2007208287

プローブ150、152の有効放射率は、次に等しい。
Figure 2007208287

強度Ical、I1及びI2が既知であれば、各プローブの有効反射率の算出は可能となる。[数7]の式(6)から、有効反射率は、以下のように実際の放射率と有効放射率の関数として表すことができる。
Figure 2007208287

有効放射率は測定された強度に関して表現することができるので([数13]の式(11)を見よ)、この式は次のように書き直すことができる。
Figure 2007208287

この表現を用い、有効反射率の値R1及びR2が計算される(ステップ168)。
これらの有効反射率の値は、後の実際の基板の処理において以下に説明するインシチュウ温度補正の決定に用いられる。しかし、計算された有効反射率は、較正がなされた特定の処理システムのみに有効であることは理解されよう。例えば、プローブの幾何関係が変更されたり、システムの幾何関係が変化した場合は、システムの再較正をここに説明した手法で行い、有効反射率の新しい値を決定する必要が有るだろう。
この較正の手順が、εeff(ε,Reff)カーブ(図2を見よ)のいずれがシステムの測定プローブの特徴を与えるかを決めたことは、注目すべきである。基板処理中に得られるインシチュウ温度測定からその基板実際の放射率を決定することが、可能になるだろう。実際の放射率とεeff(ε,Reff)カーブを知ることにより、基板の値する有効放射率を計算して、これから補正温度を計算する事が可能になる。補正温度までに至る手順の詳細は、以下に説明される。
(インシチュウ温度補正)
通常は、最も高い有効反射率を有するプローブ、例えばプローブ150は、温度測定を行うように選択され、他のプローブ(152)は補正プローブとして作用する。
測定プローブの温度読み出しを補正する手順を説明する前に、基板の実際の放射率のための表現を導出することにする。前述の如く、[数13]の式(11)で示されているように、各プローブの有効放射率は、対応する放射エネルギー強度I1、I2に比例している。従って、有効放射率の比は、対応する放射エネルギーの強度の比と等しく、即ち、
Figure 2007208287

である。各プローブに対して、有効放射率は、実際の放射率及び対応する有効反射率の関数として表現でき、即ち、
Figure 2007208287


である。有効放射率の表現を上式に代入すれば、実際の放射率は以下のように、有効反射率と測定強度に関して表現できる。
Figure 2007208287

この表現を導出することで、温度測定の補正の手順を説明する準備が整った。
図6を参照すれば、RTPの試行の開始時に、基板は処理チャンバ内に移送され(ステップ170)、温度は所定の温度シーケンスに沿って循環する。この温度シーケンスに従って基板がシーケンスされている間、プローブ150、152は、所定の抽出速度(例えば20Hz)で基板の局所領域近くの放射エネルギーを抽出する(ステップ172)。各プローブに対する測定温度から、対応するプローブ放射エネルギー強度I1及びI2は、[数12]の式(10)の助けにより算出される。そして、実際の基板の放射率εが、各プローブの有効反射率に対して前に計算された値を用いて、[数18]の式(16)から計算される(ステップ174)。実際の放射率がわかれば、ベースプローブ150の有効放射率ε1は、以下のように[数17]の式(15)から計算される。
Figure 2007208287

最後に、補正温度(Tcorr)が、プローブ150により測定された温度から、[数2]の式(2)、[数3]の式(3)から導出される以下の式を用いて算出される(ステップ176)。
Figure 2007208287
このアルゴリズムは好ましくは、コントローラ137(図6)のソフトウエアで実施され、プローブの温度測定はいかなる制御決定もなされないで自動的に補正される。
(別の放射率補正の技術)
較正システムに対して、埋め込み熱電対をもつ較正用基板を用いる必要のない、別の更に簡易な技術が存在する。この別の技術には、裏側の放射率が正確にわかっている2つのウエハが必要である。一方のウエハは、1に近い放射率εhiを有しており、他方は、寄り低い放射率εlowを有している。ここに説明される具体例では、高放射率のウエハは、0.94の誘電率を有する窒化物ウエハであり、低放射率のウエハは、ウエハの裏側、即ち温度プローブに面する側が0.32の誘電率をもつ酸化物層を有するポリシリコンウエハである。
前述のように、2つの隣接する温度プローブが用いられる。一方のプローブは、ここでは小開口プローブと称するが、高い有効反射率を与える。小開口プローブは、温度読み出しT1を与え、処理中のウエハの温度の測定に用いられる。ウエハの裏側の放射率を明らかにするために補正されるのは、このプローブによって生じる温度(即ちT1)である。他方のプローブは、ここでは大開口プローブと称するが、より低い有効反射率を与える。大開口プローブは、温度読み出しT2を与え、小開口プローブにより測定される温度に適用される補正を与えるために用いられる。
2つのプローブが共に近接して、ほぼ同じ時間にウエハの同じ領域の温度を抽出することが望ましい。他方、プローブが近すぎる場合は、大開口プローブは低い放射率のウエハに対して、小開口プローブの温度測定に影響を与える。このことは、低い放射率のウエハに関して温度の非均一性を招くだろう。
ここに説明された具体例では、2つのプローブは、ウエハの中心から同じ半径のところに配置され、約0.85インチ離れている。小開口プローブは、反射プレート内の他の測定プローブの全てに対して用いられる構成を有している。以下の実施例の目的で、小開口プローブは、0.080インチの直径を有し、反射プレート内の直径約0.085インチの開口の内に位置され、反射プレートと同じ高さの最上端部を有する光パイプを用いる。大開口プローブは、その最上端部が反射プレートと同じ高さであるが反射プレート内でより大きな開口(即ち。0.37インチ)内に位置される光パイプを用いている。大開口の目的は、大開口プローブに対して小開口プローブに比べて低い有効プローブ放射率(又は等価な意味で、低い反射キャビティの有効反射率)を与えるためである。従って、2つのプローブは、測定上異なる温度を生じさせるだろう。例えば、これら2つのプローブを用いた測定温度の差は、裏側の放射率が0.34で実際の温度が1000℃のウエハに対しては、約40〜50℃にもなる。
上述のように、差の温度測定の信号対ノイズ比を向上させるように、2つのプローブの有効反射キャビティ反射率が大きな差を生じさせることが望ましい。従って、ここに説明された具体例に対してこのことが実施されている特定の方法は、目的達成の多くの方法の1つを例示しているに過ぎないことが理解されよう。
前述の如く、黒体から発せられるエネルギーIは、プランクの法則に従って、温度Tに関係し、
Figure 2007208287

である。このケースでは、Tは℃で測定されているので、この温度に273を加えることにより、[数21]の式(19)に要求されるケルビン温度と等価になる。変数を整理することにより、測定されたエネルギーIEの関数としての温度の式を導出することができる。
Figure 2007208287

換言すれば、この式を用いて、黒体の温度は、物体から発せられるエネルギーの量を知ることにより計算できる。
(較正)
小開口プローブの温度読み出しに対する補正係数を与える手順が、図7に示される。この手順は、図7に示されているステップを参照しつつ説明される。
まず、高放射率ウエハは、チャンバ内で、小開口プローブを用いて測定されながら温度Tprocessまで加熱され、2つのプローブは同じ温度読み出しを与えるように較正される(ステップ210)。較正が行われる前では、2つのプローブの実際の温度の読み出しは異なっているであろうが、高放射率ウエハを用いた場合は、これらが異なっている量は小さいであろう。
小開口プローブの較正に必要な2つの測定値を求めるために、その後低放射率ウエハは温度Tprocessまで加熱される。基板のプロセス温度を決定するため、小開口プローブは低放射率ウエハのウエハ温度を正確に測定していると再び仮定する。下記に明らかにされるように、これは許容されると証明される仮定である。ウエハがTprocessである間、その温度は、大開口プローブと小開口プローブの双方により測定される(ステップ212)。大開口プローブは、T2=Tbigの測定温度を与え、小開口プローブは、T1=Tsmallの測定温度を与える。デルタ温度、δT(εlow,Tprocess)は、これら2つの読み出しの間の差として定義され、即ち、δT(εlow,Tprocess)=T1−T2である。
次に、小開口プローブのウエハ放射率に対する実際の感度は、小開口プローブにより与えられる測定温度読み出しを実際の温度として用いて、ウエハのそれぞれ(即ち、低放射率ウエハと高放射率ウエハ)に注入アニールを実施することにより決定される。換言すれば、小開口プローブにより与えられる温度読み出しは、僅かに不正確であるという事実にもかかわらず、正確な温度読み出しとして仮定される。しかし、既知の如く、注入された層の膜抵抗値は、注入アニールの時間及び実際の温度に決定的に依存するだろう。更に、この依存性は正確に知られている。従って、同じ時間の量で異なるプロセス温度でアニールされた2つのウエハのそれぞれにおけるこの層の抵抗値を測定することにより、2つのプロセス温度の間の実際の差がどれほどかを、正確に決定することが可能であろう。
低放射率ウエハと高放射率ウエハとの双方に対して同じ温度読み出しを小開口プローブが与える場合は、低放射率ウエハの実際の温度は、現実には、高放射率ウエハの実際の温度よりも僅かに高くなっているだろう。この事は、所定の実際のウエハ温度において、低放射率ウエハは同じ温度において高放射率ウエハが発するよりも低いエネルギーを発しているだろうことによる。従って、低放射率ウエハが発するエネルギーを高放射率ウエハが発するエネルギーと等しくするためには、その実際の温度が、高放射率ウエハの実際の温度よりも僅かに高くする必要がある。
この2つの実際のウエハプロセス温度の差を決定するためには、高放射率ウエハに対して、小開口プローブを用いてプロセス温度をモニターして、一方の注入アニールが実施される。第2の注入アニールは、低放射率ウエハに対して、また小開口プローブを用いてプロセス温度をモニターして実施される。そして、これらのウエハのそれぞれの膜抵抗値が測定され、実施された特定のアニールのための既知の変換チャートを用いて、2つのウエハの実際のプロセス温度の差を正確に決定することが可能である。この結果は、Terrlowで示される(ステップ214)。
注入アニールを実施する代りに、2つのウエハ上に酸化物層を成長させて、酸化物の厚さの差を求めることもできる。そして、酸化物の厚さの差は、既知の表を用いて変換されて、2つの酸化物の厚さを与える実際のプロセス温度の差の正確な測定値を与えることもできる。
小開口プローブの実際の温度の誤差TerrlowがδT(ε,T)の線形関数であるとのモデルを用いることにより、補正係数Kcorrは、以下のように計算される(ステップ216)。
Figure 2007208287

この例では、Kcorrは、1.246に等しい。
(インシチュウ温度補正)
補正された温度Tcorrは、図11のフローチャートに示されているように、小開口プローブ及び大開口プローブの温度測定から与えられる。ウエハ温度は小開口プローブ(ステップ230)及び大開口プローブ(ステップ232)を用いて測定され、それぞれ、T1とT2とが得られる。これらの測定温度の差(即ち、T1−T2)が計算され(ステップ234)、Kcorrが乗ぜられて(ステップ236)、T1に加えられて補正温度となるべき補正項となる(ステップ238)。換言すれば、
Figure 2007208287

である。
このテクニックの背景の原理及び、その結果、温度測定の正確さが向上することを、次に説明する。
本質的には、小開口プローブの感度の測定は、どの有効放射率カーブが小開口プローブを適用するかを決定する。これは以下のように理解される。小開口プローブをプロセス温度のモニターとして用いつつ低放射率ウエハに注入アニールを実施する際に、ウエハの放射率は1つであると仮定する。この仮定を用いれば、ウエハにより発せられるエネルギーは、Tprocessにおいて理想黒体により発せられるエネルギー、即ちI(Tprocess,λ)と等しいことになる。しかし、前出のTerrlowの決定では、ウエハの実際の温度がより高いことが示されており、即ち、Tprocess+Terrlowである。従って、ウエハにより発せられるエネルギーも、このより高い温度における黒体により発せられるエネルギー(即ち、I(Tprocess+Terrlow,λ)に低放射率ウエハの有効放射率(即ち、εeff,low)を乗じたものに等しいと表現できる。換言すれば、
Figure 2007208287

である。これは、以下のようにεeff,lowの計算のための式に書き直すことができる。
Figure 2007208287

ここで説明されている具体例では、εeff,lowは0.855と算出される。そして、[数19]の式(17)を用いて、小開口プローブの有効反射率Reffsmallは、以下のように、低放射率ウエハの有効放射率と実際の放射率を用いて計算される。
Figure 2007208287

この例では、Reffsmallは0.92に等しい。
Reffsmallを知ることと、[数17]の式(15)を用いて、小開口プローブの見掛け放射率を実際のウエハの放射率の関数としてプロットすることができる。このプロットは、図8の上側のカーブで示されている。
高放射率ウエハに関して得られている2つの温度測定値、即ち、TbigとTsmallにより、同様の手法で、大開口プローブの有効放射率カーブを決定することができる。大開口プローブに関しては、測定された放射エネルギーI(Tbig,λ)は、大開口プローブの有効放射率εeffbigに、より高いある温度Tactualにおいて黒体により発せられるエネルギーを乗じたものに等しくなることが知られている。同様に、小開口プローブに対しては、測定された放射エネルギーI(Tsmall,λ)は、小開口プローブの有効放射率εeffsmallに、このより高い温度Tactualにおいて黒体により発せられるエネルギーを乗じたものに等しくなることが知られている。従って、以下の表現がなされる。
Figure 2007208287

これは、更に、以下のように書き直されて一般化される。
Figure 2007208287

小開口プローブの有効放射率が知られることとなったため(上記を見よ)εeffsmallは、以下の関係から計算できる。
Figure 2007208287

ここで、εaは見掛け放射率、Reffは有効反射率である。以前にReffsmallのために計算された値と高放射率ウエハの実際の放射率(即ち、0.94)を用いて、εeffsmallの値は次のように計算できる。
Figure 2007208287

εeffsmallの値を[数29]の式(27)に代入すれば、εeffbigが得られる。この例では、計算値は0.749である。
[数19]の式(17)を用いれば、大開口プローブの有効反射率、即ちReffbigの値も計算できる。この例では、Reffbigは0.842に等しい。
Reffbigを知ることにより、大開口プローブの見掛け放射率をプロットすることが可能となる。このプロットは、図8の下側のカーブである。較正のスキームの目的で、較正の信号対ノイズ比を増加させるように、これら2つのカーブ(即ち、小開口プローブ及び大開口プローブのそれぞれの見掛け放射率カーブ)を大きく離すことが望ましい。
プロセスが行われている間、小開口プローブによる測定温度の補正が行われないのであれば、温度の誤差は、以下の式に等しくなる。
Figure 2007208287

ここで、
Figure 2007208287

である。この表現を[数30]の式(28)に代入すると、
Figure 2007208287

となる。この関数のプロットは図9に示され(上側の実線のカーブを見よ)、これは、小開口プローブを用いた補正されない温度測定に導入され、基板放射率の低下に対して著しく上昇している。
[数22]の式(20)を用い、小開口プローブ及び大開口プローブにより測定された温度の差、即ちδT(ε,T)は、以下のように計算できる。
Figure 2007208287
図9における下側の点線のカーブは、補正温度測定の改善された正確性を、ウエハ裏側の放射率の関数として例示する。0.3〜1.0の放射率の範囲にわたって、誤差は1℃未満であることは注目されよう。換言すれば、上述のテクニックを用いて補正された温度読み出しは実質的に改善され、ウエハからウエハへの放射率の変動に対する補正温度読み出しの感度は、補正されない温度読み出しと比較して、大幅に減少する。
図9から明らかなように、線形近似を行うことにより、実際の測定誤差を僅かに過剰補償する補正係数を生じさせた。補正係数を更に最適化する1つの方法は、低めの係数を用いることであり、例えば、0.9Kcorrを用いる等である。この方法で補正係数が増減された場合は、その結果のカーブは、放射率の範囲の大部分にわたってゼロエラーに大きく近付く(図9の点線を見よ)。
小開口プローブ温度測定における誤差の原因となる効果は、エネルギーに関連した効果であり、これは指数項を導入する。従って、実際の誤差は非線形である。それにもかかわらず、誤差に対する線形近似は、これらの非線形効果の補償に関し大変うまくいく。
無論、補正係数の更なる最適化は、補正係数が2つのプローブの間の温度差の関数として変化する非線形の方法を考慮することにより得る事ができる。しかし、多くの用途においては、単なる線形近似により得られる改善の実質的なレベルは、補正温度測定を更に洗練させる必要性をなくさせる。
δ(ε,t)に対する式(即ち数[35]の式(33))の正確性の評価のため、計算値は、2つのプローブの間の温度差の実際の実験値と比較された。この比較は、図10に示される。一番上のカーブは、放射率0.32を有するウエハに関するものであり、まんなかのカーブは、放射率0.67を有するウエハに関するものであり、下側のカーブは、放射率0.82を有するウエハに関するものである。実験データはグラフにおいて、「x」の集合及び「+」の集合で示される。実験データを得るために、ウエハはチャンバ内に配置されて、温度が1000℃まで急激に上昇した。500℃を越えた各100℃のステップでは、約10秒間温度が安定化され、そして、各プローブの読み出しが記録された。これら2つの読み出しの差は、δT(ε,T)に対応している。各温度で生じているばらつきは、測定におけるノイズによるものである。図10は、実験データがこのモデルの正当性を証明していることを示している。
第2のプローブに関連する有効反射率を減少するために、別のテクニックを用いてもよいことは理解されるだろう。上述の2つのテクニックは、反射プレートの表面の上にプローブを持ち上げること又は、プローブの周囲の開口を拡大することにより行われた。別のテクニックは、例えば、(1)プローブの周囲に吸収ドーナツ(例えば、窒化珪素でカバーされた領域)を形成することにより、プローブの周囲の反射プレートの反射率を減少させる事、(2)プローブの周囲の光学パイロメータのバンド幅にわたって反射プレートの反射率を減少させる事、又は、(3)ファイバの出力でアパーチャーを置くことによりプローブの視野角を減少させる事、を含んでいる。
第2のプローブに減少された視野角が用いられた場合、開口のサイズは減少する一方で、2つのプローブを用いた約40℃の測定温度差を実現する。従って、このアプローチを用いて、第2のプローブが第1のプローブの温度測定に対してなす影響を最小にすることができ、また、プローブをもっと互いに近づけるように移動させることができるようになる。
上述の補正のテクニックを実施する代りの別のテクニックは、図8の一番上の線をもっと高く動かすように、即ち1に近付けるように、チャンバを再設計することである。しかし、上述のように誤差を単に補正する事に比べて、このチャンバの再設計は、著しく困難な作業であろう。
(RTPシステムについての更なる詳細)
上述の如く、図3(a)には2つの測定プローブしか示されていないが、ここに説明された具体例は、基板の異なる半径の場所での温度を測定できるように、反射器にわたって分散された8つの測定プローブを実際に用いている。熱処理の間、支持構造体108は約90RPMで回転される。従って、各プローブは、基板上の対応する環状の領域温度プロファイルを実際に測定する。
基板を回転させる基板支持構造体は、基板外縁のまわりで基板に接触する支持リング134を有し、外縁の周囲の小さな環状の領域を除いた全ての基板下側が露出される。支持リング134は、約1インチ(2.5cm)の放射方向幅を有している。処理中に基板106のエッジで生じるだろう熱的な不連続を最小にするため、支持リング134は基板と同一又は類似の材料、例えばシリコン又は酸化珪素でできている。
支持リング134は、パイロメータの周波数の範囲で不透明になるよう、シリコンでコーティングされた回転式の卓状のクオーツシリンダ136上に載せられる。クオーツシリンダ上のシリコンコーティングは、強度測定に悪影響を与えるかも知れない外部のソースからの放射を遮断するバッフルとして作用する。クオーツシリンダの底部は、複数のボールベアリング137上に置かれる環状の上側ベアリングレース141によって、支持され、ボールベアリング137は、静的な環状の下側ベアリングレース139内部に支持されている。ボールベアリング137は、スチール製で窒化珪素のコーティングがなされ、操作中の粒子の発生を減少させる。上側ベアリングレース141は、熱処理中に約90RPMでシリンダー136、ガードリング134及び基板106を回転させるアクチュエータ(図示されず)に磁気的に結合される。
図3(b)を参照すれば、支持リング134は、クオーツシリンダ136に対して光の緊密なシールを形成するようにデザインされる。クオーツシリンダの内径よりも僅かに小さな外径を有する円筒形状のリップ134aが、支持リング134の底面から延長し、図示されるように、シリンダの内側にフィットして、光シールを形成する。支持リングの内側には、基板106を支持するためのシェルフ134bが存在する。シェルフ134bは、支持リングの内円の周囲で支持リングの残りよりも下側の領域である。
チャンバ本体にフィットするパージリング145は、クオーツシリンダを包囲する。パージリング145は、上側ベアリングレース141の上方の領域に開いている内部環状キャビティ147を有している。内部キャビティ147は、通路147を介して、ガス供給器(図示されず)へ接続される。処理中は、パージガスがパージリング145を介してチャンバ内へと流入する。
支持リング134は、クオーツシリンダを越えて延長するように、クオーツシリンダの半径よりも大きな半径を有している。支持リング134のシリンダ136を越える環状の延長部分は、その下に配置されるパージリング145と協働で、基板の裏側で迷光が反射キャビティ内に進入することを防止するバッフルとして機能する。反射キャビティ内に迷光が反射して進入することを更に防止するために、支持リング134とパージリング145は、加熱要素110により発生した放射エネルギーを吸収する材料(例えば、黒又はグレーの材料)でコーティングされていてもよい。
上記に指摘している通り、光パイプ126はサファイア製である。サファイア光パイプが一般的に好ましくアノード、その理由は、比較的小さな散乱係数を有し、大きな横方向の光を大きく排除し、大きな測定の局所化を与えるからである。しかし、光パイプは、抽出された放射エネルギーをパイロメータに伝達する例えばクオーツ等の適当な耐熱耐腐食材料製であってもよい。適切なクオーツファイバ光パイプ、サファイアクリスタル光パイプ、及び光パイプ/導管カプラーは、Luxtron Corporation-Accufiber Division,2775 Northwestern Parkway,Santa Clara,CA 95051-0903で入州可能である。あるいは、放射エネルギー抽出システムは、反射器102内に載置された小半径対物レンズとレンズによって収集された放射エネルギーをパイロメータへ流通させるミラー及びレンズのシステムとを有する光学システムであってもよい。このようなスキームは、適当なオフシェルフ光学要素が見出せたならばサファイアパイプよりも安価であろう。あるいは、光パイプは、高度に研磨された反射内面を有するチューブで形成されてもよい。
適切な加熱要素110は、米国特許第5,155,336合に開示されている。この加熱要素は、187の光パイプを用いて、タングステン−ハロゲンランプからの高度にコリメートされた光を処理チャンバ100へ供給する。ランプは、放射方向に対称的なように配置された12のゾーンに別れている。これらのゾーンは、ゾーンごとに調整でき、基板106の別々の領域への放射加熱を制御せしめる。
図3(a)の具体例では、ベース116は循環回路146を有し、これを介してクーラントが循環して、反射器及び反射面を冷却する。典型的に23℃の水がベース116の中を循環して、反射器の温度を、加熱された基板の温度よりも充分低い温度(例えば100以下)に維持する。RTP処理の間は、反射器を冷却して、その表面に生じるかも知れない化学活動の可能性を小さくすることが重要である。反射器が加熱されるようなことがあれば、このことが表面の酸化を促進して、反射層の反射性を深刻に損ねてしまう。有効放射率の向上は、高度に反射性を有する表面を有してこれを維持することにより達せられる。更に、反射器組立体が加熱すれば、抽出信号に影響する放射エネルギーのソースになるだろう。
ここに説明される具体例では、パイロメータ128は、約950nmで狭いバンド幅(例えば40nm)を有している。また、クオーツウィンドウの裏側が、波長のこの狭いバンド全てにおいて熱放射エネルギーに関して透明な不活性材料でコーティングされ、加熱ソースが反射キャビティ内に迷光を導く可能性を減少させることが望ましい。
一般的には、シリコン基板の処理のためのシステムが長い放射波長(例えば約3.5〜4μmよりも大きな波長)を検出するパイロメータを用いることが望ましい。しかし、このアプローチは、700℃よりも高い温度に最もよく適合する。室温では、シリコンウエハは、1.0μmよりも長い光の波長に対して透明である。基板温度が上昇するにつれて、基板は700℃までは長い波長に対して不透明になり、700℃では、着目する全ての波長に対して基板は不透明になる。従って、700℃より低い温度では、長波長に感応するパイロメータが、加熱ソースから直接来る光を検出することにも更に適している。簡潔に言えば、パイロメータにより抽出される波長は、プロセス温度を考慮するべきである。プロセス温度が実質的に700℃よりも低い場合は、パイロメータは1.1μmよりも短い波長を抽出すべきである。より高いプロセス温度が用いられた場合は、もっと長い波長が抽出可能である。
非常に低いプロセス温度(例えば600゜K(327℃))では、1.1μmよりも短い波長で発生する黒体スペクトル放射率エネルギーの量はごく小さい。その結果、600℃よりも低い温度では、充分な信号対ノイズ比を得ることはまったく困難である。
1つのデザイン、特に900℃〜1350℃の間のプロセス温度に適したデザインでは、0.9μm〜1.0μmの間の波長での放射エネルギーに感応するソリッドステートパイロメータが用いられる(例えば、900−LP−6.35Csensorを100−S8MS−B−CVelectronics boxと組合わせる。これらは、Luxtron Corporation-Accufiber Divisionから入手可能である。)。この温度範囲で、0.9〜1.0μmの波長で発生する放射エネルギーが実質的な量で存在し、高い信号強度及び高い信号対ノイズ比を与える。
図12は、所望の温度において基板を加熱するための制御ループを示す。これは、複数の温度センサ190(即ちパイロメータ及び光パイプ)からの抽出出力を用いている。加熱要素110は、放射ゾーン内に配置された187個のタングステン−ハロゲンランプを有している。ランプの各ゾーンは、マルチゾーンランプドライバ194により別々に電力が与えられ、マルチゾーンランプドライバ194は、マルチ入力、マルチ出力のコントローラ192によって制御されている。基板は約90rpmで回転しており、基板106の裏側の別々の放射配置で複数の温度測定がなされているため、各温度プローブは、基板の別々の環状の領域の平均温度を与える。この環状の領域は、加熱ランプの半径方向領域と一致する。コントローラ192は、温度センサ190により生成する温度測定値を受信し、上述の温度補正アルゴリズムに基づいて温度を補正し、コントローラ192に供給される所定の温度サイクルプロファイル196により特定される基板温度が達成させるように、加熱ランプの電力レベルを調整する。プロセスサイクルにわたり、所望の温度プロファイルからはずれた温度のばらつきを補正するように、コントローラは別々のランプゾーンに供給される電力のレベルを調整する。
他の具体例も、特許請求の範囲の中に含まれる。
反射器が基板近くに配置される、基板温度測定スキームの断面図である。 有効反射率の異なる値に対して実際の放射率の関数としてプロットされた有効放射率のグラフである。 (a)はRTPシステムの側面断面図である。(b)は支持リングの詳細の断面図である。 (a)〜(d)とも、反射器に包含される測定向上表面の種々の造作の側面断面図である。 RTPチャンバのインシチュウ温度補正の較正のスキームのフロー線図である。 温度測定の正確さを向上させるためのインシチュウで放射率を測定するためのスキームのフロー線図である。 RTPチャンバ内で温度測定プローブの較正のための別の技術のフローチャートである。 小開口プローブと大開口プローブの双方の、実際のウエハの放射率の関数としての見掛け放射率のプロットのグラフである。 補正なしの温度測定の誤差と補正された温度測定とを、実際のウエハの放射率の関数としてプロットしたグラフである。 小開口プローブと大開口プローブにより測定された温度の差に対する実験値と計算値のグラフである。 温度測定プローブから補正温度を計算するステップを示すフローチャートである。 温度制御システムの模式図である。
符号の説明
10…基板、22…熱反射器、27…アパーチャー、28…光パイプ、42…マイクロキャビティ、100…処理チャンバ、102…反射器、106…シリコン基板、108…基板支持体、109…局所領域、110…加熱要素、112…放射エネルギー、114…水冷クオーツウィンドウ組立体、116…ベース、118…反射キャビティ、20…コーティング、124…導管、125…光ファイバ、126…温度プローブ、128…パイロメータ、129…アパーチャー、134…支持リング、136…シリンダ、137…ボールベアリング、139…下側端部Tがわベアリングレース、141…上側ベアリングレース、145…パージリング、146…循環回路、147…内部環状キャビティ、150,152…放射プローブ、190…温度センサ、192…コントローラ。

Claims (13)

  1. 熱処理チャンバ内で基板上の局所領域の温度を測定するための装置であって、前記装置は、
    前記熱処理チャンバ内で基板を支持する基板支持構造体と、
    熱処理中に基板からの放射エネルギーを受容する端部を有するエネルギープローブであって、前記エネルギープローブは、該基板の局所領域の温度を表す信号を提供する、前記エネルギープローブと、
    該エネルギープローブの該端部の周囲に形成された窪んだマイクロキャビティであって、前記窪んだマイクロキャビティは該基板の該局所領域に面する放射エネルギー反射面を有して前記信号を向上するように作用する、前記窪んだマイクロキャビティと、
    を備える装置。
  2. 前記基板が前記チャンバ内に支持されているときは前記基板の一方の側と反射キャビティを形成するように配置された反射プレートを更に備え、前記窪んだマイクロキャビティは熱処理中に前記反射キャビティ内でエネルギーを抽出する請求項1に記載の装置。
  3. 前記反射プレートが、前記基板に面する平坦な反射面を有し、且つ、該基板と少なくとも同じ面積を有する請求項2に記載の装置。
  4. 前記反射プレートが該基板に面する反射面を有し、前記反斜面は前記基板上の窪んだマイクロキャビティの投影よりも実質的に大きな面積を有する請求項1に記載の装置。
  5. 前記反射面が平坦な反射面である請求項4に記載の装置。
  6. 前記窪んだマイクロキャビティが前記反射面の反射面に形成される請求項4に記載の装置。
  7. 前記窪んだマイクロキャビティが円筒形状である請求項6に記載の装置。
  8. 前記窪んだマイクロキャビティが半球形状である請求項6記載の装置。
  9. 前記反射プレートが第1の距離だけ前記基板から離れ、該窪んだマイクロキャビティは、前記第1の距離よりも小さな寸法を有する、前記基板に面する開口を有する請求項6に記載の装置。
  10. 前記支持構造体が、該基板の外縁の周囲に配置される領域で該基板と接触することにより、該基板を支持する請求項1に記載の装置。
  11. 前記基板の温度が測定されている間、前記支持構造体は該基板を回転するように適合される請求項10に記載の装置。
  12. 熱処理中に、前記反射器が基板の温度よりも低い温度まで冷却される請求項1に記載の装置。
  13. 該基板を所望の温度まで加熱する放射加熱要素を更に備える請求項1に記載の装置。
JP2007082609A 1994-12-19 2007-03-27 基板温度測定のための装置 Pending JP2007208287A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/359,302 US5660472A (en) 1994-12-19 1994-12-19 Method and apparatus for measuring substrate temperatures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09753997A Division JP4033939B2 (ja) 1994-12-19 1997-04-15 温度測定システムを較正する方法

Publications (1)

Publication Number Publication Date
JP2007208287A true JP2007208287A (ja) 2007-08-16

Family

ID=23413238

Family Applications (3)

Application Number Title Priority Date Filing Date
JP7330494A Expired - Lifetime JP2711239B2 (ja) 1994-12-19 1995-12-19 基板温度測定のための方法及び装置
JP09753997A Expired - Lifetime JP4033939B2 (ja) 1994-12-19 1997-04-15 温度測定システムを較正する方法
JP2007082609A Pending JP2007208287A (ja) 1994-12-19 2007-03-27 基板温度測定のための装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP7330494A Expired - Lifetime JP2711239B2 (ja) 1994-12-19 1995-12-19 基板温度測定のための方法及び装置
JP09753997A Expired - Lifetime JP4033939B2 (ja) 1994-12-19 1997-04-15 温度測定システムを較正する方法

Country Status (6)

Country Link
US (2) US5660472A (ja)
EP (1) EP0718610B1 (ja)
JP (3) JP2711239B2 (ja)
KR (1) KR100342796B1 (ja)
AT (1) ATE207611T1 (ja)
DE (1) DE69523424T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510260A (ja) * 2012-01-13 2015-04-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板を処理する方法および装置

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179466B1 (en) 1994-12-19 2001-01-30 Applied Materials, Inc. Method and apparatus for measuring substrate temperatures
US5755511A (en) * 1994-12-19 1998-05-26 Applied Materials, Inc. Method and apparatus for measuring substrate temperatures
US5830277A (en) * 1995-05-26 1998-11-03 Mattson Technology, Inc. Thermal processing system with supplemental resistive heater and shielded optical pyrometry
DE19681502T1 (de) * 1995-07-10 1999-03-11 Cvc Products Inc Automatisierte Kalibrierung von Temperatursensoren bei schneller thermischer Behandlung
US5762419A (en) * 1995-07-26 1998-06-09 Applied Materials, Inc. Method and apparatus for infrared pyrometer calibration in a thermal processing system
US5881208A (en) * 1995-12-20 1999-03-09 Sematech, Inc. Heater and temperature sensor array for rapid thermal processing thermal core
US6207936B1 (en) 1996-01-31 2001-03-27 Asm America, Inc. Model-based predictive control of thermal processing
US6179465B1 (en) * 1996-03-28 2001-01-30 Applied Materials, Inc. Method and apparatus for infrared pyrometer calibration in a thermal processing system using multiple light sources
US5943550A (en) * 1996-03-29 1999-08-24 Advanced Micro Devices, Inc. Method of processing a semiconductor wafer for controlling drive current
US5938335A (en) 1996-04-08 1999-08-17 Applied Materials, Inc. Self-calibrating temperature probe
US6046439A (en) 1996-06-17 2000-04-04 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US6090210A (en) * 1996-07-24 2000-07-18 Applied Materials, Inc. Multi-zone gas flow control in a process chamber
US5884412A (en) * 1996-07-24 1999-03-23 Applied Materials, Inc. Method and apparatus for purging the back side of a substrate during chemical vapor processing
US5960555A (en) * 1996-07-24 1999-10-05 Applied Materials, Inc. Method and apparatus for purging the back side of a substrate during chemical vapor processing
EP0826985A1 (en) * 1996-08-28 1998-03-04 Applied Materials, Inc. Reflector for a semiconductor processing chamber
JPH1073492A (ja) * 1996-08-30 1998-03-17 Sumitomo Sitix Corp 半導体基板の温度測定方法並びにその処理装置
US6395363B1 (en) * 1996-11-05 2002-05-28 Applied Materials, Inc. Sloped substrate support
US5874711A (en) * 1997-04-17 1999-02-23 Ag Associates Apparatus and method for determining the temperature of a radiating surface
US6035100A (en) * 1997-05-16 2000-03-07 Applied Materials, Inc. Reflector cover for a semiconductor processing chamber
US6157106A (en) * 1997-05-16 2000-12-05 Applied Materials, Inc. Magnetically-levitated rotor system for an RTP chamber
US5967661A (en) * 1997-06-02 1999-10-19 Sensarray Corporation Temperature calibration substrate
US6027244A (en) * 1997-07-24 2000-02-22 Steag Rtp Systems, Inc. Apparatus for determining the temperature of a semi-transparent radiating body
US6226453B1 (en) * 1997-09-16 2001-05-01 Applied Materials, Inc. Temperature probe with fiber optic core
DE19748088A1 (de) * 1997-10-30 1999-05-12 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zum Erkennen einer Fehllage einer Halbleiterscheibe
EP0921558A3 (de) * 1997-12-08 2002-04-24 STEAG RTP Systems GmbH Optische Strahlungsmess-Vorrichtung
KR100266328B1 (ko) * 1997-12-23 2000-10-02 김규현 티타늄실리사이드형성방법및이를이용한티타늄실리사이드의형성온도보정방법
US6110284A (en) * 1998-01-09 2000-08-29 Applied Materials, Inc. Apparatus and a method for shielding light emanating from a light source heating a semicondutor processing chamber
US7244677B2 (en) 1998-02-04 2007-07-17 Semitool. Inc. Method for filling recessed micro-structures with metallization in the production of a microelectronic device
US6079874A (en) * 1998-02-05 2000-06-27 Applied Materials, Inc. Temperature probes for measuring substrate temperature
US6200388B1 (en) * 1998-02-11 2001-03-13 Applied Materials, Inc. Substrate support for a thermal processing chamber
US6007241A (en) * 1998-02-20 1999-12-28 Applied Materials, Inc. Apparatus and method for measuring substrate temperature
US6183130B1 (en) 1998-02-20 2001-02-06 Applied Materials, Inc. Apparatus for substrate temperature measurement using a reflecting cavity and detector
US6056434A (en) * 1998-03-12 2000-05-02 Steag Rtp Systems, Inc. Apparatus and method for determining the temperature of objects in thermal processing chambers
US6050722A (en) * 1998-03-25 2000-04-18 Thundat; Thomas G. Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors
US6048403A (en) * 1998-04-01 2000-04-11 Applied Materials, Inc. Multi-ledge substrate support for a thermal processing chamber
US6818437B1 (en) * 1998-05-16 2004-11-16 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
US6086246A (en) * 1998-05-26 2000-07-11 Novellus Systems, Inc. Two-element plasma resistant lightpipe assembly
US6169271B1 (en) 1998-07-13 2001-01-02 Mattson Technology, Inc. Model based method for wafer temperature control in a thermal processing system for semiconductor manufacturing
WO2000006981A1 (de) * 1998-07-28 2000-02-10 Steag Rtp Systems Gmbh Verfahren und vorrichtung zum kalibrieren von emissivitätsunabhängigen temperaturmessungen
US6374150B2 (en) * 1998-07-30 2002-04-16 Applied Materials, Inc. Method and apparatus for monitoring and/or end point detecting a process
US6127658A (en) * 1998-08-04 2000-10-03 Steag C.V.D. Systems, Ltd. Wafer heating apparatus and method with radiation absorptive peripheral barrier blocking stray radiation
US6174080B1 (en) * 1998-08-06 2001-01-16 Applied Materials, Inc. Apparatus and methods for measuring substrate temperature
US6462310B1 (en) 1998-08-12 2002-10-08 Asml Us, Inc Hot wall rapid thermal processor
US6900413B2 (en) 1998-08-12 2005-05-31 Aviza Technology, Inc. Hot wall rapid thermal processor
US6300600B1 (en) 1998-08-12 2001-10-09 Silicon Valley Group, Inc. Hot wall rapid thermal processor
US6164816A (en) * 1998-08-14 2000-12-26 Applied Materials, Inc. Tuning a substrate temperature measurement system
US6535628B2 (en) * 1998-10-15 2003-03-18 Applied Materials, Inc. Detection of wafer fragments in a wafer processing apparatus
US6156079A (en) * 1998-10-21 2000-12-05 Ho; Henry Window support member for a semiconductor processing system
EP1142001B1 (en) * 1998-11-20 2007-10-03 Steag RTP Systems, Inc. Fast heating and cooling apparatus for semiconductor wafers
JP2000266603A (ja) 1999-03-19 2000-09-29 Tokyo Electron Ltd 放射温度測定方法及び放射温度測定装置
US6467952B2 (en) 1999-03-19 2002-10-22 Tokyo Electron Limited Virtual blackbody radiation system and radiation temperature measuring system
US6183127B1 (en) * 1999-03-29 2001-02-06 Eaton Corporation System and method for the real time determination of the in situ emissivity of a workpiece during processing
US6461036B1 (en) * 1999-03-29 2002-10-08 Axcelis Technologies, Inc. System and method for determining stray light in a thermal processing system
US6577926B1 (en) * 1999-03-30 2003-06-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of detecting and controlling in-situ faults in rapid thermal processing systems
US6268270B1 (en) * 1999-04-30 2001-07-31 Advanced Micro Devices, Inc. Lot-to-lot rapid thermal processing (RTP) chamber preheat optimization
US6293696B1 (en) 1999-05-03 2001-09-25 Steag Rtp Systems, Inc. System and process for calibrating pyrometers in thermal processing chambers
US6151446A (en) * 1999-07-06 2000-11-21 Applied Materials, Inc. Apparatus and method for thermally processing substrates including a processor using multiple detection signals
US6803546B1 (en) * 1999-07-08 2004-10-12 Applied Materials, Inc. Thermally processing a substrate
US6280081B1 (en) * 1999-07-09 2001-08-28 Applied Materials, Inc. Methods and apparatus for calibrating temperature measurements and measuring currents
US6471913B1 (en) 2000-02-09 2002-10-29 Semitool, Inc. Method and apparatus for processing a microelectronic workpiece including an apparatus and method for executing a processing step at an elevated temperature
US6780374B2 (en) 2000-12-08 2004-08-24 Semitool, Inc. Method and apparatus for processing a microelectronic workpiece at an elevated temperature
DE10119047B4 (de) * 2000-04-21 2010-12-09 Tokyo Electron Ltd. Thermische Bearbeitungsvorrichtung und thermisches Bearbeitungsverfahren
IT1317648B1 (it) * 2000-05-19 2003-07-15 Tecnica S R L Termometro ad infrarossi perfezionato
JP4698807B2 (ja) * 2000-09-26 2011-06-08 東京エレクトロン株式会社 半導体基板熱処理装置
US6492625B1 (en) 2000-09-27 2002-12-10 Emcore Corporation Apparatus and method for controlling temperature uniformity of substrates
US6966235B1 (en) * 2000-10-06 2005-11-22 Paton Eric N Remote monitoring of critical parameters for calibration of manufacturing equipment and facilities
JP2002202192A (ja) * 2000-10-24 2002-07-19 Tokyo Electron Ltd 温度測定方法、熱処理装置及び方法、コンピュータプログラム、並びに、放射温度計
US6856849B2 (en) 2000-12-06 2005-02-15 Advanced Micro Devices, Inc. Method for adjusting rapid thermal processing (RTP) recipe setpoints based on wafer electrical test (WET) parameters
IL147788A (en) * 2001-01-24 2008-11-03 Eitan Zeiler Emissivity-independent silicon surface temperature measurement
US6344631B1 (en) 2001-05-11 2002-02-05 Applied Materials, Inc. Substrate support assembly and processing apparatus
KR100396216B1 (ko) * 2001-06-19 2003-09-02 코닉 시스템 주식회사 급속 열처리 장치 내의 웨이퍼 온도 측정방법
US6740196B2 (en) * 2002-02-21 2004-05-25 Taiwan Semiconductor Manufacturing Co., Ltd. RTA chamber with in situ reflective index monitor
US6987240B2 (en) * 2002-04-18 2006-01-17 Applied Materials, Inc. Thermal flux processing by scanning
US7005601B2 (en) 2002-04-18 2006-02-28 Applied Materials, Inc. Thermal flux processing by scanning
JP2004020337A (ja) * 2002-06-14 2004-01-22 Komatsu Ltd 温度測定装置
US6818864B2 (en) 2002-08-09 2004-11-16 Asm America, Inc. LED heat lamp arrays for CVD heating
US7141483B2 (en) * 2002-09-19 2006-11-28 Applied Materials, Inc. Nitrous oxide anneal of TEOS/ozone CVD for improved gapfill
US20070212850A1 (en) * 2002-09-19 2007-09-13 Applied Materials, Inc. Gap-fill depositions in the formation of silicon containing dielectric materials
US7431967B2 (en) * 2002-09-19 2008-10-07 Applied Materials, Inc. Limited thermal budget formation of PMD layers
US7456116B2 (en) 2002-09-19 2008-11-25 Applied Materials, Inc. Gap-fill depositions in the formation of silicon containing dielectric materials
US6897131B2 (en) * 2002-09-20 2005-05-24 Applied Materials, Inc. Advances in spike anneal processes for ultra shallow junctions
US7704327B2 (en) * 2002-09-30 2010-04-27 Applied Materials, Inc. High temperature anneal with improved substrate support
US6839507B2 (en) * 2002-10-07 2005-01-04 Applied Materials, Inc. Black reflector plate
US7041931B2 (en) * 2002-10-24 2006-05-09 Applied Materials, Inc. Stepped reflector plate
US6835914B2 (en) 2002-11-05 2004-12-28 Mattson Technology, Inc. Apparatus and method for reducing stray light in substrate processing chambers
EP1568068A1 (en) * 2002-11-22 2005-08-31 Applied Materials, Inc. Backside heating chamber for emissivity independent thermal processes
US20080090309A1 (en) * 2003-10-27 2008-04-17 Ranish Joseph M Controlled annealing method
US8536492B2 (en) * 2003-10-27 2013-09-17 Applied Materials, Inc. Processing multilayer semiconductors with multiple heat sources
US7127367B2 (en) 2003-10-27 2006-10-24 Applied Materials, Inc. Tailored temperature uniformity
US6976782B1 (en) 2003-11-24 2005-12-20 Lam Research Corporation Methods and apparatus for in situ substrate temperature monitoring
US8658945B2 (en) * 2004-02-27 2014-02-25 Applied Materials, Inc. Backside rapid thermal processing of patterned wafers
US7528051B2 (en) * 2004-05-14 2009-05-05 Applied Materials, Inc. Method of inducing stresses in the channel region of a transistor
US20060021703A1 (en) * 2004-07-29 2006-02-02 Applied Materials, Inc. Dual gas faceplate for a showerhead in a semiconductor wafer processing system
US7642171B2 (en) * 2004-08-04 2010-01-05 Applied Materials, Inc. Multi-step anneal of thin films for film densification and improved gap-fill
JP4925571B2 (ja) 2004-08-09 2012-04-25 アプライド マテリアルズ インコーポレイテッド 基板の熱的性質判定方法及び熱処理条件の決定方法
US7283734B2 (en) * 2004-08-24 2007-10-16 Fujitsu Limited Rapid thermal processing apparatus and method of manufacture of semiconductor device
US7112763B2 (en) * 2004-10-26 2006-09-26 Applied Materials, Inc. Method and apparatus for low temperature pyrometry useful for thermally processing silicon wafers
EP1865354B1 (en) * 2005-03-17 2016-03-16 Hamamatsu Photonics K.K. Microscopic image capturing device
US7767927B2 (en) 2005-05-16 2010-08-03 Ultratech, Inc. Methods and apparatus for remote temperature measurement of a specular surface
JP5294862B2 (ja) * 2005-09-14 2013-09-18 マトソン テクノロジー、インコーポレイテッド 繰返し可能な熱処理方法および機器
US7691204B2 (en) * 2005-09-30 2010-04-06 Applied Materials, Inc. Film formation apparatus and methods including temperature and emissivity/pattern compensation
US8372203B2 (en) * 2005-09-30 2013-02-12 Applied Materials, Inc. Apparatus temperature control and pattern compensation
US20070215049A1 (en) * 2006-03-14 2007-09-20 Applied Materials, Inc. Transfer of wafers with edge grip
DE102006017892A1 (de) * 2006-04-13 2007-10-31 Bayerisches Zentrum für angewandte Energieforschung e.V. (ZAE Bayern) Verfahren und Vorrichtung zur berührungslosen Temperaturmessung in einem thermischen Prozess
KR100867191B1 (ko) * 2006-11-02 2008-11-06 주식회사 유진테크 기판처리장치 및 기판처리방법
US8222574B2 (en) * 2007-01-15 2012-07-17 Applied Materials, Inc. Temperature measurement and control of wafer support in thermal processing chamber
WO2008131513A1 (en) * 2007-05-01 2008-11-06 Mattson Technology Canada, Inc. Irradiance pulse heat-treating methods and apparatus
US7572052B2 (en) * 2007-07-10 2009-08-11 Applied Materials, Inc. Method for monitoring and calibrating temperature in semiconductor processing chambers
US8283607B2 (en) * 2008-04-09 2012-10-09 Applied Materials, Inc. Apparatus including heating source reflective filter for pyrometry
US8367983B2 (en) * 2008-04-09 2013-02-05 Applied Materials, Inc. Apparatus including heating source reflective filter for pyrometry
US8548311B2 (en) * 2008-04-09 2013-10-01 Applied Materials, Inc. Apparatus and method for improved control of heating and cooling of substrates
US20090298300A1 (en) * 2008-05-09 2009-12-03 Applied Materials, Inc. Apparatus and Methods for Hyperbaric Rapid Thermal Processing
DE102008026002B9 (de) * 2008-05-29 2013-05-16 Von Ardenne Anlagentechnik Gmbh Verfahren zur Temperaturmessung an Substraten und Vakuumbeschichtungsanlage
US8111978B2 (en) * 2008-07-11 2012-02-07 Applied Materials, Inc. Rapid thermal processing chamber with shower head
US20100014748A1 (en) * 2008-07-21 2010-01-21 International Business Machines Corporation Method and apparatus for real time fault detection in high speed semiconductor processes
US8109669B2 (en) * 2008-11-19 2012-02-07 Applied Materials, Inc. Temperature uniformity measurement during thermal processing
US9449858B2 (en) 2010-08-09 2016-09-20 Applied Materials, Inc. Transparent reflector plate for rapid thermal processing chamber
DE102011081259A1 (de) * 2010-09-28 2012-03-29 Carl Zeiss Smt Gmbh Anordnung zur Spiegeltemperaturmessung und/oder zur thermischen Aktuierung eines Spiegels in einer mikrolithographischen Projektionsbelichtungsanlage
KR101733179B1 (ko) 2010-10-15 2017-05-08 맛선 테크놀러지, 인코포레이티드 워크피스를 노출할 조사 펄스의 형상을 결정하는 방법, 장치 및 매체
JP6209518B2 (ja) 2011-09-21 2017-10-04 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置のミラーの熱作動用の構成体
CN102564598B (zh) * 2012-01-06 2013-09-25 电子科技大学 一种红外探测器测温的定标和校正方法及相应的测温方法
DE102012005428B4 (de) * 2012-03-16 2014-10-16 Centrotherm Photovoltaics Ag Vorrichtung zum Bestimmen der Temperatur eines Substrats
JP6184479B2 (ja) * 2012-05-18 2017-08-23 ビーコ インストゥルメンツ インコーポレイテッド 化学蒸着のための強磁性流体シールを有する回転円盤反応器
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9064760B2 (en) * 2013-05-20 2015-06-23 Varian Semiconductor Equipment Associates, Inc. Substrate processing based on resistivity measurements
JP2017502529A (ja) * 2013-11-11 2017-01-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 赤外線カメラを使用した低温rtp制御
KR20160111521A (ko) 2014-01-27 2016-09-26 비코 인스트루먼츠 인코포레이티드 화학적 기상 증착 시스템을 위한 복합 반경들을 갖는 유지 포켓들을 구비한 웨이퍼 캐리어
US10041842B2 (en) * 2014-11-06 2018-08-07 Applied Materials, Inc. Method for measuring temperature by refraction and change in velocity of waves with magnetic susceptibility
CN106158622B (zh) * 2014-11-12 2020-07-24 台湾积体电路制造股份有限公司 用于热映射和热工艺控制的方法和装置
JP6625005B2 (ja) * 2015-06-30 2019-12-25 東京エレクトロン株式会社 温度測定方法
CN107868942B (zh) * 2016-09-27 2019-11-29 北京北方华创微电子装备有限公司 一种去气腔室及其去气方法和半导体处理设备
CN110603634A (zh) * 2017-05-03 2019-12-20 应用材料公司 在高温陶瓷加热器上的集成衬底温度测量
US11670490B2 (en) 2017-09-29 2023-06-06 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit fabrication system with adjustable gas injector
KR101983326B1 (ko) * 2017-09-29 2019-05-29 에이피시스템 주식회사 기판 처리 방법 및 기판 처리 장치
US11262250B2 (en) 2018-02-28 2022-03-01 Applied Materials, Inc. Method for measuring a temperature
US11022496B2 (en) 2018-06-29 2021-06-01 Tecnimed S.R.L. Infrared thermometer
CN112097949B (zh) * 2020-08-10 2022-08-02 中国电子科技集团公司第十三研究所 一种光热反射测温方法及装置
US11828656B2 (en) 2020-11-20 2023-11-28 Applied Materials, Inc. Reflector plate for substrate processing
CN113790818B (zh) * 2021-08-10 2023-09-26 中国电子科技集团公司第十三研究所 可见光热反射测温方法及测温设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105223A (ja) * 1989-09-19 1991-05-02 Minolta Camera Co Ltd 温度測定方法
JPH0443928A (ja) * 1990-06-08 1992-02-13 Kobe Steel Ltd 被測定物の放射率と温度の測定方法
JPH05215611A (ja) * 1992-02-05 1993-08-24 Kobe Steel Ltd 非接触式温度検出装置
JPH06341905A (ja) * 1993-02-24 1994-12-13 Applied Materials Inc ウエハ温度の測定方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234230B2 (ja) * 1971-12-27 1977-09-02
BE880666A (fr) * 1979-12-17 1980-04-16 Centre Rech Metallurgique Dispositif et procede pour mesurer l'emissivite d'un produit
US4611930A (en) * 1983-12-16 1986-09-16 Exxon Research And Engineering Co. Pyrometer measurements in the presence of intense ambient radiation
US4659234A (en) * 1984-06-18 1987-04-21 Aluminum Company Of America Emissivity error correcting method for radiation thermometer
US4708474A (en) * 1985-11-14 1987-11-24 United Technologies Corporation Reflection corrected radiosity optical pyrometer
US4881823A (en) * 1988-03-29 1989-11-21 Purdue Research Foundation Radiation thermometry
US5061084A (en) * 1988-04-27 1991-10-29 Ag Processing Technologies, Inc. Pyrometer apparatus and method
US4919542A (en) * 1988-04-27 1990-04-24 Ag Processing Technologies, Inc. Emissivity correction apparatus and method
US5188458A (en) * 1988-04-27 1993-02-23 A G Processing Technologies, Inc. Pyrometer apparatus and method
KR960013995B1 (ko) * 1988-07-15 1996-10-11 도오교오 에레구토론 가부시끼가이샤 반도체 웨이퍼 기판의 표면온도 측정 방법 및 열처리 장치
US4956538A (en) * 1988-09-09 1990-09-11 Texas Instruments, Incorporated Method and apparatus for real-time wafer temperature measurement using infrared pyrometry in advanced lamp-heated rapid thermal processors
US4984902A (en) * 1989-04-13 1991-01-15 Peak Systems, Inc. Apparatus and method for compensating for errors in temperature measurement of semiconductor wafers during rapid thermal processing
US4969748A (en) * 1989-04-13 1990-11-13 Peak Systems, Inc. Apparatus and method for compensating for errors in temperature measurement of semiconductor wafers during rapid thermal processing
US5029117A (en) * 1989-04-24 1991-07-02 Tektronix, Inc. Method and apparatus for active pyrometry
US5011295A (en) * 1989-10-17 1991-04-30 Houston Advanced Research Center Method and apparatus to simultaneously measure emissivities and thermodynamic temperatures of remote objects
US5155336A (en) 1990-01-19 1992-10-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5226732A (en) * 1992-04-17 1993-07-13 International Business Machines Corporation Emissivity independent temperature measurement systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105223A (ja) * 1989-09-19 1991-05-02 Minolta Camera Co Ltd 温度測定方法
JPH0443928A (ja) * 1990-06-08 1992-02-13 Kobe Steel Ltd 被測定物の放射率と温度の測定方法
JPH05215611A (ja) * 1992-02-05 1993-08-24 Kobe Steel Ltd 非接触式温度検出装置
JPH06341905A (ja) * 1993-02-24 1994-12-13 Applied Materials Inc ウエハ温度の測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510260A (ja) * 2012-01-13 2015-04-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板を処理する方法および装置

Also Published As

Publication number Publication date
DE69523424D1 (de) 2001-11-29
DE69523424T2 (de) 2002-06-27
JP2711239B2 (ja) 1998-02-10
ATE207611T1 (de) 2001-11-15
US5660472A (en) 1997-08-26
US5848842A (en) 1998-12-15
EP0718610A1 (en) 1996-06-26
EP0718610B1 (en) 2001-10-24
KR100342796B1 (ko) 2002-11-30
KR960026525A (ko) 1996-07-22
JPH08255800A (ja) 1996-10-01
JP4033939B2 (ja) 2008-01-16
JPH1055974A (ja) 1998-02-24

Similar Documents

Publication Publication Date Title
JP4033939B2 (ja) 温度測定システムを較正する方法
JP3887452B2 (ja) 基板温度測定法及び基板温度測定装置
JP4511724B2 (ja) 基板温度測定法及び基板温度測定装置
US6839507B2 (en) Black reflector plate
US10190915B2 (en) System and process for calibrating pyrometers in thermal processing chambers
US6164816A (en) Tuning a substrate temperature measurement system
US7041931B2 (en) Stepped reflector plate
KR20010050894A (ko) 열처리 시스템에 있어서 표유광을 결정하는 시스템 및 방법
JP2004186300A (ja) 半導体ウェハの熱処理方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110209

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122