JP2007172886A - 光電子顕微鏡装置 - Google Patents

光電子顕微鏡装置 Download PDF

Info

Publication number
JP2007172886A
JP2007172886A JP2005365167A JP2005365167A JP2007172886A JP 2007172886 A JP2007172886 A JP 2007172886A JP 2005365167 A JP2005365167 A JP 2005365167A JP 2005365167 A JP2005365167 A JP 2005365167A JP 2007172886 A JP2007172886 A JP 2007172886A
Authority
JP
Japan
Prior art keywords
electron
sample
photoelectron
electron beam
microscope apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005365167A
Other languages
English (en)
Inventor
Yoichi Terai
洋一 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005365167A priority Critical patent/JP2007172886A/ja
Publication of JP2007172886A publication Critical patent/JP2007172886A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】分解能の高い光電子観察画像を得るために、試料上で、オージェ電子分光分析による分析部位と光電子観測部位との位置合わせが容易な光電子顕微鏡装置を得る。
【解決手段】紫外光またはX線を試料(14)の表面に照射することにより発生する光電子を電子レンズ系(9、10)により結像して試料表面を観察する光電子顕微鏡装置において、オージェ電子励起用の電子線源(14)と電子検出器(7)とを有し、電子線源(14)で生成された電子線を電子レンズ系(9、10)にて集光し、試料(14)の表面に照射する。
【選択図】図1

Description

本発明は、紫外光あるいはX線の照射によって試料表面から発生する光電子を観測するための光電子顕微鏡装置に関し、特に、オージェ電子による分光分析機能を備えた光電子顕微鏡装置に関する。
光電子顕微鏡は、貴金属試料などの表面で起こるガス反応(触媒反応)をリアルタイムに連続画像として可視化できる装置である。その動作原理としては、紫外光(UV)あるいはX線などの光を固体試料に照射し、試料表面から励起される光電子のエネルギーを検知して二次元に結像させることを利用している。このとき、試料表面にガスが吸着していると、その部分で励起される光電子のエネルギー値が変化するため、画像にコントラストが生じ、ガスの吸着状態を示す像が得られる。
この場合、試料表面が充分に清浄でないとガスが試料表面に吸着しにくく、コントラストの高い画像を得ることができない。あるいは、目的とする反応を充分な分解能で観察することができない場合も生じる。したがって、光電子顕微鏡を使用してガス反応の観察を行うに当たって、試料表面を清浄化する前処理が必須である。
貴金属試料などの表面浄化は、一般に、イオン銃によってArイオンなどを照射して試料表面をスパッタする方法が取られる。試料表面がどの程度浄化されているかを検出するためには、オージェ電子分光分析が実施される。オージェ電子分光分析法とは、試料に電子線を照射し、励起されたオージェ電子のエネルギーを計測して存在元素を同定し、エネルギー強度からその存在量を調べるものである。したがって、イオン銃によるスパッタを行った後、スパッタ部位に電子線を照射しその部分から放出されるオージェ電子を検出して分析することにより、スパッタ部位にどのような元素がどの程度存在するかを検出することが出来る。これを利用することによって、試料表面に検出目的以外の元素がどの程度存在すること、すなわち試料表面の清浄度を検出することができる。
このように、光電子顕微鏡法で試料表面の観察を行う場合、測定を行う真空チャンバー内で試料表面を清浄化するとともに、その清浄度をオージェ電子分光分析によって検出する処理を繰り返し、充分に清浄となった試料について光電子の観測を行う。そのため、従来の光電子顕微鏡装置では、装置側面に電子銃および電子検出器さらにイオン銃が設置され、光電子顕微鏡での観察の前に試料の観察部位の清浄度を、オージェ電子の分析を行って検出できるようにされている。
上述した、光電子顕微鏡の基本構造および光電子集光用のレンズ系については周知であるが、例えば、特許文献1および2にその開示がある。特許文献1では、UV光の照射などによって試料表面より放出された光電子のビームを、試料の種類や表面状態などに応じて最も小さな収差で所定位置に集光させることが可能な電子レンズ系について、開示している。特許文献2では、光電子顕微鏡において高分解能測定を確実に行うことが可能な光源システムについて考察を行っている。
また、特許文献3は、光電子顕微鏡装置にオージェ電子顕微鏡の機能を併せ持つ複合型の電子顕微鏡装置を開示している。この装置では、その図1に示すように、光電子顕微鏡装置の側面に、UV光源、X線光源と共に電子線源である電子銃を設け、試料表面のリアルタイム画像を得ると共に、試料表面に存在する原子に関する情報を得るようにしている。
特開2000−277049号 特開2005−106547号 特開2000−215841号
上述したように、光電子顕微鏡で表面反応を観察する場合、試料表面を清浄化し、その度合いを調べる必要がある。試料の清浄化は、イオン銃を用いたスパッタによって行われるが、イオン銃によって試料表面全体を均一にスパッタすることはできない。また、試料表面にうねりや凹凸があるとスパッタの効果がさらに不均一になる。このように、試料全体でスパッタによる清浄度が異なると、オージェ電子による分析部位と光電子顕微鏡による観察部位とが正確に一致していない場合、充分に清浄化されていない部位を光電子顕微鏡で観測してしまう可能性がある。このような場合は、目的とする反応が観測できないという不具合が発生し、あるいは分解能の高い鮮明な観察画像を得ることができなくなる。
従来、オージェ電子による分析部位と光電子による観測部位との位置あわせは、人間の目で行われていた。即ち、試料位置に予め蛍光板を置いてこれに電子線を当て、その蛍光位置がおおよそ光電子顕微鏡の観測部位付近に来るように、電子銃のビーム軸を人間の目で調整するものであった。
しかしながら、光電子の観測部位は5〜300μmφ程度であり、その中心に電子線が照射されるように電子銃を調整することは極めて困難である。その結果、清浄度検出のための電子線照射部位と、光電子の観察部位とが正確に一致しない場合が往々にして発生する。このような場合、充分に清浄化されていない部位を光電子顕微鏡で観測してしまうため、上述したように、不鮮明な画像しか得られないこととなる。
本発明は、従来の光電子顕微鏡装置における上記のような問題点を解決する目的で成されたもので、光電子顕微鏡としての機能に対しオージェ電子分光分析装置としての機能を持たせた光電子顕微鏡装置において、オージェ電子による分析部位と光電子による観測部位とを試料上で正確に一致させることが容易な、光電子顕微鏡装置を提供することをその課題とする。
上記課題を解決するために、本発明の第1の光電子顕微鏡装置は、紫外光またはX線を試料表面に照射することにより発生する光電子を電子レンズ系により結像して前記試料表面を観察する光電子顕微鏡装置において、オージェ電子励起用の電子線源と電子検出器とを有し、前記電子線源で生成された電子線を前記電子レンズ系にて集光し、前記試料表面に照射するようにしている。
上記の構成によって、オージェ電子生成用の電子線と試料表面観察用の光電子とが同じ電子レンズ系を通過して集光されるので、試料面上の分析部位と観察部位とが正確に一致するようになる。
上記第1の装置において、前記電子線源は、前記光電子結像用の電子レンズ系を収納する鏡筒内にあって可動式とされている。これによって、オージェ電子分光分析を行うとき、電子線源を電子レンズ系の光軸付近に移動させて試料に電子線照射を行うことができ、電子線源を使用する必要のない場合は、電子レンズ系の中央部分より離れた位置に電子線源を移動させることができる。
上記第1の装置はさらに、前記試料表面にイオンを照射するためのイオン源を有している。これによって、試料表面をイオンによりスパッタして表面浄化を行うことができる。清浄化後の表面は、電子線源から出射した電子線を利用するオージェ電子分光分析により清浄度の評価を受けることが可能である。この場合、電子線は、光電子観測用の電子レンズ系によって試料表面上に集光されるので、試料の分析部位と観察部位とが一致する。
上記課題を解決するために、本発明の第2の装置は、真空チャンバーと、前記真空チャンバー内に配置される試料ステージと、前記試料ステージ上に保持された試料に紫外光またはX線を照射するための光源と、前記試料に対向して配置されておりさらに前記紫外光またはX線によって励起された光電子を集光し拡大するための電子レンズ系と前記集光された光電子を受光して結像するための結像素子とを収納する鏡筒と、前記試料から放出されるオージェ電子を検出する電子検出器と、前記鏡筒内の前記電子レンズ系と前記結像素子間に配置され前記試料ステージ上に保持された試料に電子線を照射するための電子線源と、前記電子線源を前記鏡筒内で移動させるための移動手段と、を有し、当該装置をオージェ電子分光分析装置として動作させる場合前記移動手段によって前記電子線源を前記電子レンズ系の光軸付近に移動させるようにしている。
上記構成により、電子線源から出射した電子とUV光またはX線によって励起された光電子とが同じ電子レンズ系を通過することになるため、オージェ電子による分析部位と光電子による観察部位とが試料上で一致し、正確な分析部位について光電子観察が実行される。
なお、上記第2の装置において、結像素子によって試料から放出された光電子を観測する場合、移動手段によって電子線源を電子レンズ系の中心部分(光軸付近)から離れた位置に移動させ、試料から放出される光電子観測に影響がないようにする。
以上の構成により、本装置は、電子源を電子レンズの光軸付近に移動させることによってオージェ電子分光分析装置として機能し、電子源を光軸から離れた位置に移動させることによって、光電子顕微鏡として機能させることができる。
上記第2の装置は、さらに、前記試料ステージ上に保持された試料に対してイオンを照射するためのイオン源を有する。これによって、イオンスパッタにより試料面を浄化した試料について、オージェ電子分光分析、光電子観察を行うことができる。
上記第2の装置は、前記試料ステージを前記鏡筒の軸方向に移動可能とし、前記電子検出器と前記光源とは前記試料ステージの移動に連動して前記鏡筒の軸方向に同じ距離だけ移動するように構成されている。
上記構成により、試料ステージを光電子観察位置に移動させることによって電子検出器も同様に移動するので、光電子の観察位置でオージェ電子分光分析を行うことができる。そのため、オージェ電子分光分析を行った後に試料ステージを観察位置に移動させる従来装置とは異なり、ステージの移動によって分析部位にズレが生じすることはない。そのため、さらに分析部位と観察部位とを一致させることができる。
上記第2の装置は、また、前記試料ステージを前記鏡筒の軸方向に移動可能とし、前記電子検出器、前記光源および前記イオン源は前記試料ステージの移動に連動して前記鏡筒の軸方向に同じ距離だけ移動するように構成されている。この場合、前記光源と前記イオン源は、前記真空チャンバーの側面に前記試料ステージを望むようにして取り付けられ、両者が一体で移動するように構成されていても良い。
上記の構成により、試料ステージを光電子観察位置に移動させることに伴って電子検出器およびイオン源も同様に移動するので、光電子の観察位置で試料表面のイオンスパッタおよびオージェ電子分光分析を行うことができる。そのため、イオンスパッタおよびオージェ電子分光分析を行った後に試料ステージを観察位置に移動させる従来装置とは異なり、ステージの移動によって分析部位のズレが生ぜず、さらに分析部位と観察部位とを一致させることができる。
以上のように、本発明の光電子顕微鏡装置では、光電子による試料表面の観察部位とオージェ電子分光分析による試料表面の分析部位とを正確に一致させることが容易であるため、オージェ電子分光分析によって充分清浄であると評価された部位の光電子観察を行うことができる。そのため、光電子顕微鏡観察の分解能が向上し、鮮明な観察画像が得られる。さらに、電子線源を移動可能とした構成により、本装置を複合型の電子顕微鏡装置としてではなく、単独の光電子顕微鏡としてあるいはオージェ電子顕微鏡として使用することも可能である。
以下に、本発明の各実施形態を、図面を参照して詳細に説明する。なお、以下の各図面において、同一の符号は同一または類似の構成要素を示すため、重複した説明は行わない。
実施形態1
図1は、本発明の実施形態1にかかる光電子顕微鏡装置の概略構成を示すブロック図である。図において、1は超真空チャンバー、2は試料ステージ、3は試料ホルダー、4は試料ホルダー3上に設置された観測試料を示す。5は、超真空チャンバー1の側面から試料面方向に向かって取り付けられた光電子励起用のUV光源、6は試料表面の清浄化用のイオン銃、7は試料4に照射された電子線によって励起されるオージェ電子を検出するためのオージェ電子検出器である。なお、本実施形態では、光電子励起用の光源としてUV光源5のみを示しているが、X線源を光源として配置しても良いことは勿論である。あるいは、UV光源およびX線源を共に配置しても良い。
8は、光源5からのUV光によって試料表面から励起される光電子を検出するための光学系を収納する、光電子顕微鏡筒(以下、鏡筒)を示す。9は対物電子レンズ、10は拡大・投影電子レンズである。これらの電子レンズは、設計に応じて複数段にわたって設けられても良い。11は、光電子顕微鏡用の結像素子であり、電子増倍素子で構成されている。試料4から放出される光電子は弱いため、観測が容易なように電子増倍素子を用いて光電子の量を増幅している。
12は画像投影板であり、結像素子11を通過した光電子のエネルギーに応じて発光することで、試料4の観測部位における反応をイメージ化する。13はCCDカメラであって、画像投影板12上のイメージを電気信号に変換して検出するためのものである。なお、鏡筒8内の電子レンズ系、結像素子11、画像投影板12、CCDカメラ13は、光電子観測用の顕微鏡を構成する。
14はオージェ電子分析用の小型の電子銃であり、鏡筒8の中央の、拡大・投影電子レンズ10と結像素子11間に可動的に配置される。15は超真空チャンバー1の外部から操作可能な移動手段であり、電子銃14を鏡筒8のレンズ軸に垂直方向に移動させるためのものである。即ち、本装置を光電子顕微鏡装置として使用する場合は、結像素子11による光電子の検出を妨害しないように、電子銃14を移動手段15によって鏡筒8内の下方に移動させる。
一方、試料4の清浄化の度合いを検出するためにオージェ電子分析を行う場合は、電子銃14は、電子レンズ系の光学軸上に電子の発射口が来るように、移動手段15によって上方に移動させられる。移動手段15は、例えばユーザのハンドル操作によって電子銃14を鏡筒の中央部分から隅へと移動させることができるように構成される。なお、16は、超真空チャンバー1を真空に排気するための排気口を示す。
以上のように、本実施形態の光電子顕微鏡装置では、オージェ電子分析用の小型の電子銃14を、光電子観測用の電子レンズ系9、10と結像素子11間に可動的に配置しているため、オージェ電子分析を行う場合は電子銃14を光電子観測用の電子レンズ系の光軸付近に移動させることによって、発射する電子線を電子レンズ系で集光して試料4の光電子観測部位に集光することができる。この場合、電子線の試料表面上での直径は、光電子顕微鏡で観察する視野と同一かあるいはやや大きくする。
これによって、オージェ電子分析用の電子線と、UV光源5で励起された光電子とは、同じ電子レンズ系を通ることとなるため、光電子の観測部位とオージェ電子の分析部位とを正確に一致させることができる。一方、試料表面の清浄化後、光電子の顕微観測を行う場合は、観測の障害とならないように電子銃14を鏡筒8内の下方に移動させる。
以下に、白金単結晶上のガス反応の観測のために、図1に示した光電子顕微鏡装置を用いた場合の実際の測定方法、およびその観測結果について説明する。なお、以下の説明を実施例1とする。
試料4として、φ=10mm、厚さ1.0mmの白金単結晶(結晶面110)を用いた。試料表面は鏡面研磨されている。試料4をホルダー3に取り付けた後、試料ステージ2に設置した。このときの試料表面と鏡筒8の先端との距離は、15mmとした。先ず、電子銃14を鏡筒8の中央へ設置し、電子線を発生させた。このとき、試料と鏡筒に対して、電子銃14の電位を負とすることにより、電子線は試料4に向かって照射される。電子レンズ系9、10は、電子線を収束させる向きに電気的に働かせ、電子線が試料に当たるときの直系を約150μmφに設定した。この状態で、オージェ電子検出器7により試料表面より放出されたオージェ電子を計測し元素を同定したところ、白金(Pt)の他に炭素Cおよび酸素Oが検出された。
次に、イオン銃6によってArイオンを試料に照射し、試料面のスパッタによる清浄化作業を行い、その後、電子銃14およびオージェ電子検出器7を用いたオージェ電子分析を行った。この清浄化作業とオージェ電子分析とを繰り返して行って、炭素Cおよび酸素Oが検出されなくなったことを確認した。イオン銃6によるイオン照射のサイズはおよそ2mmφである。
次に、電子銃14を移動手段15によって鏡筒8内の下方に移動させた後、試料を120〜160℃に加熱した状態で、酸素ガス(O)および一酸化炭素ガス(CO)を0.01から0.1ml/分の範囲で変化させながら導入し、光電子顕微鏡にて視野径100μmφで反応像を観測した結果、OとCOが反応する様子を鮮明に捉えることができた。像分解能は約100nmと良好であった。この光電子観測時には、鏡筒8は試料4に対して正の電位を印加し、試料4から放出された光電子を電子レンズ系の方向に取り込むようにした。また、電子レンズ系は、光電子ビームを拡大するように電気的に働かせた。
上記実施例1の結果を従来の観測法における結果と比較する。従来法では、電子銃をチャンバーの側面から斜めに取り付け、光電子顕微鏡で観察する部位を狙って電子線を照射した。その位置合わせの方法としては、あらかじめ蛍光板を試料の位置に入れて電子線を当て、発生する蛍光を目当てにして電子線がおおよそ光電子顕微鏡の観察部位に付近に当たるように合わせた。その上で、オージェ電子の分光分析を行い、CとOが検出されなくなるまでArスパッタを行った。なおそれらの条件は実施例1と同一とした。この試料について、上記実施例1と同様に光電子顕微鏡にてCOの酸化反応を観察したところ、実施例1の場合と比べて明らかに不鮮明な画像しか得られなかった。
その原因を確かめるために、実施例1で使用した装置にて、電子レンズ系の中央付近に配置された電子銃により電子線を照射してオージェ分析を行ったところ、試料からCおよびOが検出された。その量は、スパッタ前と比べて約30%であった。即ち、従来の方法では、観察する部位と外れた部位を分析していたことがわかった。これは、イオンスパッタのむらによるものと思われ、即ち充分に清浄化されていない部位を光電子顕微鏡で観察していたため、像が不鮮明となったものであることがわかった。
実施形態2
図2は、本発明の実施形態2にかかる光電子顕微鏡装置の概略構成を示す図である。本装置において、鏡筒8内に配置される電子レンズ9および10、光電子結像用素子11、画像投影板12、CCDカメラ13、電子銃14、移動手段15については、図1に示す本発明の実施形態1にかかる装置と同様に構成されていが、試料ステージ2aは鏡筒8の光軸に対して前後に移動可能なように構成されている。
さらに、UV光源5a、イオン銃6aおよびオージェ電子検出器7aが連結され、試料ステージ2aの前後方向の移動に連動してこれら3器が同時に前後に移動するように構成されている。なお、試料ステージ2aは、鏡筒8に対して上下、左右方向に移動可能であっても良いが、UV光源5a、イオン銃6aおよびオージェ電子検出器7aの試料ステージ2aへの連動は、鏡筒8の前後方向のみである。UV光源5a、イオン銃6aおよびオージェ電子検出器7aの可動部は、超真空チャンバー1aの側面に設けたステンレス製のジャバラ20、21によって構成される。また、図示の例では、UV光源5aおよびイオン銃6aを隣接配置しているので、両者が共に移動するように、一体に連結されている。
試料ステージ2aの移動は、試料4の表面と鏡筒8の先端部分との距離を、試料の観察感度(飛び出す光電子の強弱)や観察視野の大小に応じて最適な値に設定するためである。
通常の装置では、イオン銃による試料のスパッタおよびオージェ電子検出による清浄度の評価は、固定された位置で行われる。したがって、試料の浄化後、試料ステージ2aを前後に移動させて試料表面と鏡筒との間の距離の調整を行った場合、ステージ軸にわずかでもズレがあると、清浄度の分析を行った部位とは異なる部位をUV光源によって観測する危険性がある。特にフラットな試料であって目標となるものが見えない場合、この傾向が強い。
ところが、図2に示す本実施形態の装置では、試料ステージ2aと連動してUV光源5a、イオン銃6aおよびオージェ電子検出器7aとが移動するため、試料ステージ2aを移動させて鏡筒との位置関係を調整した後に、イオン銃6aを用いた試料のスパッタ、オージェ電子検出による清浄度の評価、さらにUV光源を用いた光電子の観測を行うことができる。その結果、試料の清浄度分析部位と、光電子観測部位とを正確に一致させることができるので、試料ステージ2aの移動にも影響を受けることなく、分解能の高い反応画像を得ることができる。
以下に、実施例1の観測に用いた同じ試料を使用して、図2に示した光電子顕微鏡装置を用いて光電子の観察を行った場合について、説明する。なお、以下の説明を実施例2とする。
試料およびスパッタ条件は、実施例1と同じとする。先ず、試料4の表面と鏡筒8の先端間の距離が3mmとなるように、試料ステージ2aを移動させる。オージェ電子分析時に試料に当たる電子線の直径は約100μmφとした。この状態で、イオン銃スパッタによる試料表面の清浄化とオージェ電子検出による元素分析を繰り返し、CおよびOが検出されなくなったことを確認した。次に、電子線源14を移動手段15によって下方に移動させ、光電子結像用の素子11によって試料4から放出される光電子が自由に観測できるようにした。
この状態で、試料4を120〜160℃に加熱し、酸素(O)および一酸化炭素ガス(CO)を、真空チャンバー1a内に0.01から0.1ml/minの範囲で変化させながら導入し、視野径30μmφで光電子顕微鏡による反応像の観測を行った。その結果、酸素ガス(O)と一酸化炭素(CO)が反応する様子を鮮明に捉えることができた。このときの像分解能は50nmと良好であった。
一方、上記と同じ試料について、実施形態1の装置を使用し、試料のイオンスパッタによる浄化後、試料ステージを、鏡筒との間の距離が15mmから3mmとなるまで移動させた場合について、上記実施例2の場合と同様にして光電子顕微鏡による反応像の観測を行ったところ、分解能の低い反応像しか得ることができなかった。
その原因を解明するために、以下の実験を行った。先ず、図2の装置を用いて、試料4と鏡筒8との間隔を15mmに設定してイオンスパッタによる浄化とオージェ電子分析とを行った。これによって、試料表面の完全な清浄化を確認(CおよびOが検出されなくなったことを確認)した後、試料ステージ2aを鏡筒8と試料4との距離が3mmとなるまで移動させて、再びオージェ電子分光分析を行ったところ、CおよびOが観測された。これは、試料ステージ2aを大きく移動させたことによって、分析部位が光電子の観察部位からずれたことを意味している。反応像の低分解能は、この分析部位と観察部位のズレによって生じるものと考えられる。
図2に示す本発明の実施形態2にかかる光電子顕微鏡装置では、上述したように、UV光またはX線源、イオン源、オージェ電子検出器が、試料ステージと一体に移動するため、試料ステージの移動後に、オージェ電子分析、あるいはイオンスパッタを実施することが可能である。そのため、オージェ電子の分析部位は試料ステージの移動による影響を受けてずれることがないため、分析部位と観察部位の一致性が損なわれることはない。
なお、上記実施形態1および2において、光電子励起用の光源としてはUV光源またはX線源のみを示しているが、両者を共に超真空チャンバー1、1aに取り付けても良いことは勿論である。また、鏡筒8内の電子レンズ系に関しても、対物電子レンズ9および拡大・投影電子レンズ10をそれぞれ1個ずつ示しているが、これらは適宜に複数個設けることが可能である。
本発明の実施形態1にかかる光電子顕微鏡装置の概略構成を示す図。 本発明の実施形態2にかかる光電子顕微鏡装置の概略構成を示す図。
符号の説明
1、1a 超真空チャンバー
2、2a 試料ステージ
3 試料ホルダー
4 試料
5、5a UV光
6、6a イオン源
7、7a オージェ電子検出器
8 鏡筒
9、10 電子レンズ
11 光電子観測用結像素子
12 画像投影板
13 CCDカメラ
14 電子銃
15 移動手段
20、21 ステンレスジャバラ

Claims (9)

  1. 紫外光またはX線を試料表面に照射することにより発生する光電子を電子レンズ系により結像して前記試料表面を観察する光電子顕微鏡装置において、オージェ電子励起用の電子線源と電子検出器とを有し、前記電子線源で生成された電子線を前記電子レンズ系にて集光し、前記試料表面に照射することを特徴とする、光電子顕微鏡装置。
  2. 請求項1に記載の光電子顕微鏡装置において、前記電子線源が、前記光電子結像用の電子レンズ系を収納する鏡筒内にあって可動式であることを特徴とする、光電子顕微鏡装置。
  3. 請求項1または2に記載の光電子顕微鏡装置において、さらに、前記試料表面にイオンを照射するためのイオン源を有していることを特徴とする、光電子顕微鏡装置。
  4. 真空チャンバーと、前記真空チャンバー内に配置される試料ステージと、前記試料ステージ上に保持された試料に紫外光またはX線を照射するための光源と、前記試料に対向して配置されかつ前記紫外光またはX線によって励起された光電子を集光し拡大するための電子レンズ系と前記集光された光電子を受光して結像するための結像素子とを収納する鏡筒と、前記試料から放出されるオージェ電子を検出する電子検出器と、前記鏡筒内の前記電子レンズ系と前記結像素子間に設けられかつ前記試料ステージ上に保持された試料に電子線を照射するための電子線源と、前記電子線源を前記鏡筒内で移動させるための移動手段と、を有し、当該装置をオージェ電子分光分析装置として動作させる場合前記移動手段によって前記電子線源を前記電子レンズ系の光軸付近に移動することを特徴とする、光電子顕微鏡装置。
  5. 請求項4に記載の光電子顕微鏡装置において、前記結像素子によって前記試料から放出された光電子を観測する場合、前記電子線源は前記移動手段によって前記電子レンズ系の中央付近から離れた位置に移動させられることを特徴とする、光電子顕微鏡装置。
  6. 請求項4に記載の光電子顕微鏡装置において、さらに、前記試料ステージ上に保持された試料に対してイオンを照射するためのイオン源を有することを特徴とする、光電子顕微鏡装置。
  7. 請求項4に記載の光電子顕微鏡装置において、前記試料ステージは前記鏡筒の軸方向に移動可能であり、前記電子検出器と前記光源とは前記試料ステージの移動に連動して前記鏡筒の軸方向に同じ距離だけ移動することを特徴とする、光電子顕微鏡装置。
  8. 請求項6に記載の光電子顕微鏡装置において、前記試料ステージは前記鏡筒の軸方向に移動可能であり、前記電子検出器、前記光源および前記イオン源は前記試料ステージの移動に連動して前記鏡筒の軸方向に同じ距離だけ移動することを特徴とする、光電子顕微鏡装置。
  9. 請求項8に記載の光電子顕微鏡装置において、前記光源と前記イオン源は、前記真空チャンバーの側面に前記試料ステージを望むようにして取り付けられ、両者が一体で移動するように構成されていることを特徴とする、光電子顕微鏡装置。
JP2005365167A 2005-12-19 2005-12-19 光電子顕微鏡装置 Pending JP2007172886A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365167A JP2007172886A (ja) 2005-12-19 2005-12-19 光電子顕微鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365167A JP2007172886A (ja) 2005-12-19 2005-12-19 光電子顕微鏡装置

Publications (1)

Publication Number Publication Date
JP2007172886A true JP2007172886A (ja) 2007-07-05

Family

ID=38299193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365167A Pending JP2007172886A (ja) 2005-12-19 2005-12-19 光電子顕微鏡装置

Country Status (1)

Country Link
JP (1) JP2007172886A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121841A (ja) * 2007-11-12 2009-06-04 Kobelco Kaken:Kk 電子分光分析複合装置、及び電子分光分析方法
JP2010281710A (ja) * 2009-06-05 2010-12-16 Sumitomo Electric Ind Ltd 電子スペクトルの測定方法および測定装置
JP2016054155A (ja) * 2010-11-09 2016-04-14 エフ・イ−・アイ・カンパニー 荷電粒子ビーム・システム用の環境セル
WO2022070311A1 (ja) * 2020-09-30 2022-04-07 株式会社日立ハイテク 荷電粒子ビーム装置
WO2023187876A1 (ja) * 2022-03-28 2023-10-05 株式会社日立ハイテク 荷電粒子線装置の調整方法及び荷電粒子線装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121841A (ja) * 2007-11-12 2009-06-04 Kobelco Kaken:Kk 電子分光分析複合装置、及び電子分光分析方法
JP2010281710A (ja) * 2009-06-05 2010-12-16 Sumitomo Electric Ind Ltd 電子スペクトルの測定方法および測定装置
JP2016054155A (ja) * 2010-11-09 2016-04-14 エフ・イ−・アイ・カンパニー 荷電粒子ビーム・システム用の環境セル
US9679741B2 (en) 2010-11-09 2017-06-13 Fei Company Environmental cell for charged particle beam system
WO2022070311A1 (ja) * 2020-09-30 2022-04-07 株式会社日立ハイテク 荷電粒子ビーム装置
WO2023187876A1 (ja) * 2022-03-28 2023-10-05 株式会社日立ハイテク 荷電粒子線装置の調整方法及び荷電粒子線装置

Similar Documents

Publication Publication Date Title
Schmidt et al. First experimental proof for aberration correction in XPEEM: Resolution, transmission enhancement, and limitation by space charge effects
US9453801B2 (en) Photoemission monitoring of EUV mirror and mask surface contamination in actinic EUV systems
JP2005527833A (ja) 元素別x線蛍光顕微鏡および動作の方法
KR101702803B1 (ko) Sem에 대한 leed
JP4650330B2 (ja) 光学顕微鏡とx線分析装置の複合装置
JP2004138461A (ja) X線顕微検査装置
JP2003043200A (ja) X線顕微鏡装置
JP2010048727A (ja) X線分析装置及びx線分析方法
EP3172758A1 (en) Method for inspecting a sample using an assembly comprising a scanning electron microscope and a light microscope
JP2007172886A (ja) 光電子顕微鏡装置
JP4717481B2 (ja) 走査型プローブ顕微鏡システム
JP2019035744A (ja) 透過型荷電粒子顕微鏡における回折パターン検出
JP2006047206A (ja) 複合型顕微鏡
JP2007071646A (ja) カソードルミネッセンス検出装置
JPH05113418A (ja) 表面分析装置
Goldberg et al. Actinic extreme ultraviolet mask inspection beyond 0.25 numericalaperture
JP2020140961A (ja) マルチビーム走査透過荷電粒子顕微鏡
JP5783318B1 (ja) 微量炭素定量分析装置および微量炭素定量分析方法
JP2010223898A (ja) 試料分析方法及び試料分析装置
JP2007003539A5 (ja)
US7034295B2 (en) Photoemission electron microscopy and measuring method using the microscopy
JP2010197229A (ja) 蛍光x線分析装置
JPH06288941A (ja) 異物状態分析方法
JP2005222817A (ja) X線顕微鏡の機能を備えた走査電子顕微鏡
JP2008066057A (ja) 走査透過電子顕微鏡