JP2007161793A - Anisotropically conductive adhesive sheet - Google Patents

Anisotropically conductive adhesive sheet Download PDF

Info

Publication number
JP2007161793A
JP2007161793A JP2005357286A JP2005357286A JP2007161793A JP 2007161793 A JP2007161793 A JP 2007161793A JP 2005357286 A JP2005357286 A JP 2005357286A JP 2005357286 A JP2005357286 A JP 2005357286A JP 2007161793 A JP2007161793 A JP 2007161793A
Authority
JP
Japan
Prior art keywords
conductive particles
adhesive sheet
conductive
particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005357286A
Other languages
Japanese (ja)
Other versions
JP4994653B2 (en
Inventor
Akira Otani
章 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2005357286A priority Critical patent/JP4994653B2/en
Publication of JP2007161793A publication Critical patent/JP2007161793A/en
Application granted granted Critical
Publication of JP4994653B2 publication Critical patent/JP4994653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropically conductive adhesive sheet that has low connection resistance, high insulation resistance, and excellent fine electric circuit connectability. <P>SOLUTION: The anisotropically conductive adhesive sheet comprises at least a hardening agent, a curable insulating resin and conductive particles, wherein the average particle size of the conductive particles is 2 to 8 μm and more than 90% of the conductive particles are composed the conductive particles having a shortest distance of 0.1 to 2μ from the surface of one side of the anisotropically conductive adhesive sheet to the surface of the conductive particle. The conductive particles are preferably arranged so that the average interval between adjacent conductive particles may be 0.5 to 5 times of the average particle size of the conductive particle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微細回路接続性、接続信頼性に優れた異方導電性接着シート、それらを用いた接続構造体に関する。   The present invention relates to an anisotropic conductive adhesive sheet excellent in fine circuit connectivity and connection reliability, and a connection structure using them.

これまで、微細回路を接続するための異方導電性接着シートに関して、接続性改良、短絡防止のために、種々の導電性粒子の検討および、異方導電性接着剤構成の検討がなされている。例えば、導電性粒子と同等の熱膨張係数をもつ絶縁粒子を配合する方法(特許文献1参照)、短絡防止のため、導電性粒子の表面に絶縁性粒子を付着させる方法(特許文献2参照)、導電性粒子の表面を電気絶縁性樹脂で被覆する方法(特許文献3参照)、導電性粒子を含む層と含まない層とを積層し、隣接する回路間の短絡を防止する方法(特許文献4、5参照)、イオン捕捉剤粒子を配合して、イオン化しやすい材質からなる電極からのイオンマイグレーションによる短絡を防止する方法(特許文献6、7参照)及び片側表面に単独粒子を配置する方法(特許文献8)等が公知である。
導電性粒子を含む層と含まない層とを積層し、隣接する回路間の短絡を防止する等の従来技術においては、回路端子面側の導電性粒子数を増すことにより、回路端子と接続端子間に挟まれる導電性粒子数を増すことが可能である。しかしながら、回路端子の位置ずれ等で回路端子と接続端子が接近する場合には、回路端子に接触して、回路端子と接続端子に挟まれていない導電性粒子が多くなると、導電性粒子を介して、回路端子と接続端子との短絡が発生する危険性がある。一方、導電性粒子の表面を電気絶縁性樹脂で被覆する方法の場合、充分な絶縁性確保と接続性との両立を満足できるものではなかった。
So far, with regard to anisotropic conductive adhesive sheets for connecting microcircuits, various conductive particles and anisotropic conductive adhesive configurations have been studied in order to improve connectivity and prevent short circuits. . For example, a method of blending insulating particles having a thermal expansion coefficient equivalent to that of the conductive particles (see Patent Document 1), and a method of attaching the insulating particles to the surface of the conductive particles to prevent a short circuit (see Patent Document 2) , A method of coating the surface of conductive particles with an electrically insulating resin (see Patent Document 3), a method of laminating a layer including conductive particles and a layer not including conductive particles, and preventing a short circuit between adjacent circuits (Patent Document) 4, 5), a method of blending ion scavenger particles to prevent short-circuiting due to ion migration from an electrode made of a material that is easily ionized (see Patent Documents 6 and 7), and a method of arranging single particles on one side surface (Patent Document 8) and the like are known.
In conventional techniques such as laminating a layer containing conductive particles and a layer not containing conductive particles to prevent a short circuit between adjacent circuits, the number of conductive particles on the circuit terminal surface side is increased, whereby the circuit terminals and connection terminals It is possible to increase the number of conductive particles sandwiched between them. However, when the circuit terminal and the connection terminal come close to each other due to the positional deviation of the circuit terminal, the amount of conductive particles that are in contact with the circuit terminal and not sandwiched between the circuit terminal and the connection terminal increases. Therefore, there is a risk of short circuit between the circuit terminal and the connection terminal. On the other hand, in the case of the method of coating the surface of the conductive particles with an electrically insulating resin, it has not been possible to satisfy both sufficient insulation and connectivity.

特開平6−349339号公報JP-A-6-349339 特許第2895872号公報Japanese Patent No. 28958872 特公平7−99644号公報Japanese Patent Publication No. 7-99644 特開平6−45024号公報JP-A-6-45024 特開2003−49152号公報JP 2003-49152 A 特許第3035579号公報Japanese Patent No. 3035579 特許第3633422号公報Japanese Patent No. 3633422 国際公開第2005/054388号パンフレットInternational Publication No. 2005/054388 Pamphlet

本発明は、微細回路の隣接する回路間の絶縁性を損なうことなく、良好な電気的接続性を実現する異方導電性接着シート、その製造方法、およびそれを用いた微細接続構造体を提供することを目的とする。   The present invention provides an anisotropic conductive adhesive sheet that realizes good electrical connectivity without impairing insulation between adjacent circuits of a fine circuit, a method for producing the same, and a finely connected structure using the same. The purpose is to do.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、ある特定の平均粒径を持つ導電性粒子が、ある特定の範囲内に存在しており、その導電性粒子がある特定割合以上の導電性粒子と接触せずに存在していることを特徴とする異方導電性接着シートを用いることによって、上記課題を解決できることを見出した。
すなわち、本発明は以下に記載する通りのものである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor found that conductive particles having a specific average particle diameter exist within a specific range, and that the conductive particles are specified. It has been found that the above-mentioned problems can be solved by using an anisotropic conductive adhesive sheet characterized by being present without contacting with a proportion or more of the conductive particles.
That is, the present invention is as described below.

(1) 少なくとも硬化剤、硬化性の絶縁樹脂及び導電性粒子からなる異方導電性接着シートであって、該導電性粒子の平均粒径が2〜8μmであり、異方導電性接着シートの片側表面から導電性粒子表面までの最短距離が0.1μm〜2μmの範囲内にある導電性粒子が導電性粒子個数の90%以上であることを特徴とする異方導電性接着シート。
(2)導電性粒子個数の95%以上が他の導電性粒子と接触せずに存在していることを特徴とする(1)に記載の異方導電性接着シート。
(3) 近接する導電性粒子同士の平均粒子間隔が導電性粒子の平均粒径の0.5倍以上5倍以下となるように配列していることを特徴とする(1)又は(2)に記載の異方導電性接着シート。
(4) それぞれが少なくとも硬化剤及び硬化性樹脂からなる膜厚の異なる2層の接着層、並びに導電性粒子よりなる異方導電性接着シートであって、導電性粒子が2層の接着層の界面に存在し、膜厚の薄い接着層に含まれる導電性粒子部分が導電性粒子の平均粒径の1/50から4/5であることを特徴とする(1)〜(3)のいずれか1つに記載の異方導電性接着シート。
(5)前記膜厚の薄い接着層の弾性率が、膜厚の厚い接着層の弾性率より高いことを特徴とする(4)に記載の異方導電性接着シート。
(6) 前記膜厚の薄い接着層の硬化反応率が、膜厚の厚い接着層の硬化反応率より高いことを特徴とする(4)又は(5)に記載の異方導電性接着シート。
(7) 2軸延伸可能なフィルム上に粘着層を設けて積層体を形成し、該積層体の上に平均粒径2〜8μmの導電性粒子を付着させて導電性粒子付着フィルムを作製し、該導電性粒子付着フィルムを該導電性粒子同士の平均粒子間隔が該導電性粒子の平均粒径の0.5倍以上5倍以下になるように2軸延伸して保持し、2軸延伸して保持した後、支持体上に少なくとも硬化剤、及び硬化性の絶縁性樹脂を含んでなる接着シートに、該導電性粒子を転写し、2軸延伸可能なフィルムを剥離し、導電性粒子を転写した面に、少なくとも硬化剤及び硬化性の絶縁性樹脂からなる接着層を積層する工程を含むことを特徴とする(1)〜(6)のいずれか1つに記載の異方導電性接着シートの製造方法。
(8) 2軸延伸可能なフィルム上に少なくとも硬化剤及び硬化性樹脂からなる粘着層を設けて積層体を形成し、該積層体の上に平均粒径2〜8μmの導電性粒子を付着させて導電性粒子付着フィルムを作製し、該導電性粒子付着フィルムを該導電性粒子同士の平均粒子間隔が該導電性粒子の平均粒径の0.5倍以上5倍以下になるように2軸延伸して保持し、2軸延伸して保持した後、導電性粒子が存在する面に、少なくとも硬化剤、及び硬化性の絶縁性樹脂を含んでなる接着シートに該導電性粒子及び粘着層を転写し、積層する工程を含むことを特徴とする(1)〜(6)のいずれか1つに記載の異方導電性接着シートの製造方法。
(9)(1)〜(6)いずれか1つに記載の異方導電性接着シートにおける導電性粒子から片側表面までの最短距離の面を相対的に配線高さの低い回路基板面に配し、相対的に配線高さの高い電子部品を加熱圧着して回路基板と電子部品とを接続することを特徴とする接続構造体の製造方法。
(10)(9)記載の方法により製造された接構造体。
(1) An anisotropic conductive adhesive sheet comprising at least a curing agent, a curable insulating resin, and conductive particles, wherein the conductive particles have an average particle diameter of 2 to 8 μm, and the anisotropic conductive adhesive sheet An anisotropic conductive adhesive sheet, wherein the conductive particles having the shortest distance from the surface on one side to the surface of the conductive particles in the range of 0.1 μm to 2 μm are 90% or more of the number of conductive particles.
(2) The anisotropic conductive adhesive sheet according to (1), wherein 95% or more of the number of conductive particles is present without being in contact with other conductive particles.
(3) (1) or (2), characterized in that the average particle spacing between adjacent conductive particles is arranged to be 0.5 to 5 times the average particle size of the conductive particles An anisotropic conductive adhesive sheet as described in 1.
(4) Two layers of adhesive layers having different film thicknesses each consisting of at least a curing agent and a curable resin, and anisotropic conductive adhesive sheets made of conductive particles, wherein the conductive particles are two layers of the adhesive layer. Any one of (1) to (3), wherein the conductive particle portion present at the interface and contained in the thin adhesive layer is 1/50 to 4/5 of the average particle diameter of the conductive particles An anisotropic conductive adhesive sheet according to claim 1.
(5) The anisotropic conductive adhesive sheet according to (4), wherein an elastic modulus of the thin adhesive layer is higher than an elastic modulus of the thick adhesive layer.
(6) The anisotropic conductive adhesive sheet according to (4) or (5), wherein a curing reaction rate of the thin adhesive layer is higher than a curing reaction rate of the thick adhesive layer.
(7) An adhesive layer is provided on a biaxially stretchable film to form a laminate, and conductive particles having an average particle diameter of 2 to 8 μm are adhered onto the laminate to produce a conductive particle-adhered film. The conductive particle-adhering film is biaxially stretched and held so that the average particle spacing between the conductive particles is 0.5 to 5 times the average particle diameter of the conductive particles. The conductive particles are transferred to an adhesive sheet containing at least a curing agent and a curable insulating resin on the support, and the biaxially stretchable film is peeled off, and then the conductive particles. The anisotropic conductivity according to any one of (1) to (6), including a step of laminating an adhesive layer made of at least a curing agent and a curable insulating resin on the surface to which the material is transferred. Manufacturing method of adhesive sheet.
(8) An adhesive layer composed of at least a curing agent and a curable resin is provided on a biaxially stretchable film to form a laminate, and conductive particles having an average particle diameter of 2 to 8 μm are adhered onto the laminate. The conductive particle-attached film is biaxially formed so that the average particle interval between the conductive particles is 0.5 to 5 times the average particle size of the conductive particles. After stretching and holding, and biaxially stretching and holding, the conductive particles and the pressure-sensitive adhesive layer are provided on an adhesive sheet containing at least a curing agent and a curable insulating resin on the surface where the conductive particles are present. The method for producing an anisotropic conductive adhesive sheet according to any one of (1) to (6), comprising a step of transferring and laminating.
(9) In the anisotropic conductive adhesive sheet according to any one of (1) to (6), the surface with the shortest distance from the conductive particles to the one-side surface is arranged on the circuit board surface having a relatively low wiring height. And a method of manufacturing a connection structure, wherein the circuit board and the electronic component are connected by thermocompression bonding of an electronic component having a relatively high wiring height.
(10) A contact structure produced by the method according to (9).

本発明の異方導電性接着シート及び微細接続構造体は、隣接する接続端子間の良好な絶縁特性を有し、かつ接続した接続端子間の良好な電気的接続性を有する。すなわち、絶縁性が必要な異方導電性接着シートの面内方向には特定の平均粒径の導電性粒子を配置させ、異方導電性接着シートの片側表面から導電性粒子表面までの最短距離を特定の範囲内にすることにより圧着時の短絡を防止し、また、接続部分以外の接続基板配線と導電性粒子との間に所定の間隔を保持することにより、良好な絶縁性を確保することが出来る。   The anisotropic conductive adhesive sheet and the fine connection structure of the present invention have good insulation characteristics between adjacent connection terminals and good electrical connectivity between connected connection terminals. That is, conductive particles having a specific average particle diameter are arranged in the in-plane direction of the anisotropic conductive adhesive sheet that requires insulation, and the shortest distance from one side surface of the anisotropic conductive adhesive sheet to the conductive particle surface By preventing the short circuit at the time of crimping by keeping within a specific range, good insulation is ensured by maintaining a predetermined interval between the connection substrate wiring other than the connection part and the conductive particles I can do it.

以下、本発明について具体的に説明する。
本発明の異方導電性接着シートにおける導電性粒子としては、貴金属被覆された樹脂粒子、貴金属被覆された金属粒子、金属粒子、貴金属被覆された合金粒子、及び合金粒子の中から選ばれた1種以上を用いることが好ましい。貴金属被覆された樹脂粒子としては、ポリスチレン、ベンゾグアナミン、ポリメチルメタアクリレート等の球状粒子にニッケル、および金をこの順に被覆したものを用いることが好ましい。
Hereinafter, the present invention will be specifically described.
The conductive particles in the anisotropic conductive adhesive sheet of the present invention are selected from resin particles coated with noble metal, metal particles coated with noble metal, metal particles, alloy particles coated with noble metal, and alloy particles. It is preferable to use more than one species. As the resin particles coated with the noble metal, it is preferable to use those obtained by coating spherical particles such as polystyrene, benzoguanamine, and polymethyl methacrylate with nickel and gold in this order.

接続する微細接続端子(バンプ)硬度に応じて、より柔軟な樹脂粒子を用いて貴金属被覆された樹脂粒子を形成することができる。
接続するバンプ硬度がビッカース硬度で50Hv未満である場合は、ポリメタアクリレート樹脂等の柔軟な樹脂粒子を用いることが好ましい。また、バンプ硬度が50Hv以上である場合は、ベンゾグアナミン樹脂等の硬質樹脂粒子を用いることが好ましい。
Resin particles coated with a noble metal can be formed using softer resin particles according to the hardness of the fine connection terminal (bump) to be connected.
When the bump hardness to be connected is less than 50 Hv in terms of Vickers hardness, it is preferable to use flexible resin particles such as polymethacrylate resin. Moreover, when bump hardness is 50 Hv or more, it is preferable to use hard resin particles, such as a benzoguanamine resin.

貴金属被覆された金属粒子としては、ニッケル、銅等の金属粒子に金、パラジウム、ロジウム等の貴金属を最外層に被覆したものを用いることが好ましい。被覆する方法としては、蒸着法、スパッタリング法等の薄膜形成法、乾式ブレンド法によるコーティング法、無電解めっき法、電解めっき法等の湿式法を用いることができる。量産性の点から、無電解めっき法が好ましい。   As the metal particles coated with the noble metal, it is preferable to use a metal particle such as nickel or copper coated with a noble metal such as gold, palladium or rhodium on the outermost layer. As a coating method, a thin film forming method such as a vapor deposition method or a sputtering method, a coating method using a dry blend method, a wet method such as an electroless plating method or an electrolytic plating method can be used. From the viewpoint of mass productivity, the electroless plating method is preferable.

金属粒子としては、銀、銅、ニッケル等の金属から選ばれるものを用いることが好ましい。合金粒子としては、融点が150℃以上500℃以下のものが好ましく、さらには150℃以上350℃以下の低融点合金粒子を用いることがより好ましい。融点が500℃以下であると、接続端子間に金属結合を形成することも可能であり、接続信頼性の点から好ましい。また、耐熱接続信頼性の観点から、融点が150℃以上であることが好ましい。   As the metal particles, those selected from metals such as silver, copper and nickel are preferably used. The alloy particles preferably have a melting point of 150 ° C. or more and 500 ° C. or less, and more preferably low melting point alloy particles having a melting point of 150 ° C. or more and 350 ° C. or less. When the melting point is 500 ° C. or less, a metal bond can be formed between the connection terminals, which is preferable from the viewpoint of connection reliability. Moreover, it is preferable that melting | fusing point is 150 degreeC or more from a viewpoint of heat-resistant connection reliability.

貴金属被覆された合金粒子としては、例えば、金、銀、銅、ニッケル、錫、亜鉛、ビスマス、インジウム等から選ばれた2種以上からなる合金粒子に上記方法等を用いて貴金属被覆したものを用いることができる。
合金粒子としては、例えば、金、銀、銅、ニッケル、錫、亜鉛、ビスマス、インジウム等から選ばれた2種以上からなる合金粒子が好ましい。融点が150℃以上500℃以下の合金粒子を用いる場合は、予め粒子表面にフラックス等を被覆しておくことが好ましい。いわゆるフラックスを用いることにより、表面の酸化物等を取り除くことができ好ましい。フラックスとしては、アビエチン酸等の脂肪酸等を用いることができる。
As the alloy particles coated with the noble metal, for example, alloy particles composed of two or more kinds selected from gold, silver, copper, nickel, tin, zinc, bismuth, indium, etc. are coated with the noble metal using the above method or the like. Can be used.
As the alloy particles, for example, alloy particles composed of two or more selected from gold, silver, copper, nickel, tin, zinc, bismuth, indium and the like are preferable. When alloy particles having a melting point of 150 ° C. or higher and 500 ° C. or lower are used, it is preferable to coat the particle surface with a flux or the like in advance. It is preferable to use a so-called flux because the surface oxides can be removed. As the flux, fatty acids such as abietic acid can be used.

導電性粒子の平均粒径と最大粒径の比は2以下であることが好ましく、1.5以下であることがより好ましい。該導電性粒子の粒度分布はより狭いほうが好ましく、該導電性粒子の粒径分布の幾何標準偏差は、1.2〜2.5であることが好ましく、1.2〜1.4であることが特に好ましい。幾何標準偏差が上記値であると粒径のバラツキが小さくなる。通常、接続する2端子間に一定のギャップが存在する場合には、粒径が揃っているほど、導電性粒子が有効に機能すると考えられる。   The ratio of the average particle size to the maximum particle size of the conductive particles is preferably 2 or less, and more preferably 1.5 or less. The particle size distribution of the conductive particles is preferably narrower, and the geometric standard deviation of the particle size distribution of the conductive particles is preferably 1.2 to 2.5, and preferably 1.2 to 1.4. Is particularly preferred. When the geometric standard deviation is the above value, the variation in particle size is reduced. Usually, when a certain gap exists between two terminals to be connected, it is considered that the conductive particles function more effectively as the particle diameters become uniform.

導電性粒子の粒度分布の幾何標準偏差とは、粒度分布のσ値(累積84.13%の粒径値)を累積50%の粒径値で除した値である。粒度分布のグラフの横軸に粒径(対数)を設定し、縦軸に累積値(%、累積個数比、対数)を設定すると粒径分布はほぼ直線になり、粒径分布は対数正規分布に従う。累積値とは全粒子数に対して、ある粒径以下の粒子の個数比を示したもので、%で表す。粒径分布のシャープさはσ(累積84.13%の粒径値)と平均粒径(累積50%の粒径値)の比で表現される。σ値は実測値あるいは、前述グラフのプロット値からの読み取り値である。   The geometric standard deviation of the particle size distribution of the conductive particles is a value obtained by dividing the σ value of the particle size distribution (the particle size value of 84.13% cumulative) by the particle size value of 50% cumulative. When the particle size distribution (logarithm) is set on the horizontal axis of the particle size distribution graph and the cumulative value (%, cumulative number ratio, logarithm) is set on the vertical axis, the particle size distribution is almost linear, and the particle size distribution is lognormal distribution. Follow. The cumulative value indicates the number ratio of particles having a certain particle size or less with respect to the total number of particles, and is expressed in%. The sharpness of the particle size distribution is expressed by the ratio of σ (the cumulative particle size value of 84.13%) and the average particle size (the cumulative particle size value of 50%). The σ value is an actual measurement value or a read value from the plot value of the graph.

導電性粒子の平均粒径及び粒度分布は、公知の方法、装置を用いて測定することができ、湿式粒度分布計、レーザー式粒度分布計等を用いることができる。あるいは、電子顕微鏡等で粒子を観察し、平均粒径、粒度分布を算出しても構わない。本発明の平均粒径及び粒度分布はレーザー式粒度分布計により求めることが出来る。
導電性粒子の平均粒径は2〜8μmであることが好ましく、2〜5μmであることがさらに好ましく、2.5〜3.5μmが最も好ましい。絶縁性の観点から8μm以下が好ましく、接続端子等の高さバラツキ等の影響を受けにくく、また、電気的接続性の観点から2μm以上が好ましい。
The average particle size and particle size distribution of the conductive particles can be measured using a known method and apparatus, and a wet particle size distribution meter, a laser type particle size distribution meter and the like can be used. Alternatively, the average particle size and particle size distribution may be calculated by observing the particles with an electron microscope or the like. The average particle size and particle size distribution of the present invention can be determined by a laser particle size distribution meter.
The average particle size of the conductive particles is preferably 2 to 8 μm, more preferably 2 to 5 μm, and most preferably 2.5 to 3.5 μm. The thickness is preferably 8 μm or less from the viewpoint of insulation, is less susceptible to variations in height of connection terminals and the like, and is preferably 2 μm or more from the viewpoint of electrical connectivity.

本発明の異方導電性接着シートは、導電性粒子個数(導電性粒子総個数)の90%以上、より好ましくは95%以上、更に好ましくは98%、最も好ましくは100%において、導電性接着シートの片側表面から導電性粒子表面までの最短距離が0.1μmから2μmである。絶縁性確保の観点から0.1μm以上であることが好ましく、接続時の導電性粒子数確保の観点から2μm以下であることが好ましい。より好ましくは、0.2μmから1μmである。本発明の異方導電性接着シートにおいて、該異方導電性接着シートの厚み方向に対して、導電性粒子の存在している位置は、焦点方向の変位を測定できるレーザー顕微鏡により測定することができる。またこのとき同時に、導電性粒子が他の導電性粒子と接触せずに存在している個数を測定することもできる。前記レーザー顕微鏡を用いて焦点方向の変位を測定する場合、その変位測定分解能は0.05μm以下であることが好ましく、0.01μm以下であることが特に好ましい。
本願明細書では、他の導電性粒子と接触せずに存在する導電性粒子を「単独粒子」という場合がある。
The anisotropic conductive adhesive sheet of the present invention has a conductive adhesive ratio of 90% or more, more preferably 95% or more, still more preferably 98%, most preferably 100% of the number of conductive particles (total number of conductive particles). The shortest distance from one surface of the sheet to the surface of the conductive particles is 0.1 μm to 2 μm. From the viewpoint of ensuring insulation, it is preferably 0.1 μm or more, and from the viewpoint of securing the number of conductive particles at the time of connection, it is preferably 2 μm or less. More preferably, it is 0.2 μm to 1 μm. In the anisotropic conductive adhesive sheet of the present invention, the position where the conductive particles are present relative to the thickness direction of the anisotropic conductive adhesive sheet can be measured by a laser microscope capable of measuring the displacement in the focal direction. it can. At the same time, it is also possible to measure the number of conductive particles that exist without contacting other conductive particles. When the displacement in the focal direction is measured using the laser microscope, the displacement measurement resolution is preferably 0.05 μm or less, and particularly preferably 0.01 μm or less.
In the present specification, conductive particles that exist without being in contact with other conductive particles may be referred to as “single particles”.

本発明においては、導電性粒子個数の95%以上が他の導電性粒子と接触せずに存在していることが好ましく、より好ましくは98%以上、更に好ましくは100%が接触せずに存在していることが好ましい。
本発明の異方導電性接着シートにおいては、近接する導電性粒子同士の平均粒子間隔は、導電性粒子の平均粒径の0.5倍以上5倍以下が好ましい。より好ましくは、20μm以下で、かつ導電性粒子の平均粒径の1.5倍以上3倍以下である。
In the present invention, it is preferable that 95% or more of the number of conductive particles is present without contact with other conductive particles, more preferably 98% or more, and further preferably 100% is present without contact. It is preferable.
In the anisotropic conductive adhesive sheet of the present invention, the average particle interval between adjacent conductive particles is preferably 0.5 to 5 times the average particle size of the conductive particles. More preferably, the average particle size is 20 μm or less and 1.5 to 3 times the average particle size of the conductive particles.

本発明において、近接する導電性粒子とは、任意の導電性粒子を選定し、該導電性粒子に最も近い6個の導電性粒子を言う。また、本発明における近接する導電性粒子同士の平均粒子間隔は以下のようにして求められる。
まず、本発明の異方導電性接着シートを、導電性粒子が存在する面側から光学顕微鏡で拡大した写真を撮影する。次に、任意の20個の導電性粒子を選定し、そのそれぞれの導電性粒子に最も近い6個の導電性粒子との距離を測定し、全体の平均値を求めて、平均粒子間隔とする。導電性粒子の平均粒子間隔のバラツキは小さい方が好ましく、それらの標準偏差が平均粒子間隔の10%以下であることが好ましい。
In the present invention, the adjacent conductive particles are selected from arbitrary conductive particles and refer to six conductive particles closest to the conductive particles. Moreover, the average particle | grain space | interval of the adjacent electroconductive particles in this invention is calculated | required as follows.
First, the photograph which expanded the anisotropically conductive adhesive sheet of this invention with the optical microscope from the surface side in which electroconductive particle exists is image | photographed. Next, arbitrary 20 conductive particles are selected, the distance from the 6 conductive particles closest to the respective conductive particles is measured, and the average value of the whole is obtained to obtain the average particle interval. . The variation in the average particle spacing of the conductive particles is preferably small, and the standard deviation thereof is preferably 10% or less of the average particle spacing.

本発明の異方導電性接着シートは、それぞれが少なくとも硬化剤及び硬化性樹脂からなる2層の接着層という構造であって、それらの界面に導電性粒子を配して積層する構造をとることが好ましい。
2層の接着シートを積層する場合、膜厚の薄い接着層に含まれる導電性粒子部分が導電性粒子の平均粒径の1/50から4/5の範囲にあることが好ましく、1/20から3/5の範囲であることがより好ましい。接続時の樹脂流動による凝集等の観点から2層の界面に導電性粒子が存在することが好ましく、1/50から4/5の範囲の場合は、樹脂流動の影響を受け難く好ましい。
The anisotropic conductive adhesive sheet of the present invention has a structure of two adhesive layers each composed of at least a curing agent and a curable resin, and has a structure in which conductive particles are arranged and laminated on the interface between them. Is preferred.
In the case of laminating two adhesive sheets, the conductive particle portion contained in the thin adhesive layer is preferably in the range of 1/50 to 4/5 of the average particle diameter of the conductive particles. Is more preferably in the range of 3/5. From the viewpoint of aggregation due to resin flow at the time of connection, the conductive particles are preferably present at the interface between the two layers, and in the range of 1/50 to 4/5, it is preferable that the resin flow is hardly affected.

また、積層する2層の接着層のうち、膜厚の薄い接着層の弾性率が、膜厚の厚い接着層の接着シートの弾性率より高い方が好ましい。この場合、接続時の樹脂流動による導電性粒子の移動が起こり難く、かつ、接続構造体の接続信頼性が良好であり、好ましい。それぞれの接着層の弾性率は、それぞれの接着層のシートを作製し、このシートを接続条件温度で充分に硬化させ、それらのシートを用いて、例えば、テンシロン法、あるいは、バイブロン法等で測定することができる。それぞれの接着シートの25℃の弾性率は、いずれの測定方法においても0.5GPa以上5GPa以下であることが好ましく、より好ましくは1から4GPaの範囲である。   Of the two adhesive layers to be laminated, the elastic modulus of the thin adhesive layer is preferably higher than the elastic modulus of the adhesive sheet of the thick adhesive layer. In this case, the movement of the conductive particles due to the resin flow at the time of connection hardly occurs, and the connection reliability of the connection structure is good, which is preferable. The elastic modulus of each adhesive layer is measured by, for example, the Tensilon method or the Vibron method, etc., by preparing a sheet of each adhesive layer, sufficiently curing this sheet at the connection condition temperature. can do. The elastic modulus at 25 ° C. of each adhesive sheet is preferably 0.5 GPa or more and 5 GPa or less in any measurement method, and more preferably in the range of 1 to 4 GPa.

さらに、積層する2層の接着層のうち、膜厚の薄い接着層の硬化反応率が、膜厚の厚い接着層の硬化反応率よりも高い方が好ましい。この場合、接続構造体の接続信頼性が良好であり好ましい。それぞれの接着層の硬化反応率は、それぞれの接着層のシートを作製し、このシートで測定することができる。例えば、接着層のシートをフッ素樹脂シートの如く剥離性の良い2枚のシート間に挟み込み、通常の接続温度以下の温度(例えば80%の温度)及び通常の接続条件の時間で加熱して試験シートを作製する。これらのシートを用いて、処理前後の顕微IR等による官能基の消費率測定値、あるいは、示差走査熱量測定装置を用いる反応熱量比計算により、硬化反応率を算出することができる。硬化反応率の具体的な算出方法としては、たとえば、エポキシ樹脂を用いている場合には、接着層をシート化してシートのIR測定を行い、エポキシ基吸収強度(914cm−1)/メチル基吸収強度(2922cm−1)の比(強度比)を算出し、シートに熱をかけて硬化させた硬化率測定サンプルについても同様に算出し、加熱前後の強度比の比を計算し、エポキシ基残存率を算出し、100%からエポキシ基残存率を差し引いて硬化反応率とする。 Furthermore, it is preferable that, among the two adhesive layers to be laminated, the curing reaction rate of the thin adhesive layer is higher than the curing reaction rate of the thick adhesive layer. In this case, the connection reliability of the connection structure is good and preferable. The curing reaction rate of each adhesive layer can be measured by preparing a sheet of each adhesive layer and using this sheet. For example, a sheet of an adhesive layer is sandwiched between two sheets having good releasability such as a fluororesin sheet, and the test is performed by heating at a temperature equal to or lower than a normal connection temperature (for example, 80% temperature) and a normal connection condition. A sheet is produced. Using these sheets, the curing reaction rate can be calculated by measuring the consumption rate of the functional group by microscopic IR before and after the treatment, or by calculating the reaction heat amount ratio using a differential scanning calorimeter. As a specific method for calculating the curing reaction rate, for example, when an epoxy resin is used, the adhesive layer is formed into a sheet, the sheet is subjected to IR measurement, and the epoxy group absorption strength (914 cm −1 ) / methyl group absorption. The ratio (strength ratio) of the strength (2922 cm −1 ) was calculated, and the ratio of the strength ratio before and after heating was calculated in the same manner for the curing rate measurement sample that was cured by applying heat to the sheet. The rate is calculated, and the curing reaction rate is obtained by subtracting the epoxy group residual rate from 100%.

接着シートを積層する方法としては、公知の方法を用いることができる。
しかしながら、通常0.1μm〜2.0μmの距離を保つためには、その距離に近い膜厚の接着シートを積層する必要があるが、そのような極薄のシートを巧く積層し、かつ、距離を制御することは容易ではない。例えば、薄い接着シートを予め作製して積層する場合は、最初に転写するシートへの食い込みを浅くして、露出させる形にして、積層する薄い接着シートへ充分に食い込ませることにより導電性粒子から表面までの距離を0.1μm〜2.0μmに制御することができる。また、予め導電性粒子を所定の深さまで埋め込んだ接着シート上に少なくとも硬化剤、硬化性樹脂および溶剤からなる樹脂溶液を、例えばダイコーター、ブレードコーター、コンマコーター等の塗工装置を用いて塗布し、溶剤乾燥して、所定の膜厚の接着層を形成する方法等を用いることができる。
本発明の異方導電性接着シートに用いる硬化性の絶縁性樹脂としては、熱硬化性樹脂、光硬化性樹脂、光及び熱硬化性樹脂、電子線硬化性樹脂等を用いることができる。取り扱いの容易さから、熱硬化性の絶縁性樹脂を用いることが好ましい。熱硬化性樹脂としては、エポキシ樹脂、アクリル樹脂等を用いることができるが、エポキシ樹脂が特に好ましい。
エポキシ樹脂は、1分子中に2個以上のエポキシ基を有する化合物であり、グリシジルエーテル基、グリシジルエステル基、脂環式エポキシ基を有する化合物、分子内の二重結合をエポキシ化した化合物が好ましい。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂あるいは、それらの変性エポキシ樹脂を用いることができる。
As a method of laminating the adhesive sheet, a known method can be used.
However, in order to maintain a distance of usually 0.1 μm to 2.0 μm, it is necessary to laminate an adhesive sheet having a film thickness close to that distance, and such an extremely thin sheet is skillfully laminated, and It is not easy to control the distance. For example, when a thin adhesive sheet is prepared in advance and laminated, the bite into the sheet to be transferred first is shallow and exposed, and the conductive particles are sufficiently cut into the thin adhesive sheet to be laminated. The distance to the surface can be controlled to 0.1 μm to 2.0 μm. In addition, a resin solution composed of at least a curing agent, a curable resin, and a solvent is applied on an adhesive sheet in which conductive particles are embedded in advance to a predetermined depth using a coating apparatus such as a die coater, a blade coater, or a comma coater. Then, a method of drying the solvent and forming an adhesive layer having a predetermined thickness can be used.
As the curable insulating resin used for the anisotropic conductive adhesive sheet of the present invention, a thermosetting resin, a photocurable resin, light and thermosetting resin, an electron beam curable resin, or the like can be used. In view of ease of handling, it is preferable to use a thermosetting insulating resin. As the thermosetting resin, an epoxy resin, an acrylic resin, or the like can be used, and an epoxy resin is particularly preferable.
The epoxy resin is a compound having two or more epoxy groups in one molecule, and is preferably a compound having a glycidyl ether group, a glycidyl ester group or an alicyclic epoxy group, or a compound obtained by epoxidizing a double bond in the molecule. . Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, novolac phenol type epoxy resin, or modified epoxy resins thereof can be used.

本発明に用いる硬化剤は、前記硬化性の絶縁性樹脂を硬化できるものであればよい。硬化性の絶縁性樹脂として熱硬化性樹脂を用いる場合は、100℃以上で熱硬化性樹脂と反応し、硬化できるものが好ましい。エポキシ樹脂の場合は、保存性の点から、潜在性硬化剤であることが好ましく、例えば、イミダゾール系硬化剤、カプセル型イミダゾール系硬化剤、カチオン系硬化剤、ラジカル系硬化剤、ルイス酸系硬化剤、アミンイミド系硬化剤、ポリアミン塩系硬化剤、ヒドラジド系硬化剤等を用いることができる。保存性、低温反応性の点から、カプセル型のイミダゾール系硬化剤が好ましい。   The curing agent used in the present invention may be any one that can cure the curable insulating resin. When a thermosetting resin is used as the curable insulating resin, a resin that can be cured by reacting with the thermosetting resin at 100 ° C. or higher is preferable. In the case of an epoxy resin, a latent curing agent is preferable from the viewpoint of storage stability. For example, an imidazole curing agent, a capsule type imidazole curing agent, a cationic curing agent, a radical curing agent, a Lewis acid curing agent. An agent, an amine imide curing agent, a polyamine salt curing agent, a hydrazide curing agent, and the like can be used. From the viewpoint of storage stability and low-temperature reactivity, capsule-type imidazole curing agents are preferred.

本発明における異方導電性接着シートには、硬化剤及び硬化性の絶縁性樹脂以外に、熱可塑性樹脂等を配合しても構わない。熱可塑性樹脂を配合することにより、容易にシート状に形成することが出来る。この場合の配合量は、硬化剤及び硬化性の絶縁性樹脂を合わせた成分100質量部に対して200質量部以下であることが好ましく、100質量部以下であることが特に好ましい。   In the anisotropic conductive adhesive sheet of the present invention, a thermoplastic resin or the like may be blended in addition to the curing agent and the curable insulating resin. By blending a thermoplastic resin, it can be easily formed into a sheet. In this case, the blending amount is preferably 200 parts by mass or less, particularly preferably 100 parts by mass or less, based on 100 parts by mass of the components including the curing agent and the curable insulating resin.

本発明の硬化性の絶縁性樹脂に配合できる熱可塑性樹脂は、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、アルキル化セルロース樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、ポリエチレンテレフタレート樹脂等であり、それらから選ばれる1種または2種以上の樹脂を組み合わせても差し支えない。これらの樹脂の中、水酸基、カルボキシル基等の極性基を有する樹脂は、接着強度の点から好ましい。また、熱可塑性樹脂は、ガラス転移温度が80℃以上300℃以下である熱可塑性樹脂を1種以上含むことが好ましい。   Thermoplastic resins that can be blended with the curable insulating resin of the present invention include phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, alkylated cellulose resin, polyester resin, acrylic resin, styrene resin, urethane resin, polyethylene terephthalate resin, etc. There may be a combination of one or more resins selected from them. Among these resins, a resin having a polar group such as a hydroxyl group or a carboxyl group is preferable from the viewpoint of adhesive strength. Moreover, it is preferable that a thermoplastic resin contains 1 or more types of thermoplastic resins whose glass transition temperature is 80 degreeC or more and 300 degrees C or less.

本発明の異方導電性接着シートには、上記構成成分に添加剤を配合しても差し支えない。異方導電性接着シートと被着物との密着性を向上させるために、添加剤として、カップリング剤を配合することができる。該カップリング剤としては、シランカップリング剤、チタンカップリング剤、アルミカップリング剤等を用いることができるが、シランカップリング剤が好ましい。該シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メルカプトトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、β−アミノエチル−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン等を用いることができる。
該カップリング剤の配合量は硬化剤および硬化性の絶縁性樹脂を合わせた成分100質量部に対して、0.01質量部から1質量部が好ましい。密着性向上の観点から0.01質量部以上が好ましく、信頼性の観点から1質量部以下が好ましい。
In the anisotropic conductive adhesive sheet of the present invention, an additive may be blended with the above components. In order to improve the adhesion between the anisotropic conductive adhesive sheet and the adherend, a coupling agent can be blended as an additive. As the coupling agent, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, or the like can be used, and a silane coupling agent is preferable. Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-mercaptotrimethoxysilane, γ-aminopropyltrimethoxysilane, β-aminoethyl-γ- Aminopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, and the like can be used.
The blending amount of the coupling agent is preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the components including the curing agent and the curable insulating resin. 0.01 mass part or more is preferable from a viewpoint of adhesive improvement, and 1 mass part or less is preferable from a reliability viewpoint.

異方導電性接着シートの厚みは10μm以上、30μm以下であることが好ましく、15μm以上25μm以下であることがより好ましい。機械的接続強度の観点から10μm以上が好ましく、接続時の粒子流動による接続粒子数減少を防止する観点から30μm以下であることが好ましい。
異方導電性接着シートが、2層の接着層からなる場合は、2層の膜厚は一方を薄く、他方を厚くするが、厚い接着層の膜厚は5〜29.8μm、薄い接着層の膜厚は0.1μm以上、5μm未満が好ましい。
The thickness of the anisotropic conductive adhesive sheet is preferably 10 μm or more and 30 μm or less, and more preferably 15 μm or more and 25 μm or less. From the viewpoint of mechanical connection strength, it is preferably 10 μm or more, and from the viewpoint of preventing a decrease in the number of connected particles due to particle flow during connection, it is preferably 30 μm or less.
When the anisotropic conductive adhesive sheet is composed of two adhesive layers, the thickness of the two layers is one thin and the other thick, but the thick adhesive layer has a thickness of 5 to 29.8 μm. The film thickness is preferably 0.1 μm or more and less than 5 μm.

次に、本発明における導電性粒子個数の95%以上が他の導電性粒子と接触せずに存在している異方導電性フィルムの製造方法について例示する。
該異方導電性フィルムの製造方法としては、2軸延伸可能なフィルム又はシート上に、粘着層を形成し、その上に導電性粒子を単層配列し、それらを延伸することにより、該導電性粒子を分散配列させ、延伸した状態を保った状態で導電性粒子を少なくとも硬化剤及び硬化性の絶縁性樹脂からなる膜厚の厚い接着層に転写させ、その後に導電性粒子転写面側に少なくとも硬化剤及び硬化性の絶縁性樹脂からなる膜厚の薄い接着層を積層することが好ましい。
また、上記の粘着層として、少なくとも硬化剤及び硬化性の絶縁性樹脂からなる薄い接着層を用いることによって、導電性粒子が付着した薄い接着層を導電性粒子と共に厚い接着層へ転写して積層することも好ましい。
Next, an example of a method for producing an anisotropic conductive film in which 95% or more of the number of conductive particles in the present invention exists without contacting with other conductive particles will be described.
As the method for producing the anisotropic conductive film, an adhesive layer is formed on a biaxially stretchable film or sheet, conductive particles are arranged in a single layer on the film, and the conductive particles are stretched. The conductive particles are dispersed and arranged, and the conductive particles are transferred to a thick adhesive layer composed of at least a curing agent and a curable insulating resin while maintaining the stretched state, and then on the conductive particle transfer surface side. It is preferable to laminate a thin adhesive layer made of at least a curing agent and a curable insulating resin.
In addition, by using a thin adhesive layer made of at least a curing agent and a curable insulating resin as the adhesive layer, the thin adhesive layer to which the conductive particles are attached is transferred and laminated together with the conductive particles to the thick adhesive layer. It is also preferable to do.

2軸延伸可能なフィルムとしては、公知の樹脂フィルム等を用いることができるが、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂等の単独あるいは共重合体等、又は、ニトリルゴム、ブタジエンゴム、シリコーンゴム等のゴムシート等の柔軟で延伸可能な樹脂フィルムを用いることが好ましい。ポリプロピレン樹脂、ポリエステル樹脂が特に好ましい。延伸後の収縮率は10%以下であることが好ましい。粘着層として、少なくとも硬化剤及び硬化性の絶縁性樹脂からなる接着シートを用いる場合は、より低温で延伸することが好ましいため、ポリエチレン樹脂、シリコーンゴム等を用いることが好ましい。この場合は、前記接着シートの転写を容易にするため、予めフィルム上に剥離処理を施すことが好ましい。   As the biaxially stretchable film, a known resin film or the like can be used, but a polyethylene resin, a polypropylene resin, a polyester resin, a polyvinyl butyral resin, a polyvinyl alcohol resin, a polyvinylidene chloride resin alone or a copolymer, etc. Alternatively, it is preferable to use a flexible and stretchable resin film such as a rubber sheet such as nitrile rubber, butadiene rubber, or silicone rubber. Polypropylene resin and polyester resin are particularly preferable. The shrinkage after stretching is preferably 10% or less. When an adhesive sheet made of at least a curing agent and a curable insulating resin is used as the adhesive layer, it is preferable to use a polyethylene resin, silicone rubber, or the like because it is preferably stretched at a lower temperature. In this case, in order to facilitate the transfer of the adhesive sheet, it is preferable to perform a peeling treatment on the film in advance.

2軸延伸可能なフィルム上に導電性粒子を単層配列し、固定する方法としては、公知の方法を用いることができる。例えば、少なくとも熱可塑性樹脂を含む粘着層を該2軸延伸可能なフィルム上に形成し、その上に導電性粒子を接触させて付着させ、ゴムロール等で荷重をかけて単層で配列する方法を採ることができる。この場合、隙間無く充填するためには、付着−ロール操作を数回繰り返す方法が好ましい。球状の導電性粒子の場合、最密充填が最も安定した構造なので比較的容易に充填することができる。あるいは、該2軸延伸可能なフィルム上に粘着剤を塗布して接着層を形成し、その上に導電性粒子を付着させ、必要なら数回付着を繰り返し、単層で配列させる方法等を用いることができる。   As a method for arranging and fixing conductive particles on a biaxially stretchable film, a known method can be used. For example, a method in which an adhesive layer containing at least a thermoplastic resin is formed on the biaxially stretchable film, conductive particles are brought into contact therewith and adhered, and a single layer is arranged by applying a load with a rubber roll or the like. Can be taken. In this case, a method of repeating the adhesion-roll operation several times is preferable for filling without gaps. In the case of spherical conductive particles, since the closest packing is the most stable structure, it can be filled relatively easily. Alternatively, an adhesive is formed on the biaxially stretchable film to form an adhesive layer, and conductive particles are adhered thereon, and if necessary, the adhesion is repeated several times and arranged in a single layer. be able to.

導電性粒子を単層配列させた2軸延伸可能なフィルムを延伸させる方法としては、公知の方法を用いることができるが、均一分散配列という点から、2軸延伸装置を用いることが好ましい。粒子間隔の点から延伸度合いは、50%以上、500%以下であることが好ましく、100%以上、300%以下であることがより好ましい。なお、100%延伸するとは、延伸方向に沿って延伸した部分の長さが延伸前の長さの100%であることを言う。延伸方向は、任意であるが、延伸角度が90°の2軸延伸が好ましく、同時延伸が好ましい。2軸延伸の場合、各方向の延伸度合いは同じであっても異なっていても構わない。   As a method for stretching a biaxially stretchable film in which conductive particles are arranged in a single layer, a known method can be used, but a biaxial stretching device is preferably used from the viewpoint of uniform dispersion alignment. From the viewpoint of particle spacing, the degree of stretching is preferably 50% or more and 500% or less, and more preferably 100% or more and 300% or less. In addition, 100% stretching means that the length of the portion stretched along the stretching direction is 100% of the length before stretching. The stretching direction is arbitrary, but biaxial stretching with a stretching angle of 90 ° is preferable, and simultaneous stretching is preferable. In the case of biaxial stretching, the degree of stretching in each direction may be the same or different.

2軸延伸装置としては、同時2軸連続延伸装置が好ましい。
同時2軸連続延伸装置としては、公知のものを使用することができるが、長辺側をチャック金具で固定し、それらの間隔を縦横同時に延伸することにより連続延伸するテンター型延伸機が好ましい。延伸度を調整する方式としては、スクリュー方式、パンタグラフ方式を用いることが可能だが、調整の精度の観点から、パンタグラフ方式がより好ましい。加熱しながら延伸する場合は、延伸部分の手前に予熱ゾーンを設けて、延伸部分の後方に熱固定ゾーンを設けることが好ましい。
As the biaxial stretching apparatus, a simultaneous biaxial continuous stretching apparatus is preferable.
As the simultaneous biaxial continuous stretching apparatus, a known one can be used, but a tenter type stretching machine that continuously stretches by fixing the long side with a chuck fitting and simultaneously stretching the distance in the vertical and horizontal directions is preferable. As a method for adjusting the degree of stretching, a screw method or a pantograph method can be used, but a pantograph method is more preferable from the viewpoint of accuracy of adjustment. When stretching while heating, it is preferable to provide a preheating zone before the stretched portion and a heat setting zone behind the stretched portion.

粘着層に使用する粘着剤は、公知のものを使用することができるが、加熱しながら2軸延伸する場合は、非熱架橋性の粘着剤を用いることが好ましい。具体的には、天然ゴム系粘着剤、合成ゴム系粘着剤、合成樹脂エマルジョン系粘着剤、シリコーン系粘着剤、エチレン−酢酸ビニル共重合体粘着剤等を単独で、又は組み合わせて用いることができる。延伸前の導電性粒子保持性、延伸時の導電性粒子分散の均一性、延伸後の導電性粒子の転写性の観点から、天然ゴム系粘着剤をアクリレートでグラフト重合した粘着剤が特に好ましい。さらに、加熱延伸時の均一性の点から、延伸前に延伸温度以下で1分間から5分間加熱処理することが好ましい。   As the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer, a known one can be used, but when biaxial stretching is performed while heating, it is preferable to use a non-thermal crosslinkable pressure-sensitive adhesive. Specifically, natural rubber-based adhesives, synthetic rubber-based adhesives, synthetic resin emulsion-based adhesives, silicone-based adhesives, ethylene-vinyl acetate copolymer adhesives, and the like can be used alone or in combination. . From the viewpoint of conductive particle retention before stretching, uniformity of conductive particle dispersion during stretching, and transferability of conductive particles after stretching, a pressure-sensitive adhesive obtained by graft polymerization of a natural rubber-based pressure-sensitive adhesive with acrylate is particularly preferable. Furthermore, it is preferable to heat-process for 1 minute to 5 minutes below extending | stretching temperature before extending | stretching from the point of the uniformity at the time of heating extending | stretching.

粘着層の厚みは、使用する導電性粒子の平均粒径の1/50から3倍の範囲が好ましく、1/10から2倍の範囲がより好ましい。導電性粒子付着時及び延伸時に導電性粒子を保持する観点から、粘着層の厚みは該導電性粒子の平均粒径の1/50以上が好ましく、延伸後の接着シートへの粒子転写の観点から3倍以下が好ましい。粘着層形成方法としては、溶剤又は水に分散又は溶解したものを、グラビアコーター、ダイコーター、ナイフコーター、バーコーター、スプレーコート等の公知の方法で塗布し、乾燥する方法を用いることができる。ホットメルトタイプの粘着剤を使用する場合は、無溶剤でロールコートすることができる。   The thickness of the adhesive layer is preferably in the range of 1/50 to 3 times the average particle diameter of the conductive particles used, and more preferably in the range of 1/10 to 2 times. From the viewpoint of holding the conductive particles at the time of adhesion and stretching of the conductive particles, the thickness of the adhesive layer is preferably 1/50 or more of the average particle diameter of the conductive particles, from the viewpoint of particle transfer to the adhesive sheet after stretching. 3 times or less is preferable. As the method for forming the adhesive layer, a method in which a dispersion or solution in a solvent or water is applied and dried by a known method such as a gravure coater, a die coater, a knife coater, a bar coater, or a spray coat can be used. When a hot-melt type pressure-sensitive adhesive is used, it can be roll-coated without a solvent.

該導電性粒子を粘着層に塗布するにあたっては、ほぼ隙間無く単層で配列すること(密集充填)が好ましい。密集充填する方法としては、前述の、2軸延伸可能なフィルム上に導電性粒子を分散配列し、固定する方法を用いることができる。なお、密集充填とは、充填された粒子間の平均粒子間隔が、平均粒径の1/2以下であるように充填することをいうものとする。より好ましくは、充填された粒子間の平均粒子間隔が、平均粒径の1/5以下である。   In applying the conductive particles to the adhesive layer, it is preferable that the conductive particles are arranged in a single layer with almost no gap (dense packing). As a method for dense packing, the above-described method of dispersing and arranging conductive particles on a biaxially stretchable film can be used. In addition, close packing means filling so that the average particle | grain space | interval between the filled particles may be 1/2 or less of an average particle diameter. More preferably, the average particle interval between the filled particles is 1/5 or less of the average particle size.

2軸延伸後のフィルムの膜厚は、転写する接着性シート及び接着性シートのベースフィルムの膜厚を合計した厚みの1/10から1倍であることが好ましく、1/5から1/2であることが特に好ましい。延伸後のフィルムのハンドリング性の観点から、1/10以上であることが好ましく、延伸後の接着性フィルムへの粒子転写の観点から1倍以下であることが好ましい。   The film thickness of the biaxially stretched film is preferably 1/10 to 1 times the total thickness of the adhesive sheet to be transferred and the base film of the adhesive sheet, and 1/5 to 1/2. It is particularly preferred that From the viewpoint of handling properties of the stretched film, it is preferably 1/10 or more, and from the viewpoint of particle transfer to the adhesive film after stretching, it is preferably 1 time or less.

接着シートは、少なくとも硬化剤及び硬化性樹脂からなる接着層であり、この接着シートは、通常は剥離可能なベースフィルム(支持フィルム)上に形成される。このため、得られる異方導電性接着シートは、通常は剥離可能なベースフィルム上に形成される。本願明細書では、接着シートとベースフィルムとの積層体を接着シートと、また、この異方導電性接着シートとベースフィルムとの積層体を異方導電性接着シートということが有る。   The adhesive sheet is an adhesive layer composed of at least a curing agent and a curable resin, and this adhesive sheet is usually formed on a peelable base film (support film). For this reason, the anisotropically conductive adhesive sheet obtained is normally formed on the peelable base film. In the present specification, a laminate of the adhesive sheet and the base film may be referred to as an adhesive sheet, and a laminate of the anisotropic conductive adhesive sheet and the base film may be referred to as an anisotropic conductive adhesive sheet.

本発明の接続構造体を構成する電子回路部品としては、液晶ディスプレイ機器、プラズマディスプレイ機器、エレクトロルミネッセンスディスプレイ機器等の表示機器の配線板接続用途および、それら機器のLSI等の電子部品実装用途、その他の機器の配線基板接続部分、LSI等の電子部品実装用途に使用することができる。上記表示機器の中でも、信頼性を必要とされるプラズマディスプレイ機器、エレクトロルミネッセンスディスプレイ機器に用いるのが好ましい。
次に、実施例および比較例によって本発明を説明する。
The electronic circuit components constituting the connection structure of the present invention include wiring board connection applications for display devices such as liquid crystal display devices, plasma display devices, electroluminescence display devices, and electronic device mounting applications such as LSIs for these devices, and others. Can be used for mounting electronic circuit parts such as wiring board connection parts of LSIs and LSIs. Among the display devices, it is preferably used for plasma display devices and electroluminescence display devices that require reliability.
Next, the present invention will be described with reference to examples and comparative examples.

(接続構造体作製方法)
縦横が1.6mm×15.1mmのシリコン片(厚み0.5mm)全面に酸化膜を形成後、外辺部から40μm内側に横77μm、縦120μmのアルミ薄膜(1000Å)をそれぞれが23μm間隔になるように長辺側に各々140個、短辺側に各々14個形成する。さらに、その30μm内側に同じパターンで隙間とアルミ薄膜の位置が前記パターンと25μmずれた位置になるように同様なアルミ薄膜を形成する。それらアルミ薄膜上に25μm間隔になるように横25μm、縦100μmの金バンプ(厚み15μm)をそれぞれ2個ずつ形成するために、それぞれの金バンプ配置個所の外周部から7.5μm内側に横10μm、縦60μmの開口部を残す以外の部分に酸化ケイ素の保護膜を常法により前記開口部以外の全面に形成する。その後、前記金バンプを形成し、試験チップとする。
厚み0.7mmの無アルカリガラス上に前記外側アルミ薄膜上の金バンプが隣接するアルミ薄膜上の金バンプと対になる位置関係で接続されるようにインジウムスズ酸化物膜(1500Å)の接続パッド(横77μm、縦100μm)を形成する。20個の金バンプが接続される毎に前記接続パッドにインジウムスズ酸化物薄膜の引き出し配線を形成する(この引き出し配線が接続抵抗測定部分となる。)。
(Connection structure manufacturing method)
After forming an oxide film on the entire surface of a silicon piece (thickness 0.5 mm) of 1.6 mm × 15.1 mm in length and width, aluminum thin films (1000 mm) of 77 μm in width and 120 μm in length are placed at intervals of 23 μm, 40 μm inside. 140 pieces are formed on the long side and 14 pieces are formed on the short side. Further, a similar aluminum thin film is formed in the same pattern so that the gap and the position of the aluminum thin film are shifted from the pattern by 25 μm on the inner side of 30 μm. In order to form two gold bumps (thickness 15 μm) each having a width of 25 μm and a length of 100 μm on the aluminum thin film at intervals of 25 μm, a width of 10 μm inside 7.5 μm from the outer peripheral portion of each gold bump placement location. Then, a protective film of silicon oxide is formed on the entire surface other than the opening by a conventional method except for leaving the opening having a length of 60 μm. Thereafter, the gold bump is formed to obtain a test chip.
Connection pad of indium tin oxide film (1500 mm) so that gold bumps on the outer aluminum thin film are connected to a gold bump on the adjacent aluminum thin film on a non-alkali glass having a thickness of 0.7 mm so as to be paired with each other. (Width 77 μm, length 100 μm). Each time 20 gold bumps are connected, an indium tin oxide thin film lead wire is formed on the connection pad (this lead wire serves as a connection resistance measurement portion).

また、別の辺に前記外側のアルミ薄膜上の金バンプがそれぞれ接続されるような位置関係にインジウムスズ酸化物膜(1500Å)の接続パッド(横25μm、縦100μm)を形成する。前記接続パッドから各々引き出し配線(幅15μm、インジウムスズ酸化物膜)を内側の対応する位置のバンプの間を通して形成し、10バンプ分を接続できるようにインジウムスズ酸化物薄膜の接続配線を形成して接続する。さらに内側の10バンプ分をそれらと対になるように同様にして接続パッドを形成し、外側バンプ間を通して接続配線を形成して、櫛型パターンを形成する。それぞれの接続配線にインジウム錫酸化物薄膜の引出し配線を形成する(この引き出し配線が絶縁抵抗測定部分となる。)。   In addition, a connection pad (25 μm wide, 100 μm long) of an indium tin oxide film (1500 mm) is formed in such a positional relationship that the gold bumps on the outer aluminum thin film are connected to different sides. Lead wires (15 μm wide, indium tin oxide film) are formed from the connection pads through the corresponding bumps on the inner side, and indium tin oxide thin film connection wires are formed so that 10 bumps can be connected. Connect. Further, connection pads are formed in a similar manner so that the inner 10 bumps are paired with them, and connection wirings are formed between the outer bumps to form a comb pattern. A lead wire of an indium tin oxide thin film is formed on each connection wire (this lead wire becomes an insulation resistance measurement part).

それぞれの引出し配線上にアルミニウム−チタン薄膜(チタン1%、3000Å)を形成し、接続基板とする。前記接続基板上に、前記接続パッドがすべて覆われるように、幅2mm、長さ17mmの異方導電性接着シートの該導電性粒子の存在する側を仮張りし、2.5mm幅の圧着ヘッドを用いて、80℃、0.3MPa、3秒間加圧した後、ポリエチレンテレフタレートのベースフィルムを剥離する。そこへ、前記接続パッドと金バンプの位置が合うように試験チップを載せ、200℃で10秒間、2.0MPa加圧圧着する。圧着後、前記引出し配線間(金バンプ20個のデイジーチェイン)の抵抗値を四端子法の抵抗計で抵抗測定し、接続抵抗値とする。
また、対になった引き出し配線間の抵抗測定し、絶縁抵抗値とする。
An aluminum-titanium thin film (titanium 1%, 3000 mm) is formed on each lead wiring to form a connection substrate. A 2.5 mm wide pressure-bonding head is provided by temporarily stretching the side of the anisotropic conductive adhesive sheet having a width of 2 mm and a length of 17 mm where the conductive particles are present so that the connection pads are all covered on the connection substrate. After pressing at 80 ° C., 0.3 MPa for 3 seconds, the polyethylene terephthalate base film is peeled off. A test chip is placed there so that the positions of the connection pads and the gold bumps are aligned, and pressure bonding with 2.0 MPa is performed at 200 ° C. for 10 seconds. After the crimping, the resistance value between the lead wires (daisy chain of 20 gold bumps) is measured with a four-terminal resistance meter to obtain a connection resistance value.
In addition, the resistance between the paired lead wires is measured to obtain an insulation resistance value.

この絶縁抵抗試験基板を60℃、90%相対湿度中に保持しながら、定電圧定電流電源を用いて、対になる引き出し配線間に25Vの直流電圧を印加する。この配線間の絶縁抵抗を5分間毎に測定し、絶縁抵抗値が10MΩ以下になるまでの時間を測定し、その値を絶縁低下時間とする。この絶縁低下時間が240時間未満の場合を×、240時間以上の場合を○とする。   While maintaining this insulation resistance test substrate at 60 ° C. and 90% relative humidity, a DC voltage of 25 V is applied between the pair of lead wires using a constant voltage constant current power source. The insulation resistance between the wires is measured every 5 minutes, the time until the insulation resistance value becomes 10 MΩ or less is measured, and the value is defined as the insulation decrease time. The case where the insulation decrease time is less than 240 hours is indicated as x, and the case where the insulation decrease time is 240 hours or more is indicated as ◯.

[実施例1]
フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)35g、ビスフェノールA型エポキシ樹脂(エポキシ当量240、半固形)34gを酢酸エチル−トルエンの混合溶剤(混合比1:1)に溶解し、固形分50%溶液とした。マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径5μm、活性温度125℃)31g、前記固形分50%溶液に配合分散させた。その後、厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、60℃で15分間送風乾燥し、膜厚15μmのフィルム状の接着シートAを得た。
[Example 1]
35 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000) and 34 g of bisphenol A type epoxy resin (epoxy equivalent 240, semi-solid) are dissolved in a mixed solvent of ethyl acetate-toluene (mixing ratio 1: 1) to obtain a solid. A 50% min solution was obtained. A liquid epoxy resin containing a microcapsule type latent imidazole curing agent (average size of microcapsules 5 μm, active temperature 125 ° C.) 31 g was mixed and dispersed in the 50% solid content solution. Then, it apply | coated on the 50-micrometer-thick polyethylene terephthalate film, and air-dried at 60 degreeC for 15 minute (s), and the film-like adhesive sheet A with a film thickness of 15 micrometers was obtained.

フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)35g、ナフタレン型エポキシ樹脂(エポキシ当量136、半固形)34g、γ−グリシドキシプロピルトリメトキシシラン0.06gを酢酸エチル−トルエンの混合溶剤(混合比1:1)に溶解し、固形分50%溶液とした。マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径5μm、活性温度125℃)31g、前記固形分50%溶液に配合分散させた。その後、厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、60℃で15分間送風乾燥し、膜厚3μmのフィルム状の接着シートBを得た。   35 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000), 34 g of naphthalene type epoxy resin (epoxy equivalent 136, semi-solid), 0.06 g of γ-glycidoxypropyltrimethoxysilane, mixed solvent of ethyl acetate-toluene (Mixing ratio 1: 1) was dissolved to obtain a 50% solid content solution. A liquid epoxy resin containing a microcapsule type latent imidazole curing agent (average size of microcapsules 5 μm, active temperature 125 ° C.) 31 g was mixed and dispersed in the 50% solid content solution. Then, it apply | coated on the 50-micrometer-thick polyethylene terephthalate film, and air-dried at 60 degreeC for 15 minute (s), and the film-form adhesive sheet B with a film thickness of 3 micrometers was obtained.

接着シートA及びBそれぞれをポリエチレンテレフタレートフィルムから剥がした後、180℃、2時間加熱硬化した硬化フィルムを作製し、幅5mm、長さ70mmの短冊状サンプルを作製し、チャック間距離50mm、引張り速度10mm/分の条件で、引張り弾性率を測定した。その結果接着シートAの弾性率は、2.2GPa、接着シートBの弾性率は、2.6GPaであった。
また、接着シートA及びBをそれぞれ、ポリエチレンテレフタレートフィルムから剥がし、テフロン(登録商標)フィルム(25μm厚み)に挟み、160℃で10秒間、2.0MPa加圧圧着し、反応硬化率測定サンプルとする。それぞれの反応硬化率測定サンプルのIR測定を行った。
予め、加熱前の接着シートA及びBのIR測定を行い、エポキシ基吸収強度(914cm−1)/メチル基吸収強度(2922cm−1)の比をそれぞれ算出する。硬化率測定サンプルについても同様に算出する。加熱前後の強度比の比を計算し、エポキシ基残存率を算出する。100%からエポキシ基残存率を差し引いて硬化反応率とする。接着シートAの硬化反応率は、56%であり、接着シートBの硬化反応率は65%であった。
After peeling off each of the adhesive sheets A and B from the polyethylene terephthalate film, a cured film was prepared by heating and curing at 180 ° C. for 2 hours, a strip sample having a width of 5 mm and a length of 70 mm was prepared, a distance between chucks of 50 mm, and a tensile speed. The tensile elastic modulus was measured under the condition of 10 mm / min. As a result, the elastic modulus of the adhesive sheet A was 2.2 GPa, and the elastic modulus of the adhesive sheet B was 2.6 GPa.
Also, each of the adhesive sheets A and B is peeled off from the polyethylene terephthalate film, sandwiched between Teflon (registered trademark) film (25 μm thickness), and pressure-pressed at 2.0 MPa for 10 seconds at 160 ° C. to obtain a reaction hardening rate measurement sample. . IR measurement of each reaction hardening rate measurement sample was performed.
In advance, IR measurement is performed on the adhesive sheets A and B before heating, and the ratio of epoxy group absorption strength (914 cm −1 ) / methyl group absorption strength (2922 cm −1 ) is calculated. It calculates similarly about a hardening rate measurement sample. The ratio of the strength ratio before and after heating is calculated, and the residual ratio of epoxy groups is calculated. The epoxy reaction rate is subtracted from 100% to obtain the curing reaction rate. The curing reaction rate of the adhesive sheet A was 56%, and the curing reaction rate of the adhesive sheet B was 65%.

厚さ100μmの無延伸ポリプロピレンフィルム上に、粘着層として天然ゴム−メチルメタアクリレートのグラフト共重合体接着剤を6μmの厚みを塗布したものに平均粒径3.0μmの金めっきプラスチック粒子(導電性粒子)をほぼ隙間無く単層塗布した。すなわち、該導電性粒子を該フィルム幅より大きい容器内に数層以上の厚みになるよう敷き詰めたものを用意し、該導電性粒子に対して粘着剤の塗布面を下向きにして押し付けて付着させ、その後過剰な粒子を軟質ゴムからなるスクレバーで掻き落とした。
この操作を2回繰り返すことにより、隙間無く単層塗布した導電性粒子付着フィルムを得た。この導電性粒子付着フィルムを乾燥機中で、100℃、3分間加熱処理した。
Gold-plated plastic particles with an average particle size of 3.0 μm (conductivity) obtained by applying a natural rubber-methyl methacrylate graft copolymer adhesive 6 μm thick as an adhesive layer on an unstretched polypropylene film with a thickness of 100 μm The particles were applied in a single layer with almost no gap. That is, the conductive particles are prepared in a container having a thickness of several layers or more in a container larger than the film width, and the adhesive particles are pressed and adhered to the conductive particles with the application surface of the adhesive facing downward. Then, excess particles were scraped off with a scrubber made of soft rubber.
By repeating this operation twice, a conductive particle adhesion film coated with a single layer without a gap was obtained. This conductive particle adhesion film was heat-treated at 100 ° C. for 3 minutes in a dryer.

このフィルムを2軸延伸装置(東洋精機製X6H−S、パンタグラフ方式のコーナーストレッチ型の2軸延伸装置)を用いて縦横にそれぞれ10個のチャックを用いて固定し130℃、120秒間予熱し、その後5%/秒の速度で100%延伸して固定した。その後、この延伸フィルムに前記接着シートAをラミネートした後、ポリプロピレンフィルムを剥離した。この接着シートをレーザー顕微鏡で観察した結果、導電性粒子100個の平均飛び出し量は1.5μmであった。その後、接着シートBをラミネートして、異方導電性接着シートを得た。
レーザー顕微鏡観察の結果、導電性粒子100個のうち99%が単独粒子であった。また、平均粒子間隔は4.21μmであった。導電性粒子100個のうち100%が異方導電性接着シート表面から0.1μm以上2μm以下離れていた。
This film was fixed using 10 chucks vertically and horizontally using a biaxial stretching device (X6H-S manufactured by Toyo Seiki, pantograph type corner stretch type biaxial stretching device), preheated at 130 ° C. for 120 seconds, Thereafter, the film was stretched and fixed by 100% at a speed of 5% / second. Then, after laminating the adhesive sheet A on the stretched film, the polypropylene film was peeled off. As a result of observing this adhesive sheet with a laser microscope, the average amount of protrusion of 100 conductive particles was 1.5 μm. Thereafter, the adhesive sheet B was laminated to obtain an anisotropic conductive adhesive sheet.
As a result of laser microscope observation, 99% of 100 conductive particles were single particles. The average particle spacing was 4.21 μm. 100% of 100 conductive particles were separated from the surface of the anisotropic conductive adhesive sheet by 0.1 μm or more and 2 μm or less.

[実施例2]
実施例1と同様にして、接着シートAを作製した。
フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)30g、ナフタレン型エポキシ樹脂(エポキシ当量136、半固形)34g、γ−グリシドキシプロピルトリメトキシシラン0.06gを酢酸エチルに溶解し、固形分50%溶液とする。マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径5μm、活性温度125℃)36g、前記固形分50%溶液に配合分散させた。その後、厚さ80μmの無延伸ポリエチレンフィルム上に塗布し、40℃で15分間送風乾燥し、膜厚5μmのフィルム状の接着シートCを得た。この接着シートC上に平均粒径3.0μmの金めっきプラスチック粒子(導電性粒子)をほぼ隙間無く単層塗布した。すなわち、該導電性粒子を該フィルム幅より大きい容器内に数層以上の厚みになるよう敷き詰めたものを用意し、該導電性粒子に対して粘着剤の塗布面を下向きにして押し付けて付着させ、その後過剰な粒子を軟質ゴムからなるスクレバーで掻き落とした。
この操作を2回繰り返すことにより、隙間無く単層塗布した導電性粒子付着フィルムを得た。
[Example 2]
In the same manner as in Example 1, an adhesive sheet A was produced.
30 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000), 34 g of naphthalene type epoxy resin (epoxy equivalent 136, semi-solid), 0.06 g of γ-glycidoxypropyltrimethoxysilane are dissolved in ethyl acetate and solid Make a 50% min solution. A liquid epoxy resin containing a microcapsule-type latent imidazole curing agent (average particle diameter of microcapsules 5 μm, active temperature 125 ° C.) 36 g was mixed and dispersed in the 50% solid content solution. Then, it apply | coated on the 80-micrometer-thick unstretched polyethylene film, air-dried at 40 degreeC for 15 minute (s), and the film-form adhesive sheet C with a film thickness of 5 micrometers was obtained. On this adhesive sheet C, gold-plated plastic particles (conductive particles) with an average particle size of 3.0 μm were applied in a single layer with almost no gap. That is, the conductive particles are prepared in a container having a thickness of several layers or more in a container larger than the film width, and the adhesive particles are pressed and adhered to the conductive particles with the application surface of the adhesive facing downward. Then, excess particles were scraped off with a scrubber made of soft rubber.
By repeating this operation twice, a conductive particle adhesion film coated with a single layer without a gap was obtained.

このフィルムを2軸延伸装置(東洋精機製X6H−S、パンタグラフ方式のコーナーストレッチ型の2軸延伸装置)を用いて縦横にそれぞれ10個のチャックを用いて固定し50℃、120秒間予熱し、その後5%/秒の速度で120%延伸して固定した。
その後、この延伸フィルムに前記接着シートAをラミネートした後、ポリエチレンフィルムを剥離し、異方導電性フィルムを得た。
レーザー顕微鏡観察の結果、導電性粒子100個のうち98%が単独粒子であった。また、平均粒子間隔は4.51μmであった。導電性粒子100個のうち100%が異方導電性接着シート表面から0.1μm以上2μm以下離れていた。
実施例1と同様にして、引張り弾性率を測定した。その結果、接着シートCの弾性率は、2.7GPaであった。
This film was fixed using 10 chucks vertically and horizontally using a biaxial stretching device (X6H-S manufactured by Toyo Seiki, pantograph type corner stretching type biaxial stretching device), preheated at 50 ° C. for 120 seconds, Thereafter, the film was stretched and fixed by 120% at a speed of 5% / second.
Thereafter, the adhesive sheet A was laminated on the stretched film, and then the polyethylene film was peeled off to obtain an anisotropic conductive film.
As a result of laser microscope observation, 98% of 100 conductive particles were single particles. Further, the average particle interval was 4.51 μm. 100% of 100 conductive particles were separated from the surface of the anisotropic conductive adhesive sheet by 0.1 μm or more and 2 μm or less.
In the same manner as in Example 1, the tensile elastic modulus was measured. As a result, the elastic modulus of the adhesive sheet C was 2.7 GPa.

また、接着シートCをポリエチレンフィルムから剥がし、テフロン(登録商標)フィルム(25μm厚み)に挟み、160℃で10秒間、2.0MPa加圧圧着し、硬化率測定サンプルとした。それぞれの硬化率測定サンプルのIR測定を行った。
予め、加熱前の接着シートCのIR測定を行い、エポキシ基吸収強度(914cm−1)/メチル基吸収強度(2922cm−1)の比をそれぞれ算出する。硬化率測定サンプルについても同様に算出した。加熱前後の強度比の比を計算し、エポキシ残存率を算出した。100%からエポキシ残存率を差し引いて硬化反応率とする。接着シートの硬化反応率は62%であった。
Further, the adhesive sheet C was peeled off from the polyethylene film, sandwiched between Teflon (registered trademark) films (25 μm thickness), and pressure-bonded to 2.0 MPa at 160 ° C. for 10 seconds to obtain a curing rate measurement sample. IR measurement of each hardening rate measurement sample was performed.
The IR measurement of the adhesive sheet C before heating is performed in advance, and the ratio of epoxy group absorption strength (914 cm −1 ) / methyl group absorption strength (2922 cm −1 ) is calculated. It calculated similarly about the hardening rate measurement sample. The ratio of the strength ratio before and after heating was calculated to calculate the epoxy residual ratio. The epoxy residual rate is subtracted from 100% to obtain the curing reaction rate. The curing reaction rate of the adhesive sheet was 62%.

[実施例3]
実施例1の接着シートAにおいて膜厚が16μmである以外は同一である接着シートDを作製し、実施例1と同様にして導電性粒子付着延伸シートを作製し、その後、ラミネートして、導電性粒子を転写した接着シートEを作製した。
フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)39g、ナフタレン型エポキシ樹脂(エポキシ当量136、半固形)34g、γ−グリシドキシプロピルトリメトキシシラン0.06gを酢酸エチル−トルエンの混合溶剤(混合比5:1)に溶解し、固形分30%溶液とした。マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径5μm、活性温度125℃)27g、前記固形分30%溶液に配合分散させてワニスAを得た。その後、前記導電性粒子を転写した接着シートEの導電性粒子転写面側にワニスAをダイコーターで塗布し、50℃で15分間送風乾燥し、全体膜厚18μmの異方導電性接着シートを得た。
別途、ワニスAをポリエチレンテレフタレートフィルム(50μm)上に塗布して,50℃で15分間送風乾燥し、膜厚5μmの接着シートFを作製した。このフィルムを実施例1の手順と同様にして、引張り弾性率を測定した。その結果接着シートFの弾性率は、2.4GPaであった。また、実施例1と同様にして算出した硬化反応率は、65%であった。
異方導電性接着シートをレーザー顕微鏡で観察した結果、導電性粒子100個のうち98%が単独粒子であった。また、平均粒子間隔は4.32μmであった。異方導電性接着シート表面からの平均距離は0.9μmであり、導電性粒子100個のうち100%が異方導電性接着シート表面から0.1μm以上2μm以下離れていた。
[Example 3]
An adhesive sheet D, which is the same as the adhesive sheet A of Example 1 except that the film thickness is 16 μm, is prepared, and a conductive particle-attached stretched sheet is prepared in the same manner as in Example 1, and then laminated, and conductive An adhesive sheet E to which the conductive particles were transferred was prepared.
39 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000), 34 g of naphthalene type epoxy resin (epoxy equivalent 136, semi-solid), 0.06 g of γ-glycidoxypropyltrimethoxysilane, mixed solvent of ethyl acetate-toluene (Mixing ratio 5: 1) was dissolved to obtain a 30% solid content solution. Varnish A was obtained by blending and dispersing in 27 g of a liquid epoxy resin containing a microcapsule type latent imidazole curing agent (average particle size of microcapsule 5 μm, active temperature 125 ° C.) and 30% solid content solution. Thereafter, varnish A is applied to the conductive particle transfer surface side of the adhesive sheet E to which the conductive particles have been transferred with a die coater, and blown and dried at 50 ° C. for 15 minutes to obtain an anisotropic conductive adhesive sheet having a total film thickness of 18 μm. Obtained.
Separately, varnish A was applied onto a polyethylene terephthalate film (50 μm) and air-dried at 50 ° C. for 15 minutes to prepare an adhesive sheet F having a thickness of 5 μm. The tensile elastic modulus of this film was measured in the same manner as in Example 1. As a result, the elastic modulus of the adhesive sheet F was 2.4 GPa. Further, the curing reaction rate calculated in the same manner as in Example 1 was 65%.
As a result of observing the anisotropic conductive adhesive sheet with a laser microscope, 98% of 100 conductive particles were single particles. Further, the average particle interval was 4.32 μm. The average distance from the anisotropic conductive adhesive sheet surface was 0.9 μm, and 100% of 100 conductive particles were separated from the anisotropic conductive adhesive sheet surface by 0.1 μm or more and 2 μm or less.

[比較例1]
フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)44g、ビスフェノールA型エポキシ樹脂(エポキシ当量190、25℃粘度、14000mPa・S)26g、γ−グリシドキシプロピルトリメトキシシラン0.3gを酢酸エチル−トルエンの混合溶剤(混合比1:1)に溶解し、固形分50%溶液とした。
マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径5μm、活性温度125℃)30g、平均粒径3.0μmの金めっきプラスチック粒子4.0gを前記固形分50%溶液に配合分散させた。
その後、厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、60℃で15分間送風乾燥し、膜厚25μmのフィルム状の異方導電性接着シートを得た。
得られた異方導電性接着シートの導電性粒子のうち、無作為に100個を選び、レーザー式の変位計を用いて、異方導電性接着シート表面からの距離を測定した。その結果、導電性粒子は異方導電性接着シートの膜厚方向においてランダムに存在することがわかった。また、測定した導電性粒子100個のうち85%が単独粒子であった。
[Comparative Example 1]
44 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000), 26 g of bisphenol A type epoxy resin (epoxy equivalent 190, 25 ° C. viscosity, 14000 mPa · S), 0.3 g of γ-glycidoxypropyltrimethoxysilane It was dissolved in a mixed solvent of ethyl-toluene (mixing ratio 1: 1) to obtain a 50% solid content solution.
30 g of a liquid epoxy resin containing a microcapsule-type latent imidazole curing agent (average size of microcapsules 5 μm, active temperature 125 ° C.) and 4.0 g of gold-plated plastic particles having an average particle size of 3.0 μm are mixed with 50% solid content. Formulated and dispersed in the solution.
Then, it apply | coated on the 50-micrometer-thick polyethylene terephthalate film, air-dried at 60 degreeC for 15 minute (s), and the film-form anisotropic conductive adhesive sheet of 25-micrometer-thickness was obtained.
Of the conductive particles of the obtained anisotropic conductive adhesive sheet, 100 particles were randomly selected, and the distance from the anisotropic conductive adhesive sheet surface was measured using a laser displacement meter. As a result, it was found that the conductive particles exist randomly in the film thickness direction of the anisotropic conductive adhesive sheet. In addition, 85% of 100 conductive particles measured were single particles.

[比較例2]
実施例1の接着シートAにおいて膜厚が20μmである以外は同一である接着シートGを得た。
厚さ100μmの無延伸ポリプロピレンフィルム上に、粘着層として天然ゴム−メチルメタアクリレートのグラフト共重合体接着剤を6μmの厚みを塗布したものに平均粒径8.0μmの金めっきプラスチック粒子(導電性粒子)をほぼ隙間無く単層塗布した。すなわち、該導電性粒子を該フィルム幅より大きい容器内に数層以上の厚みになるよう敷き詰めたものを用意し、該導電性粒子に対して粘着剤の塗布面を下向きにして押し付けて付着させ、その後過剰な粒子を軟質ゴムからなるスクレバーで掻き落とした。
この操作を2回繰り返すことにより、隙間無く単層塗布した導電性粒子付着フィルムを得た。この導電性粒子付着フィルムを乾燥機中で、100℃、3分間加熱処理した。
このフィルムを2軸延伸装置(東洋精機製X6H−S、パンタグラフ方式のコーナーストレッチ型の2軸延伸装置)を用いて縦横にそれぞれ10個のチャックを用いて固定し130℃、120秒間予熱し、その後5%/秒の速度で50%延伸して固定した。その後、この延伸フィルムに前記接着シートGをラミネートした後、ポリプロピレンフィルムを剥離し、異方導電性接着シートを得た。レーザー顕微鏡観察の結果、導電性粒子100個のうち99%が単独粒子であった。また、平均粒子間隔は4.55μmであった。導電性粒子100個のうち100%が異方導電性接着シート表面から露出していた。
このようにして得た異方導電性フィルムを用いて、200℃の接続温度で前記接続抵抗値測定法と同様にして、圧着して接続構造体を得た。
実施例及び比較例の接続構造体の接続抵抗値及び絶縁試験結果を表1に示す。表1から明らかなように、本発明の異方導電性接着シートは、非常に優れた絶縁信頼性を示す。
[Comparative Example 2]
In the adhesive sheet A of Example 1, the same adhesive sheet G was obtained except that the film thickness was 20 μm.
Gold-plated plastic particles with an average particle size of 8.0 μm (conductive) coated on a non-stretched polypropylene film with a thickness of 100 μm and a 6 μm thick natural rubber-methyl methacrylate graft copolymer adhesive as an adhesive layer The particles were applied in a single layer with almost no gap. That is, the conductive particles are prepared in a container having a thickness of several layers or more in a container larger than the film width, and the adhesive particles are pressed and adhered to the conductive particles with the application surface of the adhesive facing downward. Then, excess particles were scraped off with a scrubber made of soft rubber.
By repeating this operation twice, a conductive particle adhesion film coated with a single layer without a gap was obtained. This conductive particle adhesion film was heat-treated at 100 ° C. for 3 minutes in a dryer.
This film was fixed using 10 chucks vertically and horizontally using a biaxial stretching device (X6H-S manufactured by Toyo Seiki, pantograph type corner stretch type biaxial stretching device), preheated at 130 ° C. for 120 seconds, Thereafter, the film was stretched and fixed by 50% at a speed of 5% / second. Then, after laminating the adhesive sheet G on the stretched film, the polypropylene film was peeled off to obtain an anisotropic conductive adhesive sheet. As a result of laser microscope observation, 99% of 100 conductive particles were single particles. The average particle spacing was 4.55 μm. 100% of 100 conductive particles were exposed from the surface of the anisotropic conductive adhesive sheet.
Using the anisotropic conductive film thus obtained, a connection structure was obtained by pressure bonding in the same manner as in the connection resistance measurement method at a connection temperature of 200 ° C.
Table 1 shows connection resistance values and insulation test results of the connection structures of Examples and Comparative Examples. As is clear from Table 1, the anisotropic conductive adhesive sheet of the present invention exhibits very excellent insulation reliability.

Figure 2007161793
Figure 2007161793

本発明の接続構造体は、低接続抵抗、高絶縁信頼性を示し、微細回路接続が求められる高精細なディスプレイ装置等の接続構造体として好適である。   The connection structure of the present invention exhibits low connection resistance and high insulation reliability, and is suitable as a connection structure for a high-definition display device or the like that requires fine circuit connection.

Claims (10)

少なくとも硬化剤、硬化性の絶縁樹脂及び導電性粒子からなる異方導電性接着シートであって、該導電性粒子の平均粒径が2〜8μmであり、異方導電性接着シートの片側表面から導電性粒子表面までの最短距離が0.1μm〜2μmの範囲内にある導電性粒子が導電性粒子個数の90%以上であることを特徴とする異方導電性接着シート。   An anisotropic conductive adhesive sheet comprising at least a curing agent, a curable insulating resin, and conductive particles, wherein the conductive particles have an average particle diameter of 2 to 8 μm, from one side surface of the anisotropic conductive adhesive sheet An anisotropic conductive adhesive sheet, wherein the conductive particles having a shortest distance to the surface of the conductive particles in a range of 0.1 to 2 μm are 90% or more of the number of conductive particles. 導電性粒子個数の95%以上が他の導電性粒子と接触せずに存在していることを特徴とする請求項1に記載の異方導電性接着シート。   The anisotropic conductive adhesive sheet according to claim 1, wherein 95% or more of the number of conductive particles is present without contacting with other conductive particles. 近接する導電性粒子同士の平均粒子間隔が導電性粒子の平均粒径の0.5倍以上5倍以下となるように配列していることを特徴とする請求項1又は2に記載の異方導電性接着シート。   3. The anisotropy according to claim 1, wherein the particles are arranged so that an average particle interval between adjacent conductive particles is 0.5 to 5 times the average particle size of the conductive particles. Conductive adhesive sheet. それぞれが少なくとも硬化剤及び硬化性樹脂からなる膜厚の異なる2層の接着層、並びに導電性粒子よりなる異方導電性接着シートであって、導電性粒子が2層の接着層の界面に存在し、膜厚の薄い接着層の接着層に含まれる導電性粒子部分が導電性粒子の平均粒径の1/50から4/5であることを特徴とする請求項1〜3のいずれか1項に記載の異方導電性接着シート。   Each is an anisotropic conductive adhesive sheet composed of at least two adhesive layers having different film thicknesses each composed of at least a curing agent and a curable resin, and conductive particles, and the conductive particles are present at the interface between the two adhesive layers. The conductive particle portion contained in the adhesive layer of the thin adhesive layer is 1/50 to 4/5 of the average particle diameter of the conductive particles. An anisotropic conductive adhesive sheet according to item. 前記膜厚の薄い接着層の弾性率が、膜厚の厚い接着層の弾性率より高いことを特徴とする請求項4に記載の異方導電性接着シート。   The anisotropic conductive adhesive sheet according to claim 4, wherein an elastic modulus of the thin adhesive layer is higher than an elastic modulus of the thick adhesive layer. 前記膜厚の薄い接着層の硬化反応率が、膜厚の厚い接着層の硬化反応率より高いことを特徴とする請求項4又は5に記載の異方導電性接着シート。   The anisotropic conductive adhesive sheet according to claim 4 or 5, wherein a curing reaction rate of the thin adhesive layer is higher than a curing reaction rate of the thick adhesive layer. 2軸延伸可能なフィルム上に粘着層を設けて積層体を形成し、該積層体の上に平均粒径2〜8μmの導電性粒子を付着させて導電性粒子付着フィルムを作製し、該導電性粒子付着フィルムを該導電性粒子同士の平均粒子間隔が該導電性粒子の平均粒径の0.5倍以上5倍以下になるように2軸延伸して保持し、2軸延伸して保持した後、支持体上に少なくとも硬化剤、及び硬化性の絶縁性樹脂を含んでなる接着シートに、該導電性粒子を転写し、2軸延伸可能なフィルムを剥離し、導電性粒子を転写した面に、少なくとも硬化剤及び硬化性の絶縁性樹脂からなる接着層を積層する工程を含むことを特徴とする請求項1〜6のいずれか1項に記載の異方導電性接着シートの製造方法。   An adhesive layer is provided on a biaxially stretchable film to form a laminate, and conductive particles having an average particle size of 2 to 8 μm are adhered onto the laminate to produce a conductive particle-adhered film. The conductive particle adhesion film is biaxially stretched and held so that the average particle spacing between the conductive particles is 0.5 to 5 times the average particle diameter of the conductive particles, and biaxially stretched and held. Then, the conductive particles are transferred to an adhesive sheet comprising at least a curing agent and a curable insulating resin on the support, the biaxially stretchable film is peeled off, and the conductive particles are transferred. The method for producing an anisotropic conductive adhesive sheet according to claim 1, comprising a step of laminating an adhesive layer made of at least a curing agent and a curable insulating resin on the surface. . 2軸延伸可能なフィルム上に少なくとも硬化剤及び硬化性樹脂からなる粘着層を設けて積層体を形成し、該積層体の上に平均粒径2〜8μmの導電性粒子を付着させて導電性粒子付着フィルムを作製し、該導電性粒子付着フィルムを該導電性粒子同士の平均粒子間隔が該導電性粒子の平均粒径の0.5倍以上5倍以下になるように2軸延伸して保持し、2軸延伸して保持した後、導電性粒子が存在する面に、少なくとも硬化剤、及び硬化性の絶縁性樹脂を含んでなる接着シートに該導電性粒子及び粘着層を転写し、積層する工程を含むことを特徴とする請求項1〜6のいずれか1項に記載の異方導電性接着シートの製造方法。   An adhesive layer made of at least a curing agent and a curable resin is provided on a biaxially stretchable film to form a laminate, and conductive particles having an average particle diameter of 2 to 8 μm are adhered onto the laminate, thereby providing conductivity. A particle-adhering film is prepared, and the conductive particle-adhering film is biaxially stretched so that the average particle interval between the conductive particles is 0.5 to 5 times the average particle diameter of the conductive particles. After holding and biaxially stretching, the conductive particles and the pressure-sensitive adhesive layer are transferred to an adhesive sheet containing at least a curing agent and a curable insulating resin on the surface where the conductive particles exist, The manufacturing method of the anisotropically conductive adhesive sheet of any one of Claims 1-6 including the process to laminate | stack. 請求項1〜6のいずれか1項に記載の異方導電性接着シートにおける導電性粒子から片側表面までの最短距離の面を相対的に配線高さの低い回路基板面に配し、相対的に配線高さの高い電子部品を加熱圧着して回路基板と電子部品とを接続することを特徴とする接続構造体の製造方法。   The surface of the shortest distance from the conductive particles to the one-side surface in the anisotropic conductive adhesive sheet according to any one of claims 1 to 6 is arranged on a circuit board surface having a relatively low wiring height, and is relatively A method of manufacturing a connection structure comprising: connecting a circuit board and an electronic component by thermocompression-bonding an electronic component having a high wiring height. 請求項9記載の続構造体の製造方法により製造された接構造体。   A contact structure manufactured by the method for manufacturing a connecting structure according to claim 9.
JP2005357286A 2005-12-12 2005-12-12 Anisotropic conductive adhesive sheet Active JP4994653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357286A JP4994653B2 (en) 2005-12-12 2005-12-12 Anisotropic conductive adhesive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357286A JP4994653B2 (en) 2005-12-12 2005-12-12 Anisotropic conductive adhesive sheet

Publications (2)

Publication Number Publication Date
JP2007161793A true JP2007161793A (en) 2007-06-28
JP4994653B2 JP4994653B2 (en) 2012-08-08

Family

ID=38245070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357286A Active JP4994653B2 (en) 2005-12-12 2005-12-12 Anisotropic conductive adhesive sheet

Country Status (1)

Country Link
JP (1) JP4994653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029862A (en) * 2007-07-25 2009-02-12 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2010248386A (en) * 2009-04-16 2010-11-04 Asahi Kasei E-Materials Corp Method for producing anisotropic conductive adhesive film
JP2011116897A (en) * 2009-12-04 2011-06-16 Nitto Denko Corp Thermosetting die bond film, dicing die bond film, and semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737173B1 (en) * 2014-07-24 2017-05-17 삼성에스디아이 주식회사 Anisotropic conductive films, a method for preparing the same, and semiconductive devices comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117980A (en) * 1988-08-29 1990-05-02 Minnesota Mining & Mfg Co <3M> Conductive adhesive tape
JP2002332461A (en) * 2001-05-08 2002-11-22 Asahi Kasei Corp Method for distributing particle in adhesive layer
JP2003064324A (en) * 2001-06-11 2003-03-05 Hitachi Chem Co Ltd Anisotropic electroconductive adhesive film, connection method for circuit board using the same and circuit board connected body
WO2005054388A1 (en) * 2003-12-04 2005-06-16 Asahi Kasei Emd Corporation Anisotropic conductive adhesive sheet and coupling structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117980A (en) * 1988-08-29 1990-05-02 Minnesota Mining & Mfg Co <3M> Conductive adhesive tape
JP2002332461A (en) * 2001-05-08 2002-11-22 Asahi Kasei Corp Method for distributing particle in adhesive layer
JP2003064324A (en) * 2001-06-11 2003-03-05 Hitachi Chem Co Ltd Anisotropic electroconductive adhesive film, connection method for circuit board using the same and circuit board connected body
WO2005054388A1 (en) * 2003-12-04 2005-06-16 Asahi Kasei Emd Corporation Anisotropic conductive adhesive sheet and coupling structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029862A (en) * 2007-07-25 2009-02-12 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2010248386A (en) * 2009-04-16 2010-11-04 Asahi Kasei E-Materials Corp Method for producing anisotropic conductive adhesive film
JP2011116897A (en) * 2009-12-04 2011-06-16 Nitto Denko Corp Thermosetting die bond film, dicing die bond film, and semiconductor device

Also Published As

Publication number Publication date
JP4994653B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4822322B2 (en) Method for producing anisotropic conductive adhesive sheet
JP4993880B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4890053B2 (en) Anisotropic conductive film for microcircuit inspection
JP5825373B2 (en) Conductive particle arrangement sheet and method for producing the same
JP2015159333A (en) Method of manufacturing semiconductor chip with anisotropic conductive film
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
JP5152815B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP5225766B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4994653B2 (en) Anisotropic conductive adhesive sheet
JP2006032335A (en) Anisotropic conductive adhesion film
JP4766943B2 (en) CIRCUIT ADHESIVE SHEET AND METHOD FOR MANUFACTURING THE SAME
JP5445558B2 (en) Anisotropic conductive adhesive sheet and connection method
JP2007224112A (en) Anisotropic conductive adhesive sheet and method for producing the same
JP4958417B2 (en) Conductive particle transfer sheet and connection structure
JP4925405B2 (en) Method for manufacturing connection structure
JP5370694B2 (en) Connection structure
JP5164257B2 (en) Method for manufacturing connection structure
JP2014062257A (en) Anisotropic electroconductive adhesive sheet and connection method
JP2007035979A (en) Connection structure of conductive particle
JP2008069357A (en) Winding having adhesive layer
JP2008111115A (en) Wound roll having adhesive layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250