JP2007206457A - カラーフィルタとその製造方法、半透過半反射型液晶表示装置および可視光の分光方法。 - Google Patents

カラーフィルタとその製造方法、半透過半反射型液晶表示装置および可視光の分光方法。 Download PDF

Info

Publication number
JP2007206457A
JP2007206457A JP2006026335A JP2006026335A JP2007206457A JP 2007206457 A JP2007206457 A JP 2007206457A JP 2006026335 A JP2006026335 A JP 2006026335A JP 2006026335 A JP2006026335 A JP 2006026335A JP 2007206457 A JP2007206457 A JP 2007206457A
Authority
JP
Japan
Prior art keywords
color filter
black matrix
colored
light
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006026335A
Other languages
English (en)
Inventor
Norihisa Moriya
徳久 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006026335A priority Critical patent/JP2007206457A/ja
Publication of JP2007206457A publication Critical patent/JP2007206457A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

【課題】製造工程数や着色材料の消費量の増大を伴うことなく、6色カラーフィルタと同様の高品位な半透過半反射表示を可能とするカラーフィルタおよびこれを備えるカラーフィルタを備える半透過半反射型液晶表示装置を提供し、あわせて上記カラーフィルタの製造方法と、これを用いた可視光の分光方法を提供する。
【解決手段】光透過性で親水性のガラス基板11の上に疎水性のブラックマトリクス13をパターニングし、該ブラックマトリクス13の開孔に異なる色の可視光をそれぞれ透過する複数の着色画素14を塗工形成し、同一の着色画素14内に厚膜部と薄膜部とを形成してなるカラーフィルタ10およびその製造方法。かかる着色画素14により、厚膜部を1回透過する光と薄膜部を2回透過する光の分光強度を互いに近接させることができる。
【選択図】図1

Description

本発明は、半透過半反射型液晶表示装置に用いられるカラーフィルタとその製造方法、および該カラーフィルタを備える液晶表示装置に関し、また半透過半反射型液晶表示装置用カラーフィルタを用いて高品位のカラー表示を行う技術に関する。
従来から、明るい場所では反射型の液晶表示装置と同様に外光を利用し、暗い場所では内部の光源により表示を視認可能にした液晶表示装置が提案されている。この液晶表示装置は、反射型と透過型を兼ね備えた表示方式を採用しており、周囲の明るさに応じて反射表示または透過表示のいずれか、または反射表示と透過表示の同時使用が可能となるよう構成されている(例えば下記特許文献1を参照)。以下、この種の液晶表示装置を半透過半反射型液晶表示装置という。なお、本発明では液晶表示装置をLCDと略記することがある。
従来の半透過半反射型LCDの積層構成の一形態を、図12に模式的に示す。図中上方が観察者側であり、下方にはバックライトが設けられている。半透過半反射型液晶表示装置150は、上基板111と下基板131とで駆動用の液晶セル120を挟んで構成されている。上基板111には、遮光用のブラックマトリクス(以下、「BM」と略記することがある。)と、赤(R),緑(G),青(B)の3色のマイクロカラーフィルタ(着色画素)をパターニングした着色層112が積層されている。また液晶セル120の上下両側には配向膜(図示せず)が形成され、さらにその上下両外側にインジウム錫酸化物(Indium Tin Oxide,以下、「ITO」と略記する)等の透明導電膜からなる透明電極125,135が積層形成されている。
上基板111の外側には位相差制御フィルム(図示せず)が接着され、さらに観察者側の最表面には偏光板126が設けられる。一方、下基板131の外側にもまた位相差制御フィルム(図示せず)が接着され、さらにバックライト側の最下面には偏光板136が設けられる。
半透過半反射型液晶表示装置150に特徴的な構成として、アルミニウム等の金属膜からなる反射部133と、光透過用の開口部134とを形成した半透過反射膜132を下基板131の内面側に備える。これにより、反射表示時には外光を光源光として利用し、入射光を反射部133によって反射して画素表示を行う。一方、透過表示時にはバックライトユニット140を光源として用い、バックライト光を開口部134を透過させて画素表示を行う。半透過半反射型LCDではこれらの反射表示と透過表示とを同時に行うことができるため、外光の多寡によらず鮮明な画素表示が可能である。また半透過半反射型LCDは、反射部133を下基板131の内面に設けることにより、下基板131の厚みによるパララックスの影響を防ぎ、特に着色層112を備えた上記構造では混色を防ぐという効果を持っている。なお本発明において、層の内面側とは液晶セルのある側を指し、外面側とはその反対側を意味するものとする。
半透過半反射型液晶表示装置150にて反射表示を行う場合、外部からの入射光は着色層112を2回透過する。これに対し透過表示を行う場合、バックライト光は着色層112を1回のみ透過する。
したがって、反射表示領域(図中、「Ref」と表記)に対応する着色層112を構成する着色画素を、透過表示領域(同「Trans」と表記)用の高い着色剤濃度で構成すると、これに含まれる着色剤や微細顔料の濃度が高すぎて十分な明るさが得られなくなり、視認性が極端に悪化するという問題がある。反対に透過表示領域(Trans)の着色画素を反射表示領域(Ref)用の低い着色剤濃度で構成すると、明るさは確保できるものの、白色光の透過率が高くなるために色純度が下がり同様に表示品位が悪化するといった問題がある。
そのため、近年では反射表示領域(Ref)専用の赤、緑、青色領域と、透過表示領域(Trans)専用の赤、緑、青色領域とを有する、いわゆる6色タイプのカラーフィルタが提案されている(例えば下記特許文献2を参照)。かかる構成におけるカラーフィルタでは、反射表示領域と透過表示領域とでそれぞれ専用の分光濃度が適用されるため、高品位な表示が可能となる。
図13は、6色タイプの着色層112を備える半透過半反射型液晶表示装置150の積層構成の一部を示す模式図である(下記特許文献2を参照)。上基板111には、微小な着色画素をパターニングした濃淡の異なる赤(R)、緑(G)、青(B)領域からなる着色層112が形成されている。分光濃度の高い濃色の色領域が開口部134(透過表示領域)に、分光濃度の低い淡色の色領域が反射部133(反射表示領域)にそれぞれ対向して設けられている。これにより、例えば赤色表示領域においては、入射光と反射光が2回通過する部分には淡色の赤色画素(淡R)が設けられ、透過光が1回のみ通過する部分には濃色の赤色画素(濃R)が設けられているため、反射表示と透過表示を同等の明るさで行うことができる。
なお、本発明では、基材に赤(R),緑(G)および青(B)、またはシアン(C),マゼンタ(M)およびイエロー(Y)等の3色の着色画素をパターニングして着色層を積層したものを3色カラーフィルタといい、基材に濃淡の異なる3色の着色画素、すなわち計6種類の着色画素をパターニングして着色層を積層したものを6色カラーフィルタというものとする。
特開2004−004494号公報 特開2004−077544号公報
上記の半透過半反射型液晶表示装置150において、着色画素のパターニングは、上基板111に塗工した着色フォトレジストを所定のマスクパターンを介した紫外線露光により固定化し、未露光部をエッチング除去するというフォトリソグラフィーによって行うことが一般的である。
しかしながら、複数色のパターニングを同時に行うと着色フォトレジストの混色が生じることから、6色カラーフィルタを得る場合は頻雑なフォトリソグラフィーの工程を少なくとも6回おこなわなくてはならず、製造工程を多く要するという問題がある。
また、各色のフォトリソグラフィーの工程においては、基材の全面に塗布した着色フォトレジストにマスキングを施し、目的の1色に相当する部分のみを紫外線照射により固定化し、その他5色に相当する未露光部をすべてエッチング除去して廃棄する。これを6色について繰り返し行うことから、着色フォトレジストの消費量は3色カラーフィルタの製造の場合と比較して約二倍に達するという問題も生じる。
かかる問題を解決するため、近年では、透過表示領域と反射表示領域とで同一の着色フォトレジストを用いる3色カラーフィルタにおいて、着色層112の反射表示領域(Ref)に微小なホールを穿設し、入射光と反射光が着色層112にて吸光される割合を低下させることにより、反射表示領域の明るさを確保する試みもなされている。しかしながらかかる手法を用いた場合、反射表示領域では白色光が一定割合だけ吸収されることなくそのまま透過してしまうこととなり、色純度の低下が問題となる。
本発明は上記問題点に鑑みてなされたものであり、製造工程数や着色材料の消費量の増大を伴うことなく、6色カラーフィルタと同様の高品位な半透過半反射表示を可能とするカラーフィルタおよびこれを備える半透過半反射型液晶表示装置を提供することを目的とする。あわせて上記カラーフィルタの製造方法と、これを用いた可視光の分光方法を提供することをさらなる目的とする。
本発明は、基材の上にパターニングされた微小な着色画素の一つ一つにおいて、厚さの厚い部分と薄い部分とを形成したカラーフィルタを用いれば、その厚い部分を透過表示に、薄い部分を反射表示にそれぞれ対応させることにより、着色画素の色(例えばR,G,Bの3色)毎に共通の着色材料を使用しても、6色カラーフィルタと同様の高品位な表示が可能になるという知見に基づいてなされたものである。
すなわち本発明にかかるカラーフィルタは、
(1)光透過性の基材の上に、異なる色の可視光をそれぞれ透過する複数の着色画素が配列されたカラーフィルタであって、
同一の着色画素内に厚膜部と薄膜部とが形成されていることを特徴とするカラーフィルタ;
(2)基材のうち、前記着色画素の厚膜部に対応する領域に親水部が、薄膜部に対応する領域に疎水部が、それぞれパターニングされていることを特徴とする上記(1)に記載のカラーフィルタ;
(3)着色画素同士の境界に設けられたブラックマトリクスが前記疎水部と一致していることを特徴とする上記(2)に記載のカラーフィルタ;
(4)着色画素の上に透明保護膜が形成されていることを特徴とする上記(1)から(3)のいずれかに記載のカラーフィルタ;
を要旨とする。
また本発明にかかる半透過半反射型液晶表示装置は、
(5)上記(1)から(4)のいずれかに記載のカラーフィルタを備え、一色または二色以上の着色画素によって構成される表示画素が複数配列して設けられた液晶表示装置であって、
表示画素のうち、前記厚膜部に対向する位置に透過表示領域を、前記薄膜部に対向する位置に反射表示領域を、それぞれ有することを特徴とする半透過半反射型液晶表示装置;
(6)表示画素の反射表示領域における着色画素の平均厚さが、透過表示領域における着色画素の平均厚さのほぼ半分であることを特徴とする上記(5)に記載の半透過半反射型液晶表示装置;
(7)表示画素のうち、反射表示領域の少なくとも一部が、該表示画素内における外周部に位置することを特徴とする上記(5)または(6)に記載の半透過半反射型液晶表示装置;
を要旨とする。
さらに本発明にかかるカラーフィルタの製造方法は、
(8)光透過性の基板の表面側に、ブラックマトリクスをストライプ状または格子状にパターニングして形成し、
基材およびブラックマトリクスの上に、光触媒を含有する疎水膜組成物を塗工し、これを固定して疎水膜を形成し、
基材の裏面側から紫外線を露光して、前記固定された疎水膜のうち、ブラックマトリクス非形成領域の表面を親水化し、
該疎水膜の上に、少なくとも2色以上の着色インキをそれぞれインクジェット法により塗布することを特徴とするカラーフィルタの製造方法;
(9)ガラス基板の表面に、黒色樹脂をストライプ状または格子状にパターニングしてブラックマトリクスを形成し、
フッ素ガス雰囲気下にて前記ガラス基板およびブラックマトリクスを常圧プラズマ処理してブラックマトリクスの表面をフッ素化し、
前記ガラス基板およびブラックマトリクスの上に、少なくとも2色以上の着色インキをそれぞれインクジェット法により塗布することを特徴とするカラーフィルタの製造方法;
(10)ブラックマトリクスの幅方向の断面形状を、基板に向かってその幅が広がる正台形とすることを特徴とする上記(8)または(9)に記載のカラーフィルタの製造方法;
を要旨とする。
さらに本発明にかかる可視光の分光方法は、
(11)光透過性の基材の上に異なる色の可視光をそれぞれ透過する複数の着色画素が配列されたカラーフィルタにより可視光を分光する方法であって、
前記複数の着色画素のそれぞれに、厚さの異なる第一部分と第二部分とを設けることにより、前記第一部分を一回透過した可視光の分光強度と、第二部分を二回透過した可視光の分光強度とを互いに近接させることを特徴とする可視光の分光方法;
を要旨とする。
本発明にかかるカラーフィルタを備える半透過半反射型液晶表示装置により、例えばR,G,Bの3色カラー表示を行う場合、着色画素の厚膜部にて透過表示を行い、薄膜部にて反射表示を行うことができるため、従来の3色カラーフィルタよりも透過表示領域と反射表示領域の明るさを互いに近いものとすることができる。
かつ本発明によれば、着色画素を、各色ごとにそれぞれひとつの着色材料から得ることができるため、3回の塗工工程によって形成される着色層によって6色カラーフィルタと同様の高品位な表示が可能となる。このため従来の6色カラーフィルタよりも製造工程数を削減することができ、また着色材料の消費量を抑えることができる。
以下、本発明を実施するための最良の形態について、図面を用いて具体的に説明する。ただし本発明にかかるカラーフィルタおよび半透過半反射型液晶表示装置は、例えば配向膜、透明電極層、位相差制御層、保護層もしくは偏光板などの積層構成や、液晶セルの駆動方式、または着色画素の色数やブラックマトリクスのパターンなどにつき、以下の実施の形態に限られるものではない。
図1は本発明の第一の実施の形態にかかるカラーフィルタ10の断面模式図、図2はこれを備える半透過半反射型液晶表示装置50の断面模式図である。
カラーフィルタ10は、光透過性の基材の例としてのガラス基板11と、遮光用のブラックマトリクス13と、R,G,Bの3色の光透過性パターンを示す複数の着色画素14(R,G,B)を配列した着色層12と、透明保護膜29とを順に積層してなる。
また図2に示す半透過半反射型液晶表示装置50は、同図上方に相当する観察者側から順に、偏光板26、カラーフィルタ10、透明電極25、液晶セル20、透明電極35、半透過反射膜32、下基板31、偏光板36が積層され、さらにその下方にバックライトユニット40を備えてなる。液晶セル20の上下面には図示しない水平配向膜が形成されている。半透過反射膜32は反射部33と開口部34とからなり、また透明電極35と反射部33との間には、λ/4のリタデーション量を有する位相差制御層27が液晶性樹脂材料を固定化して積層されている。
位相差制御層27は、図2のように透明電極35と反射部33との間に設けるほか、リタデーション量を適宜調整した上、カラーフィルタ10の内部、具体的にはガラス基板11と着色層12の間や、着色層12と透明保護膜29の間などに積層形成することもできる。
本発明にかかるカラーフィルタ10は、配列された着色画素14内に厚膜部と薄膜部とを有することを特徴とするものである。本実施の形態においては、図1および2に示すように、パターニングされたブラックマトリクス13の間に塗工形成された着色画素14の厚さ方向の断面形状を、中央を凸状に形成し、中央部から両側に向かって傾斜する形状のカマボコ型とすることにより、厚膜部と薄膜部とを実現している。図1および2に例示するカラーフィルタ10においては、着色画素14の幅方向(図の左右方向)の中央部が厚膜部に相当し、その両側が薄膜部に相当している。
図2に示す半透過半反射型液晶表示装置50によるカラー表示の仕組みを以下に説明する。ただし本発明にかかる半透過半反射型液晶表示装置50に用いられる液晶セル20は、水平配向した液晶分子を電圧印加により立ち上がらせるという、いわゆるTNモードやECBモードに限られず、VA方式やIPS方式などであってもよい。これらの方式の液晶セル20を備える半透過半反射型液晶表示装置の場合は、偏光板26,36や位相差制御層27の特性や積層箇所を調整することにより、いずれも本発明にかかるカラーフィルタ10の効果を享受することができる。なお、観察者側の偏光板26の透過軸は紙面に垂直であり、バックライトユニット側の偏光板36の透過軸は紙面に平行であるとする。
(1)電圧印加時
半透過半反射型液晶表示装置50において、ITOなどからなる透明電極25,35の電圧をオンにすると、液晶セル20には電圧が印加されてセル内の液晶分子は駆動され、これが略垂直に立ちあがる。これにより液晶セル20では入射光と透過光の間に位相差(リタデーション)が生じない状態となる。

(1−1)透過表示
白色のバックライト光は、直線偏光板36にて偏波面が紙面に平行な直線偏光となり、下基板31、液晶セル20、および着色層12を透過する。しかし、偏光板26の透過軸が紙面に垂直であることから、着色層12を透過した直線偏光は偏光板26を透過することができない。したがって透過表示部では電圧印加時に暗表示が行われる。
(1−2)反射表示
図中上方の観察者側から入射する白色光は、紙面に垂直な直線偏光成分のみが偏光板26を透過し、そのままガラス基板11を通過する。着色層12および液晶セル20を透過した直線偏光は、位相差制御層27により円偏光されて左回り円偏光となる。また反射部33で反射することでこれが右回り円偏光となり、再び位相差制御層27を透過することで偏波面が紙面に平行な直線偏光となる。したがって着色層12およびガラス基板11を透過した該反射光は偏光板26を透過することができず、暗表示となる。
(2)電圧無印加時
透明電極25,35の電圧をオフにすると、水平配向膜に挟まれた液晶セル20の液晶分子は配向規制力により全体に水平配向し、透過光の常光と異常光との間には液晶セル20の厚さに比例したリタデーションが生じる。これが図2に示す液晶セル20の分子配向状態である。透過表示領域と反射表示領域における液晶セル20の厚さは2:1となっており、透過表示領域ではλ/2、反射表示領域ではλ/4のリタデーションが得られるよう調整されている。
(2−1)透過表示
白色のバックライト光は、直線偏光板36にて偏波面が紙面に平行な直線偏光となり、下基板31を通過する。液晶セル20ではこれがλ/2の位相差ずれを生じて偏波面が紙面に垂直な直線偏光となる。着色層12では、透過表示領域(Trans)には着色画素14の厚膜部が設けられていることから、該直線偏光はその着色成分以外の分光成分を十分に吸収され、濃色の単色(例えば赤色)光となる。ガラス基板11を透過した該直線偏光は偏光板26を透過可能であることから、観察者には濃色の単色(例えば赤色)光が到達し、明表示となる。
(2−2)反射表示
図中上方の観察者側から入射する白色光は、紙面に垂直な直線偏光成分のみが偏光板26を透過し、そのままガラス基板11を通過する。着色層12の反射表示領域(Ref)には着色画素の薄膜部が設けられていることから、かかる直線偏光は着色成分以外の分光成分が所定量だけ吸収され、淡色の単色(例えば赤色)光となる。液晶セル20ではλ/4のリタデーションが発生して左回り円偏光となる。透明電極35を透過した該円偏光は、λ/4の位相差制御層27によって偏波面が紙面に平行な直線偏光となって反射部33にて反射する。そして再び位相差制御層27を透過することで左回り円偏光となり、さらに液晶セル20を透過することで偏波面が紙面に垂直な直線偏光となる。
この状態で再び着色層12を透過することにより、淡色の単色光であった直線偏光は、着色成分以外の分光成分を再度吸収され、濃色の単色(例えば赤色)光となってガラス基板11を透過する。またかかる反射光の偏波面は紙面に垂直であることからこれは偏光板26を透過可能であり、観察者に濃色の単色光として到達し、明表示となる。
以上より、本発明にかかるカラーフィルタ10が適用された半透過半反射型液晶表示装置50は、透明電極25,35による電圧印加時に暗表示が行われ、電圧非印加時に明表示が行われる、いわゆるノーマリホワイトタイプの液晶表示装置となり、高いコントラスト比が得られる。かつ本発明によれば、各色の着色画素14(R,G,B)がそれぞれ一つの着色材料からなる3色カラーフィルタでありながら、反射表示領域と透過表示領域にそれぞれ対向する領域の着色画素の膜厚を変えることにより、これを透過する光の明るさを同等とすることができる。
図3は、バックライトユニット40から照射される透過光(バックライト光)と、外部から入射する入射光およびその反射光の経路を模式的に示す説明図である。アレイ基板16は、表面に半透過反射膜32が形成されて透過/反射機能を有する。半透過反射膜32は、金属膜などからなる反射部33に、矩形窓状の開口部34が設けられてなる。また、3つの開口部34および反射部33と、これに対向する3色の着色画素14(R,G,B)とから、半透過半反射型液晶表示装置50のひとつの表示画素15が構成される。アレイ基板16には、反射部33の下側(バックライト側)に図示しないTFT、補助容量、金属配線などが設けられ、透過部の開口率を高める工夫がなされている。
半透過半反射型液晶表示装置50にて所定のカラーバランスの明表示をする場合は、表示画素15の各着色画素14(R,G,B)ごとに透明電極25,35(同図では図示せず)への印加電圧を適宜制御し、各着色画素においては透過表示と反射表示を同時に行うことで、表示画素全体としてこれらの混色により上記所定のカラーバランスを実現する。
ここで、図中上方の観察者側から着色層12を透過した入射光は、反射部33によって鏡面反射し、反射光として再び着色層12を透過した後に観察者に到達する。一方、バックライト光のうち、開口部34を通過した光は着色層12を1回のみ透過して、透過光として観察者に到達する。
これに対し着色層12は、ブラックマトリクス13にてストライプ状に区画形成された短冊状の着色画素14(R,G,B)がカマボコ型をなし、それぞれ厚膜部と薄膜部とが形成されている。なお、着色画素14の幅方向の断面形状は、図1,2に示すように液晶セル20に向かって中央が膨出する下に凸形状であっても、図3に示すように上に凸形状であってもよい。
本発明にかかるカラーフィルタ10は、一つの着色画素14内に厚さの厚い部分と薄い部分とを形成することにより、これを透過する光の透過率を場所ごとに相違させることができる。ここで、ひとつの着色画素14(例えば赤色画素R)を形成する着色材料濃度を均一とした場合、透過光の透過率(0乃至100%)はランバート・ベール則に従い、着色画素14の厚さがn倍になることで元のn乗まで減少する。したがって白色光が着色画素14を透過する場合、厚膜部では緑(G)および青(B)成分がより多く吸収され、その透過光は暗色の赤色となる。一方、薄膜部では緑(G)および青(B)成分の吸収率はこれよりも少なくなるため、より白色に近い淡色の赤色透過光が得られる。
かかるカラーフィルタ10を半透過半反射型のLCDに適用し、厚膜部と開口部34、薄膜部と反射部33とをそれぞれ対向させることにより、着色画素14を1回のみ透過する透過光からは1回で多くの緑(G)および青(B)成分を吸光し、着色画素を2回透過する反射光からは1回あたり少しの緑(G)および青(B)成分を吸光することができる。これにより、本発明にかかるカラーフィルタは、各色ごとに1種類の着色材料からなる3色カラーフィルタでありながらも、従来の3色カラーフィルタにみられる反射表示領域の明度の低下の問題を解決し、6色カラーフィルタと同等の高品位な半透過半反射表示が可能となる。
このように、本発明にかかるカラーフィルタ10によれば、複数の着色画素のそれぞれに、厚さの異なる第一部分と第二部分とを設けることにより、第一部分を一回透過した可視光の分光強度と、第二部分を二回透過した可視光の分光強度とを互いに近接させることができる。特に第一部分の厚さに対して第二部分の厚さがほぼ半分であるとき、両部分を透過した可視光の分光強度が同等となる。
とくに、半透過半反射型液晶表示装置の表示画素のうち、反射表示領域における着色画素の平均厚さが、透過表示領域における着色画素の平均厚さの半分であるとき、各色ごとに均一な着色剤濃度の着色材料からなる着色画素において、反射表示領域と透過表示領域で行われる明表示の明るさを等しくすることができるためもっとも好適である。
ここで、微小な着色画素個々の透過表示領域または反射表示領域のさらに内部における明るさのばらつきは観察者にとっては通常視認することができないため、着色画素の厚膜部と薄膜部がそれぞれフラットである必要はない。すなわち反射表示領域における着色層の平均厚さが、透過表示領域におけるそれの半分であればよく、図1,2に示すように厚膜部と薄膜部は内部に勾配を有していても、両者が段差なく連続的に形成されていてもよい。
なお本発明において、着色画素の反射表示領域における平均厚さが透過表示領域におけるそれのほぼ半分であるとは、両厚さが厳密に1:2の関係を満たす場合のほか、1:1.5乃至1:3である場合を意味するものとする。
すなわち、反射表示領域と透過表示領域の厚さが等しい従来のカラーフィルタにおいては、反射表示領域を2回透過した反射光の透過率(TR)が、透過表示領域を1回のみ透過する透過光の透過率(TT:0乃至100%)の2乗に低下してしまうことが問題となっていた。言い換えると、透過表示領域に照射されるバックライト光の強度と、反射表示領域に入射する入射光の強度とがともにI0で等しい場合、カラーフィルタを2回透過した反射光の強度(IR)と、これを1回のみ透過した透過光の強度(IT)とは、IT=I0*TTであることから、IR=I0*(TT2=IT*TTの関係にあった。
これに対し、反射表示領域と透過表示領域の着色画素の厚さ比が1:1.5=2/3:1の場合、反射光の強度(IR’)と透過光の強度(IT)とはIR’=I0*(TT4/3=IT*(TT1/3の関係となる。したがって、0<TT<(TT1/3<1であることから、反射光は透過光に比べて僅かに分光強度が低くなるものの、従来の3色カラーフィルタよりも両者の差異は減少している。すなわち、観察者が知覚する分光強度のばらつき(分光強度の低い側の表示部の明るさ/分光強度の高い側の表示部の明るさ)をk(0≦k≦1)とした場合、従来の3色カラーフィルタではk=IR/IT=TTであったところ、これがk=IR’/IT=(TT1/3(≡k’)へと改善されることとなる。具体的には、TT=70%の場合、従来の3色カラーフィルタではk=0.7であったところ、本発明にかかるカラーフィルタではk’=(0.7)1/3=0.89と約30%(=(0.89−0.7)/0.7)も改善される。また、TT=60%の場合は、同様にk=0.6からk’=(0.6)1/3=0.84へと約40%(=(0.84−0.6)/0.6)も改善されることとなる。
一方、反射表示領域と透過表示領域の着色画素の厚さ比が1:3=1/3:1の場合、反射光の強度(IR”)と透過光の強度(IT)とはIR”=I0*(TT2/3=IT*(TT-1/3の関係となる。したがって、この場合は反射光が透過光よりも僅かに強度が高くなるものの、やはり両者の差異は従来の3色カラーフィルタに比べて減少している。すなわち、観察者が知覚する分光強度のばらつきを求めると、k=IR/IT=TTであったものが、k(0≦k≦1)(≡k”)=IT/IR”=(TT1/3=k’へと改善されるため、従来の3色カラーフィルタに対し、TT=70%の場合は上記と同様に約30%、TT=60%の場合は約40%もの改善が図られることとなる。
以上より、本発明にかかるカラーフィルタにおいては、着色画素の薄膜部と厚膜部の平均厚さの比をほぼ1:2、すなわち1:1.5乃至1:3とすることにより、反射表示領域と透過表示領域における明表示の明るさのばらつきを大幅に低減することができる。
以下、本実施の形態にかかるカラーフィルタ10に用いる各材料について具体的に説明する。
カラーフィルタ10の光透過性の基材には、ガラス、シリコン、もしくは石英等の無機基材か、次に列挙するような有機基材を用いることができる。有機基材の例としては、ポリメチルメタクリレート等のアクリル、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、もしくはシンジオタクティック・ポリスチレン等、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルエーテルケトン、フッ素樹脂、もしくはポリエーテルニトリル等、ポリカーボネート、変性ポリフェニレンエーテル、ポリシクロヘキセン、もしくはポリノルボルネン系樹脂等、または、ポリサルホン、ポリエーテルサルホン、ポリサルホン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、もしくは熱可塑性ポリイミド等からなるものを挙げることができるが、一般的なプラスチックからなるものも使用可能である。
基材の厚さには特に限定は無いが、用途に応じ、例えば5μm〜1mm程度のものが使用できる。
また、カラーフィルタ10の基材は、半透過半反射型液晶表示装置50において液晶セル20を積層形成する際の基台となり、積層形成後の液晶セル20を保護する機能をもつ。なお、半透過半反射型液晶表示装置50の下基板31にも上記材料のいずれかを用いることができる。
ブラックマトリクスは、隣接する着色画素の境目で白色光が漏れ、カラーフィルタの色純度が低下することを防止するために設けられる遮光材である。また着色インキをインクジェット法にて基材に塗布する場合、隣接する着色インキが混合することを防ぐ機能も有している。
ブラックマトリクス13は、黒色着色剤を含有する塗料タイプの樹脂組成物を一面に適用して、一旦固化させた後、フォトレジストを適用して行うか、もしくは、黒色着色剤を含有する塗料タイプの感光性樹脂組成物を用いて、塗布、露光および現像を行うことにより形成することができ、従って、黒色着色剤を含有する樹脂組成物から構成することができる。とくに親疎水パターンの形成方法が後述する常圧プラズマ法による場合は、ブラックマトリクスとして樹脂組成物を用いるとよい。
あるいは、ブラックマトリクス13は、CrOx/Cr(xは任意の数、「/」は積層を表す。)の積層構造からなる2層クロムブラックマトリクスまたはさらに反射率を低減させたCrOx/CrNy/Cr(x,yは任意の数)の積層構造からなる3層クロムブラックマトリクス等を、蒸着、イオンプレーティングまたはスパッタリング等の各種の方法で、必要に応じ金属、金属酸化物または金属窒化物等の薄膜を形成し、フォトリソグラフィー法を利用してパターン化する方法、無電界メッキ法または黒色のインキ組成物を用いた印刷法等を利用しても形成することができる。ブラックマトリクス13の厚みは、薄膜で形成する場合には、0.2〜0.4μm、印刷法によるときは0.5μm〜2μmとするとよい。
図4は、基材(図示省略)の上にストライプ状(同図(a))または格子状(同図(b))にパターニングして形成したブラックマトリクス13と半透過反射膜32との位置関係を示す模式図である。ブラックマトリクスの形成領域が大きいとLCDの開口面積が減少する。したがって、色純度を高くする観点から表示画素15を構成する各色の着色画素ごとにブラックマトリクスで区画形成をする図4(b)の格子状パターンのほか、色純度と開口面積の確保のバランスを考慮して図4(a)のストライプ状とすることも一般的である。ブラックマトリクス13の線幅は5〜30μmとし、ブラックマトリクス非形成領域に塗工される着色画素14の幅は50〜90μmとするとよい。
ブラックマトリクス13と半透過反射膜32との位置関係は特に限定されるものではなく、図4各図に示すようにブラックマトリクス13が反射部33の中央に対向して形成される場合のほか、反射部33と開口部34の境界に対向する位置に形成される場合や、開口部34の中央に対向する位置に形成される場合がある。
着色層12を構成する各色の着色画素14は、ブラックマトリクス13の開孔ごとに設けることができる。ブラックマトリクス13をストライプ状にパターニングした場合、着色画素14の色パターンは帯状となり、ブラックマトリクス13を格子状にパターニングする場合、着色画素14の色パターンはブラックマトリクス13の開孔ごとに格子状に分散されたものとなる。
着色層12には、着色剤が溶解もしくは分散された、好ましくは微細顔料が分散された樹脂組成物から形成することができる。その形成あたっては、所定の色に着色したインキ組成物を調製して、着色画素14ごとに印刷することによって行ってもよいが、所定の色の着色剤を含有した塗料タイプの感光性樹脂組成物を用いて、インクジェット法によって行うのがより好ましい。
インクジェット法により、目的の着色画素14ごとに所定の着色インキを塗工することが可能となるため、従来のフォトリソグラフィーのように基材の全面に塗工した着色インキの不要部分をエッチング除去する方式に比べ、工程数を削減可能であるとともに、着色インキの消費量を大幅に低減することができる。
なお、着色層12の厚さは、1〜5μm程度とすることが一般的である。
透明保護膜29は、着色画素14の厚膜部と薄膜部の凹凸をコーティングし、これを保護するとともにカラーフィルタ10の平坦性、耐薬品性、耐熱性、耐ITO性等を向上させるための積層材料である。透明保護膜29は、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド等、種々の光硬化型樹脂、熱硬化型樹脂、または二液硬化型樹脂により形成することができる。透明保護膜29は、その材料に応じて、スピンコート、印刷、フォトリソグラフィー等の方法により形成することができる。透明保護膜29の膜厚は0.3〜5.0μm程度の範囲内で適宜選定可能であり、特に0.5〜3.0μm程度の範囲内で選定することが、透明保護膜29の強度とカラーフィルタ10全体の薄型化の観点から好ましい。
本発明にかかるカラーフィルタ10は、半透過半反射型液晶表示装置50の透過表示領域に着色画素14の厚膜部を形成し、反射表示領域に薄膜部を形成してなる。着色画素内に厚膜部と薄膜部とを形成する方法を以下に説明する。
本実施の形態では、まず光透過性の基材に親水部と疎水部とをパターニングして形成し、これに着色インキを塗布することで、疎水部またはこの近傍では着色インキ層を薄くし、親水部またはこの近傍では着色インキ層を厚くする手法を採る。
この場合、さらに具体的な実施の態様として、
(1)疎水部とBMとを一致させる方法;
(2)親水部とBMとを一致させる方法;
をいずれも採ることができる。
<(1)疎水部とBMとを一致させる方法について>
図4各図に示すようにブラックマトリクス13が半透過反射膜32の反射部33に対向して設けられる場合、上記に例示した基材のうち親水性のものを選択し、これに疎水性のブラックマトリクス13をパターニングすることで、ブラックマトリクス13の開孔に塗工される着色画素のうち、ブラックマトリクス近傍を薄膜化し、それ以外の領域を厚膜化することができる。
図5は、疎水性のブラックマトリクス13が一部形成された親水性のガラス基板11の上に着色インキを塗工した状態を示す模式図である。ブラックマトリクス13の少なくとも表面は疎水性であるため、その撥水作用により、水溶性または有機溶剤系を問わず着色インキを弾く。言い換えると、疎水性領域62は表面自由エネルギーが低く、着色インキの溶媒が表面張力によってまとまるため、接触角度が大きくなる、すなわち表面が濡れにくい性質をもつ。一方、ブラックマトリクス非形成領域は親水性であるため、着色インキの濡れ性が良好である。このため、基材に塗工された着色インキは疎水性のブラックマトリクス13をエッジとして親水性領域61に向かって勾配をなし、徐々にその厚さが増加する。したがってかかるスロープ状に塗工された着色インキを固定して着色画素14を形成することで、薄膜部と厚膜部を得ることができる。
また図5に示すブラックマトリクス13の幅方向の断面形状は、ガラス基板11に向かってその幅が広がる正台形である。このようにブラックマトリクス13に順テーパー63をつけることにより、塗工された着色インキの断面形状のエッジがよりシャープになる。これにより、着色画素14の薄膜部と厚膜部との厚さ比をより大きなものとすることができ、上記のようにこれをほぼ1:2とすることも可能となる。
ブラックマトリクス13に順テーパーをつける方法としては、例えばガラス基板11に熱可塑性の黒色樹脂材料を均一幅で塗工して矩形断面のブラックマトリクス13を形成した後、その表面を黒色樹脂材料の溶融温度以上に加熱してこれを僅かに溶融させ、該樹脂を側方に流下させることで断面形状を矩形から正台形に変えることができる。このほか、紫外線重合型の黒色樹脂材料をガラス基板11の全面に塗工し、所定のマスキングを施した後、マスキングの直上近距離から放射状に紫外線を照射することにより、紫外線露光部がマスキングからガラス基板11に向かって末広がりとなる。その後、紫外線未露光部をエッチング除去することにより、正台形の断面形状をもつブラックマトリクス13を得ることができる。
ブラックマトリクス13を疎水化するための具体的な方法としては、フッ素樹脂などの疎水性材料に黒色着色剤を混合し、これをガラス基板11に塗工する方法のほか、例えば(A)ガラス基板11の全面に疎水性材料を塗工し、ブラックマトリクス13以外の部分を光触媒によって親水化処理する方法、(B)黒色樹脂からなるブラックマトリクス13の表面を疎水化処理する方法、を挙げることができる。
図6乃至8は、上記(A)を実現するための3通りの具体的な手順A1乃至A3を表す説明図である。また図9は、上記(B)を実現するための具体的な手順B1を表す説明図である。
(方法A1)ガラス基板11の表面に疎水膜組成物を塗工し、これを固定して疎水膜64を形成する。一方、光透過性の冶具基板60の裏面にマスクパターン66と光触媒層65とを積層形成する。ここで、マスクパターン66はガラス基板11に形成されたブラックマトリクス13(図示せず)と対向する位置に設ける。次に、光触媒層65と疎水膜64とが互いに所定の間隔となるよう対向させた状態で、冶具基板60の表面側から紫外線を照射することにより、疎水膜64のうちの露光された部分のみを親水化して親水性領域61を形成する(図6(a)〜(c)参照)。
(方法A2)光触媒を含有する疎水膜組成物をガラス基板11の表面全体にコーティングして光触媒含有疎水膜67を形成する。一方、光透過性の冶具基板60の裏面には、ガラス基板11に形成されたブラックマトリクス13(図示せず)と対向する位置にマスクパターン66を設ける。次に、マスクパターン66と光触媒含有疎水膜67とが互いに所定の間隔となるよう対向させた状態で、冶具基板60表面側から紫外線を照射することにより、光触媒含有疎水膜67のうちの露光された部分のみを親水化して親水性領域61を形成する(図7(a)〜(c)参照)。
(方法A3)ガラス基板11の表面にブラックマトリクス13をパターニングして形成し、その上に光触媒含有疎水膜67を全面に塗工形成する。次に、ガラス基板11の裏面側から紫外線露光することにより、光触媒含有疎水膜67のうちブラックマトリクス13の陰にあたるブラックマトリクス非形成領域を親水化して親水性領域61を形成する(図8(a)〜(d)参照)。
かかる方法による場合、冶具基板60およびマスクパターン66が不要となるため、量産性に優れる親疎水領域のパターニングが可能である。
(方法B1)ガラス基板11の表面に、黒色樹脂組成物からなるブラックマトリクス13をパターニングして形成し、これをフッ素ガス雰囲気下で常圧プラズマ処理等をすることにより、ブラックマトリクス13部分のみを疎水化して疎水性領域62を形成する(図9(a)〜(c)参照)。なお、かかる方法は、ガラス材料はフッ素表面処理がされにくいのに対し、黒色樹脂組成物は該処理により容易にフッ素修飾され、表面自由エネルギーが低下するという原理に基づく。なお、常圧プラズマ発生装置は市販のものを使用することができる。
上記A1乃至A3の各方法において用いる疎水膜組成物としては、フッ素系シリコーン樹脂、または垂直配向膜形成用のポリイミド樹脂等の疎水性樹脂を用いることができる。より具体的には、東芝シリコーン製等の疎水膜形成用のフッ素系シリコーン樹脂など、市販の感光性樹脂を例示できる。
光触媒層65としては、例えば樹脂等のバインダー中に光触媒である酸化チタンを含有させたものを用いることができる。酸化チタンはアナターゼ型のものが好ましく、またバインダー重量に対し、20〜40wt%の割合で含有させるのが好ましい。酸化チタンの平均粒径はおよそ5〜20nmであることが好ましい。また、酸化チタンに代えて酸化亜鉛を光触媒として用いてもよい。
光触媒層65に例えば380nm以下のUV光を照射することにより、光触媒粒子内で光電気化学反応が起こり、光触媒層65と疎水膜64との間の隙間に活性酸素種等が発生する。活性酸素種等としては、光触媒粒子内での光電気化学反応に基づいて生じる活性酸素または活性水酸基が挙げられ、これらが図10(a)に示す側鎖(例えばアルキル側鎖)にアタックし、その側鎖の結合を切断する。側鎖が切断された部分には、その活性酸素種等が入れ替わって結合し、図10(b)に示す親水基(OH基)に変化する。
このようにして、マスクパターン66(A1,A2)またはブラックマトリクス13(A3)に遮光された領域を除き、疎水膜64を親水化することができる。
なお、方法A1におけるマスクパターン66と疎水膜64との間隔、および方法A2におけるマスクパターン66と光触媒含有疎水膜67との間隔は、光触媒反応により生じた活性酸素種等が好適に発生するよう5〜20μmとすることが好ましい。
<(2)親水部とBMとを一致させる方法について>
上記に例示した基材のうち疎水性のものを選択し、これに親水性のブラックマトリクス13をパターニングすることで、ブラックマトリクス13の近傍における着色画素14を厚膜化し、ブラックマトリクス13の開孔において着色画素14を薄膜化することができる。かかる厚膜部分を半透過半反射型液晶表示装置50における開口部34に対向させ、薄膜部分を反射部33に対向させることにより、透過表示領域と反射表示領域における明表示を同等の明るさにて行うという本発明の目的を達成することができる。
また、上記A1およびA2による親水性領域61および疎水性領域62の形成方法は、ブラックマトリクス13の形成位置とは無関係にマスクパターン66のパターニングを自在に調整可能である。したがって、冶具基板60の裏面において、ブラックマトリクス非形成領域に対向する位置にマスクパターン66を設けることで、上記A1,A2とは逆にブラックマトリクス13の表面を紫外線露光により親水化することができる。
なお、本発明にかかるカラーフィルタにおいて、着色画素の厚膜部と薄膜部を形成する方法は、上記のように親水性領域と疎水性領域における表面自由エネルギーの相違を利用して着色画素に勾配をつける手法に限られるものではない。例えば、ブラックマトリクスと着色インキに同一(例えば負)の電荷を与え、クーロン力によりブラックマトリクス近傍の着色インキを排斥し、当該部位を薄膜化してもよい。
着色画素の厚膜部および薄膜部の平均厚さは様々な方法で求めることができる。
図11は、本実施の形態にかかる半透過半反射型液晶表示装置50のうち、ガラス基板11と、その下面に塗工形成されたブラックマトリクス13および着色画素14、ならびに下基板31とその上に形成された半透過反射膜32の幅方向断面図である。
着色画素14の表面形状は、市販の接触型または非接触型の表面凹凸形状測定機、または幅方向断面の顕微鏡観察に基づく画像処理などにより、その厚さプロファイルを連続的に測定することができる。またはこれらの方法により、着色画素14の厚膜部と薄膜部よりそれぞれ5点以上、好ましくは10点以上選択して、その厚さを測定することとしてもよい。
このほか、ひとつの着色画素14を構成する着色材料の着色剤濃度が均一である場合、着色画素14を透過する光の透過率を市販の分光計測器を用いて着色画素14内で場所ごとにスポット計測することにより、その厚さまたは厚さ比を求めることができる。かかる計測を着色画素14の厚膜部と薄膜部とでそれぞれ5点以上、好ましくは10点以上選択して行うとよい。
このようにして得られた着色画素14の厚さデータを、半透過反射膜32の反射部33に対向する領域と、開口部34に対向する領域とでそれぞれ単純平均することで、厚膜部14(R1)の平均厚さHと、薄膜部14(R2)の平均厚さhとが求められる。
また、着色層12は多数の着色画素14がパターニングされてなることから、複数の着色画素14を選択して、またはすべての着色画素14について、同様の測定または計測を行うとよい。
これにより、本発明にかかるカラーフィルタのように同一の着色画素内に薄膜部と厚膜部とがそれぞれ形成されているか否か、さらにこれらの比率がほぼ1:2となっているか否かを知ることができる。
以下、本発明にかかるカラーフィルタおよびその製造方法について、実施例によりさらに具体的に説明する。
(実施例1)
<疎水膜の親水化パターニングを行うケース>
(1)ブラックマトリクスの形成
ガラス基板上に形成するブラックマトリクス、および着色層の各色パターンを形成するための各感光性樹脂組成物(以降においてフォトレジストと称する。)を調製した。各フォトレジストは、顔料、分散剤、および溶媒にビーズを加え、ペイントシェーカーを分散機として用い、3時間分散させた後、ビーズを取り除いて得られた分散液と、ポリマー、モノマー、添加剤、開始剤および溶剤からなるレジスト組成物とを混合することにより調製した。各フォトレジストの組成は下記に示す通りで、部数はいずれも質量基準である。
(ブラックマトリクス形成用フォトレジスト)
・黒顔料・・・・・・・・・・・・・・・・・・・・・・・・・・14.0部
(大日精化工業(株)製、TMブラック#9550)
・分散剤・・・・・・・・・・・・・・・・・・・・・・・・・・・1.2部
(ビックケミー(株)製、ディスパービック111)
・ポリマー・・・・・・・・・・・・・・・・・・・・・・・・・・2.8部
(昭和高分子(株)製、(メタ)アクリル系樹脂、品番:VR60)
・モノマー・・・・・・・・・・・・・・・・・・・・・・・・・・3.5部
(サートマー(株)製、多官能アクリレート、品番:SR399)
・添加剤(分散性改良剤)・・・・・・・・・・・・・・・・・・・0.7部
(綜研化学(株)製、ケミトリーL−20)
・開始剤・・・・・・・・・・・・・・・・・・・・・・・・・・・1.6部
(2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1)
・開始剤(4,4’−ジエチルアミノベンゾフェノン)・・・・・・0.3部
・開始剤(2,4−ジエチルチオキサントン)・・・・・・・・・・0.1部
・溶剤(エチレングリコールモノブチルエーテル)・・・・・・・75.8部
(赤色パターン形成用フォトレジスト)
・赤色顔料(C.I.PR254)・・・・・・・・・・・・・・・3.5部
(チバ・スペシャルティ・ケミカルズ(株)製、クロモフタールDPP Red BP)
・黄色顔料(C.I.PY139)・・・・・・・・・・・・・・・0.6部
(BASF社製、パリオトールイエローD1819))
・分散剤・・・・・・・・・・・・・・・・・・・・・・・・・・・3.0部
(ゼネカ(株)製、ソルスパース24000)
・ポリマー1(下記)・・・・・・・・・・・・・・・・・・・・・5.0部
・モノマー・・・・・・・・・・・・・・・・・・・・・・・・・・4.0部
(サートマー(株)製、多官能アクリレート、品番:SR399)
・開始剤・・・・・・・・・・・・・・・・・・・・・・・・・・・1.4部
(チバ・スペシャルティ・ケミカルズ(株)製、イルガキュア907)
・開始剤・・・・・・・・・・・・・・・・・・・・・・・・・・・0.6部
(2,2’−ビス(o−クロロフェニル)−4,5,4’,5’−テトラフェニル−1,2’−ビイミダゾール)
・溶剤・・・・・・・・・・・・・・・・・・・・・・・・・・・80.0部
(プロピレングリコールモノメチルエーテルアセテート)
なお、ポリマー1は、ポリマー1は、ベンジルメタクリレート:スチレン:アクリル酸:2−ヒドロキシエチルメタクリレート=15.6:37.0:30.5:16.9(モル比)の共重合体100モル%に対して、2−メタクリロイルオキシエチルイソシアネートを16.9モル%付加したものであり、重量平均分子量は42500であり、以降においても同じである。
(緑色パターン形成用フォトレジスト)
上記の赤色パターン形成用フォトレジストにおける赤色顔料および黄色顔料に替えて、顔料として下記のものを下記の配合量で用いた。
・緑色顔料(C.I.PG7)・・・・・・・・・・・・・・・・・3.7部
(大日精化工業(株)製、セイカファストグリーン5316P))
・黄色顔料(C.I.PY139)・・・・・・・・・・・・・・・2.3部
(BASF社製、パリオトールイエローD1819)
(青色パターン形成用フォトレジスト)
上記の赤色パターン形成用フォトレジストにおける赤色顔料、黄色顔料、および分散剤に替えて、下記のものを下記の配合量で用いた。
・青色顔料(C.I.PB15:6)・・・・・・・・・・・・・・4.6部
(BASF社製、ヘリオゲンブルーL6700F))
・紫色顔料(C.I.PV23)・・・・・・・・・・・・・・・・1.4部
(クラリアント社製、フォスタパームRL−NF)
・顔料誘導体・・・・・・・・・・・・・・・・・・・・・・・・・0.6部
(ゼネカ(株)製、ソルスパース12000)
・分散剤・・・・・・・・・・・・・・・・・・・・・・・・・・・2.4部
(ゼネカ(株)製、ソルスパース24000)
ガラス基板として、厚みが0.7mmの溶融成形ホウケイ酸薄板ガラス(米国コーニング社製、品番:7059)を準備し、洗浄を行った後、該ガラス基板上にブラックマトリクス形成用フォトレジストを、スピンコート法により塗布した。塗布後、温度90℃、および加熱時間3分間の条件でプリベークを行い、プリベーク後、線幅20μm、幅間隔80μmのストライプ状パターンを介し、照射線量が100mJ/cm2になるよう紫外線露光を行った。露光後、0.05%KOH水溶液を用いたスプレー現像を60秒間行った後、温度200℃、および加熱時間30分間の条件でポストベークを行い、画素に相当する開孔部を有する厚みが1.2μmのブラックマトリクスを形成した。
(2)疎水性BMの形成
まず、アナターゼ型酸化チタン粒子を光触媒として含有する光触媒インキを構成した。酸化チタン粒子は、バインダー樹脂(シリコーン樹脂)中に約10〜100重量%含有されている。なお、酸化チタン100重量%とは、酸化チタンのみで光触媒層を形成した場合である。次に、構成した光触媒インキを、疎水膜としてのフッ素系シリコーン樹脂(東芝シリコーン製、TSL8233およびTSL8114)中に3重量%添加した。次に、構成した光触媒を含有する疎水膜インキを、ブラックマトリクスを形成したガラス基板上にスピンコートし、150℃で10分間乾燥させ疎水性のブラックマトリクスを形成した。引き続きガラス基板の裏面側から波長200〜370nmの紫外線で露光処理した。露光された着色画素相当部分は、疎水性から親水性に変化した。
(3)着色層の形成
ガラス基板上にブラックマトリクスが形成された上に、各赤色、緑色、青色パターン形成用フォトレジストをインクジェット法により塗布し、温度80℃、および加熱時間5分間の条件でプリベークを行った後、紫外線光源による照射線量が300mJ/cm2になるよう露光した。さらにその後、温度200℃、および加熱時間60分間の条件でポストベークを行い、ブラックマトリクスの所定の開孔部に相当する位置にRGBからなる着色パターンを形成した。
(実施例2)
<フッ素雰囲気下における常圧プラズマ処理を行うケース>
実施例1における親疎水パターニングを、樹脂ブラックマトリクスを利用し、これをフッ素雰囲気下で常温プラズマ処理することにより構成した以外は実施例1と同様にしてカラーフィルタを構成した。
上記実施例1および2にて得られたカラーフィルタは、パターニングされたブラックマトリクス部分の撥水作用により、表示画素内でブラックマトリクス周辺が薄膜となり、かかる領域ではブラックマトリクスの開孔中心部に比較して透過率が高い値となった。具体的には、ブラックマトリクスの幅間隔のうち、中央部約60%幅における着色層の平均厚さと、その両側各20%幅における平均厚さの比が2:1となった。したがって本実施例にかかるカラーフィルタを、ブラックマトリクスおよびその近傍が反射部に対向し、ブラックマトリクスの開孔中心部が開口部に対向するようにアレイ基板と組み合わせることにより、複雑な製版工程を経ることなく、6色カラーフィルタを備える半透過半反射型液晶表示装置と同等に高品位な半透過半反射表示が可能となる。
第一の実施の形態にかかるカラーフィルタの断面模式図である。 第一の実施の形態にかかる半透過半反射型液晶表示装置の断面模式図である。 透過光と反射光の経路を示す模式図である。 (a)ストライプ状、(b)格子状、にそれぞれ形成されたブラックマトリクスと半透過反射膜との位置関係を示す模式図である。 基材に着色インキを塗工した状態を示す模式図である。 (a)〜(c)疎水性のブラックマトリクスを得るための第一の方法の手順を示す説明図である。 (a)〜(c)同じく第二の方法の手順を示す説明図である。 (a)〜(d)同じく第三の方法の手順を示す説明図である。 (a)〜(c)同じく第四の方法の手順を示す説明図である。 疎水膜の一部が親水性領域に変化する表面反応の一例を示す説明図である。 着色画素の厚膜部および薄膜部の平均厚さを示す断面図である。 従来の半透過半反射型液晶表示装置の積層構成を示す説明図である。 従来の6色タイプの着色層を備える半透過半反射型液晶表示装置の積層構成の一部を示す模式図である。
符号の説明
10 カラーフィルタ
11 ガラス基板
12 着色層
13 ブラックマトリクス
14 着色画素
15 表示画素
16 アレイ基板
20 液晶セル
29 透明保護膜
32 半透過反射膜
33 反射部
34 開口部
40 バックライトユニット
50 半透過半反射型液晶表示装置
60 冶具基板
61 親水性領域
62 疎水性領域
63 順テーパー
64 疎水膜
65 光触媒層
66 マスクパターン
67 光触媒含有疎水膜

Claims (11)

  1. 光透過性の基材の上に、異なる色の可視光をそれぞれ透過する複数の着色画素が配列されたカラーフィルタであって、
    同一の着色画素内に厚膜部と薄膜部とが形成されていることを特徴とするカラーフィルタ。
  2. 基材のうち、前記着色画素の厚膜部に対応する領域に親水部が、薄膜部に対応する領域に疎水部が、それぞれパターニングされていることを特徴とする請求項1に記載のカラーフィルタ。
  3. 着色画素同士の境界に設けられたブラックマトリクスが前記疎水部と一致していることを特徴とする請求項2に記載のカラーフィルタ。
  4. 着色画素の上に透明保護膜が形成されていることを特徴とする請求項1から3のいずれかに記載のカラーフィルタ。
  5. 請求項1から4のいずれかに記載のカラーフィルタを備え、一色または二色以上の着色画素によって構成される表示画素が複数配列して設けられた液晶表示装置であって、
    表示画素のうち、前記厚膜部に対向する位置に透過表示領域を、前記薄膜部に対向する位置に反射表示領域を、それぞれ有することを特徴とする半透過半反射型液晶表示装置。
  6. 表示画素の反射表示領域における着色画素の平均厚さが、透過表示領域における着色画素の平均厚さのほぼ半分であることを特徴とする請求項5に記載の半透過半反射型液晶表示装置。
  7. 表示画素のうち、反射表示領域の少なくとも一部が、該表示画素内における外周部に位置することを特徴とする請求項5または6に記載の半透過半反射型液晶表示装置。
  8. 光透過性の基板の表面側に、ブラックマトリクスをストライプ状または格子状にパターニングして形成し、
    基材およびブラックマトリクスの上に、光触媒を含有する疎水膜組成物を塗工し、これを固定して疎水膜を形成し、
    基材の裏面側から紫外線を露光して、前記固定された疎水膜のうち、ブラックマトリクス非形成領域の表面を親水化し、
    該疎水膜の上に、少なくとも2色以上の着色インキをそれぞれインクジェット法により塗布することを特徴とするカラーフィルタの製造方法。
  9. ガラス基板の表面に、黒色樹脂をストライプ状または格子状にパターニングしてブラックマトリクスを形成し、
    フッ素ガス雰囲気下にて前記ガラス基板およびブラックマトリクスを常圧プラズマ処理してブラックマトリクスの表面をフッ素化し、
    前記ガラス基板およびブラックマトリクスの上に、少なくとも2色以上の着色インキをそれぞれインクジェット法により塗布することを特徴とするカラーフィルタの製造方法。
  10. ブラックマトリクスの幅方向の断面形状を、基板に向かってその幅が広がる正台形とすることを特徴とする請求項8または9に記載のカラーフィルタの製造方法。
  11. 光透過性の基材の上に異なる色の可視光をそれぞれ透過する複数の着色画素が配列されたカラーフィルタにより可視光を分光する方法であって、
    前記複数の着色画素のそれぞれに、厚さの異なる第一部分と第二部分とを設けることにより、前記第一部分を一回透過した可視光の分光強度と、第二部分を二回透過した可視光の分光強度とを互いに近接させることを特徴とする可視光の分光方法。
JP2006026335A 2006-02-02 2006-02-02 カラーフィルタとその製造方法、半透過半反射型液晶表示装置および可視光の分光方法。 Withdrawn JP2007206457A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026335A JP2007206457A (ja) 2006-02-02 2006-02-02 カラーフィルタとその製造方法、半透過半反射型液晶表示装置および可視光の分光方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026335A JP2007206457A (ja) 2006-02-02 2006-02-02 カラーフィルタとその製造方法、半透過半反射型液晶表示装置および可視光の分光方法。

Publications (1)

Publication Number Publication Date
JP2007206457A true JP2007206457A (ja) 2007-08-16

Family

ID=38485977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026335A Withdrawn JP2007206457A (ja) 2006-02-02 2006-02-02 カラーフィルタとその製造方法、半透過半反射型液晶表示装置および可視光の分光方法。

Country Status (1)

Country Link
JP (1) JP2007206457A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206699A (ja) * 2006-02-03 2007-08-16 Samsung Electronics Co Ltd カラーフィルタ用のインキ、これを用いたカラーフィルタの製造方法及びカラーフィルタ
JP2008083610A (ja) * 2006-09-29 2008-04-10 Hitachi Displays Ltd 液晶表示装置
JP2009075321A (ja) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd 半透過型液晶表示装置用カラーフィルタおよびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206699A (ja) * 2006-02-03 2007-08-16 Samsung Electronics Co Ltd カラーフィルタ用のインキ、これを用いたカラーフィルタの製造方法及びカラーフィルタ
JP2008083610A (ja) * 2006-09-29 2008-04-10 Hitachi Displays Ltd 液晶表示装置
US7656483B2 (en) 2006-09-29 2010-02-02 Hitachi Displays, Ltd. Liquid crystal display
JP4494380B2 (ja) * 2006-09-29 2010-06-30 株式会社 日立ディスプレイズ 液晶表示装置
JP2009075321A (ja) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd 半透過型液晶表示装置用カラーフィルタおよびその製造方法

Similar Documents

Publication Publication Date Title
KR20130087003A (ko) 전자 페이퍼용 컬러 표시 장치, 및 그 제조방법
TW201133079A (en) Color filter substrate for semi-transmissive liquid crystal display device, method for manufacturing the same and semi-transmissive liquid crystal display device
JP2010175599A (ja) カラーフィルタおよびこれを備えた液晶表示装置
JPWO2011155446A1 (ja) カラー表示素子の製造方法、及びカラー表示素子
KR100919727B1 (ko) 컬러 필터 및 액정 표시 소자
JP2008090191A (ja) カラーフィルタ基板の製造方法
JP2007206457A (ja) カラーフィルタとその製造方法、半透過半反射型液晶表示装置および可視光の分光方法。
JP2009053371A (ja) カラーフィルタおよびこれを備える液晶表示装置、カラーフィルタの製造方法
JP5228594B2 (ja) カラーフィルタ形成用基板およびカラーフィルタの製造方法
JP4882830B2 (ja) カラーフィルタ基板および液晶表示装置
JP5266745B2 (ja) 横電界液晶駆動方式用カラーフィルタ
JP2011093955A (ja) カラーフィルタ用含染料着色組成物、カラーフィルタ及びその製造方法、それを具備する液晶表示装置並びに有機elディスプレイ
JP5263472B2 (ja) 液晶表示装置
JP2007271898A (ja) 半透過型液晶表示装置用カラーフィルターおよびその製造方法、並びにそれを用いた半透過型液晶表示装置
JP5655907B2 (ja) 半透過半反射型液晶表示装置用カラーフィルタ
JP2009258696A (ja) カラーフィルタ基板および液晶表示装置
JP4026415B2 (ja) カラーフィルターおよびその製造方法、ならびに液晶表示素子およびその製造方法
JP5893237B2 (ja) 柱状体を有する位相差制御板
JP5608983B2 (ja) 半透過半反射型液晶表示装置用カラーフィルタ
WO2010143467A1 (ja) カラーフィルタの製造方法およびカラーフィルタ
JP5149553B2 (ja) カラーフィルタおよびカラーフィルタの製造方法
JP5007572B2 (ja) 位相差制御部材とそのアライメント調整方法、およびカラーフィルタの製造方法
JP4468032B2 (ja) 位相差制御基板およびその製造方法
JP4972892B2 (ja) 半透過型液晶表示装置用カラーフィルタの製造方法
JP4539662B2 (ja) カラーフィルターおよびその製造方法、ならびに液晶表示素子およびその製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407