JP2007159069A - Layered common mode filter - Google Patents

Layered common mode filter Download PDF

Info

Publication number
JP2007159069A
JP2007159069A JP2005355501A JP2005355501A JP2007159069A JP 2007159069 A JP2007159069 A JP 2007159069A JP 2005355501 A JP2005355501 A JP 2005355501A JP 2005355501 A JP2005355501 A JP 2005355501A JP 2007159069 A JP2007159069 A JP 2007159069A
Authority
JP
Japan
Prior art keywords
coil
conductor pattern
capacitor
terminal
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005355501A
Other languages
Japanese (ja)
Inventor
Masahide Takashima
政秀 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2005355501A priority Critical patent/JP2007159069A/en
Publication of JP2007159069A publication Critical patent/JP2007159069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a layered common mode filter is not available for a communication apparatus which performs high-speed differential transmission since a loss of ferrite becomes great in a high frequency band of GHz, an insertion loss to a differential signal to be transmitted also tends to be great therefore, and a differential signal to be transmitted may be attenuated. <P>SOLUTION: An insulator layer and a conductor pattern are layered. In a layered body thereof, provided are a first coil connected between a first terminal and a second terminal, a second coil connected between a third terminal and a fourth terminal, a first capacitor connected in parallel with the first coil, a second capacitor connected in parallel with the second coil, a third capacitor connected between a winding start terminal of the first coil and a winding start terminal of the second coil, and a fourth capacitor connected between a winding end terminal of the first coil and a winding end terminal of the second coil, and the first coil and the second coil are magnetically coupled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁体層と導体パターンを積層して積層体内に互いに磁気的に結合した複数のコイルを有する積層型コモンモードフィルタに関するものである。   The present invention relates to a laminated common mode filter having a plurality of coils in which an insulating layer and a conductor pattern are laminated and magnetically coupled to each other in the laminated body.

従来のコモンモードチョークコイルに、2本の銅線を平行に並べて一体化したペア線をフェライトコアに巻回し、各銅線の端部を端子に接続することにより、図12に示す様に、コイルL7を端子121と端子122間に接続し、コイルL8を端子123と端子124間に接続し、コイルL7とコイルL8が磁気的に結合した回路が構成されたものがある(例えば、特許文献1を参照。)。
特開2004-356473号公報
As shown in FIG. 12, a conventional common mode choke coil is formed by winding a pair of copper wires arranged in parallel and winding them around a ferrite core and connecting the ends of each copper wire to a terminal. There is a circuit in which the coil L7 is connected between the terminal 121 and the terminal 122, the coil L8 is connected between the terminal 123 and the terminal 124, and a circuit in which the coil L7 and the coil L8 are magnetically coupled is configured (for example, Patent Documents). 1).
JP 2004-356473 A

この種のコモンモードチョークコイルは、周波数が高くなるに従ってフェライトの透磁率μが小さくなるために、数KHz〜数GHzまでコモンモードノイズを除去でき、通信機器のインターフェイス(USB2.0、IEE1394)やPCIバスの伝送線路に使用されている。近年、PCIバスでは、PCI Expressという仕様が発表され、動作周波数2.5GHzのシリアルデータ(差動信号)でデータの送受信が行われることになった。   This type of common mode choke coil has a ferrite permeability μ that decreases as the frequency increases. Therefore, common mode noise can be removed from several KHz to several GHz, and communication device interfaces (USB2.0, IEEE1394) and Used for PCI bus transmission lines. In recent years, a PCI Express specification has been announced on the PCI bus, and data transmission / reception is performed using serial data (differential signal) with an operating frequency of 2.5 GHz.

しかしながら、従来のコモンモードチョークコイルは、GHzといった高周波帯域でフェライトの損失が大きくなるために、伝送される差動信号に対する挿入損失も大きくなる傾向にあり、伝送する必要のある差動信号が減衰されてしまうという問題があり、前述の様な高速差動伝送が行われる通信機器に使用できなかった。   However, the conventional common mode choke coil has a large loss of ferrite in a high frequency band such as GHz, so that the insertion loss with respect to the transmitted differential signal tends to increase, and the differential signal that needs to be transmitted is attenuated. In other words, it cannot be used for communication devices that perform high-speed differential transmission as described above.

本発明は、GHzといった高周波帯域においても必要な信号に対する挿入損失が低い小型の積層型コモンモードフィルタを提供することを目的とする。   An object of the present invention is to provide a small stacked common mode filter having a low insertion loss for a required signal even in a high frequency band such as GHz.

本発明の積層型コモンモードフィルタは、絶縁体層と導体パターンを積層し、これらの積層体内に、第1の端子と第2の端子間に接続された第1のコイル、第3の端子と第4の端子間に接続された第2のコイル、第1のコイルと並列に接続された第1のコンデンサ、第2のコイルと並列に接続された第2のコンデンサ、第1のコイルの巻き始め端と第2のコイルの巻き始め端間に接続された第3のコンデンサ及び、第1のコイルの巻き終わり端と第2のコイルの巻き終わり端間に接続された第4のコンデンサを備え、第1のコイルと第2のコイルを磁気的に結合させる。
また、本発明の積層型コモンモードフィルタは、絶縁体層と導体パターンを積層し、これらの積層体内に4つのコンデンサと共通の巻軸を中心に螺旋状に巻かれた2つのコイルとを備え、2つのコイルはそれぞれ巻き始め側が近接する様に積層方向に重畳して配置され、第1の端子と第2の端子間に第1のコイルが接続され、第3の端子と第4の端子間に第2のコイルが接続され、第1のコイルと並列に第1のコンデンサを接続し、第2のコイルと並列に第2のコンデンサを接続し、第1のコイルの巻き終わり端と第2のコイルの巻き終わり端間に第4のコンデンサを接続し、第1のコイルの巻き始め端部と第2のコイルの巻き始め端部間に形成された容量によって第1のコイルの巻き始め端と第2のコイルの巻き始め端間に第3のコンデンサが接続される。
さらに、本発明の積層型コモンモードフィルタは、絶縁体層と導体パターンを積層し、これらの積層体内に4つのコンデンサと共通の巻軸を中心に螺旋状に巻かれた2つのコイルとを備え、2つのコイルはそれぞれ巻き終わり側が近接する様に積層方向に重畳して配置され、第1の端子と第2の端子間に第1のコイルが接続され、第3の端子と第4の端子間に第2のコイルが接続され、第1のコイルと並列に第1のコンデンサを接続し、第2のコイルと並列に第2のコンデンサを接続し、第1のコイルの巻き始め端と第2のコイルの巻き始め端間に第3のコンデンサを接続し、第1のコイルの巻き終わり端部と第2のコイルの巻き終わり端部間に形成された容量によって第1のコイルの巻き終わり端と第2のコイルの巻き終わり端間に第4のコンデンサが接続される。
The laminated common mode filter of the present invention comprises an insulator layer and a conductor pattern laminated, and a first coil and a third terminal connected between the first terminal and the second terminal in the laminated body. The second coil connected between the fourth terminals, the first capacitor connected in parallel with the first coil, the second capacitor connected in parallel with the second coil, the winding of the first coil A third capacitor connected between the starting end and the winding start end of the second coil; and a fourth capacitor connected between the winding end end of the first coil and the winding end end of the second coil. The first coil and the second coil are magnetically coupled.
The multilayer common mode filter of the present invention includes an insulator layer and a conductor pattern, and includes four capacitors and two coils spirally wound around a common winding axis in the multilayer body. The two coils are arranged so as to overlap in the stacking direction so that the winding start sides are close to each other, the first coil is connected between the first terminal and the second terminal, and the third terminal and the fourth terminal A second coil is connected in between, a first capacitor is connected in parallel with the first coil, a second capacitor is connected in parallel with the second coil, and the winding end of the first coil and the second coil A fourth capacitor is connected between the winding end ends of the two coils, and the winding of the first coil is started by the capacitance formed between the winding start end portion of the first coil and the winding start end portion of the second coil. A third condenser between the end and the winding start end of the second coil. There is connected.
Furthermore, the multilayer common mode filter of the present invention includes an insulator layer and a conductor pattern, and includes four capacitors and two coils spirally wound around a common winding axis in the laminate. The two coils are arranged to overlap in the stacking direction so that the winding end sides are close to each other, the first coil is connected between the first terminal and the second terminal, and the third terminal and the fourth terminal A second coil is connected in between, a first capacitor is connected in parallel with the first coil, a second capacitor is connected in parallel with the second coil, and the winding start end of the first coil and the second coil A third capacitor is connected between the winding start ends of the two coils, and a winding end of the first coil is formed by a capacitance formed between the winding end end of the first coil and the winding end end of the second coil. Between the end and the end of winding of the second coil Capacitor is connected.

本発明の積層型コモンモードフィルタは、絶縁体層と導体パターンの積層体内に、第1の端子と第2の端子間に接続された第1のコイル、第3の端子と第4の端子間に接続された第2のコイル、第1のコイルと並列に接続された第1のコンデンサ、第2のコイルと並列に接続された第2のコンデンサ、第1のコイルの巻き始め端と第2のコイルの巻き始め端間に接続された第3のコンデンサ及び、第1のコイルの巻き終わり端と第2のコイルの巻き終わり端間に接続された第4のコンデンサを備え、第1のコイルと第2のコイルを磁気的に結合させるので、形状を小型化できると共に、高周波帯域においても必要な信号に対する挿入損失を高くすることなく、不必要なノイズの減衰量を改善することができる。   The multilayer common mode filter of the present invention includes a first coil connected between a first terminal and a second terminal, and a third terminal and a fourth terminal in a laminate of an insulator layer and a conductor pattern. A second capacitor connected in parallel, a first capacitor connected in parallel with the first coil, a second capacitor connected in parallel with the second coil, a winding start end of the first coil and the second A third capacitor connected between the winding start ends of the first coil and a fourth capacitor connected between the winding end end of the first coil and the winding end end of the second coil, And the second coil are magnetically coupled to each other, so that the shape can be reduced in size and the amount of unnecessary noise attenuation can be improved without increasing the insertion loss for a necessary signal even in a high frequency band.

本発明の積層型コモンモードフィルタは、絶縁体層と導体パターンを積層し、これらの積層体内に4つのコンデンサと共通の巻軸を中心に螺旋状に巻かれた2つのコイルとが形成される。2つのコイルはそれぞれ巻き始め側が近接する様に積層方向に重畳して配置され、第1の端子と第2の端子間に第1のコイルが接続され、第3の端子と第4の端子間に第2のコイルが接続される。この第1のコイルには、第1のコンデンサが並列に接続される。また、第2のコイルには、第2のコンデンサが並列に接続される。さらに、第1のコイルの巻き終わり端と第2のコイルの巻き終わり端間に第4のコンデンサが接続される。第1のコイルの巻き始め端部と第2のコイルの巻き始め端部間には、2つのコイルの巻き始め側の導体パターン間に形成された容量によって第3のコンデンサが接続される。
また、本発明の別の積層型コモンモードフィルタの2つのコイルはそれぞれ巻き終わり側が近接する様に積層方向に重畳して配置され、第1の端子と第2の端子間に第1のコイルが接続され、第3の端子と第4の端子間に第2のコイルが接続される。この第1のコイルには、第1のコンデンサが並列に接続される。また、第2のコイルには、第2のコンデンサが並列に接続される。この場合、第1のコイルの巻き始め端と第2のコイルの巻き始め端間に第3のコンデンサが接続される。また、第1のコイルの巻き終わり端部と第2のコイルの巻き終わり端部間には、2つのコイルの巻き終わり側の導体パターン間に形成された容量によって第4のコンデンサが接続される。
従って、本発明の積層型コモンモードフィルタは、2つのコイルのインダクタンス値と4つのコンデンサの容量値及び、2つのコイルの磁気的結合係数を調整することによって、伝送する必要のある差動信号の周波数帯域に不必要なノイズ(同相信号)を減衰するための減衰極を形成することができる。
In the multilayer common mode filter of the present invention, an insulator layer and a conductor pattern are laminated, and four capacitors and two coils wound spirally around a common winding axis are formed in these laminates. . The two coils are arranged so as to overlap in the stacking direction so that the winding start sides are close to each other, the first coil is connected between the first terminal and the second terminal, and between the third terminal and the fourth terminal Is connected to the second coil. A first capacitor is connected in parallel to the first coil. A second capacitor is connected in parallel to the second coil. Further, a fourth capacitor is connected between the winding end of the first coil and the winding end of the second coil. A third capacitor is connected between the winding start end of the first coil and the winding start end of the second coil by a capacitance formed between the conductive patterns on the winding start side of the two coils.
In addition, the two coils of another laminated common mode filter of the present invention are arranged so as to overlap each other in the lamination direction so that the winding end sides are close to each other, and the first coil is interposed between the first terminal and the second terminal. The second coil is connected between the third terminal and the fourth terminal. A first capacitor is connected in parallel to the first coil. A second capacitor is connected in parallel to the second coil. In this case, a third capacitor is connected between the winding start end of the first coil and the winding start end of the second coil. A fourth capacitor is connected between the winding end of the first coil and the winding end of the second coil by a capacitance formed between the conductive patterns on the winding end of the two coils. .
Therefore, the multilayer common mode filter of the present invention adjusts the inductance value of the two coils, the capacitance value of the four capacitors, and the magnetic coupling coefficient of the two coils to adjust the differential signal that needs to be transmitted. It is possible to form an attenuation pole for attenuating noise (in-phase signal) unnecessary for the frequency band.

以下、本発明の積層型コモンモードフィルタを図1乃至図11を参照して説明する。
図1は本発明の積層型コモンモードフィルタの回路図、図2は本発明の積層型コモンモードフィルタの第1の実施例の分解斜視図、図3は本発明の積層型コモンモードフィルタの第1の実施例の斜視図である。
コイルL1は第1の端子11と第2の端子12間に接続される。コイルL2は第3の端子13と第4の端子14間に接続される。コイルL1とコイルL2は、同一のインダクタンス値を有し、互いに磁気的に正結合させる。
コンデンサC1はコイルL1と並列に接続される。また、コンデンサC2はコイルL2と並列に接続される。
コンデンサC3はコイルL1の巻き始め端とコイルL2の巻き始め端間に接続される。また、コンデンサC4はコイルL1の巻き終わり端とコイルL2の巻き終わり端間に接続される。
Hereinafter, the laminated common mode filter of the present invention will be described with reference to FIGS.
1 is a circuit diagram of a multilayer common mode filter of the present invention, FIG. 2 is an exploded perspective view of a first embodiment of the multilayer common mode filter of the present invention, and FIG. It is a perspective view of 1 Example.
The coil L1 is connected between the first terminal 11 and the second terminal 12. The coil L <b> 2 is connected between the third terminal 13 and the fourth terminal 14. The coil L1 and the coil L2 have the same inductance value and are magnetically positively coupled to each other.
The capacitor C1 is connected in parallel with the coil L1. The capacitor C2 is connected in parallel with the coil L2.
The capacitor C3 is connected between the winding start end of the coil L1 and the winding start end of the coil L2. Capacitor C4 is connected between the winding end of coil L1 and the winding end of coil L2.

この様なコモンモードフィルタは、図2のように絶縁体層と導体パターンを積層することにより、積層体内に形成される。
絶縁体層21A乃至21Jは、磁性体、非磁性体、誘電体等絶縁性を有する材料を用いて形成される。
絶縁体層21Aの表面には、コンデンサ用導体パターン22Aとコンデンサ用導体パターン23Aが互いに接触しない様に離間して形成される。このコンデンサ用導体パターン22Aの引出し端とコンデンサ用導体パターン23Aの引出し端は、絶縁体層21Aの同じ側面まで引き出される。
絶縁体層21Bの表面には、コンデンサ用導体パターン22B、コンデンサ用導体パターン23B、コンデンサ用導体パターン24が互いに接触しない様に離間して形成される。コンデンサ用導体パターン22Bは、コンデンサ用導体パターン22Aと対向する位置に形成される。また、コンデンサ用導体パターン23Bは、コンデンサ用導体パターン23Aと対向する位置に形成される。さらに、コンデンサ用導体パターン24は、コンデンサ用導体パターン22Aとコンデンサ用導体パターン23Aの両方に跨って対向する位置に形成される。コンデンサ用導体パターン22Bの引出し端とコンデンサ用導体パターン23Bの引出し端は、絶縁体層21Bの同じ側面まで引き出される。
絶縁体層21Cの表面には、コイル用導体パターン25Aが形成される。コイル用導体パターン25Aの一端は絶縁体層21Cの側面まで引き出される。
絶縁体層21Dの表面には、コイル用導体パターン25Bが形成される。コイル用導体パターン25Bの一端は、絶縁体層21Dのスルーホール内の導体を介してコイル用導体パターン25Aの他端に接続される。
絶縁体層21Eの表面には、コイル用導体パターン25Cが形成される。コイル用導体パターン25Cの一端は、絶縁体層21Eのスルーホール内の導体を介してコイル用導体パターン25Bの他端に接続される。コイル用導体パターン25Cの他端は、絶縁体層21Eの側面まで引き出される。この様にコイル用導体パターン25A乃至コイル用導体パターン25Cを螺旋状に接続することによりコイルL1が形成される。このコイルL1は、絶縁体層21Eの表面に形成されたコイル用導体パターン25Cが巻き始め端部を構成し、絶縁体層21Cの表面に形成されたコイル用導体パターン25Aが巻き終わり端部を構成する。
絶縁体層21Fの表面には、コイル用導体パターン26Aが形成される。コイル用導体パターン26Aは、コイル用導体パターン25Cと対向する位置に、コイル用導体パターン25Cと巻回方向が同じになる様に形成される。コイル用導体パターン26Aの一端は絶縁体層21Fの側面まで引き出される。
絶縁体層21Gの表面には、コイル用導体パターン26Bが形成される。コイル用導体パターン26Bの一端は、絶縁体層21Gのスルーホール内の導体を介してコイル用導体パターン26Aの他端に接続される。
絶縁体層21Hの表面には、コイル用導体パターン26Cが形成される。コイル用導体パターン26Cの一端は、絶縁体層21Hのスルーホール内の導体を介してコイル用導体パターン26Bの他端に接続される。コイル用導体パターン26Cの他端は、絶縁体層21Hの側面まで引き出される。この様にコイル用導体パターン26A乃至コイル用導体パターン26Cを螺旋状に接続することによりコイルL2が形成される。このコイルL2は、その巻軸がコイルL1の巻軸と一致する様に積み重ねられると共に、コイルL1の巻回方向と同じ方向に巻回される。また、このコイルL2は、絶縁体層21Fの表面に形成されたコイル用導体パターン26Aが巻き始め端部を構成し、絶縁体層21Hの表面に形成されたコイル用導体パターン26Cが巻き終わり端部を構成する。
絶縁体層21Iの表面には、磁気シールド用導体パターン27が形成される。
この様に絶縁体層21Aから絶縁体層21Iまで順次積層し、保護用の絶縁体層21Jで覆われた積層体の側面には、図3に示す様に端子電極31、32、33、34が形成される。そして、コイル用導体パターン25Cの他端とコンデンサ用導体パターン22Bの引出し端が端子電極31に接続され、コイル用導体パターン25Aの一端とコンデンサ用導体パターン22Aの引出し端が端子電極32に接続されることにより、コイルL1とコンデンサC1の並列回路が第1の端子11と第2の端子12間に接続される。また、コイル用導体パターン26Aの一端とコンデンサ用導体パターン23Bの引出し端が端子電極33に接続され、コイル用導体パターン26Cの他端とコンデンサ用導体パターン23Aの引出し端が端子電極34に接続されることにより、コイルL2とコンデンサC2の並列回路が第3の端子13と第4の端子14間に接続される。さらに、コンデンサ用導体パターン22Aとコンデンサ用導体パターン24間及び、コンデンサ用導体パターン23Aとコンデンサ用導体パターン24間に形成される容量によってコイルL1の巻き終わり端とコイルL2の巻き終わり端間にコンデンサC4が接続される。またさらに、コイル用導体パターン25Cとコイル用導体パターン26A間に形成される容量によってコイルL1の巻き始め端とコイルL2の巻き始め端間にコンデンサC3が接続される。
Such a common mode filter is formed in a laminated body by laminating an insulator layer and a conductor pattern as shown in FIG.
The insulating layers 21A to 21J are formed using an insulating material such as a magnetic material, a nonmagnetic material, or a dielectric material.
The capacitor conductor pattern 22A and the capacitor conductor pattern 23A are formed on the surface of the insulator layer 21A so as not to contact each other. The lead end of the capacitor conductor pattern 22A and the lead end of the capacitor conductor pattern 23A are drawn to the same side surface of the insulating layer 21A.
A capacitor conductor pattern 22B, a capacitor conductor pattern 23B, and a capacitor conductor pattern 24 are formed on the surface of the insulating layer 21B so as not to contact each other. The capacitor conductor pattern 22B is formed at a position facing the capacitor conductor pattern 22A. The capacitor conductor pattern 23B is formed at a position facing the capacitor conductor pattern 23A. Further, the capacitor conductor pattern 24 is formed at a position facing both the capacitor conductor pattern 22A and the capacitor conductor pattern 23A. The lead end of the capacitor conductor pattern 22B and the lead end of the capacitor conductor pattern 23B are drawn to the same side surface of the insulator layer 21B.
A coil conductor pattern 25A is formed on the surface of the insulator layer 21C. One end of the coil conductor pattern 25A is drawn to the side surface of the insulating layer 21C.
A coil conductor pattern 25B is formed on the surface of the insulating layer 21D. One end of the coil conductor pattern 25B is connected to the other end of the coil conductor pattern 25A via a conductor in the through hole of the insulator layer 21D.
A coil conductor pattern 25C is formed on the surface of the insulator layer 21E. One end of the coil conductor pattern 25C is connected to the other end of the coil conductor pattern 25B via a conductor in the through hole of the insulator layer 21E. The other end of the coil conductor pattern 25C is drawn to the side surface of the insulator layer 21E. In this way, the coil L1 is formed by connecting the coil conductor patterns 25A to 25C in a spiral shape. In the coil L1, the coil conductor pattern 25C formed on the surface of the insulator layer 21E constitutes the winding start end, and the coil conductor pattern 25A formed on the surface of the insulator layer 21C has the winding end end. Constitute.
A coil conductor pattern 26A is formed on the surface of the insulator layer 21F. The coil conductor pattern 26A is formed at the position facing the coil conductor pattern 25C so that the winding direction of the coil conductor pattern 25C is the same. One end of the coil conductor pattern 26A is drawn to the side surface of the insulating layer 21F.
A coil conductor pattern 26B is formed on the surface of the insulator layer 21G. One end of the coil conductor pattern 26B is connected to the other end of the coil conductor pattern 26A via a conductor in the through hole of the insulator layer 21G.
A coil conductor pattern 26C is formed on the surface of the insulator layer 21H. One end of the coil conductor pattern 26C is connected to the other end of the coil conductor pattern 26B via a conductor in the through hole of the insulator layer 21H. The other end of the coil conductor pattern 26C is drawn to the side surface of the insulator layer 21H. In this way, the coil L2 is formed by connecting the coil conductor patterns 26A to 26C in a spiral shape. The coil L2 is stacked such that its winding axis coincides with the winding axis of the coil L1, and is wound in the same direction as the winding direction of the coil L1. In the coil L2, the coil conductor pattern 26A formed on the surface of the insulator layer 21F constitutes a winding start end, and the coil conductor pattern 26C formed on the surface of the insulator layer 21H has a winding end. Parts.
A magnetic shield conductor pattern 27 is formed on the surface of the insulator layer 21I.
In this way, the insulator layers 21A to 21I are sequentially laminated, and the terminal electrodes 31, 32, 33, and 34 are formed on the side surfaces of the laminate covered with the protective insulator layer 21J as shown in FIG. Is formed. The other end of the coil conductor pattern 25C and the lead end of the capacitor conductor pattern 22B are connected to the terminal electrode 31, and one end of the coil conductor pattern 25A and the lead end of the capacitor conductor pattern 22A are connected to the terminal electrode 32. Thus, the parallel circuit of the coil L1 and the capacitor C1 is connected between the first terminal 11 and the second terminal 12. One end of the coil conductor pattern 26A and the lead end of the capacitor conductor pattern 23B are connected to the terminal electrode 33, and the other end of the coil conductor pattern 26C and the lead end of the capacitor conductor pattern 23A are connected to the terminal electrode 34. Thus, the parallel circuit of the coil L2 and the capacitor C2 is connected between the third terminal 13 and the fourth terminal 14. Further, the capacitor formed between the coil conductor pattern 22A and the capacitor conductor pattern 24 and between the winding end of the coil L1 and the winding end of the coil L2 depending on the capacitance formed between the capacitor conductor pattern 23A and the capacitor conductor pattern 24. C4 is connected. Furthermore, the capacitor C3 is connected between the winding start end of the coil L1 and the winding start end of the coil L2 by the capacitance formed between the coil conductor pattern 25C and the coil conductor pattern 26A.

この様に形成された積層型コモンモードフィルタにおいて、絶縁体層21A〜21Jに誘電率が4.6の誘電体を用い、コイル用導体パターン25A、25B、25C、26A、26B、26Cの線幅を75μmにして同じインダクタンス値を有するコイルL1とコイルL2を形成し、コイルL1の巻き始め端とコイルL2の巻き始め端を近接させた状況で互いに磁気的に結合させ、全体の大きさを1.0×1.2×0.8mmとしたところ、図4(A)、(B)に示す様な特性が得られた。図4において、横軸は周波数、縦軸は減衰量、41が差動信号の減衰量、42が同相信号(ノイズ)の減衰量、43が差動信号の反射波の減衰量、44がコモンモード除去比、45がSCD21(外部へのノイズ減衰量)、46がSDC21(外部からのノイズ減衰量)を示している。PCI Expressのクロック周波数の2.5GHzでこれらの特性を見てみると、図5に示す様に、差動挿入損失が0.459dB、差動反射損失が26.12dB、ノイズ減衰量が31.84dB、コモンモード除去比が36.83dB、SCD21が32.75dB、SDC21が39.67dBとなり、従来のものに比較して差動挿入損失を1/2以下に低減した状態で、ノイズの減衰量を20%も改善することができた。   In the laminated common mode filter formed in this way, a dielectric having a dielectric constant of 4.6 is used for the insulator layers 21A to 21J, and the line widths of the coil conductor patterns 25A, 25B, 25C, 26A, 26B, and 26C are used. The coil L1 and the coil L2 having the same inductance value are formed with a thickness of 75 μm, and are magnetically coupled to each other in a state where the winding start end of the coil L1 and the winding start end of the coil L2 are close to each other. When the thickness was set to 0.0 × 1.2 × 0.8 mm, the characteristics shown in FIGS. 4A and 4B were obtained. In FIG. 4, the horizontal axis represents frequency, the vertical axis represents attenuation, 41 represents differential signal attenuation, 42 represents in-phase signal (noise) attenuation, 43 represents reflected signal attenuation, and 44 represents Common mode rejection ratio, 45 indicates SCD21 (noise attenuation to the outside), and 46 indicates SDC21 (noise attenuation from the outside). Looking at these characteristics at a PCI Express clock frequency of 2.5 GHz, as shown in FIG. 5, the differential insertion loss is 0.459 dB, the differential reflection loss is 26.12 dB, and the noise attenuation is 31. 84dB, common mode rejection ratio is 36.83dB, SCD21 is 32.75dB, SDC21 is 39.67dB, and the amount of noise attenuation is reduced with the differential insertion loss reduced to 1/2 or less compared to the conventional one. Was improved by 20%.

図6は、本発明の積層型コモンモードフィルタの第2の実施例の分解斜視図である。
絶縁体層61Aの表面には、コンデンサ用導体パターン62A、コンデンサ用導体パターン62B、コンデンサ用導体パターン63A及び、コンデンサ用導体パターン63Bが形成される。コンデンサ用導体パターン62Aとコンデンサ用導体パターン62Bは、絶縁体層61Aの片側半面(図6では左半面)に互いに接触しない様に離間して形成され、それぞれの引出し端が絶縁体層61Aの同じ側面まで引き出される。また、コンデンサ用導体パターン63Aとコンデンサ用導体パターン63Bは、絶縁体層61Aの残りの半面(図6では右半面)に互いに接触しない様に離間して形成され、それぞれの引出し端が絶縁体層61Aの同じ側面まで引き出される。この時、コンデンサ用導体パターン62A、62Bと、コンデンサ用導体パターン63A、63Bは、絶縁体層61Aの表面の中心を原点とする点対称に形成され、コンデンサ用導体パターン62A、62Bの引出し端とコンデンサ用導体パターン63A、63Bの引出し端が絶縁体層61Aの異なった側面に引き出される。
絶縁体層61Bの表面には、コンデンサ用導体パターン62C、コンデンサ用導体パターン62D、コンデンサ用導体パターン62E、コンデンサ用導体パターン63C、コンデンサ用導体パターン63D及び、コンデンサ用導体パターン63Eが形成される。コンデンサ用導体パターン62Cとコンデンサ用導体パターン62Dとコンデンサ用導体パターン62Eは、絶縁体層61Bの片側半面(図6では左半面)に互いに接触しない様に離間して形成され、コンデンサ用導体パターン62Cの引出し端とコンデンサ用導体パターン62Dの引出し端が絶縁体層61Bの同じ側面まで引き出される。また、コンデンサ用導体パターン63Cとコンデンサ用導体パターン63Dとコンデンサ用導体パターン63Eは、絶縁体層61Bの残りの半面(図6では右半面)に互いに接触しない様に離間して形成され、コンデンサ用導体パターン63Cの引出し端とコンデンサ用導体パターン63Dの引出し端が絶縁体層61Bの同じ側面まで引き出される。この時、コンデンサ用導体パターン62C、62Dの引出し端とコンデンサ用導体パターン63C、63Dの引出し端は、絶縁体層61Bの異なった側面に引き出される。この様にコンデンサ用導体パターン62C、62D、62Eとコンデンサ用導体パターン63C、63D、63Eは、絶縁体層61Bの表面の中心を原点とする点対称に形成される。
絶縁体層61Cの表面には、コイル用導体パターン64Aとコイル用導体パターン65Aが形成される。コイル用導体パターン64Aは絶縁体層61Cの片側半面(図6では左半面)に形成される。また、コイル用導体パターン65Aは絶縁体層61Cの残り半面(図6では右半面)に形成される。このコイル用導体パターン64Aの一端とコイル用導体パターン65Aの一端は、絶縁体層61Cの異なった側面にそれぞれ引き出される。
絶縁体層61Dの表面には、コイル用導体パターン64Bとコイル用導体パターン65Bが形成される。コイル用導体パターン64Bは絶縁体層61Dの片側半面(図6では左半面)に形成され、その一端がコイル用導体パターン64Aの他端に接続される。また、コイル用導体パターン65Bは絶縁体層61Dの残り半面(図6では右半面)に形成され、その一端がコイル用導体パターン65Aの他端に接続される。
絶縁体層61Eの表面には、コイル用導体パターン64Cとコイル用導体パターン65Cが形成される。コイル用導体パターン64Cは絶縁体層61Eの片側半面(図6では左半面)に形成され、その一端がコイル用導体パターン64Bの他端に接続される。また、コイル用導体パターン65Cは絶縁体層61Eの残り半面(図6では右半面)に形成され、その一端がコイル用導体パターン65Bの他端に接続される。このコイル用導体パターン64Cの他端とコイル用導体パターン65Cの他端は、絶縁体層61Eの異なる側面にそれぞれ引き出される。この様にコイル用導体パターン64A乃至コイル用導体パターン64Cを螺旋状に接続することによりコイルL3が形成され、コイル用導体パターン65A乃至コイル用導体パターン65Cを螺旋状に接続することによりコイルL6が形成される。このコイルL3は、絶縁体層61Eの表面に形成されたコイル用導体パターン64Cが巻き始め端部を構成し、絶縁体層61Cの表面に形成されたコイル用導体パターン64Aが巻き終わり端部を構成する。また、コイルL6は、絶縁体層61Eの表面に形成されたコイル用導体パターン65Cが巻き始め端部を構成し、絶縁体層61Cの表面に形成されたコイル用導体パターン65Aが巻き終わり端部を構成する。
絶縁体層61Fの表面には、コイル用導体パターン66Aとコイル用導体パターン67Aが形成される。コイル用導体パターン66Aは、絶縁体層61Fの片側半面(図6では左半面)において、コイル用導体パターン64Cと対向する位置に、コイル用導体パターン64Cと同一の巻回方向となる様に形成される。また、コイル用導体パターン67Aは、絶縁体層61Fの残り半面(図6では右半面)において、コイル用導体パターン65Cと対向する位置に、コイル用導体パターン65Cと同一の巻回方向となる様に形成される。このコイル用導体パターン66Aの一端とコイル用導体パターン67Aの一端は、絶縁体層61Fの異なる側面にそれぞれ引き出される。
絶縁体層61Gの表面には、コイル用導体パターン66Bとコイル用導体パターン67Bが形成される。コイル用導体パターン66Bは、絶縁体層61Gの片側半面(図6では左半面)に形成され、その一端がコイル用導体パターン66Aの他端に接続される。また、コイル用導体パターン67Bは、絶縁体層61Gの残り半面(図6では右半面)に形成され、その一端がコイル用導体パターン67Aの他端に接続される。
絶縁体層61Hの表面には、コイル用導体パターン66Cとコイル用導体パターン67Cが形成される。コイル用導体パターン66Cは、絶縁体層61Hの片側半面(図6では左半面)に形成され、その一端がコイル用導体パターン66Bの他端と接続される。また、コイル用導体パターン67Cは、絶縁体層61Hの残り半面(図6では右半面)に形成され、その一端がコイル用導体パターン67Bの他端と接続される。このコイル用導体パターン66Cの他端とコイル用導体パターン67Cの他端は、絶縁体層61Hの異なる側面にそれぞれ引き出される。この様にコイル用導体パターン66A乃至66Cを螺旋状に接続することによりコイルL4が、コイル用導体パターン67A乃至67Cを螺旋状に接続することによりコイルL5が形成される。コイルL4は、その巻軸がコイルL3の巻軸と一致する様に積み重ねられると共に、コイルL3の巻回方向と同じ方向に巻回される。また、このコイルL4は、絶縁体層61Fの表面のコイル用導体パターン66Aが巻き始め端部を構成し、絶縁体層61Fの表面のコイル用導体パターン66Cが巻き終わり端部を構成する。コイルL5は、その巻軸がコイルL6の巻軸と一致する様に積み重ねられると共に、コイルL6の巻回方向と同じ方向に巻回される。また、コイルL5は、絶縁体層61Fの表面のコイル用導体パターン67Aが巻き始め端部を構成し、絶縁体層61Hの表面のコイル用導体パターン67Cが巻き終わり端部を構成する。
絶縁体層61Iの表面には、磁気シールド用導体パターン68Aと磁気シールド用導体パターン68Bが形成される。
この様に絶縁体層61Aから絶縁体層61Iまで順次積層し、保護用の絶縁体層61Jで覆うことにより、これらの積層体内に図7に示す様な回路が形成されると共に、積層体の側面に図8に示す様に端子電極81〜87が形成される。そして、コイル用導体パターン64Cとコンデンサ用導体パターン62Cが端子電極81に接続され、コイル用導体パターン64Aとコンデンサ用導体パターン62Aが端子電極82に接続されることにより、コイルL3とコンデンサC5の並列回路が第1の端子71と第2の端子72間に接続される。また、コイル用導体パターン66Aとコンデンサ用導体パターン62Dが端子電極83に接続され、コイル用導体パターン66Cとコンデンサ用導体パターン62Bが端子電極84に接続されることにより、コイルL4とコンデンサC6の並列回路が第3の端子73と第4の端子74間に接続される。さらに、コンデンサ用導体パターン62Aとコンデンサ用導体パターン62E間及び、コンデンサ用導体パターン62Bとコンデンサ用導体パターン62E間に形成される容量によってコイルL3の巻き終わり端とコイルL4の巻き終わり端間にコンデンサC8が接続される。またさらに、コイル用導体パターン64Cとコイル用導体パターン66A間に形成される容量によってコイルL3の巻き始め端とコイルL4の巻き始め端間にコンデンサC7が接続される。また、コイル用導体パターン67Aとコンデンサ用導体パターン63Cが端子電極85に接続され、コイル用導体パターン67Cとコンデンサ用導体パターン63Aが端子電極86に接続されることにより、コイルL5とコンデンサC9の並列回路が第5の端子75と第6の端子76間に接続される。さらに、コイル用導体パターン65Cとコンデンサ用導体パターン63Dが端子電極87に接続され、コイル用導体パターン65Aとコンデンサ用導体パターン63Bが端子電極88に接続されることにより、コイルL6とコンデンサC10の並列回路が第7の端子77と第8の端子78に接続される。また、コンデンサ用導体パターン63Aとコンデンサ用導体パターン63E間及び、コンデンサ用導体パターン63Bとコンデンサ用導体パターン63E間に形成される容量によってコイルL5の巻き終わり端とコイルL6の巻き終わり端間にコンデンサC12が接続される。またさらに、コイル用導体パターン65Cとコイル用導体パターン67A間に形成される容量によってコイルL5の巻き始め端とコイルL6の巻き始め端間にコンデンサC11が接続される。この回路は、図1の回路を2組備えた回路で、送信と受信の2つの高速差動伝送ラインを有するPCI Expressに適した回路構成となっており、積層体の片側半分に送信側コモンモードフィルタTXが、積層体の残りの半分に受信側コモンモードフィルタRXが形成される。
FIG. 6 is an exploded perspective view of a second embodiment of the multilayer common mode filter of the present invention.
A capacitor conductor pattern 62A, a capacitor conductor pattern 62B, a capacitor conductor pattern 63A, and a capacitor conductor pattern 63B are formed on the surface of the insulator layer 61A. The capacitor conductor pattern 62A and the capacitor conductor pattern 62B are formed so as not to contact each other on one half surface (the left half surface in FIG. 6) of the insulator layer 61A, and each lead end is the same as that of the insulator layer 61A. It is pulled out to the side. Further, the capacitor conductor pattern 63A and the capacitor conductor pattern 63B are formed so as not to contact each other on the remaining half surface (the right half surface in FIG. 6) of the insulator layer 61A, and each lead-out end is an insulator layer. It is pulled out to the same side of 61A. At this time, the capacitor conductor patterns 62A and 62B and the capacitor conductor patterns 63A and 63B are formed point-symmetrically with the center of the surface of the insulator layer 61A as the origin, and the lead ends of the capacitor conductor patterns 62A and 62B The lead ends of the capacitor conductive patterns 63A and 63B are drawn to different side surfaces of the insulating layer 61A.
A capacitor conductor pattern 62C, a capacitor conductor pattern 62D, a capacitor conductor pattern 62E, a capacitor conductor pattern 63C, a capacitor conductor pattern 63D, and a capacitor conductor pattern 63E are formed on the surface of the insulator layer 61B. The capacitor conductor pattern 62C, the capacitor conductor pattern 62D, and the capacitor conductor pattern 62E are formed so as not to contact each other on one half surface (left half surface in FIG. 6) of the insulator layer 61B, and the capacitor conductor pattern 62C. And the lead end of the capacitor conductive pattern 62D are drawn to the same side surface of the insulating layer 61B. The capacitor conductor pattern 63C, the capacitor conductor pattern 63D, and the capacitor conductor pattern 63E are formed so as not to contact each other on the remaining half surface (the right half surface in FIG. 6) of the insulator layer 61B. The lead end of the conductor pattern 63C and the lead end of the capacitor conductor pattern 63D are drawn to the same side surface of the insulator layer 61B. At this time, the lead-out ends of the capacitor conductor patterns 62C and 62D and the lead-out ends of the capacitor conductor patterns 63C and 63D are drawn to different side surfaces of the insulating layer 61B. In this way, the capacitor conductor patterns 62C, 62D, and 62E and the capacitor conductor patterns 63C, 63D, and 63E are formed point-symmetrically with the center of the surface of the insulator layer 61B as the origin.
A coil conductor pattern 64A and a coil conductor pattern 65A are formed on the surface of the insulating layer 61C. The coil conductor pattern 64A is formed on one half surface (left half surface in FIG. 6) of the insulating layer 61C. The coil conductor pattern 65A is formed on the remaining half surface (the right half surface in FIG. 6) of the insulating layer 61C. One end of the coil conductor pattern 64A and one end of the coil conductor pattern 65A are drawn out to different side surfaces of the insulator layer 61C.
A coil conductor pattern 64B and a coil conductor pattern 65B are formed on the surface of the insulator layer 61D. The coil conductor pattern 64B is formed on one half surface (left half surface in FIG. 6) of the insulating layer 61D, and one end thereof is connected to the other end of the coil conductor pattern 64A. The coil conductor pattern 65B is formed on the remaining half surface (the right half surface in FIG. 6) of the insulator layer 61D, and one end thereof is connected to the other end of the coil conductor pattern 65A.
A coil conductor pattern 64C and a coil conductor pattern 65C are formed on the surface of the insulator layer 61E. The coil conductor pattern 64C is formed on one half surface (left half surface in FIG. 6) of the insulating layer 61E, and one end thereof is connected to the other end of the coil conductor pattern 64B. The coil conductor pattern 65C is formed on the remaining half surface (the right half surface in FIG. 6) of the insulating layer 61E, and one end thereof is connected to the other end of the coil conductor pattern 65B. The other end of the coil conductor pattern 64C and the other end of the coil conductor pattern 65C are drawn out to different side surfaces of the insulator layer 61E. Thus, the coil L3 is formed by connecting the coil conductor pattern 64A to the coil conductor pattern 64C in a spiral shape, and the coil L6 is formed by connecting the coil conductor pattern 65A to the coil conductor pattern 65C in a spiral shape. It is formed. In the coil L3, the coil conductor pattern 64C formed on the surface of the insulator layer 61E constitutes the winding start end, and the coil conductor pattern 64A formed on the surface of the insulator layer 61C has the winding end end. Constitute. In the coil L6, the coil conductor pattern 65C formed on the surface of the insulator layer 61E constitutes the winding start end, and the coil conductor pattern 65A formed on the surface of the insulator layer 61C has the winding end end. Configure.
A coil conductor pattern 66A and a coil conductor pattern 67A are formed on the surface of the insulating layer 61F. The coil conductor pattern 66A is formed on one half surface (left half surface in FIG. 6) of the insulator layer 61F at a position facing the coil conductor pattern 64C so as to be in the same winding direction as the coil conductor pattern 64C. Is done. Further, the coil conductor pattern 67A has the same winding direction as the coil conductor pattern 65C at the position facing the coil conductor pattern 65C on the remaining half surface (the right half surface in FIG. 6) of the insulating layer 61F. Formed. One end of the coil conductor pattern 66A and one end of the coil conductor pattern 67A are drawn out to different side surfaces of the insulator layer 61F.
A coil conductor pattern 66B and a coil conductor pattern 67B are formed on the surface of the insulator layer 61G. The coil conductor pattern 66B is formed on one half surface (left half surface in FIG. 6) of the insulator layer 61G, and one end thereof is connected to the other end of the coil conductor pattern 66A. The coil conductor pattern 67B is formed on the remaining half surface (the right half surface in FIG. 6) of the insulating layer 61G, and one end thereof is connected to the other end of the coil conductor pattern 67A.
A coil conductor pattern 66C and a coil conductor pattern 67C are formed on the surface of the insulating layer 61H. The coil conductor pattern 66C is formed on one half surface (left half surface in FIG. 6) of the insulating layer 61H, and one end thereof is connected to the other end of the coil conductor pattern 66B. The coil conductor pattern 67C is formed on the remaining half surface (the right half surface in FIG. 6) of the insulating layer 61H, and one end thereof is connected to the other end of the coil conductor pattern 67B. The other end of the coil conductor pattern 66C and the other end of the coil conductor pattern 67C are drawn out to different side surfaces of the insulator layer 61H. In this way, the coil L4 is formed by connecting the coil conductor patterns 66A to 66C in a spiral shape, and the coil L5 is formed by connecting the coil conductor patterns 67A to 67C in a spiral shape. The coil L4 is stacked so that its winding axis coincides with the winding axis of the coil L3, and is wound in the same direction as the winding direction of the coil L3. In the coil L4, the coil conductor pattern 66A on the surface of the insulator layer 61F constitutes a winding start end portion, and the coil conductor pattern 66C on the surface of the insulator layer 61F constitutes a winding end end portion. The coil L5 is stacked so that its winding axis coincides with the winding axis of the coil L6, and is wound in the same direction as the winding direction of the coil L6. In the coil L5, the coil conductor pattern 67A on the surface of the insulator layer 61F constitutes the winding start end portion, and the coil conductor pattern 67C on the surface of the insulator layer 61H constitutes the winding end end portion.
A magnetic shield conductor pattern 68A and a magnetic shield conductor pattern 68B are formed on the surface of the insulator layer 61I.
In this way, by sequentially laminating from the insulator layer 61A to the insulator layer 61I and covering with the protective insulator layer 61J, a circuit as shown in FIG. Terminal electrodes 81 to 87 are formed on the side surfaces as shown in FIG. The coil conductor pattern 64C and the capacitor conductor pattern 62C are connected to the terminal electrode 81, and the coil conductor pattern 64A and the capacitor conductor pattern 62A are connected to the terminal electrode 82, whereby the coil L3 and the capacitor C5 are parallel. A circuit is connected between the first terminal 71 and the second terminal 72. Further, the coil conductor pattern 66A and the capacitor conductor pattern 62D are connected to the terminal electrode 83, and the coil conductor pattern 66C and the capacitor conductor pattern 62B are connected to the terminal electrode 84, whereby the coil L4 and the capacitor C6 are arranged in parallel. A circuit is connected between the third terminal 73 and the fourth terminal 74. Further, a capacitor is formed between the winding end of the coil L3 and the winding end of the coil L4 by the capacitance formed between the capacitor conductive pattern 62A and the capacitor conductive pattern 62E and between the capacitor conductive pattern 62B and the capacitor conductive pattern 62E. C8 is connected. Furthermore, the capacitor C7 is connected between the winding start end of the coil L3 and the winding start end of the coil L4 by the capacitance formed between the coil conductor pattern 64C and the coil conductor pattern 66A. Further, the coil conductor pattern 67A and the capacitor conductor pattern 63C are connected to the terminal electrode 85, and the coil conductor pattern 67C and the capacitor conductor pattern 63A are connected to the terminal electrode 86, so that the coil L5 and the capacitor C9 are arranged in parallel. A circuit is connected between the fifth terminal 75 and the sixth terminal 76. Furthermore, the coil conductor pattern 65C and the capacitor conductor pattern 63D are connected to the terminal electrode 87, and the coil conductor pattern 65A and the capacitor conductor pattern 63B are connected to the terminal electrode 88, whereby the coil L6 and the capacitor C10 are parallel. A circuit is connected to the seventh terminal 77 and the eighth terminal 78. Further, the capacitor formed between the winding end of the coil L5 and the winding end of the coil L6 depending on the capacitance formed between the capacitor conductive pattern 63A and the capacitor conductive pattern 63E and between the capacitor conductive pattern 63B and the capacitor conductive pattern 63E. C12 is connected. Furthermore, the capacitor C11 is connected between the winding start end of the coil L5 and the winding start end of the coil L6 by the capacitance formed between the coil conductor pattern 65C and the coil conductor pattern 67A. This circuit is a circuit comprising two sets of the circuit shown in FIG. 1, and has a circuit configuration suitable for PCI Express having two high-speed differential transmission lines for transmission and reception. In the mode filter TX, the reception-side common mode filter RX is formed in the remaining half of the stacked body.

この様に形成された積層型コモンモードフィルタにおいて、絶縁体層61A〜61Jに誘電率が4.6の誘電体を用い、コイル用導体パターン64A〜64C、65A〜65C、66A〜66C、67A〜67Cの線幅を75μmにしてコイルL3、L4、L5、L6を形成し、コイルL3の巻き始め端とコイルL4の巻き始め端を近接させた状況で互いに磁気的に結合させ、コイルL5の巻き始め端とコイルL6の巻き始め端を近接させた状況で互いに磁気的に結合させ、全体の大きさを2.0×1.2×0.8mmとしたところ、積層体内に2組のコモンモードフィルタ回路を一体に形成することができると共に、図9に示す様な受信側特性と、図10に示す様な送信側特性が得られた。図9において、横軸は周波数、縦軸は減衰量、91が受信側の差動信号の減衰量、92が受信側の同相信号(ノイズ)の減衰量、93が受信側の差動信号の反射波の減衰量、94がコモンモード除去比、95がSCD21(外部へのノイズ減衰量)、96がSDC21(外部からのノイズ減衰量)を示している。図10において、横軸は周波数、縦軸は減衰量、101が差動信号の減衰量、102が同相信号(ノイズ)の減衰量、103が差動信号の反射波の減衰量、104がコモンモード除去比、105がSCD21(外部へのノイズ減衰量)、106がSDC21(外部からのノイズ減衰量)を示している。また、この時の送受信間の電気的の分離度は、図11の様になり、35dB以上確保することができた。なお、図11において横軸は周波数、縦軸は減衰量、111が受信側の入力端と送信側の入力端間の分離度、112が受信側の入力端と送信側の出力端間の分離度、113が受信側の出力端と送信側の入力端間の分離度、114が受信側の出力端と送信側の出力端間の分離度を示している。   In the laminated common mode filter formed as described above, dielectric materials having a dielectric constant of 4.6 are used for the insulator layers 61A to 61J, and coil conductor patterns 64A to 64C, 65A to 65C, 66A to 66C, and 67A to 67A. The coils L3, L4, L5, and L6 are formed with a line width of 67C of 75 μm and are magnetically coupled to each other in a state where the winding start end of the coil L3 and the winding start end of the coil L4 are close to each other. When the start end and the winding start end of the coil L6 are close to each other, they are magnetically coupled to each other, and the overall size is 2.0 × 1.2 × 0.8 mm. The filter circuit can be formed integrally, and the receiving side characteristics as shown in FIG. 9 and the transmitting side characteristics as shown in FIG. 10 are obtained. In FIG. 9, the horizontal axis represents frequency, the vertical axis represents attenuation, 91 represents the attenuation of the differential signal on the reception side, 92 represents the attenuation of the in-phase signal (noise) on the reception side, and 93 represents the differential signal on the reception side. , 94 represents the common mode rejection ratio, 95 represents SCD21 (noise attenuation to the outside), and 96 represents SDC21 (noise attenuation from the outside). In FIG. 10, the horizontal axis represents frequency, the vertical axis represents attenuation, 101 represents the attenuation of the differential signal, 102 represents the attenuation of the in-phase signal (noise), 103 represents the attenuation of the reflected wave of the differential signal, and 104 represents Common mode rejection ratio, 105 is SCD21 (noise attenuation to the outside), and 106 is SDC21 (noise attenuation from the outside). In addition, the electrical separation between the transmission and reception at this time is as shown in FIG. 11, and 35 dB or more could be secured. In FIG. 11, the horizontal axis represents frequency, the vertical axis represents attenuation, 111 represents the degree of separation between the input terminal on the reception side and the input terminal on the transmission side, and 112 represents separation between the input terminal on the reception side and the output terminal on the transmission side. 113 indicates the degree of separation between the output end on the reception side and the input end on the transmission side, and 114 indicates the degree of separation between the output end on the reception side and the output end on the transmission side.

以上、本発明の積層型コモンモードフィルタの実施例を述べたが、これら実施例に限られるものではない。例えば、互いに磁気的に結合する2つのコイルがそれぞれ巻き終わり側を近接させた状態で積層方向に重畳して配置され、第1の端子と第2の端子間に第1のコイルが接続され、第3の端子と第4の端子間に第2のコイルが接続され、第1のコイルと並列に第1のコンデンサを接続し、第2のコイルと並列に第2のコンデンサを接続し、第1のコイルの巻き始め端と第2のコイルの巻き始め端間に第3のコンデンサを接続し、第1のコイルの巻き終わり端部と第2のコイルの巻き終わり端部間に形成された容量によって第1のコイルの巻き終わり端と第2のコイルの巻き終わり端間に第4のコンデンサが接続されてもよい。   As mentioned above, although the Example of the laminated | stacked common mode filter of this invention was described, it is not restricted to these Examples. For example, two coils that are magnetically coupled to each other are arranged so as to overlap each other in the stacking direction with the winding end sides being close to each other, and the first coil is connected between the first terminal and the second terminal, A second coil is connected between the third terminal and the fourth terminal, a first capacitor is connected in parallel with the first coil, a second capacitor is connected in parallel with the second coil, A third capacitor is connected between the winding start end of the first coil and the winding start end of the second coil, and is formed between the winding end end of the first coil and the winding end end of the second coil. A fourth capacitor may be connected between the winding end of the first coil and the winding end of the second coil depending on the capacitance.

本発明の積層型コモンモードフィルタの回路図である。FIG. 3 is a circuit diagram of the multilayer common mode filter of the present invention. 本発明の積層型コモンモードフィルタの第1の実施例の分解斜視図である。It is a disassembled perspective view of the 1st Example of the lamination type common mode filter of the present invention. 本発明の積層型コモンモードフィルタの第1の実施例の斜視図である。It is a perspective view of the 1st example of the lamination type common mode filter of the present invention. 本発明の積層型コモンモードフィルタの第1の実施例の特性図である。It is a characteristic view of the 1st Example of the lamination type common mode filter of this invention. 本発明の積層型コモンモードフィルタの第1の実施例の特性と従来のコモンモードフィルタの特性を比較した表である。It is the table | surface which compared the characteristic of the 1st Example of the laminated | stacked common mode filter of this invention, and the characteristic of the conventional common mode filter. 本発明の積層型コモンモードフィルタの第2の実施例の分解斜視図である。It is a disassembled perspective view of 2nd Example of the laminated | stacked common mode filter of this invention. 本発明の積層型コモンモードフィルタの第2の実施例の回路図である。It is a circuit diagram of the 2nd example of a lamination type common mode filter of the present invention. 本発明の積層型コモンモードフィルタの第2の実施例の斜視図である。It is a perspective view of the 2nd example of the lamination type common mode filter of the present invention. 本発明の積層型コモンモードフィルタの第2の実施例の特性図である。It is a characteristic view of the 2nd example of the lamination type common mode filter of the present invention. 本発明の積層型コモンモードフィルタの第2の実施例の特性図である。It is a characteristic view of the 2nd example of the lamination type common mode filter of the present invention. 本発明の積層型コモンモードフィルタの第2の実施例の特性図である。It is a characteristic view of the 2nd example of the lamination type common mode filter of the present invention. 従来のコモンモードチョークコイルである。This is a conventional common mode choke coil.

符号の説明Explanation of symbols

11 第1の端子
12 第2の端子
13 第3の端子
14 第4の端子
L1 第1のコイル
L2 第2のコイル
C1 第1のコンデンサ
C2 第2のコンデンサ
C3 第3のコンデンサ
C4 第4のコンデンサ
11 1st terminal 12 2nd terminal 13 3rd terminal 14 4th terminal L1 1st coil L2 2nd coil C1 1st capacitor C2 2nd capacitor C3 3rd capacitor C4 4th capacitor

Claims (4)

絶縁体層と導体パターンを積層し、これらの積層体内に、第1の端子と第2の端子間に接続された第1のコイル、第3の端子と第4の端子間に接続された第2のコイル、該第1のコイルと並列に接続された第1のコンデンサ、該第2のコイルと並列に接続された第2のコンデンサ、該第1のコイルの巻き始め端と該第2のコイルの巻き始め端間に接続された第3のコンデンサ及び、該第1のコイルの巻き終わり端と該第2のコイルの巻き終わり端間に接続された第4のコンデンサを備え、該第1のコイルと該第2のコイルを磁気的に結合させたことを特徴とする積層型コモンモードフィルタ。   The insulator layer and the conductor pattern are laminated, and in these laminates, the first coil connected between the first terminal and the second terminal, and the first coil connected between the third terminal and the fourth terminal. Two coils, a first capacitor connected in parallel with the first coil, a second capacitor connected in parallel with the second coil, a winding start end of the first coil, and the second coil A third capacitor connected between the winding start ends of the coil, and a fourth capacitor connected between the winding end end of the first coil and the winding end end of the second coil, A laminated common mode filter characterized by magnetically coupling the second coil and the second coil. 絶縁体層と導体パターンを積層し、これらの積層体内に4つのコンデンサと共通の巻軸を中心に螺旋状に巻かれた2つのコイルとを備え、該2つのコイルはそれぞれ巻き始め側が近接する様に積層方向に重畳して配置され、第1の端子と第2の端子間に該第1のコイルが接続され、第3の端子と第4の端子間に該第2のコイルが接続され、該第1のコイルと並列に第1のコンデンサを接続し、該第2のコイルと並列に第2のコンデンサを接続し、該第1のコイルの巻き終わり端と該第2のコイルの巻き終わり端間に第4のコンデンサを接続し、該第1のコイルの巻き始め端部と該第2のコイルの巻き始め端部間に形成された容量によって該第1のコイルの巻き始め端と該第2のコイルの巻き始め端間に第3のコンデンサが接続されたことを特徴とする積層型コモンモードフィルタ。   An insulating layer and a conductor pattern are stacked, and four capacitors and two coils wound spirally around a common winding axis are provided in the stacked body, and the two coils are close to each other at the winding start side. The first coil is connected between the first terminal and the second terminal, and the second coil is connected between the third terminal and the fourth terminal. The first capacitor is connected in parallel with the first coil, the second capacitor is connected in parallel with the second coil, the winding end of the first coil and the winding of the second coil A fourth capacitor is connected between the end ends, and a winding start end of the first coil is formed by a capacitance formed between the winding start end of the first coil and the winding start end of the second coil. A third capacitor is connected between the winding start ends of the second coil. Multilayer common mode filter to. 絶縁体層と導体パターンを積層し、これらの積層体内に4つのコンデンサと共通の巻軸を中心に螺旋状に巻かれた2つのコイルとを備え、該2つのコイルはそれぞれ巻き終わり側が近接する様に積層方向に重畳して配置され、第1の端子と第2の端子間に該第1のコイルが接続され、第3の端子と第4の端子間に該第2のコイルが接続され、該第1のコイルと並列に第1のコンデンサを接続し、該第2のコイルと並列に第2のコンデンサを接続し、該第1のコイルの巻き始め端と該第2のコイルの巻き始め端間に第3のコンデンサを接続し、該第1のコイルの巻き終わり端部と該第2のコイルの巻き終わり端部間に形成された容量によって該第1のコイルの巻き終わり端と該第2のコイルの巻き終わり端間に第4のコンデンサが接続されたことを特徴とする積層型コモンモードフィルタ。   An insulator layer and a conductor pattern are laminated, and four capacitors and two coils spirally wound around a common winding axis are provided in the laminate, and the two coils are close to each other at the winding end side. The first coil is connected between the first terminal and the second terminal, and the second coil is connected between the third terminal and the fourth terminal. A first capacitor connected in parallel with the first coil, a second capacitor connected in parallel with the second coil, and a winding start end of the first coil and a winding of the second coil. A third capacitor is connected between the start ends, and a winding end of the first coil is formed by a capacitance formed between the end of winding of the first coil and the end of winding of the second coil. A fourth capacitor is connected between the winding ends of the second coil. Multilayer common mode filter according to claim. 前記積層体内に、前記4つのコンデンサと2つのコイルを複数組形成してコモンモードフィルタのアレイが形成された請求項1乃至請求項3のいずれかに記載の積層型コモンモードフィルタ。   The multilayer common mode filter according to any one of claims 1 to 3, wherein an array of common mode filters is formed by forming a plurality of sets of the four capacitors and two coils in the multilayer body.
JP2005355501A 2005-12-09 2005-12-09 Layered common mode filter Pending JP2007159069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355501A JP2007159069A (en) 2005-12-09 2005-12-09 Layered common mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355501A JP2007159069A (en) 2005-12-09 2005-12-09 Layered common mode filter

Publications (1)

Publication Number Publication Date
JP2007159069A true JP2007159069A (en) 2007-06-21

Family

ID=38242791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355501A Pending JP2007159069A (en) 2005-12-09 2005-12-09 Layered common mode filter

Country Status (1)

Country Link
JP (1) JP2007159069A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184334A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Laminated balun transformer and electronic device utilizing the same
JP2009212229A (en) * 2008-03-03 2009-09-17 Tdk Corp Stacked filter
WO2009113604A1 (en) * 2008-03-12 2009-09-17 株式会社村田製作所 Noise filter and electronic device using the same
JP2009219152A (en) * 2009-06-22 2009-09-24 Murata Mfg Co Ltd Noise filter
JP2010165953A (en) * 2009-01-16 2010-07-29 Tdk Corp Coil component and lc filter for differential transmission circuit using the same
JP2012178718A (en) * 2011-02-25 2012-09-13 Tdk Corp Laminated filter
JP2013048416A (en) * 2012-08-27 2013-03-07 Panasonic Corp Impedance matching filter and mounting board
WO2017122236A1 (en) * 2016-01-15 2017-07-20 ソニー株式会社 Cable
JP2017152500A (en) * 2016-02-24 2017-08-31 Tdk株式会社 Coil component
WO2018083936A1 (en) * 2016-11-07 2018-05-11 株式会社村田製作所 Multilayer lc filter

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184334A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Laminated balun transformer and electronic device utilizing the same
JP2009212229A (en) * 2008-03-03 2009-09-17 Tdk Corp Stacked filter
WO2009113604A1 (en) * 2008-03-12 2009-09-17 株式会社村田製作所 Noise filter and electronic device using the same
JP2010165953A (en) * 2009-01-16 2010-07-29 Tdk Corp Coil component and lc filter for differential transmission circuit using the same
JP2009219152A (en) * 2009-06-22 2009-09-24 Murata Mfg Co Ltd Noise filter
JP2012178718A (en) * 2011-02-25 2012-09-13 Tdk Corp Laminated filter
JP2013048416A (en) * 2012-08-27 2013-03-07 Panasonic Corp Impedance matching filter and mounting board
KR20180101363A (en) * 2016-01-15 2018-09-12 소니 주식회사 cable
JP2021077656A (en) * 2016-01-15 2021-05-20 ソニーグループ株式会社 cable
KR102613855B1 (en) * 2016-01-15 2023-12-15 소니그룹주식회사 cable
WO2017122236A1 (en) * 2016-01-15 2017-07-20 ソニー株式会社 Cable
JPWO2017122236A1 (en) * 2016-01-15 2018-11-01 ソニー株式会社 cable
US20190013630A1 (en) * 2016-01-15 2019-01-10 Sony Corporation Cable
JP7355476B2 (en) 2016-01-15 2023-10-03 ソニーグループ株式会社 cable
EP3404672B1 (en) * 2016-01-15 2022-11-30 Sony Group Corporation Cable
JP7007037B2 (en) 2016-01-15 2022-01-24 ソニーグループ株式会社 cable
US10916900B2 (en) 2016-01-15 2021-02-09 Sony Corporation Cable
JP2017152500A (en) * 2016-02-24 2017-08-31 Tdk株式会社 Coil component
US10848120B2 (en) 2016-11-07 2020-11-24 Murata Manufacturing Co., Ltd. Multilayer LC filter
JPWO2018083936A1 (en) * 2016-11-07 2019-09-19 株式会社村田製作所 Multilayer LC filter
CN109906553B (en) * 2016-11-07 2023-06-06 株式会社村田制作所 Laminated LC filter
CN109906553A (en) * 2016-11-07 2019-06-18 株式会社村田制作所 Laminated type LC filter
WO2018083936A1 (en) * 2016-11-07 2018-05-11 株式会社村田製作所 Multilayer lc filter

Similar Documents

Publication Publication Date Title
JP2007159069A (en) Layered common mode filter
US8786379B2 (en) Common mode noise filter
TWI492446B (en) Electronic Parts
US10979015B2 (en) Common-mode choke coil
CN109416970B (en) Common mode noise filter
EP2805338B1 (en) Wideband multilayer transmission line transformer
JP5961813B2 (en) Common mode noise filter
JP5672266B2 (en) Electronic components
JP2017228896A (en) Noise countermeasure component, and noise countermeasure module
JP5232562B2 (en) Multilayer electronic components
JP5804076B2 (en) LC filter circuit and high frequency module
JP4345680B2 (en) Two-port nonreciprocal circuit device and communication device
JP2003087074A (en) Laminated filter
JP2006014276A (en) Laminated balun transformer
JP4033852B2 (en) Common mode filter
WO2012133167A1 (en) Electronic component
JP7378015B2 (en) common mode noise filter
JP2008294797A (en) Laminated band-pass filter
JP2004328569A (en) Multilayer bandpass filter
JP5007499B2 (en) Noise filter array
JP2009004606A (en) Balun transformer and characteristic adjusting method thereof
JP4256317B2 (en) Multilayer bandstop filter
JP4505440B2 (en) Multilayer high-pass filter
JP2005244000A (en) Balun transformer
JPH04364709A (en) Laminated chip common-mode choke coil