JP2007165695A - 超音波洗浄装置及びその超音波洗浄方法 - Google Patents

超音波洗浄装置及びその超音波洗浄方法 Download PDF

Info

Publication number
JP2007165695A
JP2007165695A JP2005361700A JP2005361700A JP2007165695A JP 2007165695 A JP2007165695 A JP 2007165695A JP 2005361700 A JP2005361700 A JP 2005361700A JP 2005361700 A JP2005361700 A JP 2005361700A JP 2007165695 A JP2007165695 A JP 2007165695A
Authority
JP
Japan
Prior art keywords
cleaning
output
ultrasonic
inner tank
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005361700A
Other languages
English (en)
Inventor
Tadayuki Shimada
忠幸 島田
Koichi Tamoto
宏一 田本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP2005361700A priority Critical patent/JP2007165695A/ja
Publication of JP2007165695A publication Critical patent/JP2007165695A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】洗浄に寄与するキャビテーションの崩壊による衝撃力を制御して半導体基板の配線パターンに与えるダメージを軽減することができる超音波洗浄装置及びその洗浄方法を提供する。
【解決手段】半導体基板Wが浸漬される洗浄液を貯留した内槽2を備える洗浄槽1に備える超音波洗浄装置において、内槽2に貯留された洗浄液の超音波振動による洗浄液中の音圧を計測する圧力計測手段6を備えるとともに、圧力計測手段6から得られる出力に基づいて、洗浄性能と異常衝撃波とを監視する表示手段を備えている。
【選択図】図1

Description

本発明は、半導体基板の洗浄性能の均一化が向上し、かつ半導体基板に与えるダメージを軽減できる超音波洗浄装置及びその超音洗浄方法に関するものである。
周知のように、超音波洗浄は、半導体基板に付着する微粒子を除去する物理洗浄として重要な洗浄方法であり、他の物理洗浄(ブラシ,エアゾル,ウオータージェット)に比べて被洗浄物に対してダメージが少ないことから広く利用されている。しかしながら、半導体ディバイスの高度集積化に伴い、半導体ウエハ上の配線幅が狭くなる一方、積層数が多くなる傾向にあり、配線のアスペクト比が高くなり、僅かな物理力でも配線が倒れて配線パターン形成部にダメージを与えるといった危険性が増している。
一般的に、半導体基板の洗浄に使用される超音波の周波数は、400KHz〜3MHzであり、この周波数帯の超音波による超音波洗浄が最も洗浄に寄与し、キャビテーションが起こらない領域であると言われており、従来は、超音波発振器の出力電圧だけをモニターして、経験や実験データに基づき、超音波の出力電力を下げて、超音波洗浄の洗浄効果を落としても上記のようなダメージを軽減しようと試みられていたが、この周波数領域であっても配線のアスペクト比が高い半導体基板では、キャビテーションが起こり、半導体基板の配線パターン形成部にダメージを与えていることが明らかになった。
超音波の出力電力を下げてダメージを抑制する上記の超音波洗浄方法について、図7を参照して説明する。超音波洗浄装置は、洗浄槽1が、半導体基板が浸漬される洗浄液を貯留した内槽2と、内槽2のオーバーフローした洗浄液を受ける外槽3と、この洗浄槽1の下部に設けられ、純水等が貯留された中間槽4と、中間槽4の底部に設けられる超音波振動子5とを備え、超音波振動子5は発振器20の発振出力を電力計21で計測してモニター22で監視し、CPU(中央演算処理装置)23で発振器20の発振出力を制御して、半導体基板の配線パターン形成にダメージを与えないようにする方法が採られていた。
また、他の半導体基板に与えるダメージを軽減する洗浄方法としては、上記の超音波の発振器の出力電力を下げる方法以外に、枚葉式のスプレー洗浄装置において、半導体基板を回転させて超音波ノズルから洗浄液を噴射させて洗浄する際、半導体基板の内周部は超音波の発振出力を低くし、外周部の発振出力を高くする洗浄方法などがあり、このような洗浄方法とすることにより、半導体基板の回転速度が最小となる基板中心近傍での洗浄性能を抑制してダメージの影響を抑制する方法がある。(例えば、特許文献1参照)
特開2004−281833号公報(明細書,図面)
上記従来例の超音波洗浄装置では、発振器の発振出力を低くして半導体基板の配線パターンのダメージを抑制していた。しかし、ハイメガ洗浄、例えば、1MHzの高周波での洗浄では、図4に示したように、約600W/cm以上の電気エネルギーを与えなければキャビテーション(空洞現象)を起こすのは事実上不可能と考えられていたが、実際には、洗浄槽の水中には気体が溶存して多くの気泡核が存在し、この気泡核が超音波による圧力変化によって、キャビテーションを発生して衝撃波を生じる。図4に示したキャビテーションの出ない領域で使用するように電気エネルギーを抑えたとしてもキャビテーションが発生して崩壊し衝撃波が発生する可能性があり、配線パターンのアスペクト比が高い半導体基板では、このような条件で洗浄したとしても、超音波洗浄に最も寄与すると考えられているキャビテーションの崩壊による衝撃波により配線パターン構造にダメージを与えることが問題となっていた。
ここで、本発明の理解を容易とするために衝撃波について図3を参照して詳細に説明する。液体中に超音波を発振すると、音圧が液体に対して減圧力(膨張力)と圧縮力として働き、同図横軸の時間軸で示しているように、この作用を繰り返す。液体に減圧が作用すると殆ど真空の空洞が発生し気泡となり、次の瞬間に液体に圧縮力が作用し、気泡は圧縮されて気泡内が高温高圧になり、押し潰されて崩壊し強い衝撃波が発生する。即ち、超音波の発生による圧力変化で静水圧(通常1気圧)を下回る圧力になるのを妨げる作用により、水粒子が蒸気化して気泡を形成する。この気泡は超音波圧力変化で静水圧以上になる時、崩壊し、大きな衝撃波が生じる。この衝撃波は洗浄性を向上するが、この洗浄に寄与する衝撃波により、上記のような半導体基板では配線パターン構造にダメージを与えるものと考えられる。
本発明は、上述のような問題点に鑑みなされたものであり、洗浄に寄与するキャビテーションの崩壊による衝撃力を制御して半導体基板の配線パターンに与えるダメージを軽減することができる超音波洗浄装置及びその超音波洗浄方法を提供することを目的とするものである。
本発明は、上記課題を達成したものであり、請求項1の発明は、半導体基板が浸漬される洗浄液を貯留した内槽を備える洗浄槽に備える超音波洗浄装置において、前記内槽に貯留された洗浄液の超音波振動による洗浄液中の音圧を計測する圧力計測手段を備えるとともに、該圧力計測手段から得られる出力に基づいて、洗浄性能と異常衝撃波とを監視するための出力を表示する表示手段を備えることを特徴とする超音波洗浄装置である。
また、請求項2の発明は、前記圧力計測手段の出力を帯域通過フィルターに通し、該帯域通過フィルターの入力前段からの第1の出力と、該帯域通過フィルターを通過した第2の出力を得て、第1の出力により洗浄性能を監視し、第2の出力により異常衝撃波を監視することを特徴とする請求項1に記載の超音波洗浄装置である。
また、請求項3の発明は、前記第1の出力を整流する第1の整流手段と、前記第2の出力を整流する第2の整流手段とを備え、前記第1と第2の整流手段から得られるそれぞれの直流レベルを前記表示手段に表示して洗浄性能と異常衝撃波とを監視することを特徴する請求項2に記載の超音波洗浄装置である。
また、請求項4の発明は、前記洗浄槽が、半導体基板が浸漬される洗浄液を貯留した内槽と、該内槽のオーバーフローした洗浄液を受ける外槽と、該内槽の下部に設けられ、その底部に超音波振動子が設けられた中間槽とからなり、前記内槽の底部に洗浄機能ガスが溶解された洗浄液を供給するノズルを備えることを特徴とする請求項1,2又は3に記載の超音波洗浄装置である。
また、請求項5の発明は、前記内槽に供給される純水に混合される洗浄機能ガス量を前記第2の出力の直流レベルに応じて制御することを特徴とする請求項2,3又は4に記載の超音波洗浄装置である。
また、請求項6の発明は、超音波洗浄装置の洗浄槽の内槽に洗浄液を貯留して該洗浄液に半導体基板を浸漬し、該内槽に超音波を加え、該内槽に貯留された洗浄液の超音波振動による洗浄液中の音圧を圧力計測器で計測し、該圧力計測器で得られた出力に基づいて、洗浄性能と異常衝撃波とを監視することを特徴とする超音波洗浄方法である。
また、請求項7の発明は、前記圧力計測器で得られた出力を帯域通過フィルターに通過し、該帯域通過フィルターの入力段の第1の出力と該帯域通過フィルターを通過した第2の出力とを得て、第1の出力により洗浄性能を監視し、第2の出力により異常衝撃波を監視することを特徴とする請求項6に記載の超音波洗浄方法である。
また、請求項8の発明は、前記内槽に供給される純水に混合される洗浄機能ガス量を前記第2の出力の直流レベルに応じて制御することを特徴とする請求項7に記載の超音波洗浄方法である。
請求項1の発明では、半導体基板が浸漬される洗浄液を貯留した内槽を備える洗浄槽に備える超音波洗浄装置において、前記内槽に貯留された洗浄液の超音波振動による洗浄液中の音圧を計測する圧力計測手段を備えるとともに、該圧力計測手段から得られる出力に基づいて、洗浄性能と異常衝撃波とを監視するための出力を表示する表示手段を備えることを特徴とする超音波洗浄装置であるので、圧力計測手段の計測結果が出力情報として表示手段に表示され、作業者が表示手段の出力情報を確認することにより超音波洗浄装置の洗浄性能及び半導体基板の配線パターン構造のダメージの発生状況を監視することができる利点がある。
また、請求項2の発明では、前記圧力計測手段の出力を帯域通過フィルターに通し、該帯域通過フィルターの入力前段からの第1の出力と、該帯域通過フィルターを通過した第2の出力を得て、第1の出力により洗浄性能を監視し、第2の出力により異常衝撃波を監視することを特徴とする請求項1に記載の超音波洗浄装置であるので、第1の出力が洗浄性能を示し、第2の出力が異常衝撃波の監視を示し、これらの出力を表示手段により表示して作業者は超音波洗浄装置の洗浄状況を監視することができる利点がある。
また、請求項3の発明では、前記第1の出力を整流する第1の整流手段と、前記第2の出力を整流する第2の整流手段とを備え、前記第1と第2の整流手段から得られるそれぞれの直流レベルを前記表示手段に表示して洗浄性能と異常衝撃波とを監視することを特徴する請求項2に記載の超音波洗浄装置であるので、第1の出力が洗浄性を示し、第2の出力が異常衝撃波を示し、これらの出力を直流出力レベルとして表示手段に表示され、作業者はモニタを監視しながら超音波洗浄装置の洗浄状況を把握することができる利点がある。
また、請求項4の発明では、前記洗浄槽が、半導体基板が浸漬される洗浄液を貯留した内槽と、該内槽のオーバーフローした洗浄液を受ける外槽と、該内槽の下部に設けられ、その底部に超音波振動子が設けられた中間槽とからなり、前記内槽の底部に洗浄機能ガスが溶解された洗浄液を供給するノズルを備えることを特徴とする請求項1,2又は3に記載の超音波洗浄装置であるので、ノズルから洗浄機能ガスが溶解された洗浄液を内槽に供給されており、洗浄に必要な洗浄機能ガス量(溶存気体量)を制御することによって、半導体基板の配線パターンのダメージを抑制できる効果がある。
また、請求項5の発明では、前記内槽に供給される純水に混合される洗浄機能ガス量を前記第2の出力の直流レベルに応じて制御することを特徴とする請求項2,3又は4に記載の超音波洗浄装置であるので、第2の出力の直流レベルに応じて洗浄機能ガス量(溶存気体量)が制御されて洗浄液に溶解されており、半導体基板の配線パターンのダメージを抑制するのに効果的である。
また、請求項6の発明では、超音波洗浄装置の洗浄槽の内槽に洗浄液を貯留して該洗浄液に半導体基板を浸漬し、該内槽に超音波を加え、該内槽に貯留された洗浄液の超音波振動による洗浄液中の音圧を圧力計測器で計測し、該圧力計測器で得られた出力に基づいて、洗浄性能と異常衝撃波とを監視することを特徴とする超音波洗浄方法であるので、圧力計測手段の出力に基づく出力情報が表示手段に表示され、作業者が表示手段により超音波洗浄装置に洗浄状況を監視することができる利点があるので、圧力計測器から出力された出力が表示手段に表示され、作業者が表示手段により超音波洗浄装置に洗浄状況を監視することができる利点があり、半導体基板の配線パターンのダメージを抑制するのに効果的である。
また、請求項7の発明では、前記圧力計測器で得られた出力を帯域通過フィルターに通過し、該帯域通過フィルターの入力段の第1の出力と該帯域通過フィルターを通過した第2の出力とを得て、第1の出力により洗浄性能を監視し、第2の出力により異常衝撃波を監視することを特徴とする請求項6に記載の超音波洗浄方法であるので、洗浄機能の監視と異常衝撃波の監視が分けて表示され、監視が容易となり、半導体基板の配線パターン構造のダメージを抑制するのに効果的である。
また、請求項8の発明では、前記内槽に供給される純水に混合される洗浄機能ガス量を前記第2の出力の直流レベルに応じて制御することを特徴とする請求項7に記載の超音波洗浄方法であるので、洗浄機能ガス量の制御が容易であり、半導体基板の配線パターン構造のダメージを抑制するのに効果的である。
以下、本発明に係る超音波洗浄装置及びその超音波洗浄方法の実施形態について、図面を参照し詳細に説明する。
先ず、図1を参照し、本発明の超音波洗浄装置の一実施形態について説明する。本実施形態は、図1に示すように、洗浄槽1が、従来例と同様な構成であり、内槽2とその上部周囲に設けられ、オーバーフローした洗浄液を受ける外槽3と、内槽2の底部に設けられ、純水などによる媒体流体が貯留される中間槽4とからなり、中間槽4の底部に圧電振動子などの超音波振動子5が設けられている。内装2には、洗浄機能ガスが純水に溶解した洗浄液が供給されており、洗浄液中の音圧を計測する圧力計測器6のセンサ部が洗浄液に浸漬されて設けられている。また、内槽2の内底部には、洗浄機能ガスが純水に溶解した洗浄液を噴流するノズル7が設けられている。
超音波振動子5は発振器10と接続され、超音波振動子5に所定周波数の電圧を印加して超音波振動を発している。発振器10は発振器制御用CPU11と洗浄制御用CPU12とにより印加電圧が制御されており、発振器制御用CPU11は発振器10の印加電圧を制御して異常衝撃波が発生しないようにし、洗浄制御用CPU12は発振器10の印加電圧を制御して洗浄性能を維持するようにしている。
圧力計測器6は圧電センサであり、そのセンサ部が洗浄液に浸漬し、洗浄液中の音圧を計測しており、圧力計測器6は、A/D変換器15に接続されてその出力端が帯域通過フィルターの機能を有する周波数フィルター16の入力端に接続されている。圧力計測器6の出力は、A/D変換器15によりデジタル信号に変換され、帯域通過フィルターの機能を有する周波数フィルター16に供給され、周波数フィルター16の入力段と出力段からそれぞれ出力が導出されてそれぞれ整流される。
ガス溶解装置13は純水に洗浄機能ガスを溶解し、洗浄装置1に送り込む装置であり、脱気装置14により脱気した水をガス溶解装置13に供給し、ガス溶解装置13では洗浄制御用CPU12により洗浄機能ガスのガス量が制御されて洗浄機能ガスが溶解されている。洗浄制御用CPU12は、内槽2の洗浄液中の音圧に基づいて、半導体基板の配線パター構造にダメージを与えない洗浄機能ガス量に制御している。また、脱気装置14から媒体流体として純水が中間槽4が供給されている。
周波数フィルター16は、図2(a)の上段に示すように、発振周波数ポイントを中心として通過帯域を有する帯域通過フィルターの周波数特性を示しており、図2(a)の下段は、周波数フィルター16の入力段から得られる出力の周波数特性を示し、全ての周波数成分が出力されることを示している。周波数フィルター16の入力段と出力段の出力がデジタル整流器17,18にそれぞれ入力されて整流され、それらの直流出力レベルがモニター11a,11bにそれぞれ表示される。これら直流出力は、デジタル整流器17,18を通過した直流レベル情報が発振器制御用CPU11及び洗浄制御用CPU12にそれぞれ入力されて信号処理され、モニター11a,11bにそれぞれ表示され、これらの表示された直流出力レベルは、洗浄槽1の洗浄性能と衝撃波を監視するのに利用される。
また、図2(b)の上段は、周波数フィルター16を通過しない出力の波形(フィルターなし波形)と周波数フィルター16を通過した出力の波形(フィルターあり波形)を示し、図2(b)の下段は、第1の出力(フィルターなし波形)と第2の出力(フィルターあり波形)を整流して得た直流出力レベルを示している。周波数フィルター16を通過させることなく得られた直流出力(イ)は洗浄性能を監視するために利用し、周波数フィルター16を通過した直流出力(ロ)は衝撃波が発生する可能性があるか否かを監視する音圧モニター用として利用する。即ち、図2(b)の下段の直流出力(ロ)の出力レベルが上昇すると、洗浄槽1の内槽2の洗浄液中の音圧が上昇していることを示し、洗浄制御用CPU12は、発振器10の出力を低下させるように制御したり、或いはガス溶解装置13の洗浄ガス量を増大させるように制御し、キャビテーションの崩壊による衝撃波が発生しないようにする。また、発振器制御用CPU11は、発振器10に印加される電圧を制御して洗浄能力が安定するように制御している。このように洗浄槽1の音圧を制御することによって、キャビテーションの崩壊による衝撃力を制御し、洗浄もでき、半導体基板の配線パターン構造にダメージを与えない領域で洗浄できるように制御している。
次に、本実施形態の超音波洗浄方法について図1を参照し説明する。超音波洗浄装置の洗浄槽1の内槽2に洗浄液を貯留して洗浄液に半導体基板Wを浸漬し、内槽2に超音波振動子5により超音波を加え、内槽2に貯留された洗浄液の超音波振動による洗浄液中の音圧を圧力計測器6で計測する。圧力計測器6で得られた出力に基づいて、内槽2内の洗浄液中の音圧を制御し、半導体基板Wの配線パターン構造にダメージを与えないようにする。
さらに、本実施形態では、圧力計測器6で得られた出力を帯域通過フィルター16の入力段と出力段から導出して、入力段からの第1の出力を整流して直流電圧とし、出力段から得られる第2の出力を整流してそれぞれ直流電圧を得て、第1の出力を整流して得られる直流電圧により洗浄性能を監視し、第2の出力を整流して得られる直流電圧により異常衝撃波の発生を監視する。第1の出力による直流レベルは、洗浄液中の音圧を示しており、洗浄能力を監視することができ、洗浄能力が低下、即ち音圧レベルが所定値より低い場合、洗浄制御用CPU12は発振器5の印加電圧を上昇させる。また、音圧レベルが所定値より高い場合、洗浄制御用CPU12は発振器5の印加電圧を低下させるように制御する。
また、第2の出力による直流レベルが所定値より低い場合は、半導体基板Wの配線パターン構造にダメージを与えないが、直流レベルが高い場合は、キャビテーションの崩壊して衝撃波が発生し、半導体基板Wの配線パターン構造にダメージを与える可能性があり、発振器10の印加電圧を低下させるように制御し、ダメージの発生を抑制する。さらに、内槽2に供給される洗浄液は、純水に洗浄機能ガスを混合しており、洗浄機能ガス量を第2の出力の直流レベルに応じて制御し、半導体基板Wの配線パターン構造にダメージを与えないようにする。即ち、第2の出力の直流レベルが所定の値より上昇した場合は、洗浄能力が必要以上に高まっており、ダメージを与える可能性があり、洗浄機能ガス量を増大させ、第2の出力の直流レベルが所定の値より降下した場合は、洗浄能力が低下しているものと判断し、洗浄機能ガス量を減少するように制御して安定した洗浄性能を維持し得るように制御している。
因みに、超音波洗浄装置の洗浄メカニズムは、超音波の加速度エネルギーと超音波により発生する流れとによって洗浄されると考えられ、超音波洗浄における洗浄で最も寄与するメカニズムはキャビテーションであり、キャビテーションには蒸気性キャビテーションと気体性キャビテーションが存在する。キャビテーションの衝撃力を制御できれば、洗浄もでき、半導体基板の配線パターン構造にダメージを与えない領域で超音波を利用することができることになり、上記実施形態にように、超音波振動子5の印加電圧を制御することによって、それを達成したものである。
図5(a)〜(c)は、水中でのある周波数での超音波キャビテーションが発生させる衝撃圧の変化とそこに現れる音の周波数ごとのエネルギー成分を示したスペクトルの図である。同図において、Rは初期気泡径であり、Rは変化気泡径を示し、水中の音圧をPaで示し、ΔPは圧力変動振幅を示している。
同図(a)〜(c)は、初期の気泡径Rを0.92μm、0.62μm、2.65μmと変化させており、同図の横軸を時間軸とし、図の一番上には初期気泡半径Rに対して、変化気泡径RのR/R比率を示し、次段には発生する衝撃波の圧力Paを示し、最下段にはそこで発生する衝撃波のスペクトル、即ち周波数ごとのエネルギー量を示している。
この図から明らかなように、周波数にマッチし、変化しやすい気泡径、即ち共振気泡径である0.92μmでは発生するエネルギーが多く、それ以上に大きい気泡径、2.65μmでは発生するエネルギーが小さいことを示している。依って、このように初期気泡径Rを制御することによって、洗浄効果とダメージ量を制御することが可能である。初期気泡径Rが大きいか否かは、衝撃波のスペクトルの図を見れば判断できる。衝撃波のスペクトルでは超音波洗浄装置が出す周波数の半分の周波数成分が出ている。しかしながら、超音波洗浄装置が実稼動中にスペクトルを確認しながら作業することは容易ではなく、専門知識も有するので、実際にはむずかしい。
従って、このような現象は上記のような実施形態で取得することができる。即ち、洗浄液に発生する音圧を計測して確認し、周波数の半分の成分が出たときに非線形現象が生じるので、その非線形現象をモニターすればよい。図6は、溶存気体量(洗浄機能ガス量)と超音波出力、そこに洗浄液中に発生する音圧の関係を示しており、洗浄機能ガスとしては窒素ガスが用いられた。この図は、超音波の周波数750kHzに設定し、洗浄液中の溶存気体量を変化させるとともに、超音波出力も変化させて図示したものである。本来は発振器の出力を上げれば音の圧力も大きくなるはずであるが、溶存気体量12ppm 〜16ppm の間では、超音波出力50Wで音圧が非線形的に極大を示している。これは、前述の周波数の半分での音圧が出たものであり、初期気泡核が共振気泡径よりも大きくなっていることを示し、破壊圧は小さい。このとき、洗浄効果が弱ければ超音波の出力を若干上げるか、溶存気体量を少なくすれば洗浄効果が上がることになる。溶存気体量を少なくすれば洗浄効果が上がるのは、溶存気体が多ければ気泡核は大きくなるし、溶存気体が少なければ気泡核が小さくなるからである。
しかし、この非線形現象だけ見ている場合、超音波の出力異常に気が付かず、非線形現象が現れているのか、発振器の何らかの異常かが区別できないことになる。そこで、図1の実施形態で説明したように、洗浄液中の超音波の音圧を圧電センサを介して収得し、電気出力に変え自分の周波数成分付近のみのバンドパスフィルターを通して得られる出力と、全体の周波数成分をそのまま出力する2系統の出力を得るようにして、前者は衝撃波の発生を管理する異常管理用、後者は洗浄効果のモニター用として使用することができる。
本発明の活用例としては、半導体基板の配線パターン構造にダメージを与えない超音波洗浄装置として活用することができる。
本発明の一実施形態を示し、超音波洗浄装置を示す図とその制御系のブロック図である。 (a)は周波数フィルターの周波数特性を示し、(b)は周波数フィルターの影響を受けない出力特性を示す図である。 キャビテーションが発生し崩壊して衝撃波が発生するメカニズムを説明するための図である。 周波数に対する単位当たりの音の強さを示す図である。 (a)〜(c)は、水中でのある周波数での超音波キャビテーションが発生させる衝撃圧の変化とそこに現れる音の周波数ごとのエネルギー成分を示した図である。 洗浄液中の溶存気体量に対し、振動子に印加される電力と音圧との関係を示す図である。 従来の超音波洗浄装置の図とその制御系のブロック図である。
符号の説明
1 洗浄槽
2 内槽
3 外槽
4 中間槽
5 超音波振動子
6 圧力計測器(圧電センサ)
7 ノズル
10 発振器
11 発振器制御用CPU
11a,12a モニター
12 洗浄制御用CPU
13 ガス溶解装置
14 脱気装置
15 A/D変換器
16 周波数フィルター(帯域通過フィルター)
17,18 デジタル整流器

Claims (8)

  1. 半導体基板が浸漬される洗浄液を貯留した内槽を備える洗浄槽に備える超音波洗浄装置において、
    前記内槽に貯留された洗浄液の超音波振動による洗浄液中の音圧を計測する圧力計測手段を備えるとともに、該圧力計測手段から得られる出力に基づいて、洗浄性能と異常衝撃波とを監視するための出力を表示する表示手段を備えることを特徴とする超音波洗浄装置。
  2. 前記圧力計測手段の出力を帯域通過フィルターに通し、該帯域通過フィルターの入力前段からの第1の出力と、該帯域通過フィルターを通過した第2の出力を得て、第1の出力により洗浄性能を監視し、第2の出力により異常衝撃波を監視することを特徴とする請求項1に記載の超音波洗浄装置。
  3. 前記第1の出力を整流する第1の整流手段と、前記第2の出力を整流する第2の整流手段とを備え、前記第1と第2の整流手段から得られるそれぞれの直流レベルを前記表示手段に表示して洗浄性能と異常衝撃波とを監視することを特徴する請求項2に記載の超音波洗浄装置。
  4. 前記洗浄槽が、半導体基板が浸漬される洗浄液を貯留した内槽と、該内槽のオーバーフローした洗浄液を受ける外槽と、該内槽の下部に設けられ、その底部に超音波振動子が設けられた中間槽とからなり、前記内槽の底部に洗浄機能ガスが溶解された洗浄液を供給するノズルを備えることを特徴とする請求項1,2又は3に記載の超音波洗浄装置。
  5. 前記内槽に供給される純水に混合される洗浄機能ガス量を前記第2の出力の直流レベルに応じて制御することを特徴とする請求項2,3又は4に記載の超音波洗浄装置。
  6. 超音波洗浄装置の洗浄槽の内槽に洗浄液を貯留して該洗浄液に半導体基板を浸漬し、該内槽に超音波を加え、該内槽に貯留された洗浄液の超音波振動による洗浄液中の音圧を圧力計測器で計測し、該圧力計測器で得られた出力に基づいて、洗浄性能と異常衝撃波とを監視することを特徴とする超音波洗浄方法。
  7. 前記圧力計測器で得られた出力を帯域通過フィルターに通過し、該帯域通過フィルターの入力段の第1の出力と該帯域通過フィルターを通過した第2の出力とを得て、第1の出力により洗浄性能を監視し、第2の出力により異常衝撃波を監視することを特徴とする請求項6に記載の超音波洗浄方法。
  8. 前記内槽に供給される純水に混合される洗浄機能ガス量を前記第2の出力の直流レベルに応じて制御することを特徴とする請求項7に記載の超音波洗浄方法。
JP2005361700A 2005-12-15 2005-12-15 超音波洗浄装置及びその超音波洗浄方法 Withdrawn JP2007165695A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361700A JP2007165695A (ja) 2005-12-15 2005-12-15 超音波洗浄装置及びその超音波洗浄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361700A JP2007165695A (ja) 2005-12-15 2005-12-15 超音波洗浄装置及びその超音波洗浄方法

Publications (1)

Publication Number Publication Date
JP2007165695A true JP2007165695A (ja) 2007-06-28

Family

ID=38248235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361700A Withdrawn JP2007165695A (ja) 2005-12-15 2005-12-15 超音波洗浄装置及びその超音波洗浄方法

Country Status (1)

Country Link
JP (1) JP2007165695A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077135A (ja) * 2009-09-29 2011-04-14 Dainippon Screen Mfg Co Ltd 基板の超音波洗浄条件決定方法及びこれを用いた基板洗浄装置
JP2011183300A (ja) * 2010-03-08 2011-09-22 Hitachi Kokusai Denki Engineering:Kk 超音波洗浄装置
KR101085280B1 (ko) 2008-09-18 2011-11-22 시바우라 메카트로닉스 가부시키가이샤 기판 처리 장치 및 기판 처리 방법
JP2013051356A (ja) * 2011-08-31 2013-03-14 Hitachi Kokusai Denki Engineering:Kk 超音波洗浄方法及びその装置
JP2014076440A (ja) * 2012-10-12 2014-05-01 Honda Electronic Co Ltd 超音波処理装置
WO2017104194A1 (ja) * 2015-12-14 2017-06-22 三菱電機株式会社 洗浄装置および洗浄方法、並びに膜分離バイオリアクタ
KR20180010232A (ko) * 2015-05-20 2018-01-30 에이씨엠 리서치 (상하이) 인코포레이티드 반도체 웨이퍼를 세정하는 방법 및 장치
CN109789450A (zh) * 2016-09-19 2019-05-21 盛美半导体设备(上海)有限公司 清洗衬底的方法和装置
US10953440B2 (en) 2017-04-19 2021-03-23 Honda Electronics Co., Ltd. Sound-pressure analyzer and a method in the high-intensity acoustic field, and an ultrasonic cleaner and an ultrasonic processor
US11037804B2 (en) 2016-09-20 2021-06-15 Acm Research, Inc. Methods and apparatus for cleaning substrates
US11141762B2 (en) 2015-05-15 2021-10-12 Acm Research (Shanghai), Inc. System for cleaning semiconductor wafers
US11257667B2 (en) 2016-04-06 2022-02-22 Acm Research (Shanghai) Inc. Methods and apparatus for cleaning semiconductor wafers
US11581205B2 (en) 2017-11-20 2023-02-14 Acm Research, Inc. Methods and system for cleaning semiconductor wafers

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085280B1 (ko) 2008-09-18 2011-11-22 시바우라 메카트로닉스 가부시키가이샤 기판 처리 장치 및 기판 처리 방법
JP2011077135A (ja) * 2009-09-29 2011-04-14 Dainippon Screen Mfg Co Ltd 基板の超音波洗浄条件決定方法及びこれを用いた基板洗浄装置
JP2011183300A (ja) * 2010-03-08 2011-09-22 Hitachi Kokusai Denki Engineering:Kk 超音波洗浄装置
JP2013051356A (ja) * 2011-08-31 2013-03-14 Hitachi Kokusai Denki Engineering:Kk 超音波洗浄方法及びその装置
JP2014076440A (ja) * 2012-10-12 2014-05-01 Honda Electronic Co Ltd 超音波処理装置
US11141762B2 (en) 2015-05-15 2021-10-12 Acm Research (Shanghai), Inc. System for cleaning semiconductor wafers
US11752529B2 (en) 2015-05-15 2023-09-12 Acm Research (Shanghai) Inc. Method for cleaning semiconductor wafers
KR20180010232A (ko) * 2015-05-20 2018-01-30 에이씨엠 리서치 (상하이) 인코포레이티드 반도체 웨이퍼를 세정하는 방법 및 장치
JP2018514953A (ja) * 2015-05-20 2018-06-07 エーシーエム リサーチ (シャンハイ) インコーポレーテッド 半導体ウエハの洗浄方法および洗浄装置
US10910244B2 (en) 2015-05-20 2021-02-02 Acm Research, Inc. Methods and system for cleaning semiconductor wafers
KR102359795B1 (ko) * 2015-05-20 2022-02-08 에이씨엠 리서치 (상하이) 인코포레이티드 반도체 웨이퍼를 세정하는 방법 및 장치
WO2017104194A1 (ja) * 2015-12-14 2017-06-22 三菱電機株式会社 洗浄装置および洗浄方法、並びに膜分離バイオリアクタ
US11257667B2 (en) 2016-04-06 2022-02-22 Acm Research (Shanghai) Inc. Methods and apparatus for cleaning semiconductor wafers
US11967497B2 (en) 2016-04-06 2024-04-23 Acm Research (Shanghai) Inc. Methods and apparatus for cleaning semiconductor wafers
US11103898B2 (en) 2016-09-19 2021-08-31 Acm Research, Inc. Methods and apparatus for cleaning substrates
US11638937B2 (en) 2016-09-19 2023-05-02 Acm Research, Inc. Methods and apparatus for cleaning substrates
CN109789450A (zh) * 2016-09-19 2019-05-21 盛美半导体设备(上海)有限公司 清洗衬底的方法和装置
US11037804B2 (en) 2016-09-20 2021-06-15 Acm Research, Inc. Methods and apparatus for cleaning substrates
US11848217B2 (en) 2016-09-20 2023-12-19 Acm Research (Shanghai) Inc. Methods and apparatus for cleaning substrates
US10953440B2 (en) 2017-04-19 2021-03-23 Honda Electronics Co., Ltd. Sound-pressure analyzer and a method in the high-intensity acoustic field, and an ultrasonic cleaner and an ultrasonic processor
US11581205B2 (en) 2017-11-20 2023-02-14 Acm Research, Inc. Methods and system for cleaning semiconductor wafers

Similar Documents

Publication Publication Date Title
JP2007165695A (ja) 超音波洗浄装置及びその超音波洗浄方法
KR101004073B1 (ko) 초음파 처리 방법 및 다중 주파수 변환기를 구비한 장치
JP6605044B2 (ja) 半導体ウエハの洗浄方法および洗浄装置
JP2008021672A (ja) ガス過飽和溶液を用いた超音波洗浄方法及び洗浄装置
US8011378B2 (en) Megasonic cleaning module
JP6171240B2 (ja) 超音波処理装置
JP6917775B2 (ja) ガス溶解液製造装置
US20060070641A1 (en) Cleaning probe and megasonic cleaning apparatus having the same
JP5759856B2 (ja) 超音波処理装置
JP2009502466A (ja) 空気に基づく液体の工業的消泡用マクロ音波発生器
JP2013086059A (ja) 超音波洗浄装置
JP2007027241A (ja) 超音波洗浄装置
JP2003320328A (ja) 超音波洗浄装置
CN109791899B (zh) 衬底清洗方法及清洗装置
JP2019145672A (ja) 洗浄装置
JP2009088227A (ja) 基板の処理装置及び処理方法
JP2009170709A (ja) 基板の処理装置及び処理方法
JP2017196546A (ja) 気体導入装置および気体導入方法
JP2007311379A (ja) 超音波洗浄装置
JP2009011879A (ja) 超音波洗浄装置及び超音波洗浄方法
CN114097024B (zh) 超声波清洗装置
JP3549452B2 (ja) 超音波洗浄装置
KR100242942B1 (ko) 다중 발진 초음파 세정장치
JP2011183300A (ja) 超音波洗浄装置
JP2015126167A (ja) 基板洗浄装置および基板洗浄方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303