WO2009113604A1 - Noise filter and electronic device using the same - Google Patents

Noise filter and electronic device using the same Download PDF

Info

Publication number
WO2009113604A1
WO2009113604A1 PCT/JP2009/054719 JP2009054719W WO2009113604A1 WO 2009113604 A1 WO2009113604 A1 WO 2009113604A1 JP 2009054719 W JP2009054719 W JP 2009054719W WO 2009113604 A1 WO2009113604 A1 WO 2009113604A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
capacitor
electrode layer
filter
noise filter
Prior art date
Application number
PCT/JP2009/054719
Other languages
French (fr)
Japanese (ja)
Inventor
弘 福島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008063342A external-priority patent/JP4466751B2/en
Priority claimed from JP2009055046A external-priority patent/JP4412420B1/en
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN200980108212.9A priority Critical patent/CN101960716B/en
Publication of WO2009113604A1 publication Critical patent/WO2009113604A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Balance/unbalance networks
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path

Definitions

  • the present invention relates to a noise filter and an electronic device provided with the same, and more particularly to a noise filter including a common mode choke coil and an electronic device provided with the same.
  • a noise filter for removing common mode noise for example, a stacked common mode choke coil described in Patent Document 1 has been proposed.
  • the pair of coils are arranged in a state of being overlapped with each other so that the pair of coils are magnetically coupled to each other so that common mode noise can be removed.
  • the common mode choke coil can only remove common mode noise and not normal mode noise. Therefore, when it is desired to remove the normal mode noise, it is necessary to separately provide a noise removal component for removing the normal mode noise in addition to the laminated common mode choke coil. As a result, in a circuit to which the laminated common mode choke coil is applied, an increase in size becomes a problem.
  • a differential transmission system may be used as a signal transmission system between the mobile phone driver and the receiver.
  • the differential transmission method since the sum of the currents of the differential signals transmitted through the two signal lines is constant, no common mode noise is theoretically generated.
  • the differential transmission method in order to satisfy the performance described in a standard (for example, 3GPP), higher-order (fourth or higher) harmonics of a normal mode signal constituting the differential signal may be removed. is there. That is, the normal mode signal may be regarded as normal mode noise. Therefore, it is necessary to take measures against normal mode noise between the driver and the receiver. As described above, there is a demand for a noise filter suitable for common mode noise countermeasures and normal mode noise countermeasures between mobile phone drivers and receivers.
  • a multilayer array component described in Patent Document 2 As a conventional noise filter, for example, a multilayer array component described in Patent Document 2 is known. However, since the multilayer array component removes the same amount of normal mode noise in all frequency bands, the normal mode noise, that is, the harmonic signal constituting the differential signal is excessively removed, and the waveform quality is improved. It will be greatly reduced. Japanese Patent Laid-Open No. 08-138938 JP 2005-64267 A
  • a first object of the present invention is to provide a noise filter that can remove both normal mode noise and common mode noise and can be miniaturized.
  • a second object of the present invention is to provide a noise filter suitable for countermeasures against common mode noise and normal mode noise between a driver and a receiver of a mobile phone while suppressing deterioration in the quality of the differential signal waveform. It is to provide an electronic device provided.
  • the noise filter according to the first aspect of the present invention includes a first common mode choke coil including two coils, a first LC filter including the first coil, and a second LC including the second coil. And the two common coils of the first common mode choke coil are also used as the first coil and the second coil.
  • a noise filter includes a first common mode choke coil composed of two coils coupled with a coupling coefficient of 0.3 to 0.7 and a first coil including the first coil. 1 LC filter and a second LC filter including a second coil, and the two coils of the first common mode choke coil are also used as the first coil and the second coil. It is characterized by that.
  • An electronic apparatus includes the noise filter and a differential transmission path including a first signal line to a fourth signal line, and the first LC filter includes the first LC line
  • the second signal line is connected between the first signal line and the second signal line
  • the second LC filter is connected between the third signal line and the fourth signal line. It is characterized by.
  • the noise filter, a differential transmission line including a first signal line to an eighth signal line, and the first LC filter include the first signal.
  • the second LC filter is connected between the third signal line and the fourth signal line, and is connected between the third signal line and the second signal line.
  • the LC filter is connected between the fifth signal line and the sixth signal line, and the fourth LC filter is connected between the seventh signal line and the eighth signal line. It is connected between them.
  • FIG. 1 is an external perspective view of a noise filter according to a first embodiment. It is an exploded view of the laminated body of the noise filter which concerns on 1st Embodiment. It is an equivalent circuit diagram of the noise filter according to the first embodiment. It is the graph which showed the relationship between the reflection characteristic of common mode noise, and a frequency. It is the graph which showed the relationship between the insertion loss of a filter with respect to normal mode noise, and a frequency. It is the graph which showed the relationship between the insertion loss of a filter with respect to normal mode noise and common mode noise, and frequency. It is the figure which showed the modification of the electrode layer for coupling
  • FIG. 6 is an equivalent circuit diagram of a noise filter according to a third embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on 4th Embodiment. It is the equivalent circuit schematic of the noise filter which concerns on 4th Embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on 5th Embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on 6th Embodiment.
  • FIG. 10 is an equivalent circuit diagram of a noise filter according to an eighth embodiment. It is an external appearance perspective view of the noise filter which concerns on 9th Embodiment. It is an exploded view of the laminated body of the noise filter which concerns on 9th Embodiment. It is the equivalent circuit schematic of the noise filter which concerns on 9th Embodiment.
  • the graph shows the relationship between the filter insertion loss and the frequency with respect to the normal mode noise. is there.
  • the graph shows the relationship between the insertion loss of the filter and the frequency with respect to the normal mode noise. is there.
  • FIG. 47 is an equivalent circuit diagram of the noise filter of FIG. 47.
  • FIG. It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. 48 is an equivalent circuit diagram of the noise filter of FIG. 47.
  • FIG. It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. It is a block diagram of the electronic apparatus provided with the noise filter which concerns on this invention.
  • FIG. 1 is an external perspective view of a noise filter 10a according to the first embodiment of the present invention.
  • FIG. 2 is an exploded view of the multilayer body 12a of the noise filter 10a.
  • FIG. 3 is an equivalent circuit diagram of the noise filter 10a.
  • the direction in which the ceramic green sheets are laminated when the noise filter 10a is formed is defined as the lamination direction.
  • the stacking direction is the z-axis direction
  • the longitudinal direction of the noise filter 10a is the x-axis direction
  • the direction orthogonal to the x-axis and the z-axis is the y-axis direction.
  • the x-axis, y-axis, and z-axis are parallel to the sides that constitute the noise filter 10a.
  • the noise filter 10a includes a rectangular parallelepiped laminated body 12a including a plurality of LC filters and a common mode choke coil therein, and external electrodes E1 to E10 formed on the surface of the laminated body 12a.
  • surfaces positioned at both ends in the x-axis direction of the stacked body 12a are defined as end surfaces
  • surfaces positioned at both ends in the y-axis direction of the stacked body 12a are defined as side surfaces
  • upper surfaces in the z-axis direction of the stacked body 12a are defined.
  • the surface is defined as the upper surface
  • the lower surface of the laminate 12a in the z-axis direction is defined as the lower surface.
  • External electrodes E1, E3, E5, and E7 are each formed to extend in the z-axis direction on the side surface on the positive direction side in the y-axis direction. Each of the external electrodes E1, E3, E5, E7 functions as an input terminal.
  • the external electrodes E2, E4, E6, E8 are each formed to extend in the z-axis direction on the negative side surface in the y-axis direction.
  • the external electrodes E2, E4, E6, E8 each function as an output terminal.
  • the external electrodes E9 and E10 are each formed to extend in the z-axis direction on both end faces.
  • the external electrodes E9 and E10 each function as a ground electrode.
  • the multilayer body 12a is configured by laminating a plurality of internal electrode layers and a plurality of dielectric layers, and includes LC filters LC1 to LC4 and common mode choke coils L11 and L12 therein. ing. More specifically, as shown in FIG. 2, the multilayer body 12a includes a plurality of dielectric layers 14a to 14c, 16a, 16b, 18a to 18f, 20, 22f to 22a, 24b, 24a, 26c to 26a in this order. It is configured by being laminated.
  • the plurality of dielectric layers 14a to 14c, 16a, 16b, 18a to 18f, 20, 22a to 22f, 24a, 24b, and 26a to 26c are rectangular insulating layers each having substantially the same area and shape.
  • capacitor electrode layers 50, 52, 54, 56 having a longitudinal direction in the y-axis direction are formed. Capacitor electrode layers 50, 52, 54, and 56 are for connecting capacitor electrode layers 50, 52, 54, and 56 to external electrodes E2, E4, E6, and E8 at the ends on the negative direction side in the y-axis direction, respectively.
  • the drawer portions 51, 53, 55, and 57 are provided.
  • a rectangular capacitor electrode layer 58 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 16b.
  • the capacitor electrode layer 58 has lead portions 71 and 72 for connecting the capacitor electrode layer 58 and the external electrodes E9 and E10 at both ends in the x-axis direction.
  • the capacitor electrode layer 50 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C1.
  • the capacitor electrode layer 52 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C2.
  • the capacitor electrode layer 54 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C3.
  • the capacitor electrode layer 56 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C4.
  • Coil electrode layers 30a to 30f and 42a to 42f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 18a to 18f, respectively. More specifically, each of the coil electrode layers 30a and 42a has an “L” shape, and one end thereof is connected to the external electrodes E2 and E8, respectively.
  • the coil electrode layers 30b to 30e and 42b to 42e are electrode layers formed in a spiral shape so as to rotate in opposite directions to each other formed on the same dielectric layer 18.
  • the coil electrode layers 30f and 42f each have an “L” shape, and one ends thereof are connected to the external electrodes E1 and E7, respectively.
  • via conductors 32a to 32e and 44a to 44e connected to one ends of the coil electrode layers 30a to 30e and 42a to 42e are formed on the dielectric layers 18a to 18e, respectively.
  • the via conductors 32a to 32e and 44a to 44e are formed on the coil electrode layers 30a to 30f and 42a to 42f formed on the adjacent dielectric layers 18a to 18f. Connect each other.
  • the coil electrode layers 30a to 30f constitute the coil L1
  • the coil electrode layers 42a to 42f constitute the coil L4.
  • capacitor electrode layers 60, 62, 64, 66 having a longitudinal direction in the y-axis direction are formed. Capacitor electrode layers 60, 62, 64, and 66 are for connecting capacitor electrode layers 60, 62, 64, and 66 to external electrodes E2, E4, E6, and E8 at the negative end in the y-axis direction, respectively.
  • the drawer portions 61, 63, 65, and 67 are provided.
  • a rectangular capacitor electrode layer 68 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 24b.
  • the capacitor electrode layer 68 has lead portions 73 and 74 for connecting the capacitor electrode layer 68 and the external electrodes E9 and E10 at both ends in the x-axis direction.
  • the capacitor electrode layer 60 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming the capacitor C1.
  • the capacitor electrode layer 62 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming the capacitor C2.
  • the capacitor electrode layer 64 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming the capacitor C3.
  • the capacitor electrode layer 66 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C4.
  • Coil electrode layers 34a to 34f and 38a to 38f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 22a to 22f, respectively. More specifically, the coil electrode layers 34a and 38a each have an “L” shape, and one ends thereof are connected to the external electrodes E4 and E6, respectively.
  • the coil electrode layers 34b to 34e and 38b to 38e are electrode layers formed on the same dielectric layer 22 in a spiral shape so as to rotate in opposite directions.
  • the coil electrode layers 34f and 38f each have an “L” shape, and one ends thereof are connected to the external electrodes E3 and E5, respectively.
  • via conductors 36b to 36f and 40b to 40f connected to one ends of the coil electrode layers 34b to 34f and 38b to 38f are formed in the dielectric layers 22b to 22f, respectively.
  • the via conductors 36b to 36f and 40b to 40f are formed on the coil electrode layers 34a to 34f and 38a to 38f formed on the adjacent dielectric layers 22a to 22f. Connect each other.
  • the coil electrode layers 34a to 34f constitute the coil L2
  • the coil electrode layers 38a to 38f constitute the coil L3.
  • the LC filter LC1 including the coil L1 and the capacitor C1 the LC filter LC2 including the coil L2 and the capacitor C2, the coil L3, and the capacitor C3 are included.
  • the LC filter LC3 including the LC filter LC3 and the coil L4 and the capacitor C4 is formed.
  • the LC filters LC2 and LC3 are not electrically connected to the LC filters LC1 and LC4.
  • one end of the coil L1 is connected to the external electrode E1
  • the other end of the coil L1 is connected to the external electrode E2.
  • one end of the capacitor C1 is connected to the other end of the coil L1, and the other end of the capacitor C1 is connected to the external electrodes E9 and E10.
  • the configurations of the LC filters LC2, LC3, and LC4 are the same as the configuration of the LC filter LC1, and thus the description thereof is omitted.
  • a current flows through the coil L1 from the bottom to the top in the z-axis direction.
  • a current flows from the top to the bottom in the z-axis direction. That is, a current flows through the coil L1 and the coil L2 in the opposite directions in the z-axis direction.
  • the coil electrode layers 30a to 30f constituting the coil L1 rotate clockwise as it goes from the bottom to the top in the z-axis direction, and the coil electrode layers 34a to 34f constituting the coil L2 are rotated in the z-axis direction.
  • the coil L1 and the coil L2 are rotated in opposite directions. Therefore, when current flows through the coil L1 and the coil L2, the current turns in the same direction. Furthermore, as shown in FIG. 2, the coil L1 and the coil L2 are arranged side by side in the z-axis direction so that the coil axis of the coil L1 and the coil axis of the coil L2 substantially coincide. As a result, the coil L1 and the coil L2 generate magnetic fluxes in the same direction and are magnetically coupled, so that the coils constituting the LC filter LC1 and LC filter LC2 and the two constituting the common mode choke coil L11 It comes to share with the coil.
  • the coil L1 and the coil L2 are magnetically coupled in the vicinity of the other end (the central portion in the z-axis direction in FIG. 2) with respect to the end where the capacitors C1 and C2 are connected.
  • the coil L3 and the coil L4 are also magnetically coupled to serve as both the coil constituting the LC filter LC3 and the LC filter LC4 and the two coils constituting the common mode choke coil L12. For details, see the coil L1. Since it is the same as that of the coil L2, description thereof is omitted.
  • a coupling electrode layer 70 for capacitively coupling the coil L1 and the coils L3 and L4 is formed on the main surface of the dielectric layer 20 disposed between the dielectric layer 18f and the dielectric layer 22f. Yes.
  • the coupling electrode layer 70 is capacitively coupled to the coil L2 and the coils L3 and L4.
  • the coupling electrode layer 70 is capacitively coupled to the coils L1 and L2 for the coils L3 and L4. Therefore, the coupling electrode layer 70 is formed across the LC filter LC1 and the LC filters LC3 and LC4 when viewed in plan from the z-axis direction.
  • the coupling electrode layer 70 is formed across the LC filter LC2 and the LC filters LC3 and LC4 when viewed in plan from the z-axis direction.
  • the coupling electrode layer 70 has a shape in which two annular linear electrodes are connected. This is to prevent the coupling electrode layer 70 from interfering with the magnetic flux generated in the coils L1 to L4 when a current flows through the coils L1 to L4.
  • the LC filters LC1 to LC4 are incorporated, and the coils L1 to L4 also serve as the coils constituting the common mode choke coils L11 and L12. Both common mode noises can be removed.
  • the LC filter and the common mode choke coil are built in one noise filter 10a, and therefore the LC filter and the common mode choke coil are configured by separate electronic components. As a result, the entire circuit can be reduced in size.
  • the coils L1 and L2 function as coils constituting the common mode choke coil L11 and also function as part of the LC filters LC1 and LC2.
  • the coils L3 and L4 function as coils constituting the common mode choke coil L12 and also function as part of the LC filters LC3 and LC4.
  • the coils L1 to L4 are also used as a part of the LC filter and a part of the common mode choke coil, so that the noise filter 10a is further downsized.
  • the noise filter 10a can efficiently remove common mode noise as described below.
  • the current paths of the coils L1 and L2 are configured so that the magnitude of the magnetic flux generated by the coil L1 and the magnitude of the magnetic flux generated by the coil L2 are substantially equal in the xz section.
  • the current path is configured so that the magnitude of the magnetic flux generated by the coil L3 and the magnitude of the magnetic flux generated by the coil L4 are substantially equal.
  • the difference in characteristics between the coil L1 and the coil L2 and between the coil L3 and the coil L4 can be reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 10a, common mode noise can be more efficiently removed by the common mode choke coil L11 and the common mode choke coil L12.
  • the capacitor electrode when the capacitor electrode is not line symmetric with respect to the dielectric layer 20 in the xz cross section, the magnitude of the magnetic flux is difficult to equalize, so normal mode noise is converted into common mode noise, and a new common Mode noise occurs and common mode noise is not efficiently removed.
  • the capacitor electrode layers 50, 52, 58, 60, 62, and 68 have boundary lines between the LC filter LC1 and the LC filter LC2 (dielectric layer 20 in FIG. 2) in the xz section. On the other hand, it has a substantially line-symmetric structure. Similarly, as shown in FIG.
  • the capacitor electrode layers 54, 56, 58, 64, 66, 68 have boundaries between the LC filter LC 3 and the LC filter LC 4 (dielectric layer 20 in FIG. 2) in the xz section. On the other hand, it has a substantially line-symmetric structure. Thereby, the influence which capacitor electrode layer 50,52,58 has on the magnetic flux by coil L1, and the influence which capacitor electrode layer 60,62,68 has on the magnetic flux by coil L2 can be made equal. Similarly, the influence of the capacitor electrode layers 54, 56, and 58 on the magnetic flux by the coil L4 can be made equal to the influence of the capacitor electrode layers 64, 66, and 68 on the magnetic flux by the coil L3.
  • the difference in characteristics between the coil L1 and the coil L2 and between the coil L3 and the coil L4 can be further reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 10a, common mode noise can be more efficiently removed by the common mode choke coil L11 and the common mode choke coil L12.
  • FIG. 4 is a graph showing the relationship between the reflection characteristic of common mode noise and the frequency.
  • the vertical axis represents the reflection characteristics
  • the horizontal axis represents the frequency.
  • 0 db indicates total reflection.
  • a coupling electrode layer 70 is provided in the noise filter 10a.
  • the coupling electrode layer 70 capacitively couples a set of coils L1 and L2 and a set of coils L3 and L4.
  • the noise filter 10 a can suppress the reflection of the common mode noise more than the noise filter without the coupling electrode layer 70.
  • the coupling capacitance between the coil L1 and the coil L3 is about 0.5 pF, but when there is the coupling electrode layer 70, the coil L1 and the coil L3.
  • the coupling capacitance is about 5 pF.
  • all of the coils L1 to L4 may be capacitively coupled, or three or two of the coils L1 to L4 may be capacitively coupled. However, when the two coils are capacitively coupled, one of the coils L1 and L2 and one of the coils L3 and L4 need to be capacitively coupled.
  • the magnetic flux in the coils L1 and L2 can be increased, the normal mode noise removal characteristics of the LC filters LC1 and LC2 can be improved, and the magnetic coupling between the LC filter LC1 and the LC filter LC2 is increased. Therefore, the common mode noise removal characteristics of the common mode choke coil L11 can be improved.
  • the noise filter 10a generates stray capacitances CP1 and CP2 as shown in FIG.
  • the stray capacitance CP1 is generated between the coil L1 and the coil L2 and between the coil L3 and the coil L4 by overlapping the coil electrode layer 30, the coil electrode layer 34, the coil electrode 38, and the coil electrode 42 in the z-axis direction. Stray capacitance. Since the stray capacitance CP1 is generated, the normal mode noise of the noise filter 10a can be efficiently removed and the change in the insertion loss of the filter with respect to the normal mode noise is steep as described below with reference to FIG. Can be.
  • the stray capacitance CP2 is a stray capacitance generated at both ends of the coils L1 to L4 by overlapping the coil electrode layers 30, 34, 38, and 42 in the z-axis direction. Since the stray capacitance CP2 is generated, the cutoff frequency of normal mode noise and common mode noise can be lowered and the filter for normal mode noise and common mode noise can be reduced, as will be described below with reference to FIG. The change in insertion loss can be made steep.
  • 5 and 6 are graphs showing the relationship between filter insertion loss and frequency for normal mode noise and common mode noise. The vertical axis represents insertion loss, and the horizontal axis represents frequency.
  • FIG. 5 shows the insertion loss of the filter for normal mode noise when it is assumed that there is a stray capacitance CP1, and the insertion loss of the filter for normal mode noise when it is assumed that there is no stray capacitance CP1. Since common mode noise is not affected by stray capacitance CP1, common mode insertion loss is not shown in FIG.
  • the coils L1 and L2 and the stray capacitance CP1 constitute an LC filter. Therefore, when the stray capacitance CP1 is generated, the normal mode noise at the resonance point on the high frequency side can be efficiently removed as shown in FIG. 5 compared to the case where the stray capacitance CP1 is not generated. Further, when the stray capacitance CP1 is generated, the insertion loss of the filter with respect to the normal mode noise at the resonance point on the high frequency side is abruptly changed as compared with the case where the stray capacitance CP1 is not generated as shown in FIG.
  • FIG. 6 shows filter insertion loss for normal mode noise and common mode noise when it is assumed that there is a stray capacitance CP2, and insertion of a filter for normal mode noise and common mode noise when there is no stray capacitance CP2. Loss is shown.
  • the frequencies of the resonance points of the normal mode noise and the common mode noise are lower as shown in FIG. That is, when the stray capacitance CP2 is generated, the cut-off frequency becomes lower than when the stray capacitance CP2 is not generated. Furthermore, when the stray capacitance CP2 is generated, the normal mode noise and the common mode insertion loss at the resonance point on the high frequency side are sharply changed as shown in FIG. 6 as compared with the case where the stray capacitance CP2 is not generated.
  • the coupling electrode layer 70 has a shape in which two annular linear electrodes are connected, but the shape of the coupling electrode layer 70 is not limited to this.
  • the coupling electrode layer 70 only needs to have a shape that does not interfere with the magnetic flux generated in the coils L1 to L4.
  • the coupling electrode layer 70 only needs to be formed so as not to overlap the coils L1 to L4 when viewed in plan from the z-axis direction. Therefore, the coupling electrode layer 70 may have a shape as a modification of the coupling electrode layer 70 shown in FIGS. 7 (a) to 7 (g).
  • the coupling electrode layer 70 may be a solid pattern electrode as shown in FIG. Since the coupling electrode layer 70 shown in FIG. 7G is not grounded, it does not affect the magnetic coupling.
  • FIG. 8 is an exploded perspective view of the multilayer body 12b of the noise filter 10b according to the second embodiment.
  • FIG. 9 is an equivalent circuit diagram of the noise filter 10b. 8 and 9, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals.
  • the laminated body 12b has a structure in which capacitor electrode layers 80, 82, 84, 86, 90, 92, 94, and 96 are formed on the dielectric layers 16a and 24a, respectively. Is different. Hereinafter, the description will focus on the differences between the laminate 12b and the laminate 12a.
  • Capacitor electrode layers 50, 52, 54, 56, 80, 82, 84, 86 are formed on the dielectric layer 16a.
  • the capacitor electrode layer 80 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C5.
  • the capacitor electrode layer 82 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C6.
  • the capacitor electrode layer 84 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C7.
  • the capacitor electrode layer 86 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C8.
  • a lead-out portion 81 is provided at the end of the capacitor electrode layer 80 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C5 is connected between the external electrode E1 and the external electrodes E9 and E10. A lead-out portion 83 is provided at the end of the capacitor electrode layer 82 on the positive side in the y-axis direction. Thereby, as shown in FIG. 9, the capacitor C6 is connected between the external electrode E3 and the external electrodes E9 and E10. A lead-out portion 85 is provided at the end of the capacitor electrode layer 84 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C7 is connected between the external electrode E5 and the external electrodes E9 and E10. A lead-out portion 87 is provided at the end of the capacitor electrode layer 86 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C8 is connected between the external electrode E7 and the external electrodes E9 and E10.
  • Capacitor electrode layers 60, 62, 64, 66, 90, 92, 94, and 96 are formed on the dielectric layer 24a.
  • the capacitor electrode layer 90 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C5.
  • the capacitor electrode layer 92 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C6.
  • the capacitor electrode layer 94 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C7.
  • the capacitor electrode layer 96 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C8.
  • a lead-out portion 91 is provided at the end of the capacitor electrode layer 90 on the positive side in the y-axis direction.
  • the capacitor C5 is connected between the external electrode E1 and the external electrodes E9 and E10.
  • a lead-out portion 93 is provided at the end of the capacitor electrode layer 92 on the positive side in the y-axis direction.
  • the capacitor C6 is connected between the external electrode E3 and the external electrodes E9 and E10.
  • a lead-out portion 95 is provided at the end of the capacitor electrode layer 94 on the positive side in the y-axis direction.
  • the capacitor C7 is connected between the external electrode E5 and the external electrodes E9 and E10.
  • a lead-out portion 97 is provided at the end of the capacitor electrode layer 96 on the positive side in the y-axis direction.
  • the capacitor C8 is connected between the external electrode E7 and the external electrodes E9 and E10.
  • the noise filter 10b is added with capacitors C5 to C8 and has a saddle type structure, so that the insertion loss of the filter with respect to normal mode noise and common mode noise can be increased sharply.
  • FIG. 10 is an exploded perspective view of the multilayer body 12c of the noise filter 10c according to the third embodiment.
  • FIG. 11 is an equivalent circuit diagram of the noise filter 10c. 10 and 11, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals.
  • the laminated body 12c is different from the laminated body 12a shown in FIG. 2 in that dielectric layers 16c and 24c are provided instead of the dielectric layers 16a, 16b, 24a and 24b. .
  • dielectric layers 16c and 24c are provided instead of the dielectric layers 16a, 16b, 24a and 24b.
  • the difference between the stacked body 12c and the stacked body 12a will be mainly described.
  • dielectric layers 16c and 24c formed with capacitor electrode layers 100 and 103 are inserted in the middle of the coils L1, L2, L3, and L4. More specifically, the dielectric layer 16c is disposed between the dielectric layer 18c and the dielectric layer 18d. The dielectric layer 24c is disposed between the dielectric layer 22c and the dielectric layer 22d.
  • Capacitor electrode layers 100 and 103 grounding electrodes have blank portions where no electrode layers are formed so as not to overlap with the coil axes of coils L1 to L4 when viewed in plan from the z-axis direction. .
  • the via conductors 32c, 36d, 40d, and 44c penetrate through the blank portion so as not to contact the capacitor electrode layers 100 and 103.
  • the capacitor electrode layer 100 is opposed to the coil electrode layers 30 and 42 with the dielectric layers 16c and 18 interposed therebetween, thereby forming capacitors C9 and C12.
  • the capacitor electrode layer 103 is opposed to the coil electrode layers 34 and 38 with the dielectric layers 22 and 24c interposed therebetween, thereby forming capacitors C10 and C11.
  • the capacitor electrode layer 100 has lead portions 101 and 102 at both ends in the x-axis direction.
  • the lead portions 101 and 102 are connected to the external electrodes E9 and E10, respectively.
  • the capacitor C9 is connected between the coil L1 and the external electrodes E9 and E10 as shown in FIG.
  • the capacitor C12 is connected between the coil L4 and the external electrodes E9 and E10 as shown in FIG.
  • the capacitor electrode layer 103 has lead portions 104 and 105 at both ends in the x-axis direction.
  • the lead portions 104 and 105 are connected to the external electrodes E9 and E10, respectively.
  • the capacitor C10 is connected between the coil L2 and the external electrodes E9 and E10 as shown in FIG.
  • the capacitor C11 is connected between the coil L3 and the external electrodes E9 and E10 as shown in FIG.
  • the noise filter 10c common mode noise can be efficiently removed as described below. More specifically, when the magnetic flux generated by the coil penetrates the electrode layer, eddy current loss occurs in the electrode layer, and the common mode noise removal characteristics of the noise filter are degraded. Therefore, in the noise filter 10c, the capacitor electrode layers 100 and 103 are provided with blank portions. As a result, the magnetic flux generated in the coils L1 to L4 penetrates through the blank portions of the capacitor electrode layers 100 and 103, and no eddy current loss occurs in the capacitor electrode layers 100 and 103, and the coils L1 to L4. The magnetic flux generated at becomes stronger.
  • the temporal coupling of the coils L1 to L4 is strengthened, and the common mode noise removal characteristics are improved in the noise filter 10c. Further, since the magnetic flux generated in the coils L1 to L4 becomes stronger, the normal mode noise removal characteristics by the LC filters LC1 to LC4 are also improved.
  • the coil electrode layers 30, 34, 38, and 42 serve as both the coil electrode layer and the capacitor electrode layer. Therefore, in the noise filter 10c, the number of dielectric layers can be reduced compared to the noise filter 10a.
  • FIG. 12 is an exploded perspective view of the multilayer body 12d of the noise filter 10d according to the fourth embodiment.
  • FIG. 13 is an equivalent circuit diagram of the noise filter 10d. 12 and 13, the same reference numerals are assigned to the same components as those in FIGS. 2, 3, 10, and 11.
  • the laminated body 12d is different from the laminated body 12c shown in FIG. 10 in that dielectric layers 16a, 16b, 24a, and 24b are further added.
  • the dielectric layers 16a, 16b, 24a, and 24b are the same as those included in the stacked body 12a shown in FIG.
  • the capacitor C1 is provided between the external electrode E2 and the external electrodes E9 and E10, and between the external electrode E4 and the external electrodes E9 and E10.
  • the capacitor C2 is provided
  • the capacitor C3 is provided between the external electrode E6 and the external electrodes E9 and E10
  • the capacitor C4 is provided between the external electrode E8 and the external electrodes E9 and E10.
  • FIG. 14 is an exploded perspective view of the multilayer body 12e of the noise filter 10e according to the fifth embodiment. 14, the same components as those in FIG. 2 are given the same reference numerals.
  • the laminated body 12e is provided with dielectric layers 16d, 16e, 24d, and 24e instead of the dielectric layers 16a, 16b, 24a, and 24b. Is different. Below, the difference between the laminated body 12e and the laminated body 12a is demonstrated.
  • Capacitor electrode layers 150, 152, 154, and 156 are formed on the dielectric layer 16d.
  • the capacitor electrode layers 150, 152, 154, and 156 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 50, 52, 54, and 56 shown in FIG. Accordingly, the capacitor electrode layers 150, 152, 154, and 156 (signal electrodes) do not overlap with the coil axes of the coils L1 and L4 when viewed in plan from the z-axis direction.
  • lead portions 151, 153, 155, and 157 connected to the external electrodes E 2, E 4, E 6, and E 8 are respectively provided at the negative end portions in the y-axis direction of the capacitor electrode layers 150, 152, 154, and 156. Is provided.
  • a capacitor electrode layer 158 is formed on the dielectric layer 16e.
  • the capacitor electrode layer 158 has an electrode layer formed so as to overlap with the capacitor electrode layers 150, 152, 154, 156 and not to overlap with the coil axes of the coils L1, L4 when viewed in plan from the z-axis direction. It is formed to have no blanks.
  • capacitor electrode layers 160, 162, 164 and 166 are formed on the dielectric layer 24d.
  • the capacitor electrode layers 160, 162, 164, and 166 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 60, 62, 64, and 66 shown in FIG. Thereby, the capacitor electrode layers 160, 162, 164, and 166 do not overlap with the coil axes of the coils L2 and L3 when viewed in plan from the stacking direction.
  • lead portions 161, 163, 165, and 167 connected to the external electrodes E 2, E 4, E 6, and E 8 are respectively provided at end portions on the negative side in the y-axis direction of the capacitor electrode layers 160, 162, 164, and 166. Is provided.
  • a capacitor electrode layer 168 is formed on the dielectric layer 24e.
  • the capacitor electrode layer 168 has an electrode layer formed so as to overlap with the capacitor electrode layers 160, 162, 164, 166 and not to overlap with the coil axes of the coils L2, L3 when viewed in plan from the z-axis direction. It is formed to have no blanks.
  • the noise filter 10e having the above configuration has the circuit configuration shown in FIG. 2 in the same manner as the noise filter 10a.
  • the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 do not overlap the coils L1 to L4 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 10e, the occurrence of eddy current loss in the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 is suppressed, and the magnetic flux generated in the coils L1 to L4 is strong. Become. As a result, the magnetic coupling between the coil L1 and the coil L2 and the magnetic coupling between the coil L3 and the coil L4 are strengthened, and the common mode noise removal characteristics of the noise filter 10e are improved as compared with the noise filter 10a.
  • FIG. 15 is an exploded perspective view of the multilayer body 12f of the noise filter 10f according to the sixth embodiment. 15, the same components as those in FIGS. 2 and 14 are denoted by the same reference numerals.
  • the laminated body 12f is provided with dielectric layers 16d, 16e, 16f, 24d, 24e, and 24f instead of the dielectric layers 16a, 16b, 24a, and 24b. It differs from the laminate 12b shown in FIG. Below, the difference between the laminated body 12f and the laminated body 12b will be described.
  • the laminated body 12f is provided with a dielectric layer 16f between a dielectric layer 14c and a dielectric layer 16d.
  • Capacitor electrode layers 250, 252, 254, and 256 are formed on the dielectric layer 16f.
  • the capacitor electrode layers 250, 252, 254, and 256 are formed so as to overlap with the capacitor electrode layer 158 when viewed in plan from the z-axis direction.
  • the capacitor electrode layer 250 and the capacitor electrode layer 150 form a capacitor C5.
  • Capacitor electrode layer 252 and capacitor electrode layer 152 constitute capacitor C6.
  • Capacitor electrode layer 254 and capacitor electrode layer 154 constitute capacitor C7.
  • Capacitor electrode layer 256 and capacitor electrode layer 156 form capacitor C8.
  • lead portions 251, 253, 255, and 257 connected to the external electrodes E 1, E 3, E 5, and E 7 are respectively provided at the positive end portions in the y-axis direction of the capacitor electrode layers 250, 252, 254, and 256. Is provided.
  • capacitor electrode layers 260, 262, 264, and 266 are formed on the dielectric layer 24f.
  • the capacitor electrode layers 260, 262, 264, and 266 are formed so as to overlap the capacitor electrode layer 168 when viewed in plan from the z-axis direction.
  • the capacitor electrode layer 260 and the capacitor electrode layer 160 constitute a capacitor C5.
  • the capacitor electrode layer 262 and the capacitor electrode layer 162 constitute a capacitor C6.
  • Capacitor electrode layer 264 and capacitor electrode layer 164 constitute capacitor C7.
  • Capacitor electrode layer 266 and capacitor electrode layer 166 constitute capacitor C8.
  • lead portions 261, 263, 265, 267 connected to the external electrodes E 1, E 3, E 5, E 7 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 260, 262, 264, 266. Is provided.
  • the noise filter 10f having the above configuration has the circuit configuration shown in FIG. 9 in the same manner as the noise filter 10b.
  • the capacitor electrode layers 158, 168, 250, 252, 254, 256, 260, 262, 264, and 266 do not overlap with the coils L1 to L4 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 10f, the occurrence of eddy current loss in the capacitor electrode layers 158, 168, 250, 252, 254, 256, 260, 262, 264, and 266 is suppressed, and the magnetic flux generated in the coils L1 to L4 is strong. Become. As a result, the magnetic coupling between the coil L1 and the coil L2 and the magnetic coupling between the coil L3 and the coil L4 are strengthened, and the common mode noise removal characteristics of the noise filter 10f are improved as compared with the noise filter 10b.
  • FIG. 16 is an exploded perspective view of the multilayer body 12g of the noise filter 10g according to the seventh embodiment. 16, the same components as those in FIGS. 2 and 14 are denoted by the same reference numerals.
  • the laminated body 12g is provided with dielectric layers 16d, 16e, 24d, and 24e instead of the dielectric layers 16a, 16b, 24a, and 24b. It is different from 12d.
  • the dielectric layers 16d, 16e, 24d, and 24e are the same as those shown in FIG.
  • the noise filter 10g having the above configuration has the circuit configuration shown in FIG. 13 in the same manner as the noise filter 10d.
  • the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 do not overlap with the coils L1 to L4 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 10g, the generation of eddy current loss in the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 is suppressed, and the magnetic flux generated in the coils L1 to L4 is strong. Become. As a result, the magnetic coupling between the coil L1 and the coil L2 and the magnetic coupling between the coil L3 and the coil L4 become stronger, and the common mode noise removal characteristics of the noise filter 10g are improved as compared with the noise filter 10d.
  • FIG. 17 is an exploded perspective view of the multilayer body 12h of the noise filter 10h according to the eighth embodiment.
  • FIG. 18 is an equivalent circuit diagram of the noise filter 10h. 17 and 18, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals.
  • the laminated body 12h is different from the laminated body 12a shown in FIG. 2 in that a dielectric layer 24g is provided between the dielectric layer 24a and the dielectric layer 26c.
  • a dielectric layer 24g is provided between the dielectric layer 24a and the dielectric layer 26c.
  • a dielectric layer 24g is provided between the dielectric layer 24a and the dielectric layer 26c.
  • Capacitor electrode layers 360, 362, 364, and 366 are formed on the dielectric layer 24g.
  • the capacitor electrode layers 360, 362, 364, and 366 are formed so as to overlap with the capacitor electrode layers 60, 62, 64, and 66, respectively, when viewed in plan from the z-axis direction.
  • the capacitor electrode layer 60 and the capacitor electrode layer 360 constitute a capacitor C13.
  • the capacitor electrode layer 62 and the capacitor electrode layer 362 constitute a capacitor C14.
  • Capacitor electrode layer 64 and capacitor electrode layer 364 constitute capacitor C15.
  • Capacitor electrode layer 66 and capacitor electrode layer 366 constitute capacitor C16.
  • lead portions 361, 363, 365, and 367 connected to the external electrodes E1, E3, E5, and E7 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 360, 362, 364, and 366. Is provided.
  • the noise filter 10h having the above configuration has a circuit configuration shown in FIG. More specifically, capacitors C13, C14, C15, and C16 are formed between both ends of the coils L1, L2, L3, and L4. Then, by adjusting the shape and area of the capacitor electrode layers 360, 362, 364, and 366, the capacitance of the capacitors C13, C14, C15, and C16 can be adjusted, and the common mode noise and the normal mode noise of the noise filter 10h can be removed. The characteristics can be adjusted.
  • dielectric layer 24g may also be provided for the noise filters 10b to 10g.
  • the noise filters 10a to 10h may include one or more common mode choke coils.
  • FIG. 19 is an external perspective view of noise filters 410a to 410n according to the ninth embodiment.
  • FIG. 20 is an exploded view of the multilayer body 412a of the noise filter 410a.
  • FIG. 21 is an equivalent circuit diagram of the noise filter 410a.
  • the direction in which the ceramic green sheets are stacked is defined as the stacking direction.
  • This stacking direction is the z-axis direction
  • the longitudinal direction of the noise filter 410a is the x-axis direction
  • the direction orthogonal to the x-axis and the z-axis is the y-axis direction.
  • the x-axis, y-axis, and z-axis are parallel to the sides that constitute the noise filter 410a.
  • the noise filter 410a includes a rectangular parallelepiped laminated body 412a including a plurality of LC filters and a common mode choke coil therein, and external electrodes E11 to E20 formed on the surface of the laminated body 412a. ing.
  • surfaces positioned at both ends in the x-axis direction of the stacked body 412a are defined as end surfaces
  • surfaces positioned at both ends in the y-axis direction of the stacked body 412a are defined as side surfaces
  • the upper side in the z-axis direction of the stacked body 412a is defined.
  • the surface is defined as the upper surface
  • the lower surface in the z-axis direction of the stacked body 412a is defined as the lower surface.
  • External electrodes E11, E13, E15, and E17 are each formed to extend in the z-axis direction on the side surface on the positive direction side in the y-axis direction. Each of the external electrodes E11, E13, E15, E17 functions as an input terminal.
  • the external electrodes E12, E14, E16, and E18 are each formed to extend in the z-axis direction on the side surface on the negative direction side in the y-axis direction.
  • the external electrodes E12, E14, E16, E18 each function as an output terminal.
  • the external electrodes E19 and E20 are each formed to extend in the z-axis direction on both end faces. The external electrodes E19 and E20 each function as a ground electrode.
  • the multilayer body 412a is formed by laminating a plurality of internal electrode layers and a plurality of dielectric layers, and includes LC filters LC11 to LC14 and common mode choke coils L31 and L32 therein. ing. More specifically, as shown in FIG. 20, the stacked body 412a includes a plurality of dielectric layers 414a to 414c, 416a, 416b, 418a to 418f, 420, 422a to 422f, 424a, 424b, 426a to 426c in this order. It is configured by being laminated.
  • the plurality of dielectric layers 414a to 414c, 416a, 416b, 418a to 418f, 420, 422a to 422f, 424a, 424b, and 426a to 426c are rectangular insulating layers each having substantially the same area and shape.
  • capacitor electrode layers 450, 452, 454 and 456 having a longitudinal direction in the y-axis direction are formed.
  • Capacitor electrode layers 450, 452, 454, and 456 connect capacitor electrode layers 450, 452, 454, and 456 to external electrodes E12, E14, E16, and E18, respectively, at the end on the negative side in the y-axis direction.
  • the drawer portions 451, 453, 455, and 457 are provided.
  • a rectangular capacitor electrode layer 458 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 416b.
  • the capacitor electrode layer 458 has lead portions 471 and 472 for connecting the capacitor electrode layer 458 and the external electrodes E19 and E20 at both ends in the x-axis direction.
  • the capacitor electrode layer 450 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C21.
  • the capacitor electrode layer 452 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C22.
  • the capacitor electrode layer 454 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C23.
  • the capacitor electrode layer 456 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C24.
  • Coil electrode layers 430a to 430f and 442a to 442f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 418a to 418f, respectively. More specifically, each of the coil electrode layers 430a and 442a has an “L” shape, and one end thereof is connected to the external electrodes E12 and E18.
  • the coil electrode layers 430b to 430e and 442b to 442e are electrode layers formed on the same dielectric layer 418 and formed in a spiral shape so as to rotate in opposite directions.
  • the coil electrode layers 430f and 442f each have an “L” shape, and one ends thereof are connected to the external electrodes E11 and E17, respectively.
  • via conductors 432a to 432e and 444a to 444e connected to one ends of the coil electrode layers 430a to 430e and 442a to 442e are formed in the dielectric layers 418a to 418e, respectively.
  • the via conductors 432a to 432e and 444a to 444e are coil electrode layers 430a to 430f and 442a to 442f formed on the adjacent dielectric layers 418a to 418f. Connect each other.
  • the coil electrode layers 430a to 430f constitute the coil L21
  • the coil electrode layers 442a to 442f constitute the coil L24.
  • capacitor electrode layers 460, 462, 464, and 466 having a longitudinal direction in the y-axis direction are formed.
  • Capacitor electrode layers 460, 462, 464, and 466 connect capacitor electrode layers 460, 462, 464, and 466 and external electrodes E12, E14, E16, and E18, respectively, at the negative end portion in the y-axis direction.
  • the drawer portions 461, 463, 465, and 467 are provided.
  • a rectangular capacitor electrode layer 468 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 424b.
  • the capacitor electrode layer 468 has lead portions 473 and 474 for connecting the capacitor electrode layer 468 and the external electrodes E19 and E20 at both ends in the x-axis direction.
  • the capacitor electrode layer 460 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C21.
  • the capacitor electrode layer 462 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C22.
  • the capacitor electrode layer 464 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C23.
  • the capacitor electrode layer 466 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C24.
  • Coil electrode layers 434a to 434f and 438a to 438f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 422a to 422f, respectively. More specifically, the coil electrode layers 434a and 438a each have an “L” shape, and one ends thereof are connected to the external electrodes E14 and E16, respectively.
  • the coil electrode layers 434b to 434e and 438b to 438e are electrode layers formed on the same dielectric layer 422 and formed in a spiral shape so as to rotate in directions opposite to each other.
  • the coil electrode layers 434f and 438f each have an “L” shape, and one ends thereof are connected to the external electrodes E13 and E15, respectively.
  • via conductors 436b to 436f and 440b to 440f connected to one ends of the coil electrode layers 434b to 434f and 438b to 438f are formed in the dielectric layers 422b to 422f, respectively.
  • the via conductors 436b to 436f and 440b to 440f are coil electrode layers 434a to 434f and 438a to 438f formed on the adjacent dielectric layers 422a to 422f. Connect each other.
  • the coil electrode layers 434a to 434f constitute the coil L22
  • the coil electrode layers 438a to 438f constitute the coil L23.
  • the LC filter LC11 including the coil L21 and the capacitor C21, the LC filter LC12 including the coil L22 and the capacitor C22, the coil L23, and the capacitor C23 are included.
  • the LC filter LC13 including the LC filter LC13 and the coil L24 and the capacitor C24 is formed.
  • the LC filters LC12 and LC13 are not electrically connected to the LC filters LC11 and LC14.
  • one end of the coil L21 is connected to the external electrode E11, and the other end of the coil L21 is connected to the external electrode E12.
  • one end of the capacitor C21 is connected to the other end of the coil L21, and the other end of the capacitor C21 is connected to the external electrodes E19 and E20. Since the configurations of the LC filters LC12, LC13, and LC14 are the same as the configuration of the LC filter LC11, the description thereof is omitted.
  • a current flows through the coil L21 from the bottom to the top in the z-axis direction.
  • a current flows from the top to the bottom in the z-axis direction. That is, current flows through the coil L21 and the coil L22 in the reverse direction in the z-axis direction.
  • the coil electrode layers 430a to 430f constituting the coil L21 rotate clockwise as it goes from the bottom to the top in the z-axis direction, and the coil electrode layers 434a to 434f constituting the coil L22 are rotated in the z-axis direction.
  • the coil L21 and the coil L22 are rotated in opposite directions. Therefore, when current flows through the coil L21 and the coil L22, the current rotates in the same direction. Furthermore, as shown in FIG. 20, the coil L21 and the coil L22 are arranged side by side in the z-axis direction so that the coil axis of the coil L21 and the coil axis of the coil L22 substantially coincide. As a result, the coil L21 and the coil L22 generate magnetic fluxes in the same direction and are magnetically coupled, so that the coils constituting the LC filter LC11 and the LC filter LC12 and the two constituting the common mode choke coil L31 are combined. It comes to share with the coil.
  • the coil L21 and the coil L22 are magnetically coupled in the vicinity of the other end (the central portion in the z-axis direction in FIG. 20) with respect to the end to which the capacitors C21 and C22 are connected.
  • the coupling coefficient between the coil L21 and the coil L22 is 0.3 or more and 0.7 or less.
  • the coil L23 and the coil L24 are also magnetically coupled to serve as both the coil constituting the LC filter LC13 and the LC filter LC14 and the two coils constituting the common mode choke coil L32.
  • the coil L21 Since this is the same as the coil L22, the description thereof is omitted.
  • the coupling coefficient between the coil L21 and the coil L22 is measured according to the following procedure.
  • the external electrode E11 and the external electrode E13 in FIG. 21 are short-circuited, and the inductance value Ldd between the external electrodes E12 and E14 is measured.
  • the external electrode E11 and the external electrode E13 are short-circuited, the external electrode E12 and the external electrode E14 are short-circuited, and the inductance value Lcc between the external electrodes E11 and E13 and the external electrodes E12 and E14 is measured.
  • the inductance values Ldd and Lcc are substituted into the following formula (1) to obtain the coupling coefficient K.
  • a coupling electrode layer 470 for capacitively coupling the coil L21 and the coils L23 and L24 is formed on the main surface of the dielectric layer 420 disposed between the dielectric layer 418f and the dielectric layer 422f. Yes.
  • the coupling electrode layer 470 is capacitively coupled to the coil L22 and the coils L23 and L24.
  • the coupling electrode layer 470 is capacitively coupled to the coils L21 and L22 for the coils L23 and L24. Therefore, the coupling electrode layer 470 is formed between the LC filter LC11 and the LC filters LC13 and LC14 when viewed in plan from the z-axis direction.
  • the coupling electrode layer 470 is formed across the LC filter LC12 and the LC filters LC13 and LC14 when viewed in plan from the z-axis direction.
  • the coupling electrode layer 470 has a shape in which two annular linear electrodes are connected. This is to prevent the coupling electrode layer 470 from preventing the magnetic flux generated in the coils L21 to L24 when a current flows through the coils L21 to L24.
  • the LC filters LC11 to LC14 are incorporated, and the coils L21 to L24 also serve as the coils constituting the common mode choke coils L31 and L32. Both common mode noises can be removed.
  • the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.3 or more and 0.7 or less.
  • the normal mode noise generated in the differential signal transmitted between the receiver and the receiver can be effectively removed.
  • the present inventor performed a computer simulation described below in order to confirm the effect produced by the noise filter 410a.
  • 22 to 25 are graphs showing the results of computer simulation.
  • the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.2, 0.3. , 0.6, 0.7 is a graph showing the relationship between filter insertion loss and frequency for normal mode noise.
  • the vertical axis represents filter insertion loss with respect to noise, and the horizontal axis represents frequency.
  • the frequency of the differential signal transmitted between the mobile phone driver and the receiver is about 100 MHz.
  • the insertion loss of the filter with respect to normal mode noise in the vicinity of 300 MHz, which is the third harmonic needs to be smaller than 3 dB. This is because if the insertion loss of the filter with respect to the normal mode noise near 300 MHz is too large, the differential signal itself is adversely affected.
  • the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are preferably 0.3 or more.
  • the insertion loss of the filter with respect to normal mode noise in the vicinity of the UHF band 470 MHz which is the lower limit frequency used in the mobile phone, needs to be larger than 10 dB. This is to prevent UHF band signal harmonics from affecting the UHF band reception performance as normal mode noise.
  • the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are preferably 0.7 or less, and more preferably 0.6 or less.
  • the noise filter 410a since the noise filter 410a has the common mode choke coils L31 and L32, common mode noise generated between the driver and the receiver of the mobile phone can be removed. Furthermore, the noise filter 410a has a coupling coefficient between the coil L21 and the coil L22 and a coupling coefficient between the coil L23 and the coil L24 that is not less than 0.3 and not more than 0.7, thereby suppressing the deterioration of the differential signal waveform. However, normal mode noise can also be removed. Therefore, the noise filter 410a is suitable for the common mode noise countermeasure and the normal mode noise countermeasure between the driver and the receiver of the mobile phone.
  • the inventor of the present application conducted an experiment to clarify the effect of the noise filter 410a. More specifically, a first experimental example corresponding to the noise filter 410a was produced, and a second experimental example corresponding to the multilayer array component described in Patent Document 1 was produced. The coupling coefficient of the second experimental example was set to 0.05 or less. As a first experiment, a rectangular wave was input to these experimental examples, and the output signal output was measured. As a second experiment, the intensity distribution of noise when a noise filter was inserted was measured.
  • FIG. 26 is a graph showing the results of performing the first experiment in the first experimental example.
  • FIG. 27 is a graph showing the results when the first experiment was performed in the second experiment example.
  • shaft has shown the signal level and the horizontal axis has shown time.
  • FIG. 28 is a graph showing a result of performing the second experiment in the second experimental example.
  • FIG. 29 is a graph showing the results of performing the second experiment in the first experimental example.
  • shaft has shown the noise level and the horizontal axis has shown the frequency.
  • noise having the same intensity distribution was input to the first experiment example and the second experiment example.
  • FIGS. 28 and 29 it can be seen that substantially the same noise removal effect can be obtained in the first experimental example and the second experimental example. That is, it can be understood that the noise removal effect in the noise filter 410a is equivalent to the noise removal effect in the multilayer array component described in Patent Document 1.
  • the noise filter 410a can obtain a good noise removal effect while reducing the deterioration of the waveform of the output signal.
  • the LC filter and the common mode choke coil are built in one noise filter 410a, and therefore the LC filter and the common mode choke coil are configured by separate electronic components. As a result, the entire circuit can be reduced in size.
  • the coils L21 and L22 function as coils constituting the common mode choke coil L31 and also function as part of the LC filters LC11 and LC12.
  • the coils L23 and L24 function as coils constituting the common mode choke coil L32 and also function as part of the LC filters LC13 and LC14.
  • the coils L21 to L24 are also used as a part of the LC filter and a part of the common mode choke coil, so that the noise filter 410a is further downsized.
  • the noise filter 410a can efficiently remove common mode noise as described below.
  • the current paths of the coils L21 and L22 are configured so that the magnitude of the magnetic flux generated by the coil L21 and the magnitude of the magnetic flux generated by the coil L22 are substantially equal in the xz section.
  • the current path is configured so that the magnitude of the magnetic flux generated by the coil L23 and the magnitude of the magnetic flux generated by the coil L24 are substantially equal.
  • the difference in the characteristics between the coil L21 and the coil L22 and between the coil L23 and the coil L24 can be reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 410a, common mode noise can be more efficiently removed by the common mode choke coil L31 and the common mode choke coil L32.
  • the capacitor electrode layers 450, 452, 458, 460, 462, and 468 have boundaries between the LC filter LC11 and the LC filter LC12 in the xz section (the dielectric layer 420 in FIG. 20). On the other hand, it has a substantially line-symmetric structure. Similarly, as shown in FIG.
  • the capacitor electrode layers 454, 456, 458, 464, 466, and 468 have boundary lines between the LC filter LC13 and the LC filter LC14 (dielectric layer 420 in FIG. 20) in the xz cross section. On the other hand, it has a substantially line-symmetric structure. Thereby, the influence which capacitor electrode layer 450,452,458 exerts on the magnetic flux by coil L21 and the influence which capacitor electrode layer 460,462,468 exerts on the magnetic flux by coil L22 can be made equal. Similarly, the influence of the capacitor electrode layers 454, 456, 458 on the magnetic flux by the coil L24 can be made equal to the influence of the capacitor electrode layers 464, 466, 468 on the magnetic flux by the coil L23.
  • the difference in characteristics between the coil L21 and the coil L22 and between the coil L23 and the coil L24 can be further reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 410a, common mode noise can be more efficiently removed by the common mode choke coil L31 and the common mode choke coil L32.
  • FIG. 30 is a graph showing the relationship between the reflection characteristic of common mode noise and the frequency.
  • the vertical axis represents the reflection characteristics
  • the horizontal axis represents the frequency.
  • 0 db indicates total reflection.
  • a coupling electrode layer 470 is provided in the noise filter 410a.
  • the coupling electrode layer 470 capacitively couples a set of coils L21 and L22 and a set of coils L23 and L24.
  • the noise filter 410 a can suppress the reflection of the common mode noise more than the noise filter without the coupling electrode layer 470.
  • the coupling electrode layer 470 is not provided, for example, the coupling capacitance between the coil L21 and the coil L23 is about 0.5 pF, but when the coupling electrode layer 470 is provided, the coil L21 and the coil L23 are provided. And the coupling capacitance is about 5 pF. As shown in FIG.
  • all of the coils L21 to L24 may be capacitively coupled, or three or two of the coils L21 to L24 may be capacitively coupled. However, when two coils are capacitively coupled, one of the coils L21 and L22 and one of the coils L23 and L24 need to be capacitively coupled.
  • the magnetic flux in the coils L21 and L22 can be increased, the normal mode noise removal characteristics of the LC filters LC11 and LC12 can be improved, and the magnetic coupling between the LC filter LC11 and the LC filter LC12 is increased. Therefore, the common mode noise removal characteristics of the common mode choke coil L31 can be improved.
  • the LC filters LC13 and LC14 and the coils L23 and L24 can be improved.
  • stray capacitances CP11 and CP12 are generated.
  • the stray capacitance CP11 is generated between the coil L21 and the coil L22 and between the coil L23 and the coil L24 by overlapping the coil electrode layer 430, the coil electrode layer 434, the coil electrode 438, and the coil electrode 442 in the z-axis direction. Stray capacitance. Since the stray capacitance CP11 is generated, the normal mode noise of the noise filter 410a can be efficiently removed and the change in the insertion loss of the filter with respect to the normal mode noise is steep as described below with reference to FIG. Can be.
  • the stray capacitance CP12 is a stray capacitance generated at both ends of the coils L21 to L24 by overlapping the coil electrode layers 430, 434, 438, and 442 in the z-axis direction. Since the stray capacitance CP12 is generated, the cutoff frequency of the normal mode noise and common mode noise can be lowered and the filter for the normal mode noise and common mode noise can be reduced as described below with reference to FIG. The change in insertion loss can be made steep.
  • 31 and 32 are graphs showing the relationship between the insertion loss of the filter and the frequency with respect to normal mode noise and common mode noise. The vertical axis represents insertion loss, and the horizontal axis represents frequency.
  • FIG. 31 shows the insertion loss of the filter for normal mode noise when it is assumed that there is a stray capacitance CP11, and the insertion loss of the filter for normal mode noise when it is assumed that there is no stray capacitance CP11. Since the common mode noise is not affected by the stray capacitance CP11, the common mode insertion loss is not shown in FIG.
  • the coils L21 and L22 and the stray capacitance CP11 constitute an LC filter. Therefore, when the stray capacitance CP11 is generated, the normal mode noise at the resonance point on the high frequency side can be efficiently removed as shown in FIG. 31 compared to the case where the stray capacitance CP11 is not generated. Further, when the stray capacitance CP11 is generated, the insertion loss of the filter with respect to the normal mode noise at the resonance point on the high frequency side changes abruptly as shown in FIG. 31 as compared with the case where the stray capacitance CP11 is not generated.
  • FIG. 32 shows filter insertion loss for normal mode noise and common mode noise when it is assumed that there is a stray capacitance CP12, and filter insertion for normal mode noise and common mode noise when there is no stray capacitance CP12. Loss is shown.
  • the frequencies of the resonance points of normal mode noise and common mode noise are lower as shown in FIG. That is, when the stray capacitance CP12 is generated, the cut-off frequency becomes lower than when the stray capacitance CP12 is not generated. Furthermore, when the stray capacitance CP12 is generated, the normal mode noise and the common mode insertion loss at the resonance point on the high frequency side are sharply changed as shown in FIG. 32, compared to the case where the stray capacitance CP12 is not generated.
  • the coupling electrode layer 470 has a shape in which two annular linear electrodes are connected, but the shape of the coupling electrode layer 470 is not limited thereto.
  • the coupling electrode layer 470 only needs to have a shape that does not hinder the magnetic flux generated in the coils L21 to L24. That is, the coupling electrode layer 470 may be formed so as not to overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Therefore, the coupling electrode layer 470 may have a shape as a modification of the coupling electrode layer 470 shown in FIGS. 33 (a) to 33 (g).
  • the coupling electrode layer 470 may be a solid pattern electrode as shown in FIG.
  • the coupling electrode layer 470 shown in FIG. 33 (g) is not grounded and therefore does not affect the magnetic coupling.
  • FIG. 34 is an exploded perspective view of the multilayer body 412b of the noise filter 410b according to the tenth embodiment.
  • FIG. 35 is an equivalent circuit diagram of the noise filter 410b. 34 and 35, the same components as those in FIGS. 20 and 21 are denoted by the same reference numerals.
  • the multilayer body 412b has a structure in which capacitor electrode layers 480, 482, 484, 486, 490, 492, 494, and 496 are formed on the dielectric layers 416a and 424a, respectively. And different.
  • the difference between the stacked body 412b and the stacked body 412a will be mainly described.
  • Capacitor electrode layers 450, 452, 454, 456, 480, 482, 484, and 486 are formed on the dielectric layer 416a.
  • the capacitor electrode layer 480 and the capacitor electrode layer 458 constitute a capacitor C25 by facing each other with the dielectric layer 416a interposed therebetween.
  • the capacitor electrode layer 482 and the capacitor electrode layer 458 constitute a capacitor C26 by facing each other with the dielectric layer 416a interposed therebetween.
  • the capacitor electrode layer 484 and the capacitor electrode layer 458 constitute a capacitor C27 by facing each other with the dielectric layer 416a interposed therebetween.
  • the capacitor electrode layer 486 and the capacitor electrode layer 458 constitute a capacitor C28 by facing each other with the dielectric layer 416a interposed therebetween.
  • a lead-out portion 481 is provided at the end of the capacitor electrode layer 480 on the positive side in the y-axis direction.
  • the capacitor C25 is connected between the external electrode E11 and the external electrodes E19 and E20.
  • a lead portion 483 is provided at the end of the capacitor electrode layer 482 on the positive side in the y-axis direction.
  • the capacitor C26 is connected between the external electrode E13 and the external electrodes E19, E20.
  • a lead portion 485 is provided at the end of the capacitor electrode layer 484 on the positive side in the y-axis direction.
  • the capacitor C27 is connected between the external electrode E15 and the external electrodes E19 and E20.
  • a lead-out portion 487 is provided at the end of the capacitor electrode layer 486 on the positive side in the y-axis direction.
  • the capacitor C28 is connected between the external electrode E17 and the external electrodes E19 and E20.
  • Capacitor electrode layers 460, 462, 464, 466, 490, 492, 494, 496 are formed on the dielectric layer 424a.
  • the capacitor electrode layer 490 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C25.
  • the capacitor electrode layer 492 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C26.
  • the capacitor electrode layer 494 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C27.
  • the capacitor electrode layer 496 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C28.
  • a lead portion 491 is provided at the end of the capacitor electrode layer 490 on the positive side in the y-axis direction.
  • the capacitor C25 is connected between the external electrode E11 and the external electrodes E19 and E20.
  • a lead portion 493 is provided at the end of the capacitor electrode layer 492 on the positive side in the y-axis direction.
  • the capacitor C26 is connected between the external electrode E13 and the external electrodes E19, E20.
  • a lead-out portion 495 is provided at the end of the capacitor electrode layer 494 on the positive side in the y-axis direction.
  • the capacitor C27 is connected between the external electrode E15 and the external electrodes E19 and E20.
  • a lead portion 497 is provided at the end of the capacitor electrode layer 496 on the positive side in the y-axis direction.
  • the capacitor C28 is connected between the external electrode E17 and the external electrodes E19 and E20.
  • the noise filter 410b is added with capacitors C25 to C28 and has a saddle type structure, whereby the insertion loss of the filter with respect to normal mode noise and common mode noise can be increased sharply.
  • FIG. 36 is an exploded perspective view of the multilayer body 412c of the noise filter 410c according to the eleventh embodiment.
  • FIG. 37 is an equivalent circuit diagram of the noise filter 410c. 36 and 37, the same components as those in FIGS. 20 and 21 are denoted by the same reference numerals.
  • the laminate 412c is different from the laminate 412a shown in FIG. 20 in that dielectric layers 416c and 424c are provided instead of the dielectric layers 416a, 416b, 424a, and 424b. .
  • dielectric layers 416c and 424c are provided instead of the dielectric layers 416a, 416b, 424a, and 424b.
  • the difference between the stacked body 412c and the stacked body 412a will be mainly described.
  • dielectric layers 416c and 424c on which capacitor electrode layers 500 and 503 are formed are inserted in the middle of the coils L21, L22, L23, and L24. More specifically, the dielectric layer 416c is disposed between the dielectric layer 418c and the dielectric layer 418d. The dielectric layer 424c is disposed between the dielectric layer 422c and the dielectric layer 422d.
  • Capacitor electrode layers 500 and 503 (grounding electrodes) have blank portions in which no electrode layers are formed so as not to overlap with the coil axes of coils L21 to L24 when viewed in plan from the z-axis direction. .
  • the via conductors 432c, 436d, 440d, and 444c penetrate the blank portion so as not to contact the capacitor electrode layers 500 and 503.
  • the capacitor electrode layer 500 forms capacitors C29 and C32 so as to face the coil electrode layers 430 and 442 with the dielectric layers 416c and 418 interposed therebetween.
  • the capacitor electrode layer 503 is opposed to the coil electrode layers 434 and 438 with the dielectric layers 422 and 424c interposed therebetween to form capacitors C30 and C31.
  • the capacitor electrode layer 500 has lead portions 501 and 502 at both ends in the x-axis direction.
  • the lead portions 501 and 502 are connected to the external electrodes E19 and E20, respectively.
  • the capacitor C29 is connected between the coil L21 and the external electrodes E19 and E20 as shown in FIG.
  • the capacitor C32 is connected between the coil L24 and the external electrodes E19 and E20 as shown in FIG.
  • the capacitor electrode layer 503 has lead portions 504 and 505 at both ends in the x-axis direction.
  • the lead portions 504 and 505 are connected to the external electrodes E19 and E20, respectively.
  • the capacitor C30 is connected between the coil L22 and the external electrodes E19 and E20 as shown in FIG.
  • the capacitor C31 is connected between the coil L23 and the external electrodes E19 and E20 as shown in FIG.
  • the noise filter 410c common mode noise can be efficiently removed as described below. More specifically, when the magnetic flux generated by the coil penetrates the electrode layer, eddy current loss occurs in the electrode layer, and the common mode noise removal characteristics of the noise filter are degraded. Therefore, in the noise filter 410c, the capacitor electrode layers 500 and 503 are provided with blank portions. As a result, the magnetic flux generated in the coils L21 to L24 penetrates through the blank portions of the capacitor electrode layers 500 and 503, and no eddy current loss occurs in the capacitor electrode layers 500 and 503, and the coils L21 to L24. The magnetic flux generated at becomes stronger.
  • the magnetic coupling of the coils L21 to L24 is strengthened, and the common mode noise removal characteristic is improved in the noise filter 410c. Further, since the magnetic flux generated in the coils L21 to L24 becomes stronger, the normal mode noise removal characteristics by the LC filters LC11 to LC14 are also improved.
  • the coil electrode layers 430, 434, 438, and 442 serve as one of the coil electrode layer and the capacitor electrode layer. Therefore, in the noise filter 410c, the number of dielectric layers can be reduced as compared with the noise filter 410a.
  • FIG. 38 is an exploded perspective view of the multilayer body 412d of the noise filter 410d according to the twelfth embodiment.
  • FIG. 39 is an equivalent circuit diagram of the noise filter 410d. 38 and 39, the same components as those in FIGS. 20, 21, 36, and 37 are denoted by the same reference numerals.
  • the laminated body 412d is different from the laminated body 412c shown in FIG. 36 in that dielectric layers 416a, 416b, 424a, and 424b are further added as shown in FIG.
  • the dielectric layers 416a, 416b, 424a, 424b are the same as those included in the stacked body 412a shown in FIG.
  • the capacitor C21 is provided between the external electrode E12 and the external electrodes E19, E20, and between the external electrode E14 and the external electrodes E19, E20.
  • the capacitor C22 is provided, the capacitor C23 is provided between the external electrode E16 and the external electrodes E19 and E20, and the capacitor C24 is provided between the external electrode E18 and the external electrodes E19 and E20.
  • the noise filter 410d can have a steep and large filter insertion loss with respect to normal mode noise and common mode noise by adopting a saddle type structure.
  • FIG. 40 is an exploded perspective view of the multilayer body 412e of the noise filter 410e according to the thirteenth embodiment.
  • the same components as those in FIG. 20 are denoted by the same reference numerals.
  • the stacked body 412e is provided with dielectric layers 416d, 416e, 424d, and 424e instead of the dielectric layers 416a, 416b, 424a, and 424b. And different.
  • differences between the stacked body 412e and the stacked body 412a will be described.
  • Capacitor electrode layers 550, 552, 554, and 556 are formed on the dielectric layer 416d.
  • the capacitor electrode layers 550, 552, 554, and 556 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 450, 452, 454, and 456 shown in FIG.
  • the capacitor electrode layers 550, 552, 554, and 556 do not overlap the coil axes of the coils L21 and L24 when viewed in plan from the z-axis direction.
  • lead portions 551, 553, 555, and 557 connected to the external electrodes E12, E14, E16, and E18, respectively, are provided at the negative end portions of the capacitor electrode layers 550, 552, 554, and 556 in the y-axis direction. Is provided.
  • a capacitor electrode layer 558 is formed on the dielectric layer 416e.
  • the capacitor electrode layer 558 is formed with an electrode layer so as to overlap with the capacitor electrode layers 550, 552, 554, and 556 and not to overlap with the coil axes of the coils L21 and L24 when viewed in plan from the z-axis direction. It is formed to have no blanks.
  • capacitor electrode layers 560, 562, 564, 566 are formed on the dielectric layer 424d.
  • the capacitor electrode layers 560, 562, 564, and 566 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 460, 462, 464, and 466 shown in FIG. As a result, the capacitor electrode layers 560, 562, 564, 566 do not overlap with the coil axes of the coils L22, L23 when viewed in plan from the stacking direction.
  • lead portions 561, 563, 565, and 567 connected to the external electrodes E12, E14, E16, and E18 are respectively provided at the negative side end portions of the capacitor electrode layers 560, 562, 564, and 566 in the y-axis direction. Is provided.
  • a capacitor electrode layer 568 is formed on the dielectric layer 424e.
  • the capacitor electrode layer 568 is formed with an electrode layer so as to overlap with the capacitor electrode layers 560, 562, 564, 566 and not to overlap with the coil axes of the coils L22, L23 when viewed in plan from the z-axis direction. It is formed to have no blanks.
  • the noise filter 410e having the above configuration has the circuit configuration shown in FIG. 21 in the same manner as the noise filter 410a.
  • the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 do not overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 410e, the generation of eddy current loss in the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 is suppressed, and the magnetic flux generated in the coils L21 to L24 is strong. Become.
  • the magnetic coupling between the coil L21 and the coil L22 and the magnetic coupling between the coil L23 and the coil L24 are strengthened, and the common mode noise removal characteristics of the noise filter 410e are improved as compared with the noise filter 410a.
  • FIG. 41 is an exploded perspective view of the multilayer body 412f of the noise filter 410f according to the fourteenth embodiment. 41, the same components as those in FIGS. 20, 34 and 40 are denoted by the same reference numerals.
  • the laminated body 412f is provided with dielectric layers 416d, 416e, 416f, 424d, 424e, and 424f instead of the dielectric layers 416a, 416b, 424a, and 424b. It differs from the laminate 412b shown in FIG. Hereinafter, differences between the stacked body 412f and the stacked body 412b will be described.
  • a dielectric layer 416f is provided between the dielectric layer 414c and the dielectric layer 416d.
  • Capacitor electrode layers 650, 652, 654, 656 are formed on the dielectric layer 416f.
  • Capacitor electrode layers 650, 652, 654, and 656 are formed to overlap capacitor electrode layer 558 when viewed in plan from the z-axis direction. Thereby, capacitor electrode layer 650 and capacitor electrode layer 550 constitute capacitor C25.
  • Capacitor electrode layer 652 and capacitor electrode layer 552 constitute capacitor C26.
  • Capacitor electrode layer 654 and capacitor electrode layer 554 constitute capacitor C27.
  • Capacitor electrode layer 656 and capacitor electrode layer 556 constitute capacitor C28.
  • lead portions 651, 653, 655, and 657 connected to the external electrodes E11, E13, E15, and E17, respectively, are provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 650, 652, 654, and 656. Is provided.
  • capacitor electrode layers 660, 662, 664, 666 are formed on the dielectric layer 424f.
  • the capacitor electrode layers 660, 662, 664, and 666 are formed so as to overlap with the capacitor electrode layer 568 when viewed in plan from the z-axis direction.
  • the capacitor electrode layer 660 and the capacitor electrode layer 560 constitute a capacitor C25.
  • Capacitor electrode layer 662 and capacitor electrode layer 562 constitute capacitor C26.
  • Capacitor electrode layer 664 and capacitor electrode layer 564 constitute capacitor C27.
  • Capacitor electrode layer 666 and capacitor electrode layer 566 constitute capacitor C28.
  • lead portions 661, 663, 665, and 667 connected to the external electrodes E11, E13, E15, and E17 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 660, 662, 664, and 666. Is provided.
  • the noise filter 410f having the above configuration has the circuit configuration shown in FIG. 35, like the noise filter 410b.
  • the capacitor electrode layers 558, 568, 650, 652, 654, 656, 660, 662, 664 and 666 do not overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 410f, the generation of eddy current loss in the capacitor electrode layers 558, 568, 650, 652, 654, 656, 660, 662, 664, and 666 is suppressed, and the magnetic flux generated in the coils L21 to L24 is strong. Become.
  • the magnetic coupling between the coil L21 and the coil L22 and the magnetic coupling between the coil L23 and the coil L24 are strengthened, and the common mode noise removal characteristics of the noise filter 410f are improved as compared with the noise filter 410b.
  • FIG. 42 is an exploded perspective view of the multilayer body 412g of the noise filter 410g according to the fifteenth embodiment. 42, the same components as those in FIGS. 20 and 38 are denoted by the same reference numerals.
  • the laminate 412g is different from the dielectric layers 416a, 416b, 424a, 424b in that dielectric layers 416d, 416e, 424d, 424e are provided. It is different from 412d.
  • the dielectric layers 416d, 416e, 424d, and 424e are the same as those shown in FIG.
  • the noise filter 410g having the above configuration has the circuit configuration shown in FIG. 39, like the noise filter 410d.
  • the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 do not overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 410g, the occurrence of eddy current loss in the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 is suppressed, and the magnetic flux generated in the coils L21 to L24 is strong. Become.
  • the magnetic coupling between the coil L21 and the coil L22 and the magnetic coupling between the coil L23 and the coil L24 are strengthened, and the common mode noise removal characteristics of the noise filter 410g are improved as compared with the noise filter 410d.
  • FIG. 43 is an exploded perspective view of the multilayer body 412h of the noise filter 410h according to the sixteenth embodiment.
  • FIG. 44 is an equivalent circuit diagram of the noise filter 410h. 43 and 44, the same components as those in FIGS. 20 and 21 are denoted by the same reference numerals.
  • the laminated body 412h is different from the laminated body 412a shown in FIG. 20 in that a dielectric layer 424g is provided between the dielectric layer 424a and the dielectric layer 426c.
  • a dielectric layer 424g is provided between the dielectric layer 424a and the dielectric layer 426c.
  • a dielectric layer 424g is provided between the dielectric layer 424a and the dielectric layer 426c.
  • Capacitor electrode layers 760, 762, 764, and 766 are formed on the dielectric layer 424g.
  • Capacitor electrode layers 760, 762, 764, and 766 are formed so as to overlap capacitor electrode layers 460, 462, 464, and 466, respectively, when viewed in plan from the z-axis direction.
  • the capacitor electrode layer 460 and the capacitor electrode layer 760 constitute a capacitor C33.
  • the capacitor electrode layer 462 and the capacitor electrode layer 762 constitute a capacitor C34.
  • the capacitor electrode layer 464 and the capacitor electrode layer 764 constitute a capacitor C35.
  • Capacitor electrode layer 466 and capacitor electrode layer 766 constitute capacitor C36. Furthermore, lead portions 761, 763, 765, and 767 connected to the external electrodes E11, E13, E15, and E17 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 760, 762, 764, and 766. Is provided.
  • the noise filter 410h having the above configuration has a circuit configuration shown in FIG. More specifically, capacitors C33, C34, C35, and C36 are formed between both ends of the coils L21, L22, L23, and L24.
  • the capacitances of the capacitors C33, C34, C35, and C36 can be adjusted by adjusting the shape and area of the capacitor electrode layers 760, 762, 764, and 766, and the common mode noise and normal mode noise of the noise filter 410h can be removed. The characteristics can be adjusted.
  • noise filters 410i to 410n according to other embodiments will be described with reference to the drawings.
  • 45 to 47 are exploded perspective views of stacked bodies 412i to 412k of noise filters 410i to 410k according to other embodiments, respectively.
  • FIG. 48 is an equivalent circuit diagram of the noise filter 410k of FIG. 49 to 51 are exploded perspective views of stacked bodies 412l to 412n of noise filters 410l to 410n according to other embodiments.
  • the noise filter 410i may include a stacked body 412i as shown in FIG.
  • the noise filter 410i has the same equivalent circuit shown in FIG. 37 as the noise filter 410c shown in FIG.
  • the noise filter 410j may include a laminated body 412j as shown in FIG.
  • the noise filter 410j has the same equivalent circuit shown in FIG. 39 as the noise filter 410d shown in FIG.
  • the noise filter 410k may include a laminated body 412k as shown in FIG.
  • the noise filter 410k has an equivalent circuit shown in FIG. According to the noise filter 410k, a plurality of resonance points can be obtained in normal mode and common mode attenuation by inserting a solid signal pattern and adjusting magnetic coupling.
  • noise filters 410l to 410n may include stacked bodies 412l to 412n as shown in FIGS.
  • the coupling coefficient between the coil L21 and the coil L22 and The coupling coefficient between the coil L23 and the coil L24 is not less than 0.3 and not more than 0.7.
  • dielectric layer 424g may also be provided for the noise filters 410b to 410n.
  • the noise filters 410a to 410n may include one or more common mode choke coils.
  • FIG. 52 is a configuration diagram of an electronic device 600 including noise filters 410a to 410n.
  • the electronic device 600 includes the noise filter 410a.
  • the electronic device 600 is, for example, a mobile phone. In FIG. 52, a part of the mobile phone or the like is extracted and described.
  • the electronic device 600 includes a noise filter 410a, drivers 602a and 602b, receivers 604a and 604b, and signal lines S1 to S8.
  • the driver 602a generates two signals having waveforms in opposite phases and outputs them to the signal lines S1 and S3.
  • the signal lines S1 and S3 are connected to the external electrodes E11 and E13, respectively, and constitute a differential transmission path.
  • the signal lines S2 and S4 are connected to the external electrodes E12 and E14, respectively, and constitute a differential transmission path.
  • the LC filter LC11 is connected between the signal line S1 and the signal line S2
  • the LC filter LC12 is connected between the signal line S3 and the signal line S4.
  • the receiver 604a is connected to the signal lines S2 and S4 constituting the differential transmission path, and detects a differential signal between the two signals transmitted through the signal lines S2 and S4.
  • the driver 602b generates two signals having waveforms with opposite phases, and outputs them to the signal lines S5 and S7.
  • the signal lines S5 and S7 are connected to the external electrodes E15 and E17, respectively, and constitute a differential transmission path.
  • the signal lines S6 and S8 are connected to the external electrodes E16 and E18, respectively, and constitute a differential transmission path.
  • the LC filter LC13 is connected between the signal line S5 and the signal line S6, and the LC filter LC14 is connected between the signal line S7 and the signal line S8.
  • the receiver 604b is connected to the signal lines S6 and S8 constituting the differential transmission path, and detects a differential signal between the two signals transmitted through the signal lines S6 and S8.
  • common mode noise is removed by the noise filters 410a to 410n. More specifically, the sum of the currents of two signals flowing through an ideal differential transmission line is constant. Therefore, normally, common mode noise does not occur in two signals flowing through the differential transmission path. However, in the differential transmission path, the amplitude and phase of the signals at the points D + and D ⁇ may be disrupted due to variations in impedance of the drivers 602a and 602b, and common mode noise may occur. Therefore, common mode noise is removed by inserting noise filters 410a to 410n between the drivers 602a and 602b and the receivers 604a and 604b.
  • normal mode noise is removed by the noise filters 410a to 410n. More specifically, in the noise filter 410a, the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.3 or more and 0.7 or less. It is possible to effectively remove normal mode noise generated in differential signals transmitted between the two.
  • the present invention is useful for a noise filter and an electronic apparatus including the noise filter, and in particular, a common mode noise countermeasure and a normal mode noise between a driver and a receiver of a mobile phone while suppressing a deterioration in the quality of a differential signal waveform. It is excellent in that it is suitable for countermeasures.

Abstract

Provided is a small-size noise filter which can remove both of a normal mode noise and a common mode noise. A common mode choke coil (L11) is formed by two coils. An LC filter (LC1) includes a coil (L1). The LC filter (LC2) includes a coil (L2). The two coils of the common mode choke coil (L11) also serve as the coils (L1, L2).

Description

ノイズフィルタ及びこれを備えた電子装置Noise filter and electronic device equipped with the same
 本発明は、ノイズフィルタ及びこれを供えた電子装置に関し、コモンモードチョークコイルを内蔵したノイズフィルタ及びこれを供えた電子装置に関する。 The present invention relates to a noise filter and an electronic device provided with the same, and more particularly to a noise filter including a common mode choke coil and an electronic device provided with the same.
 コモンモードノイズを除去するためのノイズフィルタとして、例えば、特許文献1に記載の積層型コモンモードチョークコイルが提案されている。該積層型コモンモードチョークコイルでは、一対のコイルを相互に重なった状態で配設させることにより、該一対のコイルを相互に磁気的に結合させて、コモンモードノイズの除去を可能にしている。 As a noise filter for removing common mode noise, for example, a stacked common mode choke coil described in Patent Document 1 has been proposed. In the laminated common mode choke coil, the pair of coils are arranged in a state of being overlapped with each other so that the pair of coils are magnetically coupled to each other so that common mode noise can be removed.
 しかしながら、前記積層型コモンモードチョークコイルでは、コモンモードノイズしか除去できず、ノーマルモードノイズを除去できない。故に、ノーマルモードノイズを除去したい場合には、該積層型コモンモードチョークコイルに加えて、ノーマルモードノイズを除去するためのノイズ除去部品を別途設ける必要がある。その結果、該積層型コモンモードチョークコイルが適用された回路では、大型化が問題となる。 However, the common mode choke coil can only remove common mode noise and not normal mode noise. Therefore, when it is desired to remove the normal mode noise, it is necessary to separately provide a noise removal component for removing the normal mode noise in addition to the laminated common mode choke coil. As a result, in a circuit to which the laminated common mode choke coil is applied, an increase in size becomes a problem.
 また、携帯電話のドライバとレシーバとの間における信号伝送方式として、差動伝送方式が用いられることがある。差動伝送方式では、2本の信号線を伝送する差動信号の電流の和が一定であるので、理論的には、コモンモードノイズが発生しない。 Also, a differential transmission system may be used as a signal transmission system between the mobile phone driver and the receiver. In the differential transmission method, since the sum of the currents of the differential signals transmitted through the two signal lines is constant, no common mode noise is theoretically generated.
 しかしながら、実際には、ドライバのインピーダンスのばらつき等により、2つの信号の振幅や立ち上がり時間、位相等のバランスが崩れ、コモンモードノイズが差動信号に発生してしまう。そのため、ドライバとレシーバとの間において、コモンモードノイズの対策を行う必要がある。 However, in practice, due to variations in driver impedance, the balance of the amplitude, rise time, phase, etc. of the two signals is lost, and common mode noise is generated in the differential signal. Therefore, it is necessary to take measures against common mode noise between the driver and the receiver.
 また、差動伝送方式では、規格(例えば3GPP)に記載された性能を満たすためには、差動信号を構成するノーマルモードの信号の高次(4次以上)の高調波を除去する場合がある。すなわち、該ノーマルモードの信号がノーマルモードノイズとみなされる場合がある。したがって、ドライバとレシーバとの間において、ノーマルモードノイズの対策も行う必要がある。以上のように、携帯電話のドライバとレシーバとの間におけるコモンモードノイズ対策及びノーマルモードノイズ対策に適したノイズフィルタが望まれている。 In the differential transmission method, in order to satisfy the performance described in a standard (for example, 3GPP), higher-order (fourth or higher) harmonics of a normal mode signal constituting the differential signal may be removed. is there. That is, the normal mode signal may be regarded as normal mode noise. Therefore, it is necessary to take measures against normal mode noise between the driver and the receiver. As described above, there is a demand for a noise filter suitable for common mode noise countermeasures and normal mode noise countermeasures between mobile phone drivers and receivers.
 なお、従来のノイズフィルタとしては、例えば、特許文献2に記載の積層型アレイ部品が知られている。しかしながら、該積層型アレイ部品は、全ての周波数帯域において、ノーマルモードノイズを同じ量だけ除去してしまうため、ノーマルモードノイズつまり差動信号を構成する高調波信号を過剰に除去し、波形品質を大きく低下させてしまう。
特開平08-138938号公報 特開2005-64267号公報
As a conventional noise filter, for example, a multilayer array component described in Patent Document 2 is known. However, since the multilayer array component removes the same amount of normal mode noise in all frequency bands, the normal mode noise, that is, the harmonic signal constituting the differential signal is excessively removed, and the waveform quality is improved. It will be greatly reduced.
Japanese Patent Laid-Open No. 08-138938 JP 2005-64267 A
 そこで、本発明の第1の目的は、ノーマルモードノイズ及びコモンモードノイズの両方を除去でき、かつ、小型化を図ることができるノイズフィルタを提供することである。 Therefore, a first object of the present invention is to provide a noise filter that can remove both normal mode noise and common mode noise and can be miniaturized.
 また、本発明の第2の目的は、差動信号波形の品質低下を抑制しつつ、携帯電話のドライバとレシーバとの間におけるコモンモードノイズ対策及びノーマルモードノイズ対策に適したノイズフィルタ及びこれを供えた電子装置を提供することである。 In addition, a second object of the present invention is to provide a noise filter suitable for countermeasures against common mode noise and normal mode noise between a driver and a receiver of a mobile phone while suppressing deterioration in the quality of the differential signal waveform. It is to provide an electronic device provided.
 本発明の第1の形態であるノイズフィルタは、2つのコイルからなる第1のコモンモードチョークコイルと、第1のコイルを含む第1のLCフィルタと、第2のコイルを含む第2のLCフィルタと、を備え、前記第1のコモンモードチョークコイルの2つのコイルは、前記第1のコイル及び前記第2のコイルとして兼用されていること、を特徴とする。 The noise filter according to the first aspect of the present invention includes a first common mode choke coil including two coils, a first LC filter including the first coil, and a second LC including the second coil. And the two common coils of the first common mode choke coil are also used as the first coil and the second coil.
 本発明の第2の形態であるノイズフィルタは、0.3以上0.7以下の結合係数で結合している2つのコイルからなる第1のコモンモードチョークコイルと、第1のコイルを含む第1のLCフィルタと、第2のコイルを含む第2のLCフィルタと、を備え、前記第1のコモンモードチョークコイルの2つのコイルは、前記第1のコイル及び前記第2のコイルとして兼用されていること、を特徴とする。 A noise filter according to a second aspect of the present invention includes a first common mode choke coil composed of two coils coupled with a coupling coefficient of 0.3 to 0.7 and a first coil including the first coil. 1 LC filter and a second LC filter including a second coil, and the two coils of the first common mode choke coil are also used as the first coil and the second coil. It is characterized by that.
 本発明の第3の形態に係る電子装置は、前記ノイズフィルタと、第1の信号線ないし第4の信号線からなる差動伝送路と、を備え、前記第1のLCフィルタは、前記第1の信号線と前記第2の信号線との間に接続されており、前記第2のLCフィルタは、前記第3の信号線と前記第4の信号線との間に接続されていること、を特徴とする。 An electronic apparatus according to a third aspect of the present invention includes the noise filter and a differential transmission path including a first signal line to a fourth signal line, and the first LC filter includes the first LC line The second signal line is connected between the first signal line and the second signal line, and the second LC filter is connected between the third signal line and the fourth signal line. It is characterized by.
 本発明の第4の形態に係る電子装置は、前記ノイズフィルタと、第1の信号線ないし第8の信号線からなる差動伝送路と、前記第1のLCフィルタは、前記第1の信号線と前記第2の信号線との間に接続されており、前記第2のLCフィルタは、前記第3の信号線と前記第4の信号線との間に接続されており、前記第3のLCフィルタは、前記第5の信号線と前記第6の信号線との間に接続されており、前記第4のLCフィルタは、前記第7の信号線と前記第8の信号線との間に接続されていること、を特徴とする。 In the electronic device according to the fourth aspect of the present invention, the noise filter, a differential transmission line including a first signal line to an eighth signal line, and the first LC filter include the first signal. The second LC filter is connected between the third signal line and the fourth signal line, and is connected between the third signal line and the second signal line. The LC filter is connected between the fifth signal line and the sixth signal line, and the fourth LC filter is connected between the seventh signal line and the eighth signal line. It is connected between them.
 本発明によれば、耐久性に優れた同軸コネクタを得ることができる。 According to the present invention, a coaxial connector having excellent durability can be obtained.
第1の実施形態に係るノイズフィルタの外観斜視図である。1 is an external perspective view of a noise filter according to a first embodiment. 第1の実施形態に係るノイズフィルタの積層体の分解図である。It is an exploded view of the laminated body of the noise filter which concerns on 1st Embodiment. 第1の実施形態に係るノイズフィルタの等価回路図である。It is an equivalent circuit diagram of the noise filter according to the first embodiment. コモンモードノイズの反射特性と周波数との関係を示したグラフである。It is the graph which showed the relationship between the reflection characteristic of common mode noise, and a frequency. ノーマルモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。It is the graph which showed the relationship between the insertion loss of a filter with respect to normal mode noise, and a frequency. ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。It is the graph which showed the relationship between the insertion loss of a filter with respect to normal mode noise and common mode noise, and frequency. 結合用電極層の変形例を示した図である。It is the figure which showed the modification of the electrode layer for coupling | bonding. 第2の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 2nd Embodiment. 第2の実施形態に係るノイズフィルタの等価回路図である。It is an equivalent circuit diagram of the noise filter according to the second embodiment. 第3の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 3rd Embodiment. 第3の実施形態に係るノイズフィルタの等価回路図である。FIG. 6 is an equivalent circuit diagram of a noise filter according to a third embodiment. 第4の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 4th Embodiment. 第4の実施形態に係るノイズフィルタの等価回路図である。It is the equivalent circuit schematic of the noise filter which concerns on 4th Embodiment. 第5の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 5th Embodiment. 第6の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 6th Embodiment. 第7の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 7th Embodiment. 第8の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 8th Embodiment. 第8の実施形態に係るノイズフィルタの等価回路図である。FIG. 10 is an equivalent circuit diagram of a noise filter according to an eighth embodiment. 第9の実施形態に係るノイズフィルタの外観斜視図である。It is an external appearance perspective view of the noise filter which concerns on 9th Embodiment. 第9の実施形態に係るノイズフィルタの積層体の分解図である。It is an exploded view of the laminated body of the noise filter which concerns on 9th Embodiment. 第9の実施形態に係るノイズフィルタの等価回路図である。It is the equivalent circuit schematic of the noise filter which concerns on 9th Embodiment. ノイズフィルタにおいて、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数を0.2としたときにおける、ノーマルモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。In the noise filter, when the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.2, the graph shows the relationship between the filter insertion loss and the frequency with respect to the normal mode noise. is there. ノイズフィルタにおいて、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数を0.3としたときにおける、ノーマルモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。In the noise filter, when the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.3, the graph shows the relationship between the insertion loss of the filter and the frequency with respect to the normal mode noise. is there. ノイズフィルタにおいて、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数を0.6としたときにおける、ノーマルモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。In the noise filter, when the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 is 0.6, a graph showing the relationship between the insertion loss of the filter and the frequency with respect to normal mode noise. is there. ノイズフィルタにおいて、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数を0.7としたときにおける、ノーマルモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。In the noise filter, when the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 is 0.7, the graph shows the relationship between the filter insertion loss and the frequency with respect to normal mode noise. is there. 第1の実験例において、第1の実験を行った際の結果を示したグラフである。It is the graph which showed the result at the time of performing a 1st experiment in the 1st example of an experiment. 第2の実験例において、第1の実験を行った際の結果を示したグラフである。It is the graph which showed the result at the time of performing a 1st experiment in the 2nd example of an experiment. 第2の実験例において、第2の実験を行った際の結果を示したグラフである。It is the graph which showed the result at the time of performing a 2nd experiment in the 2nd experiment example. 第1の実験例において、第2の実験を行った際の結果を示したグラフである。It is the graph which showed the result at the time of performing a 2nd experiment in the 1st experiment example. コモンモードノイズの反射特性と周波数との関係を示したグラフである。It is the graph which showed the relationship between the reflection characteristic of common mode noise, and a frequency. ノーマルモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。It is the graph which showed the relationship between the insertion loss of a filter with respect to normal mode noise, and a frequency. ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。It is the graph which showed the relationship between the insertion loss of a filter with respect to normal mode noise and common mode noise, and frequency. 結合用電極層の変形例を示した図である。It is the figure which showed the modification of the electrode layer for coupling | bonding. 第10の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 10th Embodiment. 第10の実施形態に係るノイズフィルタの等価回路図である。It is an equivalent circuit diagram of the noise filter according to the tenth embodiment. 第11の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 11th Embodiment. 第11の実施形態に係るノイズフィルタの等価回路図である。It is an equivalent circuit diagram of the noise filter according to the eleventh embodiment. 第12の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 12th Embodiment. 第12の実施形態に係るノイズフィルタの等価回路図である。It is an equivalent circuit schematic of the noise filter concerning a 12th embodiment. 第13の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 13th Embodiment. 第14の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 14th Embodiment. 第15の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 15th Embodiment. 第16の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on 16th Embodiment. 第16の実施形態に係るノイズフィルタの等価回路図である。It is an equivalent circuit schematic of the noise filter which concerns on 16th Embodiment. その他の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. その他の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. その他の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. 図47のノイズフィルタの等価回路図である。48 is an equivalent circuit diagram of the noise filter of FIG. 47. FIG. その他の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. その他の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. その他の実施形態に係るノイズフィルタの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the noise filter which concerns on other embodiment. 本発明に係るノイズフィルタを備えた電子装置の構成図である。It is a block diagram of the electronic apparatus provided with the noise filter which concerns on this invention.
符号の説明Explanation of symbols
 C1~C16,C21~C36 コンデンサ
 CP1,CP2,CP11,CP12 浮遊容量
 E1~E20 外部電極
 L1~L4,L21~L24 コイル
 L11,L12,L31,L32 コモンモードチョークコイル
 LC1~LC4,LC11~LC14 LCフィルタ
 S1~S8 信号線
 10a~10h,410a~410n ノイズフィルタ
 12a~12h,412a~412n 積層体
 14a~14c,16a~16f,18a~18f,20,22a~22f,24a~24g,26a~26c,414a~414c,416a~416f,418a~418f,420,422a~422f,424a~424g,426a~426c 誘電体層
 30a~30f,34a~34f,38a~38f,42a~42f,430a~430f,434a~434f,438a~438f,442a~442f コイル電極層
 32a~32e,36b~36f,40b~40f,44a~44e,432a~432e,436b~436f,440b~440f,444a~444e ビア導体
 50,52,54,56,58,60,62,64,66,68,80,82,84,86,90,92,94,96,100,103,150,152,154,156,158,160,162,164,166,168,250,252,254,256,258,260,262,264,266,268,360,362,364,366,450,452,454,456,458,460,462,464,466,468,480,482,484,486,490,492,494,496,500,503,550,552,554,556,558,560,562,564,566,568,650,652,654,656,660,662,664,666,760,762,764,766 コンデンサ電極層
 51,53,55,57,61,63,65,67,71,72,73,74,81,83,85,87,91,93,95,97,101,102,104,105,151,153,155,157,161,163,165,167,171,172,173,174,251,253,255,257,261,263,265,267,361,363,365,367,451,453,455,457,461,463,465,467,471,472,473,474,481,483,485,487,491,493,495,497,501,502,504,505,551,553,555,557,561,563,565,567,651,653,655,657,661,663,665,667,761,763,765,767 引き出し部
 70,470 結合用電極層
 600 電子装置
 602a,602b ドライバ
 604a,604b レシーバ
C1 to C16, C21 to C36 Capacitors CP1, CP2, CP11, CP12 Stray capacitance E1 to E20 External electrodes L1 to L4, L21 to L24 Coils L11, L12, L31, L32 Common mode choke coils LC1 to LC4, LC11 to LC14 LC filters S1 to S8 Signal lines 10a to 10h, 410a to 410n Noise filters 12a to 12h, 412a to 412n Laminated bodies 14a to 14c, 16a to 16f, 18a to 18f, 20, 22a to 22f, 24a to 24g, 26a to 26c, 414a 414c, 416a to 416f, 418a to 418f, 420, 422a to 422f, 424a to 424g, 426a to 426c Dielectric layers 30a to 30f, 34a to 34f, 38a to 38f, 42a to 42f, 430a to 43 f, 434a to 434f, 438a to 438f, 442a to 442f Coil electrode layers 32a to 32e, 36b to 36f, 40b to 40f, 44a to 44e, 432a to 432e, 436b to 436f, 440b to 440f, 444a to 444e Via conductor 50 , 52, 54, 56, 58, 60, 62, 64, 66, 68, 80, 82, 84, 86, 90, 92, 94, 96, 100, 103, 150, 152, 154, 156, 158, 160 162,164,166,168,250,252,254,256,258,260,262,264,266,268,360,362,364,366,450,452,454,456,458,460,462 , 464, 466, 468, 480, 482, 484, 486, 490, 4 2,494,496,500,503,550,552,554,556,558,560,562,564,566,568,650,652,654,656,660,662,664,666,760,762 764, 766 Capacitor electrode layers 51, 53, 55, 57, 61, 63, 65, 67, 71, 72, 73, 74, 81, 83, 85, 87, 91, 93, 95, 97, 101, 102, 104,105,151,153,155,157,161,163,165,167,171,172,173,174,251,253,255,257,261,263,265,267,361,363,365 367, 451, 453, 455, 457, 461, 463, 465, 467, 471, 472, 473, 474 481,483,485,487,491,493,495,497,501,502,504,505,551,553,555,563,563,565,567,651,653,655,657,661, 663, 665, 667, 761, 763, 765, 767 Lead portion 70, 470 Coupling electrode layer 600 Electronic device 602a, 602b Driver 604a, 604b Receiver
 以下に、本発明の実施形態に係るノイズフィルタについて説明する。 Hereinafter, the noise filter according to the embodiment of the present invention will be described.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係るノイズフィルタ10aの外観斜視図である。図2は、ノイズフィルタ10aの積層体12aの分解図である。図3は、ノイズフィルタ10aの等価回路図である。以下では、ノイズフィルタ10aの形成時に、セラミックグリーンシートが積層される方向を積層方向と定義する。そして、この積層方向をz軸方向とし、ノイズフィルタ10aの長手方向をx軸方向とし、x軸とz軸とに直交する方向をy軸方向とする。x軸、y軸及びz軸は、ノイズフィルタ10aを構成する辺に対して平行である。
(First embodiment)
FIG. 1 is an external perspective view of a noise filter 10a according to the first embodiment of the present invention. FIG. 2 is an exploded view of the multilayer body 12a of the noise filter 10a. FIG. 3 is an equivalent circuit diagram of the noise filter 10a. Hereinafter, the direction in which the ceramic green sheets are laminated when the noise filter 10a is formed is defined as the lamination direction. The stacking direction is the z-axis direction, the longitudinal direction of the noise filter 10a is the x-axis direction, and the direction orthogonal to the x-axis and the z-axis is the y-axis direction. The x-axis, y-axis, and z-axis are parallel to the sides that constitute the noise filter 10a.
(ノイズフィルタの構成)
 ノイズフィルタ10aは、図1に示すように、内部に複数のLCフィルタ及びコモンモードチョークコイルを含む直方体状の積層体12a、及び、積層体12aの表面に形成された外部電極E1~E10を備えている。以下、積層体12aのx軸方向の両端に位置する面を端面と定義し、積層体12aのy軸方向の両端に位置する面を側面と定義し、積層体12aのz軸方向の上側の面を上面と定義し、積層体12aのz軸方向の下側の面を下面と定義する。
(Noise filter configuration)
As shown in FIG. 1, the noise filter 10a includes a rectangular parallelepiped laminated body 12a including a plurality of LC filters and a common mode choke coil therein, and external electrodes E1 to E10 formed on the surface of the laminated body 12a. ing. Hereinafter, surfaces positioned at both ends in the x-axis direction of the stacked body 12a are defined as end surfaces, surfaces positioned at both ends in the y-axis direction of the stacked body 12a are defined as side surfaces, and upper surfaces in the z-axis direction of the stacked body 12a are defined. The surface is defined as the upper surface, and the lower surface of the laminate 12a in the z-axis direction is defined as the lower surface.
 外部電極E1,E3,E5,E7はそれぞれ、y軸方向の正方向側の側面において、z軸方向に延びるように形成されている。外部電極E1,E3,E5,E7はそれぞれ、入力端子として機能する。外部電極E2,E4,E6,E8はそれぞれ、y軸方向の負方向側の側面において、z軸方向に延びるように形成されている。外部電極E2,E4,E6,E8はそれぞれ、出力端子として機能する。外部電極E9,E10はそれぞれ、両端面において、z軸方向に延びるように形成されている。外部電極E9,E10はそれぞれ、グランド電極として機能する。 External electrodes E1, E3, E5, and E7 are each formed to extend in the z-axis direction on the side surface on the positive direction side in the y-axis direction. Each of the external electrodes E1, E3, E5, E7 functions as an input terminal. The external electrodes E2, E4, E6, E8 are each formed to extend in the z-axis direction on the negative side surface in the y-axis direction. The external electrodes E2, E4, E6, E8 each function as an output terminal. The external electrodes E9 and E10 are each formed to extend in the z-axis direction on both end faces. The external electrodes E9 and E10 each function as a ground electrode.
 積層体12aは、以下に説明するように、複数の内部電極層と複数の誘電体層とが共に積層されて構成され、内部にLCフィルタLC1~LC4及びコモンモードチョークコイルL11,L12を内蔵している。より詳細には、積層体12aは、図2に示すように、複数の誘電体層14a~14c,16a,16b,18a~18f,20,22f~22a,24b,24a,26c~26aがこの順に積層されることにより構成される。複数の誘電体層14a~14c,16a,16b,18a~18f,20,22a~22f,24a,24b,26a~26cは、それぞれ略同じ面積及び形状を有する長方形の絶縁層である。 As will be described below, the multilayer body 12a is configured by laminating a plurality of internal electrode layers and a plurality of dielectric layers, and includes LC filters LC1 to LC4 and common mode choke coils L11 and L12 therein. ing. More specifically, as shown in FIG. 2, the multilayer body 12a includes a plurality of dielectric layers 14a to 14c, 16a, 16b, 18a to 18f, 20, 22f to 22a, 24b, 24a, 26c to 26a in this order. It is configured by being laminated. The plurality of dielectric layers 14a to 14c, 16a, 16b, 18a to 18f, 20, 22a to 22f, 24a, 24b, and 26a to 26c are rectangular insulating layers each having substantially the same area and shape.
 誘電体層16aの主面上には、y軸方向に長手方向を有する長方形状のコンデンサ電極層50,52,54,56が形成されている。コンデンサ電極層50,52,54,56はそれぞれ、y軸方向の負方向側の端部において、コンデンサ電極層50,52,54,56と外部電極E2,E4,E6,E8とを接続するための引き出し部51,53,55,57を有している。また、誘電体層16bの主面上には、x軸方向に長手方向を有する長方形状のコンデンサ電極層58が形成されている。コンデンサ電極層58は、x軸方向の両端部において、コンデンサ電極層58と外部電極E9,E10とを接続するための引き出し部71,72を有している。 On the main surface of the dielectric layer 16a, rectangular capacitor electrode layers 50, 52, 54, 56 having a longitudinal direction in the y-axis direction are formed. Capacitor electrode layers 50, 52, 54, and 56 are for connecting capacitor electrode layers 50, 52, 54, and 56 to external electrodes E2, E4, E6, and E8 at the ends on the negative direction side in the y-axis direction, respectively. The drawer portions 51, 53, 55, and 57 are provided. A rectangular capacitor electrode layer 58 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 16b. The capacitor electrode layer 58 has lead portions 71 and 72 for connecting the capacitor electrode layer 58 and the external electrodes E9 and E10 at both ends in the x-axis direction.
 コンデンサ電極層50とコンデンサ電極層58とが誘電体層16aを挟んで対向することにより、コンデンサC1を構成している。コンデンサ電極層52とコンデンサ電極層58とが誘電体層16aを挟んで対向することにより、コンデンサC2を構成している。コンデンサ電極層54とコンデンサ電極層58とが誘電体層16aを挟んで対向することにより、コンデンサC3を構成している。コンデンサ電極層56とコンデンサ電極層58とが誘電体層16aを挟んで対向することにより、コンデンサC4を構成している。 The capacitor electrode layer 50 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C1. The capacitor electrode layer 52 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C2. The capacitor electrode layer 54 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C3. The capacitor electrode layer 56 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming the capacitor C4.
 誘電体層18a~18fの主面上にはそれぞれ、線状電極が折り曲げられた形状を有するコイル電極層30a~30f,42a~42fが形成されている。より詳細には、コイル電極層30a,42aはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E2,E8に接続されている。コイル電極層30b~30e,42b~42eは、同じ誘電体層18上に形成されたもの同士で互いに反対方向に旋廻するように渦状に形成された電極層である。また、コイル電極層30f,42fはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E1,E7に接続されている。更に、誘電体層18a~18eにはそれぞれ、コイル電極層30a~30e,42a~42eの一端に接続されているビア導体32a~32e,44a~44eが形成されている。これにより、誘電体層18a~18fが積層された場合には、ビア導体32a~32e,44a~44eは、隣接する誘電体層18a~18fに形成されたコイル電極層30a~30f,42a~42f同士を接続する。その結果、コイル電極層30a~30fは、コイルL1を構成し、コイル電極層42a~42fは、コイルL4を構成する。 Coil electrode layers 30a to 30f and 42a to 42f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 18a to 18f, respectively. More specifically, each of the coil electrode layers 30a and 42a has an “L” shape, and one end thereof is connected to the external electrodes E2 and E8, respectively. The coil electrode layers 30b to 30e and 42b to 42e are electrode layers formed in a spiral shape so as to rotate in opposite directions to each other formed on the same dielectric layer 18. The coil electrode layers 30f and 42f each have an “L” shape, and one ends thereof are connected to the external electrodes E1 and E7, respectively. Furthermore, via conductors 32a to 32e and 44a to 44e connected to one ends of the coil electrode layers 30a to 30e and 42a to 42e are formed on the dielectric layers 18a to 18e, respectively. As a result, when the dielectric layers 18a to 18f are laminated, the via conductors 32a to 32e and 44a to 44e are formed on the coil electrode layers 30a to 30f and 42a to 42f formed on the adjacent dielectric layers 18a to 18f. Connect each other. As a result, the coil electrode layers 30a to 30f constitute the coil L1, and the coil electrode layers 42a to 42f constitute the coil L4.
 誘電体層24aの主面上には、y軸方向に長手方向を有する長方形状のコンデンサ電極層60,62,64,66が形成されている。コンデンサ電極層60,62,64,66はそれぞれ、y軸方向の負方向側の端部において、コンデンサ電極層60,62,64,66と外部電極E2,E4,E6,E8とを接続するための引き出し部61,63,65,67を有している。また、誘電体層24bの主面上には、x軸方向に長手方向を有する長方形状のコンデンサ電極層68が形成されている。コンデンサ電極層68は、x軸方向の両端部において、コンデンサ電極層68と外部電極E9,E10とを接続するための引き出し部73,74を有している。 On the main surface of the dielectric layer 24a, rectangular capacitor electrode layers 60, 62, 64, 66 having a longitudinal direction in the y-axis direction are formed. Capacitor electrode layers 60, 62, 64, and 66 are for connecting capacitor electrode layers 60, 62, 64, and 66 to external electrodes E2, E4, E6, and E8 at the negative end in the y-axis direction, respectively. The drawer portions 61, 63, 65, and 67 are provided. A rectangular capacitor electrode layer 68 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 24b. The capacitor electrode layer 68 has lead portions 73 and 74 for connecting the capacitor electrode layer 68 and the external electrodes E9 and E10 at both ends in the x-axis direction.
 コンデンサ電極層60とコンデンサ電極層68とが誘電体層24bを挟んで対向することにより、コンデンサC1を構成している。コンデンサ電極層62とコンデンサ電極層68とが誘電体層24bを挟んで対向することにより、コンデンサC2を構成している。コンデンサ電極層64とコンデンサ電極層68とが誘電体層24bを挟んで対向することにより、コンデンサC3を構成している。コンデンサ電極層66とコンデンサ電極層68とが誘電体層24bを挟んで対向することにより、コンデンサC4を構成している。 The capacitor electrode layer 60 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming the capacitor C1. The capacitor electrode layer 62 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming the capacitor C2. The capacitor electrode layer 64 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming the capacitor C3. The capacitor electrode layer 66 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C4.
 誘電体層22a~22fの主面上にはそれぞれ、線状電極が折り曲げられた形状を有するコイル電極層34a~34f,38a~38fが形成されている。より詳細には、コイル電極層34a,38aはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E4,E6に接続されている。コイル電極層34b~34e,38b~38eは、同じ誘電体層22上に形成されたもの同士で互いに反対方向に旋廻するように渦状に形成された電極層である。また、コイル電極層34f,38fはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E3,E5に接続されている。更に、誘電体層22b~22fにはそれぞれ、コイル電極層34b~34f,38b~38fの一端に接続されているビア導体36b~36f,40b~40fが形成されている。これにより、誘電体層22a~22fが積層された場合には、ビア導体36b~36f,40b~40fは、隣接する誘電体層22a~22fに形成されたコイル電極層34a~34f,38a~38f同士を接続する。その結果、コイル電極層34a~34fは、コイルL2を構成し、コイル電極層38a~38fは、コイルL3を構成する。 Coil electrode layers 34a to 34f and 38a to 38f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 22a to 22f, respectively. More specifically, the coil electrode layers 34a and 38a each have an “L” shape, and one ends thereof are connected to the external electrodes E4 and E6, respectively. The coil electrode layers 34b to 34e and 38b to 38e are electrode layers formed on the same dielectric layer 22 in a spiral shape so as to rotate in opposite directions. The coil electrode layers 34f and 38f each have an “L” shape, and one ends thereof are connected to the external electrodes E3 and E5, respectively. Furthermore, via conductors 36b to 36f and 40b to 40f connected to one ends of the coil electrode layers 34b to 34f and 38b to 38f are formed in the dielectric layers 22b to 22f, respectively. Thus, when the dielectric layers 22a to 22f are laminated, the via conductors 36b to 36f and 40b to 40f are formed on the coil electrode layers 34a to 34f and 38a to 38f formed on the adjacent dielectric layers 22a to 22f. Connect each other. As a result, the coil electrode layers 34a to 34f constitute the coil L2, and the coil electrode layers 38a to 38f constitute the coil L3.
 積層体12aが以上のような構成を有することにより、図3に示すように、コイルL1及びコンデンサC1からなるLCフィルタLC1、コイルL2及びコンデンサC2からなるLCフィルタLC2、コイルL3及びコンデンサC3からなるLCフィルタLC3、及び、コイルL4及びコンデンサC4からなるLCフィルタLC4が形成されている。LCフィルタLC2,LC3は、LCフィルタLC1,LC4とは電気的に接続されていない。ここで、LCフィルタLC1を例にとると、コイルL1の一端が外部電極E1に接続されていると共に、コイルL1の他端が外部電極E2に接続されている。更に、コンデンサC1の一端は、コイルL1の他端に接続されていると共に、コンデンサC1の他端は、外部電極E9,E10に接続されている。LCフィルタLC2,LC3,LC4の構成については、LCフィルタLC1の構成と同様であるので説明を省略する。 Since the laminated body 12a has the above-described configuration, as shown in FIG. 3, the LC filter LC1 including the coil L1 and the capacitor C1, the LC filter LC2 including the coil L2 and the capacitor C2, the coil L3, and the capacitor C3 are included. The LC filter LC3 including the LC filter LC3 and the coil L4 and the capacitor C4 is formed. The LC filters LC2 and LC3 are not electrically connected to the LC filters LC1 and LC4. Here, taking the LC filter LC1 as an example, one end of the coil L1 is connected to the external electrode E1, and the other end of the coil L1 is connected to the external electrode E2. Furthermore, one end of the capacitor C1 is connected to the other end of the coil L1, and the other end of the capacitor C1 is connected to the external electrodes E9 and E10. The configurations of the LC filters LC2, LC3, and LC4 are the same as the configuration of the LC filter LC1, and thus the description thereof is omitted.
 ところで、外部電極E1,E3が入力端子として機能し、外部電極E2,E4が出力端子として機能するので、図2において、コイルL1には、例えば、z軸方向の下から上へと電流が流れ、コイルL2には、例えば、z軸方向の上から下へと電流が流れる。すなわち、コイルL1とコイルL2とには、z軸方向において逆方向に電流が流れる。更に、コイルL1を構成するコイル電極層30a~30fは、z軸方向の下から上へと行くにしたがって時計回りに旋廻し、コイルL2を構成するコイル電極層34a~34fは、z軸方向の下から上へと行くにしたがって反時計回りに旋廻している。すなわち、コイルL1とコイルL2とは、互いに逆向きに旋廻している。したがって、コイルL1とコイルL2とに電流が流れた場合には、共に同じ方向に電流が旋廻するようになる。更に、コイルL1及びコイルL2は、図2に示すように、コイルL1のコイル軸とコイルL2のコイル軸とが略一致するようにz軸方向に並べて配置されている。その結果、コイルL1とコイルL2とは、同じ方向に磁束を発生して磁気的に結合することで、LCフィルタLC1とLCフィルタLC2を構成するコイルと、コモンモードチョークコイルL11を構成する2つのコイルとを兼用するようになる。特に、コイルL1とコイルL2とは、コンデンサC1,C2が接続された端部に対する他方の端部近傍(図2のz軸方向の中央部分)において、磁気結合している。コイルL3とコイルL4も、磁気結合して、LCフィルタLC3とLCフィルタLC4を構成するコイルと、コモンモードチョークコイルL12を構成する2つのコイルとを兼用しているが、その詳細についてはコイルL1とコイルL2と同じであるので説明を省略する。 By the way, since the external electrodes E1 and E3 function as input terminals and the external electrodes E2 and E4 function as output terminals, in FIG. 2, for example, a current flows through the coil L1 from the bottom to the top in the z-axis direction. In the coil L2, for example, a current flows from the top to the bottom in the z-axis direction. That is, a current flows through the coil L1 and the coil L2 in the opposite directions in the z-axis direction. Furthermore, the coil electrode layers 30a to 30f constituting the coil L1 rotate clockwise as it goes from the bottom to the top in the z-axis direction, and the coil electrode layers 34a to 34f constituting the coil L2 are rotated in the z-axis direction. It turns counterclockwise as it goes from bottom to top. That is, the coil L1 and the coil L2 are rotated in opposite directions. Therefore, when current flows through the coil L1 and the coil L2, the current turns in the same direction. Furthermore, as shown in FIG. 2, the coil L1 and the coil L2 are arranged side by side in the z-axis direction so that the coil axis of the coil L1 and the coil axis of the coil L2 substantially coincide. As a result, the coil L1 and the coil L2 generate magnetic fluxes in the same direction and are magnetically coupled, so that the coils constituting the LC filter LC1 and LC filter LC2 and the two constituting the common mode choke coil L11 It comes to share with the coil. In particular, the coil L1 and the coil L2 are magnetically coupled in the vicinity of the other end (the central portion in the z-axis direction in FIG. 2) with respect to the end where the capacitors C1 and C2 are connected. The coil L3 and the coil L4 are also magnetically coupled to serve as both the coil constituting the LC filter LC3 and the LC filter LC4 and the two coils constituting the common mode choke coil L12. For details, see the coil L1. Since it is the same as that of the coil L2, description thereof is omitted.
 更に、誘電体層18fと誘電体層22fとの間に配置された誘電体層20の主面上には、コイルL1とコイルL3,L4とを容量結合させる結合用電極層70が形成されている。該結合用電極層70は、コイルL2とコイルL3,L4とも容量結合させている。結合用電極層70は、コイルL3,L4についても同様にコイルL1,L2と容量結合させている。そのため、該結合用電極層70は、z軸方向から平面視したときに、LCフィルタLC1とLCフィルタLC3,LC4との間に渡って形成されている。同様に、結合用電極層70は、z軸方向から平面視したときに、LCフィルタLC2とLCフィルタLC3,LC4との間に渡って形成されている。 Furthermore, a coupling electrode layer 70 for capacitively coupling the coil L1 and the coils L3 and L4 is formed on the main surface of the dielectric layer 20 disposed between the dielectric layer 18f and the dielectric layer 22f. Yes. The coupling electrode layer 70 is capacitively coupled to the coil L2 and the coils L3 and L4. Similarly, the coupling electrode layer 70 is capacitively coupled to the coils L1 and L2 for the coils L3 and L4. Therefore, the coupling electrode layer 70 is formed across the LC filter LC1 and the LC filters LC3 and LC4 when viewed in plan from the z-axis direction. Similarly, the coupling electrode layer 70 is formed across the LC filter LC2 and the LC filters LC3 and LC4 when viewed in plan from the z-axis direction.
 ここで、結合用電極層70は、2つの環状の線状電極が接続された形状を有している。これは、コイルL1~L4に電流が流れた場合に、コイルL1~L4において発生する磁束を結合用電極層70が妨げないようにするためである。 Here, the coupling electrode layer 70 has a shape in which two annular linear electrodes are connected. This is to prevent the coupling electrode layer 70 from interfering with the magnetic flux generated in the coils L1 to L4 when a current flows through the coils L1 to L4.
(効果)
 以上のように、ノイズフィルタ10aによれば、LCフィルタLC1~LC4が内蔵されていると共に、コイルL1~L4がコモンモードチョークコイルL11,L12を構成するコイルを兼ねているので、ノーマルモードノイズ及びコモンモードノイズの両方を除去することができる。
(effect)
As described above, according to the noise filter 10a, the LC filters LC1 to LC4 are incorporated, and the coils L1 to L4 also serve as the coils constituting the common mode choke coils L11 and L12. Both common mode noises can be removed.
 また、ノイズフィルタ10aによれば、LCフィルタとコモンモードチョークコイルとが一つのノイズフィルタ10a内に内蔵されているので、LCフィルタとコモンモードチョークコイルとが別々の電子部品により構成されている場合に比べて、回路全体を小型化できる。特に、ノイズフィルタ10aでは、コイルL1,L2は、コモンモードチョークコイルL11を構成しているコイルとして機能すると共に、LCフィルタLC1,LC2の一部としても機能している。同様に、コイルL3,L4は、コモンモードチョークコイルL12を構成しているコイルとして機能すると共に、LCフィルタLC3,LC4の一部としても機能している。このように、ノイズフィルタ10aでは、コイルL1~L4が、LCフィルタの一部及びコモンモードチョークコイルの一部に兼用されているので、ノイズフィルタ10aがより小型化される。 Also, according to the noise filter 10a, the LC filter and the common mode choke coil are built in one noise filter 10a, and therefore the LC filter and the common mode choke coil are configured by separate electronic components. As a result, the entire circuit can be reduced in size. In particular, in the noise filter 10a, the coils L1 and L2 function as coils constituting the common mode choke coil L11 and also function as part of the LC filters LC1 and LC2. Similarly, the coils L3 and L4 function as coils constituting the common mode choke coil L12 and also function as part of the LC filters LC3 and LC4. As described above, in the noise filter 10a, the coils L1 to L4 are also used as a part of the LC filter and a part of the common mode choke coil, so that the noise filter 10a is further downsized.
 また、ノイズフィルタ10aでは、以下に説明するように、コモンモードノイズを効率よく除去することが可能となる。xz断面において、コイルL1が発生する磁束とコイルL2が発生する磁束、及び、コイルL1が発生する磁束とコイルL2が発生する磁束が等しくない場合には、ノーマルモードノイズがコモンモードノイズに変換されてしまい、新たなコモンモードノイズが発生して、コモンモードノイズが効率よく除去されない。そこで、ノイズフィルタ10aでは、xz断面において、コイルL1が発生する磁束の大きさとコイルL2が発生する磁束の大きさとが略等しくなるように、コイルL1,L2の電流経路を構成している。同様に、xz断面において、コイルL3が発生する磁束の大きさとコイルL4が発生する磁束の大きさとが略等しくなるように電流経路を構成している。これにより、コイルL1とコイルL2との間及びコイルL3とコイルL4との間の特性の差を小さくできる。故に、ノーマルモードノイズがコモンモードノイズに変換されて、新たなコモンモードノイズが発生することがない。そのため、ノイズフィルタ10aでは、コモンモードチョークコイルL11及びコモンモードチョークコイルL12にて、より効率よくコモンモードノイズを除去することが可能となる。 Also, the noise filter 10a can efficiently remove common mode noise as described below. In the xz cross section, when the magnetic flux generated by the coil L1 and the magnetic flux generated by the coil L2, and the magnetic flux generated by the coil L1 and the magnetic flux generated by the coil L2 are not equal, normal mode noise is converted into common mode noise. As a result, new common mode noise is generated, and the common mode noise is not efficiently removed. Therefore, in the noise filter 10a, the current paths of the coils L1 and L2 are configured so that the magnitude of the magnetic flux generated by the coil L1 and the magnitude of the magnetic flux generated by the coil L2 are substantially equal in the xz section. Similarly, in the xz cross section, the current path is configured so that the magnitude of the magnetic flux generated by the coil L3 and the magnitude of the magnetic flux generated by the coil L4 are substantially equal. Thereby, the difference in characteristics between the coil L1 and the coil L2 and between the coil L3 and the coil L4 can be reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 10a, common mode noise can be more efficiently removed by the common mode choke coil L11 and the common mode choke coil L12.
 また、xz断面においてコンデンサ電極が誘電体層20に対して線対称な構造でない場合には、磁束の大きさが等しくなりにくいため、ノーマルモードノイズがコモンモードノイズに変換されてしまい、新たなコモンモードノイズが発生して、コモンモードノイズが効率よく除去されない。一方、図2に示すように、コンデンサ電極層50,52,58,60,62,68は、xz断面において、LCフィルタLC1とLCフィルタLC2との境界線(図2では、誘電体層20)に対して、略線対称な構造を有している。同様に、図2に示すように、コンデンサ電極層54,56,58,64,66,68は、xz断面において、LCフィルタLC3とLCフィルタLC4の境界線(図2では、誘電体層20)に対して、略線対称な構造を有している。これにより、コンデンサ電極層50,52,58が、コイルL1による磁束に及ぼす影響と、コンデンサ電極層60,62,68が、コイルL2による磁束に及ぼす影響とを等しくできる。同様に、コンデンサ電極層54,56,58が、コイルL4による磁束に及ぼす影響と、コンデンサ電極層64,66,68が、コイルL3による磁束に及ぼす影響とを等しくできる。すなわち、コイルL1とコイルL2との間及びコイルL3とコイルL4との間の特性の差をより小さくできる。故に、ノーマルモードノイズがコモンモードノイズに変換されて、新たなコモンモードノイズが発生することがない。そのため、ノイズフィルタ10aでは、コモンモードチョークコイルL11及びコモンモードチョークコイルL12にて、より効率よくコモンモードノイズを除去することが可能となる。 In addition, when the capacitor electrode is not line symmetric with respect to the dielectric layer 20 in the xz cross section, the magnitude of the magnetic flux is difficult to equalize, so normal mode noise is converted into common mode noise, and a new common Mode noise occurs and common mode noise is not efficiently removed. On the other hand, as shown in FIG. 2, the capacitor electrode layers 50, 52, 58, 60, 62, and 68 have boundary lines between the LC filter LC1 and the LC filter LC2 (dielectric layer 20 in FIG. 2) in the xz section. On the other hand, it has a substantially line-symmetric structure. Similarly, as shown in FIG. 2, the capacitor electrode layers 54, 56, 58, 64, 66, 68 have boundaries between the LC filter LC 3 and the LC filter LC 4 (dielectric layer 20 in FIG. 2) in the xz section. On the other hand, it has a substantially line-symmetric structure. Thereby, the influence which capacitor electrode layer 50,52,58 has on the magnetic flux by coil L1, and the influence which capacitor electrode layer 60,62,68 has on the magnetic flux by coil L2 can be made equal. Similarly, the influence of the capacitor electrode layers 54, 56, and 58 on the magnetic flux by the coil L4 can be made equal to the influence of the capacitor electrode layers 64, 66, and 68 on the magnetic flux by the coil L3. That is, the difference in characteristics between the coil L1 and the coil L2 and between the coil L3 and the coil L4 can be further reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 10a, common mode noise can be more efficiently removed by the common mode choke coil L11 and the common mode choke coil L12.
 また、一般的には、ノイズ抑制効果を高めるには挿入損失特性を高めればよいが、更に効果を高める場合には、ノイズの反射を抑制して、ノイズに対して低反射とすることが重要となる。ノイズフィルタ10aでは、コモンモードチョークコイルL11とコモンモードチョークコイルL12とを容量結合させることにより、コモンモードチョークコイルL11,L12間でノイズの循環が発生し、低反射にすることができる。図4は、コモンモードノイズの反射特性と周波数との関係を示したグラフである。縦軸は、反射特性を示し、横軸は、周波数を示す。グラフ中の縦軸において、0dbが全反射を示す。 In general, to increase the noise suppression effect, the insertion loss characteristic may be increased. However, in order to further increase the effect, it is important to suppress the reflection of the noise and to reduce the reflection against the noise. It becomes. In the noise filter 10a, the common mode choke coil L11 and the common mode choke coil L12 are capacitively coupled to generate noise circulation between the common mode choke coils L11 and L12, thereby reducing reflection. FIG. 4 is a graph showing the relationship between the reflection characteristic of common mode noise and the frequency. The vertical axis represents the reflection characteristics, and the horizontal axis represents the frequency. On the vertical axis in the graph, 0 db indicates total reflection.
 図2に示すように、ノイズフィルタ10aでは、結合用電極層70が設けられている。該結合用電極層70は、コイルL1,L2からなる組とコイルL3,L4からなる組とを容量結合させている。これにより、図4のグラフに示すように、ノイズフィルタ10aは、結合用電極層70がないノイズフィルタよりも、コモンモードノイズの反射を抑制することが可能となる。因みに、結合用電極層70がない場合には、例えば、コイルL1とコイルL3との結合容量は、0.5pF程度であるが、結合用電極層70がある場合には、コイルL1とコイルL3との結合容量は、5pF程度になる。なお、コイルL1~L4は、図2に示すように、全てのものが容量結合していてもよいし、コイルL1~L4の内の3つ又は2つのコイルが容量結合していてもよい。ただし、2つのコイルが容量結合している場合には、コイルL1,L2の内のいずれか一方と、コイルL3,L4の内のいずれか一方とが容量結合している必要がある。 As shown in FIG. 2, in the noise filter 10a, a coupling electrode layer 70 is provided. The coupling electrode layer 70 capacitively couples a set of coils L1 and L2 and a set of coils L3 and L4. As a result, as shown in the graph of FIG. 4, the noise filter 10 a can suppress the reflection of the common mode noise more than the noise filter without the coupling electrode layer 70. Incidentally, when there is no coupling electrode layer 70, for example, the coupling capacitance between the coil L1 and the coil L3 is about 0.5 pF, but when there is the coupling electrode layer 70, the coil L1 and the coil L3. And the coupling capacitance is about 5 pF. As shown in FIG. 2, all of the coils L1 to L4 may be capacitively coupled, or three or two of the coils L1 to L4 may be capacitively coupled. However, when the two coils are capacitively coupled, one of the coils L1 and L2 and one of the coils L3 and L4 need to be capacitively coupled.
 また、ノイズフィルタ10aでは、コイル電極層30a~30f,34a~34f、コンデンサ電極層50,52,58,60,62,68、及び、誘電体層16a,16b,18a~18f,22a~22f,24a,24bは、図2に示すように、コイルL1,L2が、z軸方向において、コンデンサC1,C2の間に位置するように積層されている。すなわち、コイルL1とコイルL2との間には、コンデンサが設けられていない。そのため、コイルL1及びコイルL2にて発生した磁束は、コンデンサC1,C2により妨げられにくい。これにより、コイルL1,L2内の磁束を強めることができ、LCフィルタLC1,LC2のノーマルモードノイズの除去特性を向上させることができると共に、LCフィルタLC1とLCフィルタLC2との磁気的結合を強めることができ、コモンモードチョークコイルL11のコモンモードノイズの除去特性を向上させることが可能となる。なお、同様のことが、LCフィルタLC3,LC4及びコイルL3,L4についても言える。 In the noise filter 10a, the coil electrode layers 30a to 30f, 34a to 34f, the capacitor electrode layers 50, 52, 58, 60, 62, and 68, and the dielectric layers 16a, 16b, 18a to 18f, 22a to 22f, As shown in FIG. 2, the coils 24a and 24b are stacked such that the coils L1 and L2 are positioned between the capacitors C1 and C2 in the z-axis direction. That is, no capacitor is provided between the coil L1 and the coil L2. Therefore, the magnetic flux generated in the coil L1 and the coil L2 is not easily disturbed by the capacitors C1 and C2. As a result, the magnetic flux in the coils L1 and L2 can be increased, the normal mode noise removal characteristics of the LC filters LC1 and LC2 can be improved, and the magnetic coupling between the LC filter LC1 and the LC filter LC2 is increased. Therefore, the common mode noise removal characteristics of the common mode choke coil L11 can be improved. The same applies to the LC filters LC3 and LC4 and the coils L3 and L4.
 ところで、ノイズフィルタ10aでは、図3に示すように、浮遊容量CP1,CP2を発生させている。浮遊容量CP1は、コイル電極層30とコイル電極層34及びコイル電極38とコイル電極42をz軸方向に重ねることにより、コイルL1とコイルL2との間及びコイルL3とコイルL4との間に発生する浮遊容量である。浮遊容量CP1を発生させていることにより、以下に図5を参照しながら説明するように、ノイズフィルタ10aのノーマルモードノイズを効率よく除去できると共に、ノーマルモードノイズに対するフィルタの挿入損失の変化を急峻にできる。 Incidentally, the noise filter 10a generates stray capacitances CP1 and CP2 as shown in FIG. The stray capacitance CP1 is generated between the coil L1 and the coil L2 and between the coil L3 and the coil L4 by overlapping the coil electrode layer 30, the coil electrode layer 34, the coil electrode 38, and the coil electrode 42 in the z-axis direction. Stray capacitance. Since the stray capacitance CP1 is generated, the normal mode noise of the noise filter 10a can be efficiently removed and the change in the insertion loss of the filter with respect to the normal mode noise is steep as described below with reference to FIG. Can be.
 また、浮遊容量CP2は、コイル電極層30,34,38,42をz軸方向に重ねることにより、コイルL1~L4の両端に発生する浮遊容量である。浮遊容量CP2を発生させていることにより、以下に図6を参照しながら説明するように、ノーマルモードノイズ及びコモンモードノイズのカットオフ周波数を低くできると共に、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失の変化を急峻にできる。図5及び図6は、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。縦軸は、挿入損失を示し、横軸は、周波数を示す。 The stray capacitance CP2 is a stray capacitance generated at both ends of the coils L1 to L4 by overlapping the coil electrode layers 30, 34, 38, and 42 in the z-axis direction. Since the stray capacitance CP2 is generated, the cutoff frequency of normal mode noise and common mode noise can be lowered and the filter for normal mode noise and common mode noise can be reduced, as will be described below with reference to FIG. The change in insertion loss can be made steep. 5 and 6 are graphs showing the relationship between filter insertion loss and frequency for normal mode noise and common mode noise. The vertical axis represents insertion loss, and the horizontal axis represents frequency.
 まず、浮遊容量CP1が奏する効果について説明する。図5には、浮遊容量CP1があると仮定した場合におけるノーマルモードノイズに対するフィルタの挿入損失と、浮遊容量CP1がないと仮定した場合におけるノーマルモードノイズに対するフィルタの挿入損失とが示されている。コモンモードノイズが浮遊容量CP1の影響を受けないので、コモンモードの挿入損失については、図5に記載していない。 First, the effect produced by the stray capacitance CP1 will be described. FIG. 5 shows the insertion loss of the filter for normal mode noise when it is assumed that there is a stray capacitance CP1, and the insertion loss of the filter for normal mode noise when it is assumed that there is no stray capacitance CP1. Since common mode noise is not affected by stray capacitance CP1, common mode insertion loss is not shown in FIG.
 図3に示すように、浮遊容量CP1を発生させていると、コイルL1,L2と浮遊容量CP1とは、LCフィルタを構成する。そのため、浮遊容量CP1を発生させていると、浮遊容量CP1を発生させていない場合に比べて、図5に示すように、高周波側の共振点におけるノーマルモードノイズを効率よく除去できる。更に、浮遊容量CP1を発生させると、浮遊容量CP1を発生させない場合に比べて、図5に示すように、高周波側の共振点におけるノーマルモードノイズに対するフィルタの挿入損失が急峻に変化する。 As shown in FIG. 3, when the stray capacitance CP1 is generated, the coils L1 and L2 and the stray capacitance CP1 constitute an LC filter. Therefore, when the stray capacitance CP1 is generated, the normal mode noise at the resonance point on the high frequency side can be efficiently removed as shown in FIG. 5 compared to the case where the stray capacitance CP1 is not generated. Further, when the stray capacitance CP1 is generated, the insertion loss of the filter with respect to the normal mode noise at the resonance point on the high frequency side is abruptly changed as compared with the case where the stray capacitance CP1 is not generated as shown in FIG.
 次に、浮遊容量CP2が奏する効果について説明する。図6には、浮遊容量CP2があると仮定した場合におけるノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失と、浮遊容量CP2がないと仮定した場合におけるノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失とが示されている。 Next, the effect produced by the stray capacitance CP2 will be described. FIG. 6 shows filter insertion loss for normal mode noise and common mode noise when it is assumed that there is a stray capacitance CP2, and insertion of a filter for normal mode noise and common mode noise when there is no stray capacitance CP2. Loss is shown.
 浮遊容量CP2を発生させていると、浮遊容量CP2を発生させない場合に比べて、図6に示すように、ノーマルモードノイズ及びコモンモードノイズの共振点の周波数が低くなっている。すなわち、浮遊容量CP2を発生させると、浮遊容量CP2を発生させない場合に比べて、カットオフ周波数が低くなる。更に、浮遊容量CP2を発生させると、浮遊容量CP2を発生させない場合に比べて、図6に示すように、高周波側の共振点におけるノーマルモードノイズ及びコモンモードの挿入損失が急峻に変化する。 When the stray capacitance CP2 is generated, as compared with the case where the stray capacitance CP2 is not generated, the frequencies of the resonance points of the normal mode noise and the common mode noise are lower as shown in FIG. That is, when the stray capacitance CP2 is generated, the cut-off frequency becomes lower than when the stray capacitance CP2 is not generated. Furthermore, when the stray capacitance CP2 is generated, the normal mode noise and the common mode insertion loss at the resonance point on the high frequency side are sharply changed as shown in FIG. 6 as compared with the case where the stray capacitance CP2 is not generated.
(変形例)
 図2に示すノイズフィルタ10aでは、結合用電極層70は、2つの環状の線状電極が接続された形状を有しているが、該結合用電極層70の形状はこれに限らない。結合用電極層70は、コイルL1~L4にて発生した磁束を妨げない形状を有していればよい。すなわち、結合用電極層70は、z軸方向から平面視したときに、コイルL1~L4と重ならないように形成されていればよい。したがって、結合用電極層70は、図7(a)~図7(g)に示す結合用電極層70の変形例のような形状であってもよい。また、結合用電極層70は、図7(g)に示すようなベタパターンの電極であってもよい。図7(g)に示す結合用電極層70は、接地されていないので、磁気結合には影響を及ぼさない。
(Modification)
In the noise filter 10a shown in FIG. 2, the coupling electrode layer 70 has a shape in which two annular linear electrodes are connected, but the shape of the coupling electrode layer 70 is not limited to this. The coupling electrode layer 70 only needs to have a shape that does not interfere with the magnetic flux generated in the coils L1 to L4. In other words, the coupling electrode layer 70 only needs to be formed so as not to overlap the coils L1 to L4 when viewed in plan from the z-axis direction. Therefore, the coupling electrode layer 70 may have a shape as a modification of the coupling electrode layer 70 shown in FIGS. 7 (a) to 7 (g). The coupling electrode layer 70 may be a solid pattern electrode as shown in FIG. Since the coupling electrode layer 70 shown in FIG. 7G is not grounded, it does not affect the magnetic coupling.
(第2の実施形態)
 以下に、第2の実施形態に係るノイズフィルタ10bの構成について図面を参照しながら説明する。図8は、第2の実施形態に係るノイズフィルタ10bの積層体12bの分解斜視図である。図9は、ノイズフィルタ10bの等価回路図である。図8及び図9において、図2及び図3と同じ構成については、同じ参照符号が付してある。
(Second Embodiment)
The configuration of the noise filter 10b according to the second embodiment will be described below with reference to the drawings. FIG. 8 is an exploded perspective view of the multilayer body 12b of the noise filter 10b according to the second embodiment. FIG. 9 is an equivalent circuit diagram of the noise filter 10b. 8 and 9, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals.
 積層体12bは、図8に示すように、誘電体層16a,24aのそれぞれにコンデンサ電極層80,82,84,86,90,92,94,96が形成されている点において、積層体12aと相違する。以下、積層体12bと積層体12aとの相違点を中心に説明を行う。 As shown in FIG. 8, the laminated body 12b has a structure in which capacitor electrode layers 80, 82, 84, 86, 90, 92, 94, and 96 are formed on the dielectric layers 16a and 24a, respectively. Is different. Hereinafter, the description will focus on the differences between the laminate 12b and the laminate 12a.
 誘電体層16aには、コンデンサ電極層50,52,54,56,80,82,84,86が形成されている。コンデンサ電極層80とコンデンサ電極層58とは、誘電体層16aを挟んで対向することにより、コンデンサC5を構成している。コンデンサ電極層82とコンデンサ電極層58とは、誘電体層16aを挟んで対向することにより、コンデンサC6を構成している。コンデンサ電極層84とコンデンサ電極層58とは、誘電体層16aを挟んで対向することにより、コンデンサC7を構成している。コンデンサ電極層86とコンデンサ電極層58とは、誘電体層16aを挟んで対向することにより、コンデンサC8を構成している。 Capacitor electrode layers 50, 52, 54, 56, 80, 82, 84, 86 are formed on the dielectric layer 16a. The capacitor electrode layer 80 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C5. The capacitor electrode layer 82 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C6. The capacitor electrode layer 84 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C7. The capacitor electrode layer 86 and the capacitor electrode layer 58 are opposed to each other with the dielectric layer 16a interposed therebetween, thereby forming a capacitor C8.
 更に、コンデンサ電極層80のy軸方向の正方向側の端部には、引き出し部81が設けられている。これにより、図9に示すように、コンデンサC5は、外部電極E1と外部電極E9,E10との間に接続されるようになる。また、コンデンサ電極層82のy軸方向の正方向側の端部には、引き出し部83が設けられている。これにより、図9に示すように、コンデンサC6は、外部電極E3と外部電極E9,E10との間に接続されるようになる。また、コンデンサ電極層84のy軸方向の正方向側の端部には、引き出し部85が設けられている。これにより、図9に示すように、コンデンサC7は、外部電極E5と外部電極E9,E10との間に接続されるようになる。また、コンデンサ電極層86のy軸方向の正方向側の端部には、引き出し部87が設けられている。これにより、図9に示すように、コンデンサC8は、外部電極E7と外部電極E9,E10との間に接続されるようになる。 Furthermore, a lead-out portion 81 is provided at the end of the capacitor electrode layer 80 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C5 is connected between the external electrode E1 and the external electrodes E9 and E10. A lead-out portion 83 is provided at the end of the capacitor electrode layer 82 on the positive side in the y-axis direction. Thereby, as shown in FIG. 9, the capacitor C6 is connected between the external electrode E3 and the external electrodes E9 and E10. A lead-out portion 85 is provided at the end of the capacitor electrode layer 84 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C7 is connected between the external electrode E5 and the external electrodes E9 and E10. A lead-out portion 87 is provided at the end of the capacitor electrode layer 86 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C8 is connected between the external electrode E7 and the external electrodes E9 and E10.
 誘電体層24aには、コンデンサ電極層60,62,64,66,90,92,94,96が形成されている。コンデンサ電極層90とコンデンサ電極層68とは、誘電体層24bを挟んで対向することにより、コンデンサC5を構成している。コンデンサ電極層92とコンデンサ電極層68とは、誘電体層24bを挟んで対向することにより、コンデンサC6を構成している。コンデンサ電極層94とコンデンサ電極層68とは、誘電体層24bを挟んで対向することにより、コンデンサC7を構成している。コンデンサ電極層96とコンデンサ電極層68とは、誘電体層24bを挟んで対向することにより、コンデンサC8を構成している。 Capacitor electrode layers 60, 62, 64, 66, 90, 92, 94, and 96 are formed on the dielectric layer 24a. The capacitor electrode layer 90 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C5. The capacitor electrode layer 92 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C6. The capacitor electrode layer 94 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C7. The capacitor electrode layer 96 and the capacitor electrode layer 68 are opposed to each other with the dielectric layer 24b interposed therebetween, thereby forming a capacitor C8.
 更に、コンデンサ電極層90のy軸方向の正方向側の端部には、引き出し部91が設けられている。これにより、図9に示すように、コンデンサC5は、外部電極E1と外部電極E9,E10との間に接続されるようになる。また、コンデンサ電極層92のy軸方向の正方向側の端部には、引き出し部93が設けられている。これにより、図9に示すように、コンデンサC6は、外部電極E3と外部電極E9,E10との間に接続されるようになる。また、コンデンサ電極層94のy軸方向の正方向側の端部には、引き出し部95が設けられている。これにより、図9に示すように、コンデンサC7は、外部電極E5と外部電極E9,E10との間に接続されるようになる。また、コンデンサ電極層96のy軸方向の正方向側の端部には、引き出し部97が設けられている。これにより、図9に示すように、コンデンサC8は、外部電極E7と外部電極E9,E10との間に接続されるようになる。 Furthermore, a lead-out portion 91 is provided at the end of the capacitor electrode layer 90 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C5 is connected between the external electrode E1 and the external electrodes E9 and E10. A lead-out portion 93 is provided at the end of the capacitor electrode layer 92 on the positive side in the y-axis direction. Thereby, as shown in FIG. 9, the capacitor C6 is connected between the external electrode E3 and the external electrodes E9 and E10. A lead-out portion 95 is provided at the end of the capacitor electrode layer 94 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C7 is connected between the external electrode E5 and the external electrodes E9 and E10. A lead-out portion 97 is provided at the end of the capacitor electrode layer 96 on the positive side in the y-axis direction. Accordingly, as shown in FIG. 9, the capacitor C8 is connected between the external electrode E7 and the external electrodes E9 and E10.
 ノイズフィルタ10bは、コンデンサC5~C8が追加されて、Π型構造をとることによって、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失を急峻かつ大きくすることができる。 The noise filter 10b is added with capacitors C5 to C8 and has a saddle type structure, so that the insertion loss of the filter with respect to normal mode noise and common mode noise can be increased sharply.
(第3の実施形態)
 以下に、第3の実施形態に係るノイズフィルタ10cの構成について図面を参照しながら説明する。図10は、第3の実施形態に係るノイズフィルタ10cの積層体12cの分解斜視図である。図11は、ノイズフィルタ10cの等価回路図である。図10及び図11において、図2及び図3と同じ構成については、同じ参照符号が付してある。
(Third embodiment)
The configuration of the noise filter 10c according to the third embodiment will be described below with reference to the drawings. FIG. 10 is an exploded perspective view of the multilayer body 12c of the noise filter 10c according to the third embodiment. FIG. 11 is an equivalent circuit diagram of the noise filter 10c. 10 and 11, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals.
 積層体12cは、図10に示すように、誘電体層16a,16b,24a,24bの代わりに、誘電体層16c,24cが設けられている点において、図2に示す積層体12aと相違する。以下、積層体12cと積層体12aとの相違点を中心に説明を行う。 As shown in FIG. 10, the laminated body 12c is different from the laminated body 12a shown in FIG. 2 in that dielectric layers 16c and 24c are provided instead of the dielectric layers 16a, 16b, 24a and 24b. . Hereinafter, the difference between the stacked body 12c and the stacked body 12a will be mainly described.
 ノイズフィルタ10bでは、図10に示すように、コイルL1,L2,L3,L4の途中に、コンデンサ電極層100,103が形成された誘電体層16c,24cが挿入される。より詳細には、誘電体層16cは、誘電体層18cと誘電体層18dとの間に配置される。また、誘電体層24cは、誘電体層22cと誘電体層22dとの間に配置される。コンデンサ電極層100,103(接地用電極)は、z軸方向から平面視した場合に、コイルL1~L4のコイル軸と重ならないように、電極層が形成されていない空白部を有している。ビア導体32c,36d,40d,44cは、コンデンサ電極層100,103と接触しないように、空白部を貫通している。これにより、コンデンサ電極層100は、誘電体層16c,18を挟んでコイル電極層30,42と対向して、コンデンサC9,C12を形成している。また、コンデンサ電極層103は、誘電体層22,24cを挟んでコイル電極層34,38と対向して、コンデンサC10,C11を形成している。 In the noise filter 10b, as shown in FIG. 10, dielectric layers 16c and 24c formed with capacitor electrode layers 100 and 103 are inserted in the middle of the coils L1, L2, L3, and L4. More specifically, the dielectric layer 16c is disposed between the dielectric layer 18c and the dielectric layer 18d. The dielectric layer 24c is disposed between the dielectric layer 22c and the dielectric layer 22d. Capacitor electrode layers 100 and 103 (grounding electrodes) have blank portions where no electrode layers are formed so as not to overlap with the coil axes of coils L1 to L4 when viewed in plan from the z-axis direction. . The via conductors 32c, 36d, 40d, and 44c penetrate through the blank portion so as not to contact the capacitor electrode layers 100 and 103. Thereby, the capacitor electrode layer 100 is opposed to the coil electrode layers 30 and 42 with the dielectric layers 16c and 18 interposed therebetween, thereby forming capacitors C9 and C12. Further, the capacitor electrode layer 103 is opposed to the coil electrode layers 34 and 38 with the dielectric layers 22 and 24c interposed therebetween, thereby forming capacitors C10 and C11.
 更に、コンデンサ電極層100は、x軸方向の両端において引き出し部101,102を有している。引き出し部101,102はそれぞれ、外部電極E9,E10に接続されている。その結果、コンデンサC9は、図11に示すように、コイルL1と外部電極E9,E10との間に接続されるようになる。同様に、コンデンサC12は、図11に示すように、コイルL4と外部電極E9,E10との間に接続されるようになる。 Furthermore, the capacitor electrode layer 100 has lead portions 101 and 102 at both ends in the x-axis direction. The lead portions 101 and 102 are connected to the external electrodes E9 and E10, respectively. As a result, the capacitor C9 is connected between the coil L1 and the external electrodes E9 and E10 as shown in FIG. Similarly, the capacitor C12 is connected between the coil L4 and the external electrodes E9 and E10 as shown in FIG.
 また、コンデンサ電極層103は、x軸方向の両端において引き出し部104,105を有している。引き出し部104,105はそれぞれ、外部電極E9,E10に接続されている。その結果、コンデンサC10は、図11に示すように、コイルL2と外部電極E9,E10との間に接続されるようになる。同様に、コンデンサC11は、図11に示すように、コイルL3と外部電極E9,E10との間に接続されるようになる。 The capacitor electrode layer 103 has lead portions 104 and 105 at both ends in the x-axis direction. The lead portions 104 and 105 are connected to the external electrodes E9 and E10, respectively. As a result, the capacitor C10 is connected between the coil L2 and the external electrodes E9 and E10 as shown in FIG. Similarly, the capacitor C11 is connected between the coil L3 and the external electrodes E9 and E10 as shown in FIG.
 ノイズフィルタ10cによれば、以下に説明するように、コモンモードノイズを効率よく除去することができる。より詳細には、コイルが発生した磁束が電極層を貫通する際には、渦電流損が電極層において発生し、ノイズフィルタのコモンモードノイズの除去特性が低下する。そこで、ノイズフィルタ10cでは、コンデンサ電極層100,103に空白部が設けられている。これにより、コイルL1~L4にて発生した磁束は、コンデンサ電極層100,103の空白部を貫通するようになり、コンデンサ電極層100,103にて渦電流損が発生せず、コイルL1~L4にて発生する磁束が強くなる。その結果、コイルL1~L4の時期的な結合が強くなり、ノイズフィルタ10cにおいて、コモンモードノイズの除去特性が向上する。また、コイルL1~L4にて発生する磁束が強くなるので、LCフィルタLC1~LC4によるノーマルモードノイズの除去特性も向上する。 According to the noise filter 10c, common mode noise can be efficiently removed as described below. More specifically, when the magnetic flux generated by the coil penetrates the electrode layer, eddy current loss occurs in the electrode layer, and the common mode noise removal characteristics of the noise filter are degraded. Therefore, in the noise filter 10c, the capacitor electrode layers 100 and 103 are provided with blank portions. As a result, the magnetic flux generated in the coils L1 to L4 penetrates through the blank portions of the capacitor electrode layers 100 and 103, and no eddy current loss occurs in the capacitor electrode layers 100 and 103, and the coils L1 to L4. The magnetic flux generated at becomes stronger. As a result, the temporal coupling of the coils L1 to L4 is strengthened, and the common mode noise removal characteristics are improved in the noise filter 10c. Further, since the magnetic flux generated in the coils L1 to L4 becomes stronger, the normal mode noise removal characteristics by the LC filters LC1 to LC4 are also improved.
 また、ノイズフィルタ10cでは、コイル電極層30,34,38,42が、コイル電極層とコンデンサ電極層の一方とを兼ねている。故に、ノイズフィルタ10cでは、ノイズフィルタ10aに比べて、誘電体層の枚数を減らすことが可能となる。 In the noise filter 10c, the coil electrode layers 30, 34, 38, and 42 serve as both the coil electrode layer and the capacitor electrode layer. Therefore, in the noise filter 10c, the number of dielectric layers can be reduced compared to the noise filter 10a.
(第4の実施形態)
 以下に、第4の実施形態に係るノイズフィルタ10dの構成について図面を参照しながら説明する。図12は、第4の実施形態に係るノイズフィルタ10dの積層体12dの分解斜視図である。図13は、ノイズフィルタ10dの等価回路図である。図12及び図13において、図2、図3、図10及び図11と同じ構成については、同じ参照符号が付してある。
(Fourth embodiment)
The configuration of the noise filter 10d according to the fourth embodiment will be described below with reference to the drawings. FIG. 12 is an exploded perspective view of the multilayer body 12d of the noise filter 10d according to the fourth embodiment. FIG. 13 is an equivalent circuit diagram of the noise filter 10d. 12 and 13, the same reference numerals are assigned to the same components as those in FIGS. 2, 3, 10, and 11.
 積層体12dは、図12に示すように、誘電体層16a,16b、24a,24bが更に追加されている点において、図10に示す積層体12cと相違する。誘電体層16a,16b,24a,24bは、図2に示す積層体12aに含まれているものと同じである。 As shown in FIG. 12, the laminated body 12d is different from the laminated body 12c shown in FIG. 10 in that dielectric layers 16a, 16b, 24a, and 24b are further added. The dielectric layers 16a, 16b, 24a, and 24b are the same as those included in the stacked body 12a shown in FIG.
 以上のような積層体12dによれば、図13に示すように、外部電極E2と外部電極E9,E10との間にコンデンサC1が設けられ、外部電極E4と外部電極E9,E10との間にコンデンサC2が設けられ、外部電極E6と外部電極E9,E10との間にコンデンサC3が設けられ、外部電極E8と外部電極E9,E10との間にコンデンサC4が設けられるようになる。これにより、ノイズフィルタ10dは、Π型構造をとることによって、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失を急峻かつ大きくすることができる。 According to the laminated body 12d as described above, as shown in FIG. 13, the capacitor C1 is provided between the external electrode E2 and the external electrodes E9 and E10, and between the external electrode E4 and the external electrodes E9 and E10. The capacitor C2 is provided, the capacitor C3 is provided between the external electrode E6 and the external electrodes E9 and E10, and the capacitor C4 is provided between the external electrode E8 and the external electrodes E9 and E10. Thereby, the noise filter 10d can have a steep and large filter insertion loss with respect to normal mode noise and common mode noise by adopting a saddle type structure.
(第5の実施形態)
 以下に、第5の実施形態に係るノイズフィルタ10eの構成について図面を参照しながら説明する。図14は、第5の実施形態に係るノイズフィルタ10eの積層体12eの分解斜視図である。図14において、図2と同じ構成については、同じ参照符号が付してある。
(Fifth embodiment)
The configuration of the noise filter 10e according to the fifth embodiment will be described below with reference to the drawings. FIG. 14 is an exploded perspective view of the multilayer body 12e of the noise filter 10e according to the fifth embodiment. 14, the same components as those in FIG. 2 are given the same reference numerals.
 積層体12eは、図14に示すように、誘電体層16a,16b、24a,24bの代わりに誘電体層16d,16e,24d,24eが設けられている点において、図2に示す積層体12aと相違する。以下に、積層体12eと積層体12aの相違点について説明する。 As shown in FIG. 14, the laminated body 12e is provided with dielectric layers 16d, 16e, 24d, and 24e instead of the dielectric layers 16a, 16b, 24a, and 24b. Is different. Below, the difference between the laminated body 12e and the laminated body 12a is demonstrated.
 誘電体層16dには、コンデンサ電極層150,152,154,156が形成されている。コンデンサ電極層150,152,154,156は、図2に示すコンデンサ電極層50,52,54,56に比べてx軸方向の幅が狭く形成されている。これにより、コンデンサ電極層150,152,154,156(信号用電極)は、z軸方向から平面視したときに、コイルL1,L4のコイル軸と重ならないようになっている。更に、コンデンサ電極層150,152,154,156のy軸方向の負方向側の端部にはそれぞれ、外部電極E2,E4,E6,E8と接続される引き出し部151,153,155,157が設けられている。 Capacitor electrode layers 150, 152, 154, and 156 are formed on the dielectric layer 16d. The capacitor electrode layers 150, 152, 154, and 156 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 50, 52, 54, and 56 shown in FIG. Accordingly, the capacitor electrode layers 150, 152, 154, and 156 (signal electrodes) do not overlap with the coil axes of the coils L1 and L4 when viewed in plan from the z-axis direction. Furthermore, lead portions 151, 153, 155, and 157 connected to the external electrodes E 2, E 4, E 6, and E 8 are respectively provided at the negative end portions in the y-axis direction of the capacitor electrode layers 150, 152, 154, and 156. Is provided.
 また、誘電体層16eには、コンデンサ電極層158が形成されている。該コンデンサ電極層158は、z軸方向から平面視したときに、コンデンサ電極層150,152,154,156と重なると共に、コイルL1,L4のコイル軸と重ならないように、電極層が形成されていない空白部を有するように形成されている。 Further, a capacitor electrode layer 158 is formed on the dielectric layer 16e. The capacitor electrode layer 158 has an electrode layer formed so as to overlap with the capacitor electrode layers 150, 152, 154, 156 and not to overlap with the coil axes of the coils L1, L4 when viewed in plan from the z-axis direction. It is formed to have no blanks.
 また、誘電体層24dには、コンデンサ電極層160,162,164,166が形成されている。コンデンサ電極層160,162,164,166は、図2に示すコンデンサ電極層60,62,64,66に比べてx軸方向の幅が狭く形成されている。これにより、コンデンサ電極層160,162,164,166は、積層方向から平面視したときに、コイルL2,L3のコイル軸と重ならないようになっている。更に、コンデンサ電極層160,162,164,166のy軸方向の負方向側の端部にはそれぞれ、外部電極E2,E4,E6,E8と接続される引き出し部161,163,165,167が設けられている。 Further, capacitor electrode layers 160, 162, 164 and 166 are formed on the dielectric layer 24d. The capacitor electrode layers 160, 162, 164, and 166 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 60, 62, 64, and 66 shown in FIG. Thereby, the capacitor electrode layers 160, 162, 164, and 166 do not overlap with the coil axes of the coils L2 and L3 when viewed in plan from the stacking direction. Furthermore, lead portions 161, 163, 165, and 167 connected to the external electrodes E 2, E 4, E 6, and E 8 are respectively provided at end portions on the negative side in the y-axis direction of the capacitor electrode layers 160, 162, 164, and 166. Is provided.
 また、誘電体層24eには、コンデンサ電極層168が形成されている。該コンデンサ電極層168は、z軸方向から平面視したときに、コンデンサ電極層160,162,164,166と重なると共に、コイルL2,L3のコイル軸と重ならないように、電極層が形成されていない空白部を有するように形成されている。 Further, a capacitor electrode layer 168 is formed on the dielectric layer 24e. The capacitor electrode layer 168 has an electrode layer formed so as to overlap with the capacitor electrode layers 160, 162, 164, 166 and not to overlap with the coil axes of the coils L2, L3 when viewed in plan from the z-axis direction. It is formed to have no blanks.
 以上のような構成を有するノイズフィルタ10eは、ノイズフィルタ10aと同じように、図2に示す回路構成を有する。 The noise filter 10e having the above configuration has the circuit configuration shown in FIG. 2 in the same manner as the noise filter 10a.
 ノイズフィルタ10eによれば、コンデンサ電極層150,152,154,156,158,160,162,164,166,168が、z軸方向から平面視したときに、コイルL1~L4と重ならないように形成されている。そのため、ノイズフィルタ10eでは、コンデンサ電極層150,152,154,156,158,160,162,164,166,168における渦電流損の発生が抑制され、コイルL1~L4にて発生する磁束が強くなる。その結果、コイルL1とコイルL2との磁気的な結合及びコイルL3とコイルL4との磁気的な結合が強くなり、ノイズフィルタ10eのコモンモードノイズ除去特性がノイズフィルタ10aに比べて向上する。 According to the noise filter 10e, the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 do not overlap the coils L1 to L4 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 10e, the occurrence of eddy current loss in the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 is suppressed, and the magnetic flux generated in the coils L1 to L4 is strong. Become. As a result, the magnetic coupling between the coil L1 and the coil L2 and the magnetic coupling between the coil L3 and the coil L4 are strengthened, and the common mode noise removal characteristics of the noise filter 10e are improved as compared with the noise filter 10a.
(第6の実施形態)
 以下に、第6の実施形態に係るノイズフィルタ10fの構成について図面を参照しながら説明する。図15は、第6の実施形態に係るノイズフィルタ10fの積層体12fの分解斜視図である。図15において、図2及び図14と同じ構成については、同じ参照符号が付してある。
(Sixth embodiment)
The configuration of the noise filter 10f according to the sixth embodiment will be described below with reference to the drawings. FIG. 15 is an exploded perspective view of the multilayer body 12f of the noise filter 10f according to the sixth embodiment. 15, the same components as those in FIGS. 2 and 14 are denoted by the same reference numerals.
 積層体12fは、図15に示すように、誘電体層16a,16b,24a,24bの代わりに、誘電体層16d,16e,16f,24d,24e,24fが設けられている点において、図8に示す積層体12bと相違する。以下に、積層体12fと積層体12bの相違点について説明する。 As shown in FIG. 15, the laminated body 12f is provided with dielectric layers 16d, 16e, 16f, 24d, 24e, and 24f instead of the dielectric layers 16a, 16b, 24a, and 24b. It differs from the laminate 12b shown in FIG. Below, the difference between the laminated body 12f and the laminated body 12b will be described.
 積層体12fは、図15に示すように、誘電体層14cと誘電体層16dとの間に、誘電体層16fが設けられている。該誘電体層16fには、コンデンサ電極層250,252,254,256が形成されている。コンデンサ電極層250,252,254,256は、z軸方向から平面視したときに、コンデンサ電極層158と重なるように形成されている。これにより、コンデンサ電極層250とコンデンサ電極層150とは、コンデンサC5を構成する。コンデンサ電極層252とコンデンサ電極層152とは、コンデンサC6を構成する。コンデンサ電極層254とコンデンサ電極層154とは、コンデンサC7を構成する。コンデンサ電極層256とコンデンサ電極層156とは、コンデンサC8を構成する。更に、コンデンサ電極層250,252,254,256のy軸方向の正方向側の端部にはそれぞれ、外部電極E1,E3,E5,E7と接続される引き出し部251,253,255,257が設けられている。 As shown in FIG. 15, the laminated body 12f is provided with a dielectric layer 16f between a dielectric layer 14c and a dielectric layer 16d. Capacitor electrode layers 250, 252, 254, and 256 are formed on the dielectric layer 16f. The capacitor electrode layers 250, 252, 254, and 256 are formed so as to overlap with the capacitor electrode layer 158 when viewed in plan from the z-axis direction. Thereby, the capacitor electrode layer 250 and the capacitor electrode layer 150 form a capacitor C5. Capacitor electrode layer 252 and capacitor electrode layer 152 constitute capacitor C6. Capacitor electrode layer 254 and capacitor electrode layer 154 constitute capacitor C7. Capacitor electrode layer 256 and capacitor electrode layer 156 form capacitor C8. Furthermore, lead portions 251, 253, 255, and 257 connected to the external electrodes E 1, E 3, E 5, and E 7 are respectively provided at the positive end portions in the y-axis direction of the capacitor electrode layers 250, 252, 254, and 256. Is provided.
 また、誘電体層24fには、コンデンサ電極層260,262,264,266が形成されている。コンデンサ電極層260,262,264,266は、z軸方向から平面視したときに、コンデンサ電極層168と重なるように形成されている。これにより、コンデンサ電極層260とコンデンサ電極層160とは、コンデンサC5を構成する。コンデンサ電極層262とコンデンサ電極層162とは、コンデンサC6を構成する。コンデンサ電極層264とコンデンサ電極層164とは、コンデンサC7を構成する。コンデンサ電極層266とコンデンサ電極層166とは、コンデンサC8を構成する。更に、コンデンサ電極層260,262,264,266のy軸方向の正方向側の端部にはそれぞれ、外部電極E1,E3,E5,E7と接続される引き出し部261,263,265,267が設けられている。 Further, capacitor electrode layers 260, 262, 264, and 266 are formed on the dielectric layer 24f. The capacitor electrode layers 260, 262, 264, and 266 are formed so as to overlap the capacitor electrode layer 168 when viewed in plan from the z-axis direction. Thereby, the capacitor electrode layer 260 and the capacitor electrode layer 160 constitute a capacitor C5. The capacitor electrode layer 262 and the capacitor electrode layer 162 constitute a capacitor C6. Capacitor electrode layer 264 and capacitor electrode layer 164 constitute capacitor C7. Capacitor electrode layer 266 and capacitor electrode layer 166 constitute capacitor C8. Furthermore, lead portions 261, 263, 265, 267 connected to the external electrodes E 1, E 3, E 5, E 7 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 260, 262, 264, 266. Is provided.
 以上のような構成を有するノイズフィルタ10fは、ノイズフィルタ10bと同じように、図9に示す回路構成を有する。 The noise filter 10f having the above configuration has the circuit configuration shown in FIG. 9 in the same manner as the noise filter 10b.
 ノイズフィルタ10fによれば、コンデンサ電極層158,168,250,252,254,256,260,262,264,266が、z軸方向から平面視したときに、コイルL1~L4と重ならないように形成されている。そのため、ノイズフィルタ10fでは、コンデンサ電極層158,168,250,252,254,256,260,262,264,266における渦電流損の発生が抑制され、コイルL1~L4にて発生する磁束が強くなる。その結果、コイルL1とコイルL2との磁気的な結合及びコイルL3とコイルL4との磁気的な結合が強くなり、ノイズフィルタ10fのコモンモードノイズ除去特性がノイズフィルタ10bに比べて向上する。 According to the noise filter 10f, the capacitor electrode layers 158, 168, 250, 252, 254, 256, 260, 262, 264, and 266 do not overlap with the coils L1 to L4 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 10f, the occurrence of eddy current loss in the capacitor electrode layers 158, 168, 250, 252, 254, 256, 260, 262, 264, and 266 is suppressed, and the magnetic flux generated in the coils L1 to L4 is strong. Become. As a result, the magnetic coupling between the coil L1 and the coil L2 and the magnetic coupling between the coil L3 and the coil L4 are strengthened, and the common mode noise removal characteristics of the noise filter 10f are improved as compared with the noise filter 10b.
(第7の実施形態)
 以下に、第7の実施形態に係るノイズフィルタ10gの構成について図面を参照しながら説明する。図16は、第7の実施形態に係るノイズフィルタ10gの積層体12gの分解斜視図である。図16において、図2及び図14と同じ構成については、同じ参照符号が付してある。
(Seventh embodiment)
The configuration of the noise filter 10g according to the seventh embodiment will be described below with reference to the drawings. FIG. 16 is an exploded perspective view of the multilayer body 12g of the noise filter 10g according to the seventh embodiment. 16, the same components as those in FIGS. 2 and 14 are denoted by the same reference numerals.
 積層体12gは、図16に示すように、誘電体層16a,16b,24a,24bの代わりに、誘電体層16d,16e,24d,24eが設けられている点において、図12に示す積層体12dと相違する。誘電体層16d,16e,24d,24eは、図14に示したものと同じであるので詳細な説明を省略する。 As shown in FIG. 16, the laminated body 12g is provided with dielectric layers 16d, 16e, 24d, and 24e instead of the dielectric layers 16a, 16b, 24a, and 24b. It is different from 12d. The dielectric layers 16d, 16e, 24d, and 24e are the same as those shown in FIG.
 以上のような構成を有するノイズフィルタ10gは、ノイズフィルタ10dと同じように、図13に示す回路構成を有する。 The noise filter 10g having the above configuration has the circuit configuration shown in FIG. 13 in the same manner as the noise filter 10d.
 ノイズフィルタ10gによれば、コンデンサ電極層150,152,154,156,158,160,162,164,166,168が、z軸方向から平面視したときに、コイルL1~L4と重ならないように形成されている。そのため、ノイズフィルタ10gでは、コンデンサ電極層150,152,154,156,158,160,162,164,166,168における渦電流損の発生が抑制され、コイルL1~L4にて発生する磁束が強くなる。その結果、コイルL1とコイルL2との磁気的な結合及びコイルL3とコイルL4との磁気的な結合が強くなり、ノイズフィルタ10gのコモンモードノイズ除去特性がノイズフィルタ10dに比べて向上する。 According to the noise filter 10g, the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 do not overlap with the coils L1 to L4 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 10g, the generation of eddy current loss in the capacitor electrode layers 150, 152, 154, 156, 158, 160, 162, 164, 166, and 168 is suppressed, and the magnetic flux generated in the coils L1 to L4 is strong. Become. As a result, the magnetic coupling between the coil L1 and the coil L2 and the magnetic coupling between the coil L3 and the coil L4 become stronger, and the common mode noise removal characteristics of the noise filter 10g are improved as compared with the noise filter 10d.
(第8の実施形態)
 以下に、第8の実施形態に係るノイズフィルタ10hの構成について図面を参照しながら説明する。図17は、第8の実施形態に係るノイズフィルタ10hの積層体12hの分解斜視図である。図18は、ノイズフィルタ10hの等価回路図である。図17及び図18において、図2及び図3と同じ構成については、同じ参照符号が付してある。
(Eighth embodiment)
The configuration of the noise filter 10h according to the eighth embodiment will be described below with reference to the drawings. FIG. 17 is an exploded perspective view of the multilayer body 12h of the noise filter 10h according to the eighth embodiment. FIG. 18 is an equivalent circuit diagram of the noise filter 10h. 17 and 18, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals.
 積層体12hは、図17に示すように、誘電体層24aと誘電体層26cとの間に、誘電体層24gが設けられている点において、図2に示す積層体12aと相違する。以下に、積層体12hと積層体12aの相違点について説明する。 As shown in FIG. 17, the laminated body 12h is different from the laminated body 12a shown in FIG. 2 in that a dielectric layer 24g is provided between the dielectric layer 24a and the dielectric layer 26c. Below, the difference between the laminated body 12h and the laminated body 12a will be described.
 積層体12hは、図17に示すように、誘電体層24aと誘電体層26cとの間に、誘電体層24gが設けられている。該誘電体層24gには、コンデンサ電極層360,362,364,366が形成されている。コンデンサ電極層360,362,364,366はそれぞれ、z軸方向から平面視したときに、コンデンサ電極層60,62,64,66と重なるように形成されている。これにより、コンデンサ電極層60とコンデンサ電極層360とは、コンデンサC13を構成する。コンデンサ電極層62とコンデンサ電極層362とは、コンデンサC14を構成する。コンデンサ電極層64とコンデンサ電極層364とは、コンデンサC15を構成する。コンデンサ電極層66とコンデンサ電極層366とは、コンデンサC16を構成する。更に、コンデンサ電極層360,362,364,366のy軸方向の正方向側の端部にはそれぞれ、外部電極E1,E3,E5,E7と接続される引き出し部361,363,365,367が設けられている。 In the laminated body 12h, as shown in FIG. 17, a dielectric layer 24g is provided between the dielectric layer 24a and the dielectric layer 26c. Capacitor electrode layers 360, 362, 364, and 366 are formed on the dielectric layer 24g. The capacitor electrode layers 360, 362, 364, and 366 are formed so as to overlap with the capacitor electrode layers 60, 62, 64, and 66, respectively, when viewed in plan from the z-axis direction. Thereby, the capacitor electrode layer 60 and the capacitor electrode layer 360 constitute a capacitor C13. The capacitor electrode layer 62 and the capacitor electrode layer 362 constitute a capacitor C14. Capacitor electrode layer 64 and capacitor electrode layer 364 constitute capacitor C15. Capacitor electrode layer 66 and capacitor electrode layer 366 constitute capacitor C16. Further, lead portions 361, 363, 365, and 367 connected to the external electrodes E1, E3, E5, and E7 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 360, 362, 364, and 366. Is provided.
 以上のような構成を有するノイズフィルタ10hは、図18に示す回路構成を有する。より詳細には、コイルL1,L2,L3,L4のそれぞれの両端間に、コンデンサC13,C14,C15,C16が形成される。そして、コンデンサ電極層360,362,364,366の形状や面積等を調整することにより、コンデンサC13,C14,C15,C16の容量を調整でき、ノイズフィルタ10hのコモンモードノイズ及びノーマルモードノイズの除去特性を調整できる。 The noise filter 10h having the above configuration has a circuit configuration shown in FIG. More specifically, capacitors C13, C14, C15, and C16 are formed between both ends of the coils L1, L2, L3, and L4. Then, by adjusting the shape and area of the capacitor electrode layers 360, 362, 364, and 366, the capacitance of the capacitors C13, C14, C15, and C16 can be adjusted, and the common mode noise and the normal mode noise of the noise filter 10h can be removed. The characteristics can be adjusted.
 なお、ノイズフィルタ10b~10gについても、誘電体層24gが設けられてもよい。 Note that the dielectric layer 24g may also be provided for the noise filters 10b to 10g.
 なお、ノイズフィルタ10a~10hにおいて、コモンモードチョークコイルを1つ又は3つ以上備えていてもよい。 The noise filters 10a to 10h may include one or more common mode choke coils.
(第9の実施形態)
 図19は、第9の実施形態に係るノイズフィルタ410a~410nの外観斜視図である。図20は、ノイズフィルタ410aの積層体412aの分解図である。図21は、ノイズフィルタ410aの等価回路図である。以下では、ノイズフィルタ410aの形成時に、セラミックグリーンシートが積層される方向を積層方向と定義する。そして、この積層方向をz軸方向とし、ノイズフィルタ410aの長手方向をx軸方向とし、x軸とz軸とに直交する方向をy軸方向とする。x軸、y軸及びz軸は、ノイズフィルタ410aを構成する辺に対して平行である。
(Ninth embodiment)
FIG. 19 is an external perspective view of noise filters 410a to 410n according to the ninth embodiment. FIG. 20 is an exploded view of the multilayer body 412a of the noise filter 410a. FIG. 21 is an equivalent circuit diagram of the noise filter 410a. Hereinafter, when the noise filter 410a is formed, the direction in which the ceramic green sheets are stacked is defined as the stacking direction. This stacking direction is the z-axis direction, the longitudinal direction of the noise filter 410a is the x-axis direction, and the direction orthogonal to the x-axis and the z-axis is the y-axis direction. The x-axis, y-axis, and z-axis are parallel to the sides that constitute the noise filter 410a.
(ノイズフィルタの構成)
 ノイズフィルタ410aは、図19に示すように、内部に複数のLCフィルタ及びコモンモードチョークコイルを含む直方体状の積層体412a、及び、積層体412aの表面に形成された外部電極E11~E20を備えている。以下、積層体412aのx軸方向の両端に位置する面を端面と定義し、積層体412aのy軸方向の両端に位置する面を側面と定義し、積層体412aのz軸方向の上側の面を上面と定義し、積層体412aのz軸方向の下側の面を下面と定義する。
(Noise filter configuration)
As shown in FIG. 19, the noise filter 410a includes a rectangular parallelepiped laminated body 412a including a plurality of LC filters and a common mode choke coil therein, and external electrodes E11 to E20 formed on the surface of the laminated body 412a. ing. Hereinafter, surfaces positioned at both ends in the x-axis direction of the stacked body 412a are defined as end surfaces, surfaces positioned at both ends in the y-axis direction of the stacked body 412a are defined as side surfaces, and the upper side in the z-axis direction of the stacked body 412a is defined. The surface is defined as the upper surface, and the lower surface in the z-axis direction of the stacked body 412a is defined as the lower surface.
 外部電極E11,E13,E15,E17はそれぞれ、y軸方向の正方向側の側面において、z軸方向に延びるように形成されている。外部電極E11,E13,E15,E17はそれぞれ、入力端子として機能する。外部電極E12,E14,E16,E18はそれぞれ、y軸方向の負方向側の側面において、z軸方向に延びるように形成されている。外部電極E12,E14,E16,E18はそれぞれ、出力端子として機能する。外部電極E19,E20はそれぞれ、両端面において、z軸方向に延びるように形成されている。外部電極E19,E20はそれぞれ、グランド電極として機能する。 External electrodes E11, E13, E15, and E17 are each formed to extend in the z-axis direction on the side surface on the positive direction side in the y-axis direction. Each of the external electrodes E11, E13, E15, E17 functions as an input terminal. The external electrodes E12, E14, E16, and E18 are each formed to extend in the z-axis direction on the side surface on the negative direction side in the y-axis direction. The external electrodes E12, E14, E16, E18 each function as an output terminal. The external electrodes E19 and E20 are each formed to extend in the z-axis direction on both end faces. The external electrodes E19 and E20 each function as a ground electrode.
 積層体412aは、以下に説明するように、複数の内部電極層と複数の誘電体層とが共に積層されて構成され、内部にLCフィルタLC11~LC14及びコモンモードチョークコイルL31,L32を内蔵している。より詳細には、積層体412aは、図20に示すように、複数の誘電体層414a~414c,416a,416b,418a~418f,420,422a~422f,424a,424b,426a~426cがこの順に積層されることにより構成される。複数の誘電体層414a~414c,416a,416b,418a~418f,420,422a~422f,424a,424b,426a~426cは、それぞれ略同じ面積及び形状を有する長方形の絶縁層である。 As will be described below, the multilayer body 412a is formed by laminating a plurality of internal electrode layers and a plurality of dielectric layers, and includes LC filters LC11 to LC14 and common mode choke coils L31 and L32 therein. ing. More specifically, as shown in FIG. 20, the stacked body 412a includes a plurality of dielectric layers 414a to 414c, 416a, 416b, 418a to 418f, 420, 422a to 422f, 424a, 424b, 426a to 426c in this order. It is configured by being laminated. The plurality of dielectric layers 414a to 414c, 416a, 416b, 418a to 418f, 420, 422a to 422f, 424a, 424b, and 426a to 426c are rectangular insulating layers each having substantially the same area and shape.
 誘電体層416aの主面上には、y軸方向に長手方向を有する長方形状のコンデンサ電極層450,452,454,456が形成されている。コンデンサ電極層450,452,454,456はそれぞれ、y軸方向の負方向側の端部において、コンデンサ電極層450,452,454,456と外部電極E12,E14,E16,E18とを接続するための引き出し部451,453,455,457を有している。また、誘電体層416bの主面上には、x軸方向に長手方向を有する長方形状のコンデンサ電極層458が形成されている。コンデンサ電極層458は、x軸方向の両端部において、コンデンサ電極層458と外部電極E19,E20とを接続するための引き出し部471,472を有している。 On the main surface of the dielectric layer 416a, rectangular capacitor electrode layers 450, 452, 454 and 456 having a longitudinal direction in the y-axis direction are formed. Capacitor electrode layers 450, 452, 454, and 456 connect capacitor electrode layers 450, 452, 454, and 456 to external electrodes E12, E14, E16, and E18, respectively, at the end on the negative side in the y-axis direction. The drawer portions 451, 453, 455, and 457 are provided. A rectangular capacitor electrode layer 458 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 416b. The capacitor electrode layer 458 has lead portions 471 and 472 for connecting the capacitor electrode layer 458 and the external electrodes E19 and E20 at both ends in the x-axis direction.
 コンデンサ電極層450とコンデンサ電極層458とが誘電体層416aを挟んで対向することにより、コンデンサC21を構成している。コンデンサ電極層452とコンデンサ電極層458とが誘電体層416aを挟んで対向することにより、コンデンサC22を構成している。コンデンサ電極層454とコンデンサ電極層458とが誘電体層416aを挟んで対向することにより、コンデンサC23を構成している。コンデンサ電極層456とコンデンサ電極層458とが誘電体層416aを挟んで対向することにより、コンデンサC24を構成している。 The capacitor electrode layer 450 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C21. The capacitor electrode layer 452 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C22. The capacitor electrode layer 454 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C23. The capacitor electrode layer 456 and the capacitor electrode layer 458 are opposed to each other with the dielectric layer 416a interposed therebetween, thereby forming the capacitor C24.
 誘電体層418a~418fの主面上にはそれぞれ、線状電極が折り曲げられた形状を有するコイル電極層430a~430f,442a~442fが形成されている。より詳細には、コイル電極層430a,442aはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E12,E18に接続されている。コイル電極層430b~430e,442b~442eは、同じ誘電体層418上に形成されたもの同士で互いに反対方向に旋廻するように渦状に形成された電極層である。また、コイル電極層430f,442fはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E11,E17に接続されている。更に、誘電体層418a~418eにはそれぞれ、コイル電極層430a~430e,442a~442eの一端に接続されているビア導体432a~432e,444a~444eが形成されている。これにより、誘電体層418a~418fが積層された場合には、ビア導体432a~432e,444a~444eは、隣接する誘電体層418a~418fに形成されたコイル電極層430a~430f,442a~442f同士を接続する。その結果、コイル電極層430a~430fは、コイルL21を構成し、コイル電極層442a~442fは、コイルL24を構成する。 Coil electrode layers 430a to 430f and 442a to 442f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 418a to 418f, respectively. More specifically, each of the coil electrode layers 430a and 442a has an “L” shape, and one end thereof is connected to the external electrodes E12 and E18. The coil electrode layers 430b to 430e and 442b to 442e are electrode layers formed on the same dielectric layer 418 and formed in a spiral shape so as to rotate in opposite directions. The coil electrode layers 430f and 442f each have an “L” shape, and one ends thereof are connected to the external electrodes E11 and E17, respectively. Furthermore, via conductors 432a to 432e and 444a to 444e connected to one ends of the coil electrode layers 430a to 430e and 442a to 442e are formed in the dielectric layers 418a to 418e, respectively. As a result, when the dielectric layers 418a to 418f are stacked, the via conductors 432a to 432e and 444a to 444e are coil electrode layers 430a to 430f and 442a to 442f formed on the adjacent dielectric layers 418a to 418f. Connect each other. As a result, the coil electrode layers 430a to 430f constitute the coil L21, and the coil electrode layers 442a to 442f constitute the coil L24.
 誘電体層424aの主面上には、y軸方向に長手方向を有する長方形状のコンデンサ電極層460,462,464,466が形成されている。コンデンサ電極層460,462,464,466はそれぞれ、y軸方向の負方向側の端部において、コンデンサ電極層460,462,464,466と外部電極E12,E14,E16,E18とを接続するための引き出し部461,463,465,467を有している。また、誘電体層424bの主面上には、x軸方向に長手方向を有する長方形状のコンデンサ電極層468が形成されている。コンデンサ電極層468は、x軸方向の両端部において、コンデンサ電極層468と外部電極E19,E20とを接続するための引き出し部473,474を有している。 On the main surface of the dielectric layer 424a, rectangular capacitor electrode layers 460, 462, 464, and 466 having a longitudinal direction in the y-axis direction are formed. Capacitor electrode layers 460, 462, 464, and 466 connect capacitor electrode layers 460, 462, 464, and 466 and external electrodes E12, E14, E16, and E18, respectively, at the negative end portion in the y-axis direction. The drawer portions 461, 463, 465, and 467 are provided. A rectangular capacitor electrode layer 468 having a longitudinal direction in the x-axis direction is formed on the main surface of the dielectric layer 424b. The capacitor electrode layer 468 has lead portions 473 and 474 for connecting the capacitor electrode layer 468 and the external electrodes E19 and E20 at both ends in the x-axis direction.
 コンデンサ電極層460とコンデンサ電極層468とが誘電体層424bを挟んで対向することにより、コンデンサC21を構成している。コンデンサ電極層462とコンデンサ電極層468とが誘電体層424bを挟んで対向することにより、コンデンサC22を構成している。コンデンサ電極層464とコンデンサ電極層468とが誘電体層424bを挟んで対向することにより、コンデンサC23を構成している。コンデンサ電極層466とコンデンサ電極層468とが誘電体層424bを挟んで対向することにより、コンデンサC24を構成している。 The capacitor electrode layer 460 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C21. The capacitor electrode layer 462 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C22. The capacitor electrode layer 464 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C23. The capacitor electrode layer 466 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming the capacitor C24.
 誘電体層422a~422fの主面上にはそれぞれ、線状電極が折り曲げられた形状を有するコイル電極層434a~434f,438a~438fが形成されている。より詳細には、コイル電極層434a,438aはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E14,E16に接続されている。コイル電極層434b~434e,438b~438eは、同じ誘電体層422上に形成されたもの同士で互いに反対方向に旋廻するように渦状に形成された電極層である。また、コイル電極層434f,438fはそれぞれ、「L」字形状を有し、その一端はそれぞれ、外部電極E13,E15に接続されている。更に、誘電体層422b~422fにはそれぞれ、コイル電極層434b~434f,438b~438fの一端に接続されているビア導体436b~436f,440b~440fが形成されている。これにより、誘電体層422a~422fが積層された場合には、ビア導体436b~436f,440b~440fは、隣接する誘電体層422a~422fに形成されたコイル電極層434a~434f,438a~438f同士を接続する。その結果、コイル電極層434a~434fは、コイルL22を構成し、コイル電極層438a~438fは、コイルL23を構成する。 Coil electrode layers 434a to 434f and 438a to 438f having shapes in which linear electrodes are bent are formed on the principal surfaces of the dielectric layers 422a to 422f, respectively. More specifically, the coil electrode layers 434a and 438a each have an “L” shape, and one ends thereof are connected to the external electrodes E14 and E16, respectively. The coil electrode layers 434b to 434e and 438b to 438e are electrode layers formed on the same dielectric layer 422 and formed in a spiral shape so as to rotate in directions opposite to each other. The coil electrode layers 434f and 438f each have an “L” shape, and one ends thereof are connected to the external electrodes E13 and E15, respectively. Furthermore, via conductors 436b to 436f and 440b to 440f connected to one ends of the coil electrode layers 434b to 434f and 438b to 438f are formed in the dielectric layers 422b to 422f, respectively. Thus, when the dielectric layers 422a to 422f are stacked, the via conductors 436b to 436f and 440b to 440f are coil electrode layers 434a to 434f and 438a to 438f formed on the adjacent dielectric layers 422a to 422f. Connect each other. As a result, the coil electrode layers 434a to 434f constitute the coil L22, and the coil electrode layers 438a to 438f constitute the coil L23.
 積層体412aが以上のような構成を有することにより、図21に示すように、コイルL21及びコンデンサC21からなるLCフィルタLC11、コイルL22及びコンデンサC22からなるLCフィルタLC12、コイルL23及びコンデンサC23からなるLCフィルタLC13、及び、コイルL24及びコンデンサC24からなるLCフィルタLC14が形成されている。LCフィルタLC12,LC13は、LCフィルタLC11,LC14とは電気的に接続されていない。ここで、LCフィルタLC11を例にとると、コイルL21の一端が外部電極E11に接続されていると共に、コイルL21の他端が外部電極E12に接続されている。更に、コンデンサC21の一端は、コイルL21の他端に接続されていると共に、コンデンサC21の他端は、外部電極E19,E20に接続されている。LCフィルタLC12,LC13,LC14の構成については、LCフィルタLC11の構成と同様であるので説明を省略する。 Since the laminate 412a has the above-described configuration, as shown in FIG. 21, the LC filter LC11 including the coil L21 and the capacitor C21, the LC filter LC12 including the coil L22 and the capacitor C22, the coil L23, and the capacitor C23 are included. The LC filter LC13 including the LC filter LC13 and the coil L24 and the capacitor C24 is formed. The LC filters LC12 and LC13 are not electrically connected to the LC filters LC11 and LC14. Here, taking the LC filter LC11 as an example, one end of the coil L21 is connected to the external electrode E11, and the other end of the coil L21 is connected to the external electrode E12. Furthermore, one end of the capacitor C21 is connected to the other end of the coil L21, and the other end of the capacitor C21 is connected to the external electrodes E19 and E20. Since the configurations of the LC filters LC12, LC13, and LC14 are the same as the configuration of the LC filter LC11, the description thereof is omitted.
 ところで、外部電極E11,E13が入力端子として機能し、外部電極E12,E14が出力端子として機能するので、図20において、コイルL21には、例えば、z軸方向の下から上へと電流が流れ、コイルL22には、例えば、z軸方向の上から下へと電流が流れる。すなわち、コイルL21とコイルL22とには、z軸方向において逆方向に電流が流れる。更に、コイルL21を構成するコイル電極層430a~430fは、z軸方向の下から上へと行くにしたがって時計回りに旋廻し、コイルL22を構成するコイル電極層434a~434fは、z軸方向の下から上へと行くにしたがって反時計回りに旋廻している。すなわち、コイルL21とコイルL22とは、互いに逆向きに旋廻している。したがって、コイルL21とコイルL22とに電流が流れた場合には、共に同じ方向に電流が旋廻するようになる。更に、コイルL21及びコイルL22は、図20に示すように、コイルL21のコイル軸とコイルL22のコイル軸とが略一致するようにz軸方向に並べて配置されている。その結果、コイルL21とコイルL22とは、同じ方向に磁束を発生して磁気的に結合することで、LCフィルタLC11とLCフィルタLC12を構成するコイルと、コモンモードチョークコイルL31を構成する2つのコイルとを兼用するようになる。特に、コイルL21とコイルL22とは、コンデンサC21,C22が接続された端部に対する他方の端部近傍(図20のz軸方向の中央部分)において、磁気結合している。コイルL21とコイルL22との結合係数は、0.3以上0.7以下である。コイルL23とコイルL24も、磁気結合して、LCフィルタLC13とLCフィルタLC14を構成するコイルと、コモンモードチョークコイルL32を構成する2つのコイルとを兼用しているが、その詳細についてはコイルL21とコイルL22と同じであるので説明を省略する。 Incidentally, since the external electrodes E11 and E13 function as input terminals and the external electrodes E12 and E14 function as output terminals, in FIG. 20, for example, a current flows through the coil L21 from the bottom to the top in the z-axis direction. In the coil L22, for example, a current flows from the top to the bottom in the z-axis direction. That is, current flows through the coil L21 and the coil L22 in the reverse direction in the z-axis direction. Further, the coil electrode layers 430a to 430f constituting the coil L21 rotate clockwise as it goes from the bottom to the top in the z-axis direction, and the coil electrode layers 434a to 434f constituting the coil L22 are rotated in the z-axis direction. It turns counterclockwise as it goes from bottom to top. That is, the coil L21 and the coil L22 are rotated in opposite directions. Therefore, when current flows through the coil L21 and the coil L22, the current rotates in the same direction. Furthermore, as shown in FIG. 20, the coil L21 and the coil L22 are arranged side by side in the z-axis direction so that the coil axis of the coil L21 and the coil axis of the coil L22 substantially coincide. As a result, the coil L21 and the coil L22 generate magnetic fluxes in the same direction and are magnetically coupled, so that the coils constituting the LC filter LC11 and the LC filter LC12 and the two constituting the common mode choke coil L31 are combined. It comes to share with the coil. In particular, the coil L21 and the coil L22 are magnetically coupled in the vicinity of the other end (the central portion in the z-axis direction in FIG. 20) with respect to the end to which the capacitors C21 and C22 are connected. The coupling coefficient between the coil L21 and the coil L22 is 0.3 or more and 0.7 or less. The coil L23 and the coil L24 are also magnetically coupled to serve as both the coil constituting the LC filter LC13 and the LC filter LC14 and the two coils constituting the common mode choke coil L32. For details, see the coil L21. Since this is the same as the coil L22, the description thereof is omitted.
 なお、コイルL21とコイルL22との結合係数の計測は、以下の手順にて行われる。コイルL21とコイルL22との結合係数の計測では、まず、図21の外部電極E11と外部電極E13とを短絡させ、外部電極E12,E14間のインダクタンス値Lddを測定する。次に、外部電極E11と外部電極E13とを短絡させ、外部電極E12と外部電極E14とを短絡させて、外部電極E11,E13と外部電極E12,E14との間のインダクタンス値Lccを測定する。そして、以下の式(1)にインダクタンス値Ldd,Lccを代入して、結合係数Kを得る。 The coupling coefficient between the coil L21 and the coil L22 is measured according to the following procedure. In measuring the coupling coefficient between the coil L21 and the coil L22, first, the external electrode E11 and the external electrode E13 in FIG. 21 are short-circuited, and the inductance value Ldd between the external electrodes E12 and E14 is measured. Next, the external electrode E11 and the external electrode E13 are short-circuited, the external electrode E12 and the external electrode E14 are short-circuited, and the inductance value Lcc between the external electrodes E11 and E13 and the external electrodes E12 and E14 is measured. Then, the inductance values Ldd and Lcc are substituted into the following formula (1) to obtain the coupling coefficient K.
K=(2Lcc-Ldd/2)/(2Lcc+Ldd/2)・・・(1) K = (2Lcc-Ldd / 2) / (2Lcc + Ldd / 2) (1)
 コイルL23とコイルL24との結合係数の計測は、コイルL21とコイルL22との結合係数の計測と同じであるので説明を省略する。 Since the measurement of the coupling coefficient between the coil L23 and the coil L24 is the same as the measurement of the coupling coefficient between the coil L21 and the coil L22, description thereof is omitted.
 更に、誘電体層418fと誘電体層422fとの間に配置された誘電体層420の主面上には、コイルL21とコイルL23,L24とを容量結合させる結合用電極層470が形成されている。該結合用電極層470は、コイルL22とコイルL23,L24とも容量結合させている。結合用電極層470は、コイルL23,L24についても同様にコイルL21,L22と容量結合させている。そのため、該結合用電極層470は、z軸方向から平面視したときに、LCフィルタLC11とLCフィルタLC13,LC14との間に渡って形成されている。同様に、結合用電極層470は、z軸方向から平面視したときに、LCフィルタLC12とLCフィルタLC13,LC14との間に渡って形成されている。 Furthermore, a coupling electrode layer 470 for capacitively coupling the coil L21 and the coils L23 and L24 is formed on the main surface of the dielectric layer 420 disposed between the dielectric layer 418f and the dielectric layer 422f. Yes. The coupling electrode layer 470 is capacitively coupled to the coil L22 and the coils L23 and L24. Similarly, the coupling electrode layer 470 is capacitively coupled to the coils L21 and L22 for the coils L23 and L24. Therefore, the coupling electrode layer 470 is formed between the LC filter LC11 and the LC filters LC13 and LC14 when viewed in plan from the z-axis direction. Similarly, the coupling electrode layer 470 is formed across the LC filter LC12 and the LC filters LC13 and LC14 when viewed in plan from the z-axis direction.
 ここで、結合用電極層470は、2つの環状の線状電極が接続された形状を有している。これは、コイルL21~L24に電流が流れた場合に、コイルL21~L24において発生する磁束を結合用電極層470が妨げないようにするためである。 Here, the coupling electrode layer 470 has a shape in which two annular linear electrodes are connected. This is to prevent the coupling electrode layer 470 from preventing the magnetic flux generated in the coils L21 to L24 when a current flows through the coils L21 to L24.
(効果)
 以上のように、ノイズフィルタ410aによれば、LCフィルタLC11~LC14が内蔵されていると共に、コイルL21~L24がコモンモードチョークコイルL31,L32を構成するコイルを兼ねているので、ノーマルモードノイズ及びコモンモードノイズの両方を除去することができる。
(effect)
As described above, according to the noise filter 410a, the LC filters LC11 to LC14 are incorporated, and the coils L21 to L24 also serve as the coils constituting the common mode choke coils L31 and L32. Both common mode noises can be removed.
 特に、ノイズフィルタ410aでは、以下に説明するように、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数を0.3以上0.7以下としているので、携帯電話のドライバとレシーバとの間を伝送する差動信号に発生するノーマルモードノイズを効果的に除去できる。 In particular, in the noise filter 410a, as described below, the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.3 or more and 0.7 or less. The normal mode noise generated in the differential signal transmitted between the receiver and the receiver can be effectively removed.
 より詳細には、本願発明者は、ノイズフィルタ410aが奏する効果を確認するために、以下に説明するコンピュータシミュレーションを行った。図22ないし図25は、コンピュータシミュレーションの結果を示したグラフであり、ノイズフィルタ410aにおいて、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数を0.2,0.3,0.6,0.7としたときにおける、ノーマルモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。縦軸は、ノイズに対するフィルタの挿入損失を示し、横軸は、周波数を示している。 More specifically, the present inventor performed a computer simulation described below in order to confirm the effect produced by the noise filter 410a. 22 to 25 are graphs showing the results of computer simulation. In the noise filter 410a, the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.2, 0.3. , 0.6, 0.7 is a graph showing the relationship between filter insertion loss and frequency for normal mode noise. The vertical axis represents filter insertion loss with respect to noise, and the horizontal axis represents frequency.
 携帯電話のドライバとレシーバとの間を伝送する差動信号の周波数は、100MHz程度である。このような差動信号では、3次の高調波である300MHz付近におけるノーマルモードノイズに対するフィルタの挿入損失は、3dBよりも小さい必要がある。これは、300MHz付近におけるノーマルモードノイズに対するフィルタの挿入損失が大きすぎると、差動信号そのものに悪影響が出るからである。 The frequency of the differential signal transmitted between the mobile phone driver and the receiver is about 100 MHz. In such a differential signal, the insertion loss of the filter with respect to normal mode noise in the vicinity of 300 MHz, which is the third harmonic, needs to be smaller than 3 dB. This is because if the insertion loss of the filter with respect to the normal mode noise near 300 MHz is too large, the differential signal itself is adversely affected.
 そこで、図22に示したグラフを参照すると、結合係数が0.2の場合には、300MHzにおけるノーマルモードノイズに対するフィルタの挿入損失は、5dB程度であることが分かる。一方、図23に示したグラフを参照すると、結合係数が0.3の場合には、300MHzにおけるノーマルモードノイズに対するフィルタの挿入損失は、3dB程度となっている。故に、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数は、0.3以上であることが好ましい。 Therefore, referring to the graph shown in FIG. 22, when the coupling coefficient is 0.2, it can be seen that the insertion loss of the filter with respect to the normal mode noise at 300 MHz is about 5 dB. On the other hand, referring to the graph shown in FIG. 23, when the coupling coefficient is 0.3, the insertion loss of the filter with respect to the normal mode noise at 300 MHz is about 3 dB. Therefore, the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are preferably 0.3 or more.
 また、携帯電話で使用する下限周波数であるUHF帯470MHz付近におけるノーマルモードノイズに対するフィルタの挿入損失は、10dBよりも大きい必要がある。これは、UHF帯の信号高調波がノーマルモードノイズとしてUHF帯の受信性能に影響を及ぼすことを防止するためである。 Also, the insertion loss of the filter with respect to normal mode noise in the vicinity of the UHF band 470 MHz, which is the lower limit frequency used in the mobile phone, needs to be larger than 10 dB. This is to prevent UHF band signal harmonics from affecting the UHF band reception performance as normal mode noise.
 そこで、図25に示したグラフを参照すると、結合係数が0.7の場合には、550MHzにおけるノーマルモードノイズに対するフィルタの挿入損失は、10dB程度である。また、図24に示したグラフを参照すると、結合係数が0.6の場合には、470MHzにおけるノーマルモードノイズに対するフィルタの挿入損失は、10dB程度となっている。故に、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数は、0.7以下であることが好ましく、0.6以下であることがより好ましい。 Therefore, referring to the graph shown in FIG. 25, when the coupling coefficient is 0.7, the insertion loss of the filter with respect to the normal mode noise at 550 MHz is about 10 dB. Referring to the graph shown in FIG. 24, when the coupling coefficient is 0.6, the insertion loss of the filter with respect to the normal mode noise at 470 MHz is about 10 dB. Therefore, the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are preferably 0.7 or less, and more preferably 0.6 or less.
 以上のように、ノイズフィルタ410aは、コモンモードチョークコイルL31,L32を有しているので、携帯電話のドライバとレシーバとの間に発生するコモンモードノイズを除去することができる。更に、ノイズフィルタ410aは、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数が、0.3以上0.7以下となっているので、差動信号波形の劣化を抑制しつつ、ノーマルモードノイズも除去できる。よって、ノイズフィルタ410aは、携帯電話のドライバとレシーバとの間におけるコモンモードノイズ対策及びノーマルモードノイズ対策に適している。 As described above, since the noise filter 410a has the common mode choke coils L31 and L32, common mode noise generated between the driver and the receiver of the mobile phone can be removed. Furthermore, the noise filter 410a has a coupling coefficient between the coil L21 and the coil L22 and a coupling coefficient between the coil L23 and the coil L24 that is not less than 0.3 and not more than 0.7, thereby suppressing the deterioration of the differential signal waveform. However, normal mode noise can also be removed. Therefore, the noise filter 410a is suitable for the common mode noise countermeasure and the normal mode noise countermeasure between the driver and the receiver of the mobile phone.
 次に、本願発明者は、ノイズフィルタ410aが奏する効果を明確なものとするために、実験を行った。より詳細には、ノイズフィルタ410aに相当する第1の実験例を作製すると共に、特許文献1に記載の積層型アレイ部品に相当する第2の実験例を作製した。第2の実験例の結合係数は、0.05以下に設定した。そして、第1の実験として、これらの実験例に矩形波を入力させて、出力されてくる出力信号を測定した。また、第2の実験として、ノイズフィルタを挿入したときのノイズの強度分布を測定した。 Next, the inventor of the present application conducted an experiment to clarify the effect of the noise filter 410a. More specifically, a first experimental example corresponding to the noise filter 410a was produced, and a second experimental example corresponding to the multilayer array component described in Patent Document 1 was produced. The coupling coefficient of the second experimental example was set to 0.05 or less. As a first experiment, a rectangular wave was input to these experimental examples, and the output signal output was measured. As a second experiment, the intensity distribution of noise when a noise filter was inserted was measured.
 図26は、第1の実験例において、第1の実験を行った際の結果を示したグラフである。図27は、第2の実験例において、第1の実験を行った際の結果を示したグラフである。図26及び図27では、縦軸は、信号レベルを示しており、横軸は、時間を示している。 FIG. 26 is a graph showing the results of performing the first experiment in the first experimental example. FIG. 27 is a graph showing the results when the first experiment was performed in the second experiment example. In FIG.26 and FIG.27, the vertical axis | shaft has shown the signal level and the horizontal axis has shown time.
 図28は、第2の実験例において、第2の実験を行った際の結果を示したグラフである。図29は、第1の実験例において、第2の実験を行った際の結果を示したグラフである。図28及び図29では、縦軸は、ノイズレベルを示しており、横軸は、周波数を示している。 FIG. 28 is a graph showing a result of performing the second experiment in the second experimental example. FIG. 29 is a graph showing the results of performing the second experiment in the first experimental example. In FIG.28 and FIG.29, the vertical axis | shaft has shown the noise level and the horizontal axis has shown the frequency.
 第1の実験において、第1の実験例及び第2の実験例に矩形波を入力したところ、高周波におけるノイズが除去されて、図26及び図27に示すように、第1の実験例及び第2の実験例共に正弦波状の信号が出力されてきた。図26と図27とを比較すると、図26の出力信号の方が、図27の出力信号よりも、入力信号に近い波形を有していることが分かる。したがって、矩形波を入力信号として用いた場合における出力信号の劣化の程度は、第1の実験例の方が第2の実験例よりも小さいことが理解できる。すなわち、ノイズフィルタ410aにおける出力信号の劣化は、特許文献1に記載の積層型アレイ部品における出力信号の劣化よりも小さいことが理解できる。 In the first experiment, when a rectangular wave is input to the first experimental example and the second experimental example, noise at high frequencies is removed, and as shown in FIGS. In both experimental examples, a sinusoidal signal has been output. 26 and 27, it can be seen that the output signal of FIG. 26 has a waveform closer to the input signal than the output signal of FIG. Therefore, it can be understood that the degree of deterioration of the output signal when the rectangular wave is used as the input signal is smaller in the first experimental example than in the second experimental example. That is, it can be understood that the degradation of the output signal in the noise filter 410a is smaller than the degradation of the output signal in the multilayer array component described in Patent Document 1.
 更に、第2の実験において、第1の実験例及び第2の実験例に同じ強度分布のノイズを入力した。その結果、図28及び図29に示すように、第1の実験例と第2の実験例とで略同じノイズ除去効果を得ることができていることが分かる。すなわち、ノイズフィルタ410aにおけるノイズ除去効果は、特許文献1に記載の積層アレイ部品におけるノイズ除去効果と同等であることが理解できる。 Furthermore, in the second experiment, noise having the same intensity distribution was input to the first experiment example and the second experiment example. As a result, as shown in FIGS. 28 and 29, it can be seen that substantially the same noise removal effect can be obtained in the first experimental example and the second experimental example. That is, it can be understood that the noise removal effect in the noise filter 410a is equivalent to the noise removal effect in the multilayer array component described in Patent Document 1.
 以上のように、第1の実験及び第2の実験によれば、ノイズフィルタ410aは、出力信号の波形の劣化を低減しつつ、良好なノイズ除去効果を得ることができていることが分かる。 As described above, according to the first experiment and the second experiment, it is understood that the noise filter 410a can obtain a good noise removal effect while reducing the deterioration of the waveform of the output signal.
 また、ノイズフィルタ410aによれば、LCフィルタとコモンモードチョークコイルとが一つのノイズフィルタ410a内に内蔵されているので、LCフィルタとコモンモードチョークコイルとが別々の電子部品により構成されている場合に比べて、回路全体を小型化できる。特に、ノイズフィルタ410aでは、コイルL21,L22は、コモンモードチョークコイルL31を構成しているコイルとして機能すると共に、LCフィルタLC11,LC12の一部としても機能している。同様に、コイルL23,L24は、コモンモードチョークコイルL32を構成しているコイルとして機能すると共に、LCフィルタLC13,LC14の一部としても機能している。このように、ノイズフィルタ410aでは、コイルL21~L24が、LCフィルタの一部及びコモンモードチョークコイルの一部に兼用されているので、ノイズフィルタ410aがより小型化される。 Further, according to the noise filter 410a, the LC filter and the common mode choke coil are built in one noise filter 410a, and therefore the LC filter and the common mode choke coil are configured by separate electronic components. As a result, the entire circuit can be reduced in size. In particular, in the noise filter 410a, the coils L21 and L22 function as coils constituting the common mode choke coil L31 and also function as part of the LC filters LC11 and LC12. Similarly, the coils L23 and L24 function as coils constituting the common mode choke coil L32 and also function as part of the LC filters LC13 and LC14. As described above, in the noise filter 410a, the coils L21 to L24 are also used as a part of the LC filter and a part of the common mode choke coil, so that the noise filter 410a is further downsized.
 また、ノイズフィルタ410aでは、以下に説明するように、コモンモードノイズを効率よく除去することが可能となる。xz断面において、コイルL21が発生する磁束とコイルL22が発生する磁束、及び、コイルL23が発生する磁束とコイルL24が発生する磁束が等しくない場合には、ノーマルモードノイズがコモンモードノイズに変換されてしまい、新たなコモンモードノイズが発生して、コモンモードノイズが効率よく除去されない。そこで、ノイズフィルタ410aでは、xz断面において、コイルL21が発生する磁束の大きさとコイルL22が発生する磁束の大きさとが略等しくなるように、コイルL21,L22の電流経路を構成している。同様に、xz断面において、コイルL23が発生する磁束の大きさとコイルL24が発生する磁束の大きさとが略等しくなるように電流経路を構成している。これにより、コイルL21とコイルL22との間及びコイルL23とコイルL24との間の特性の差を小さくできる。故に、ノーマルモードノイズがコモンモードノイズに変換されて、新たなコモンモードノイズが発生することがない。そのため、ノイズフィルタ410aでは、コモンモードチョークコイルL31及びコモンモードチョークコイルL32にて、より効率よくコモンモードノイズを除去することが可能となる。 Also, the noise filter 410a can efficiently remove common mode noise as described below. In the xz cross section, when the magnetic flux generated by the coil L21 and the magnetic flux generated by the coil L22, and the magnetic flux generated by the coil L23 and the magnetic flux generated by the coil L24 are not equal, normal mode noise is converted into common mode noise. As a result, new common mode noise is generated, and the common mode noise is not efficiently removed. Therefore, in the noise filter 410a, the current paths of the coils L21 and L22 are configured so that the magnitude of the magnetic flux generated by the coil L21 and the magnitude of the magnetic flux generated by the coil L22 are substantially equal in the xz section. Similarly, in the xz cross section, the current path is configured so that the magnitude of the magnetic flux generated by the coil L23 and the magnitude of the magnetic flux generated by the coil L24 are substantially equal. Thereby, the difference in the characteristics between the coil L21 and the coil L22 and between the coil L23 and the coil L24 can be reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 410a, common mode noise can be more efficiently removed by the common mode choke coil L31 and the common mode choke coil L32.
 また、xz断面においてコンデンサ電極が誘電体層420に対して線対称な構造でない場合には、磁束の大きさが等しくなりにくいため、ノーマルモードノイズがコモンモードノイズに変換されてしまい、新たなコモンモードノイズが発生して、コモンモードノイズが効率よく除去されない。一方、図20に示すように、コンデンサ電極層450,452,458,460,462,468は、xz断面において、LCフィルタLC11とLCフィルタLC12との境界線(図20では、誘電体層420)に対して、略線対称な構造を有している。同様に、図20に示すように、コンデンサ電極層454,456,458,464,466,468は、xz断面において、LCフィルタLC13とLCフィルタLC14の境界線(図20では、誘電体層420)に対して、略線対称な構造を有している。これにより、コンデンサ電極層450,452,458が、コイルL21による磁束に及ぼす影響と、コンデンサ電極層460,462,468が、コイルL22による磁束に及ぼす影響とを等しくできる。同様に、コンデンサ電極層454,456,458が、コイルL24による磁束に及ぼす影響と、コンデンサ電極層464,466,468が、コイルL23による磁束に及ぼす影響とを等しくできる。すなわち、コイルL21とコイルL22との間及びコイルL23とコイルL24との間の特性の差をより小さくできる。故に、ノーマルモードノイズがコモンモードノイズに変換されて、新たなコモンモードノイズが発生することがない。そのため、ノイズフィルタ410aでは、コモンモードチョークコイルL31及びコモンモードチョークコイルL32にて、より効率よくコモンモードノイズを除去することが可能となる。 In addition, when the capacitor electrode is not line symmetric with respect to the dielectric layer 420 in the xz cross section, the magnitude of the magnetic flux is difficult to be equal, so normal mode noise is converted into common mode noise, and a new common Mode noise occurs and common mode noise is not efficiently removed. On the other hand, as shown in FIG. 20, the capacitor electrode layers 450, 452, 458, 460, 462, and 468 have boundaries between the LC filter LC11 and the LC filter LC12 in the xz section (the dielectric layer 420 in FIG. 20). On the other hand, it has a substantially line-symmetric structure. Similarly, as shown in FIG. 20, the capacitor electrode layers 454, 456, 458, 464, 466, and 468 have boundary lines between the LC filter LC13 and the LC filter LC14 (dielectric layer 420 in FIG. 20) in the xz cross section. On the other hand, it has a substantially line-symmetric structure. Thereby, the influence which capacitor electrode layer 450,452,458 exerts on the magnetic flux by coil L21 and the influence which capacitor electrode layer 460,462,468 exerts on the magnetic flux by coil L22 can be made equal. Similarly, the influence of the capacitor electrode layers 454, 456, 458 on the magnetic flux by the coil L24 can be made equal to the influence of the capacitor electrode layers 464, 466, 468 on the magnetic flux by the coil L23. That is, the difference in characteristics between the coil L21 and the coil L22 and between the coil L23 and the coil L24 can be further reduced. Therefore, normal mode noise is not converted into common mode noise, and new common mode noise is not generated. Therefore, in the noise filter 410a, common mode noise can be more efficiently removed by the common mode choke coil L31 and the common mode choke coil L32.
 また、一般的には、ノイズ抑制効果を高めるには挿入損失特性を高めればよいが、更に効果を高める場合には、ノイズの反射を抑制して、ノイズに対して低反射とすることが重要となる。ノイズフィルタ410aでは、コモンモードチョークコイルL31とコモンモードチョークコイルL32とを容量結合させることにより、コモンモードチョークコイルL31,L32間でノイズの循環が発生し、低反射にすることができる。図30は、コモンモードノイズの反射特性と周波数との関係を示したグラフである。縦軸は、反射特性を示し、横軸は、周波数を示す。グラフ中の縦軸において、0dbが全反射を示す。 In general, to increase the noise suppression effect, the insertion loss characteristic may be increased. However, in order to further increase the effect, it is important to suppress the reflection of the noise and to reduce the reflection against the noise. It becomes. In the noise filter 410a, the common mode choke coil L31 and the common mode choke coil L32 are capacitively coupled to generate noise circulation between the common mode choke coils L31 and L32, thereby reducing reflection. FIG. 30 is a graph showing the relationship between the reflection characteristic of common mode noise and the frequency. The vertical axis represents the reflection characteristics, and the horizontal axis represents the frequency. On the vertical axis in the graph, 0 db indicates total reflection.
 図20に示すように、ノイズフィルタ410aでは、結合用電極層470が設けられている。該結合用電極層470は、コイルL21,L22からなる組とコイルL23,L24からなる組とを容量結合させている。これにより、図30のグラフに示すように、ノイズフィルタ410aは、結合用電極層470がないノイズフィルタよりも、コモンモードノイズの反射を抑制することが可能となる。因みに、結合用電極層470がない場合には、例えば、コイルL21とコイルL23との結合容量は、0.5pF程度であるが、結合用電極層470がある場合には、コイルL21とコイルL23との結合容量は、5pF程度になる。なお、コイルL21~L24は、図20に示すように、全てのものが容量結合していてもよいし、コイルL21~L24の内の3つ又は2つのコイルが容量結合していてもよい。ただし、2つのコイルが容量結合している場合には、コイルL21,L22の内のいずれか一方と、コイルL23,L24の内のいずれか一方とが容量結合している必要がある。 As shown in FIG. 20, in the noise filter 410a, a coupling electrode layer 470 is provided. The coupling electrode layer 470 capacitively couples a set of coils L21 and L22 and a set of coils L23 and L24. Thereby, as shown in the graph of FIG. 30, the noise filter 410 a can suppress the reflection of the common mode noise more than the noise filter without the coupling electrode layer 470. Incidentally, when the coupling electrode layer 470 is not provided, for example, the coupling capacitance between the coil L21 and the coil L23 is about 0.5 pF, but when the coupling electrode layer 470 is provided, the coil L21 and the coil L23 are provided. And the coupling capacitance is about 5 pF. As shown in FIG. 20, all of the coils L21 to L24 may be capacitively coupled, or three or two of the coils L21 to L24 may be capacitively coupled. However, when two coils are capacitively coupled, one of the coils L21 and L22 and one of the coils L23 and L24 need to be capacitively coupled.
 また、ノイズフィルタ410aでは、コイル電極層430a~430f,434a~434f、コンデンサ電極層450,452,458,460,462,468、及び、誘電体層416a,416b,418a~418f,422a~422f,424a,424bは、図20に示すように、コイルL21,L22が、z軸方向において、コンデンサC21,C22の間に位置するように積層されている。すなわち、コイルL21とコイルL22との間には、コンデンサが設けられていない。そのため、コイルL21及びコイルL22にて発生した磁束は、コンデンサC21,C22により妨げられにくい。これにより、コイルL21,L22内の磁束を強めることができ、LCフィルタLC11,LC12のノーマルモードノイズの除去特性を向上させることができると共に、LCフィルタLC11とLCフィルタLC12との磁気的結合を強めることができ、コモンモードチョークコイルL31のコモンモードノイズの除去特性を向上させることが可能となる。なお、同様のことが、LCフィルタLC13,LC14及びコイルL23,L24についても言える。 In the noise filter 410a, the coil electrode layers 430a to 430f, 434a to 434f, the capacitor electrode layers 450, 452, 458, 460, 462, and 468, and the dielectric layers 416a, 416b, 418a to 418f, 422a to 422f, As shown in FIG. 20, the coils 424a and 424b are stacked such that the coils L21 and L22 are positioned between the capacitors C21 and C22 in the z-axis direction. That is, no capacitor is provided between the coil L21 and the coil L22. Therefore, the magnetic flux generated in the coil L21 and the coil L22 is not easily disturbed by the capacitors C21 and C22. Thereby, the magnetic flux in the coils L21 and L22 can be increased, the normal mode noise removal characteristics of the LC filters LC11 and LC12 can be improved, and the magnetic coupling between the LC filter LC11 and the LC filter LC12 is increased. Therefore, the common mode noise removal characteristics of the common mode choke coil L31 can be improved. The same applies to the LC filters LC13 and LC14 and the coils L23 and L24.
 ところで、ノイズフィルタ410aでは、図21に示すように、浮遊容量CP11,CP12を発生させている。浮遊容量CP11は、コイル電極層430とコイル電極層434及びコイル電極438とコイル電極442をz軸方向に重ねることにより、コイルL21とコイルL22との間及びコイルL23とコイルL24との間に発生する浮遊容量である。浮遊容量CP11を発生させていることにより、以下に図31を参照しながら説明するように、ノイズフィルタ410aのノーマルモードノイズを効率よく除去できると共に、ノーマルモードノイズに対するフィルタの挿入損失の変化を急峻にできる。 Incidentally, in the noise filter 410a, as shown in FIG. 21, stray capacitances CP11 and CP12 are generated. The stray capacitance CP11 is generated between the coil L21 and the coil L22 and between the coil L23 and the coil L24 by overlapping the coil electrode layer 430, the coil electrode layer 434, the coil electrode 438, and the coil electrode 442 in the z-axis direction. Stray capacitance. Since the stray capacitance CP11 is generated, the normal mode noise of the noise filter 410a can be efficiently removed and the change in the insertion loss of the filter with respect to the normal mode noise is steep as described below with reference to FIG. Can be.
 また、浮遊容量CP12は、コイル電極層430,434,438,442をz軸方向に重ねることにより、コイルL21~L24の両端に発生する浮遊容量である。浮遊容量CP12を発生させていることにより、以下に図32を参照しながら説明するように、ノーマルモードノイズ及びコモンモードノイズのカットオフ周波数を低くできると共に、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失の変化を急峻にできる。図31及び図32は、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失と周波数との関係を示したグラフである。縦軸は、挿入損失を示し、横軸は、周波数を示す。 Further, the stray capacitance CP12 is a stray capacitance generated at both ends of the coils L21 to L24 by overlapping the coil electrode layers 430, 434, 438, and 442 in the z-axis direction. Since the stray capacitance CP12 is generated, the cutoff frequency of the normal mode noise and common mode noise can be lowered and the filter for the normal mode noise and common mode noise can be reduced as described below with reference to FIG. The change in insertion loss can be made steep. 31 and 32 are graphs showing the relationship between the insertion loss of the filter and the frequency with respect to normal mode noise and common mode noise. The vertical axis represents insertion loss, and the horizontal axis represents frequency.
 まず、浮遊容量CP11が奏する効果について説明する。図31には、浮遊容量CP11があると仮定した場合におけるノーマルモードノイズに対するフィルタの挿入損失と、浮遊容量CP11がないと仮定した場合におけるノーマルモードノイズに対するフィルタの挿入損失とが示されている。コモンモードノイズが浮遊容量CP11の影響を受けないので、コモンモードの挿入損失については、図31に記載していない。 First, the effect produced by the stray capacitance CP11 will be described. FIG. 31 shows the insertion loss of the filter for normal mode noise when it is assumed that there is a stray capacitance CP11, and the insertion loss of the filter for normal mode noise when it is assumed that there is no stray capacitance CP11. Since the common mode noise is not affected by the stray capacitance CP11, the common mode insertion loss is not shown in FIG.
 図21に示すように、浮遊容量CP11を発生させていると、コイルL21,L22と浮遊容量CP11とは、LCフィルタを構成する。そのため、浮遊容量CP11を発生させていると、浮遊容量CP11を発生させていない場合に比べて、図31に示すように、高周波側の共振点におけるノーマルモードノイズを効率よく除去できる。更に、浮遊容量CP11を発生させると、浮遊容量CP11を発生させない場合に比べて、図31に示すように、高周波側の共振点におけるノーマルモードノイズに対するフィルタの挿入損失が急峻に変化する。 As shown in FIG. 21, when the stray capacitance CP11 is generated, the coils L21 and L22 and the stray capacitance CP11 constitute an LC filter. Therefore, when the stray capacitance CP11 is generated, the normal mode noise at the resonance point on the high frequency side can be efficiently removed as shown in FIG. 31 compared to the case where the stray capacitance CP11 is not generated. Further, when the stray capacitance CP11 is generated, the insertion loss of the filter with respect to the normal mode noise at the resonance point on the high frequency side changes abruptly as shown in FIG. 31 as compared with the case where the stray capacitance CP11 is not generated.
 次に、浮遊容量CP12が奏する効果について説明する。図32には、浮遊容量CP12があると仮定した場合におけるノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失と、浮遊容量CP12がないと仮定した場合におけるノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失とが示されている。 Next, the effect produced by the stray capacitance CP12 will be described. FIG. 32 shows filter insertion loss for normal mode noise and common mode noise when it is assumed that there is a stray capacitance CP12, and filter insertion for normal mode noise and common mode noise when there is no stray capacitance CP12. Loss is shown.
 浮遊容量CP12を発生させていると、浮遊容量CP12を発生させない場合に比べて、図32に示すように、ノーマルモードノイズ及びコモンモードノイズの共振点の周波数が低くなっている。すなわち、浮遊容量CP12を発生させると、浮遊容量CP12を発生させない場合に比べて、カットオフ周波数が低くなる。更に、浮遊容量CP12を発生させると、浮遊容量CP12を発生させない場合に比べて、図32に示すように、高周波側の共振点におけるノーマルモードノイズ及びコモンモードの挿入損失が急峻に変化する。 When the stray capacitance CP12 is generated, as compared with the case where the stray capacitance CP12 is not generated, the frequencies of the resonance points of normal mode noise and common mode noise are lower as shown in FIG. That is, when the stray capacitance CP12 is generated, the cut-off frequency becomes lower than when the stray capacitance CP12 is not generated. Furthermore, when the stray capacitance CP12 is generated, the normal mode noise and the common mode insertion loss at the resonance point on the high frequency side are sharply changed as shown in FIG. 32, compared to the case where the stray capacitance CP12 is not generated.
(変形例)
 図20に示すノイズフィルタ410aでは、結合用電極層470は、2つの環状の線状電極が接続された形状を有しているが、該結合用電極層470の形状はこれに限らない。結合用電極層470は、コイルL21~L24にて発生した磁束を妨げない形状を有していればよい。すなわち、結合用電極層470は、z軸方向から平面視したときに、コイルL21~L24と重ならないように形成されていればよい。したがって、結合用電極層470は、図33(a)~図33(g)に示す結合用電極層470の変形例のような形状であってもよい。また、結合用電極層470は、図33(g)に示すようなベタパターンの電極であってもよい。図33(g)に示す結合用電極層470は、接地されていないので、磁気結合には影響を及ぼさない。
(Modification)
In the noise filter 410a shown in FIG. 20, the coupling electrode layer 470 has a shape in which two annular linear electrodes are connected, but the shape of the coupling electrode layer 470 is not limited thereto. The coupling electrode layer 470 only needs to have a shape that does not hinder the magnetic flux generated in the coils L21 to L24. That is, the coupling electrode layer 470 may be formed so as not to overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Therefore, the coupling electrode layer 470 may have a shape as a modification of the coupling electrode layer 470 shown in FIGS. 33 (a) to 33 (g). The coupling electrode layer 470 may be a solid pattern electrode as shown in FIG. The coupling electrode layer 470 shown in FIG. 33 (g) is not grounded and therefore does not affect the magnetic coupling.
(第10の実施形態)
 以下に、第10の実施形態に係るノイズフィルタ410bの構成について図面を参照しながら説明する。図34は、第10の実施形態に係るノイズフィルタ410bの積層体412bの分解斜視図である。図35は、ノイズフィルタ410bの等価回路図である。図34及び図35において、図20及び図21と同じ構成については、同じ参照符号が付してある。
(Tenth embodiment)
The configuration of the noise filter 410b according to the tenth embodiment will be described below with reference to the drawings. FIG. 34 is an exploded perspective view of the multilayer body 412b of the noise filter 410b according to the tenth embodiment. FIG. 35 is an equivalent circuit diagram of the noise filter 410b. 34 and 35, the same components as those in FIGS. 20 and 21 are denoted by the same reference numerals.
 積層体412bは、図34に示すように、誘電体層416a,424aのそれぞれにコンデンサ電極層480,482,484,486,490,492,494,496が形成されている点において、積層体412aと相違する。以下、積層体412bと積層体412aとの相違点を中心に説明を行う。 As shown in FIG. 34, the multilayer body 412b has a structure in which capacitor electrode layers 480, 482, 484, 486, 490, 492, 494, and 496 are formed on the dielectric layers 416a and 424a, respectively. And different. Hereinafter, the difference between the stacked body 412b and the stacked body 412a will be mainly described.
 誘電体層416aには、コンデンサ電極層450,452,454,456,480,482,484,486が形成されている。コンデンサ電極層480とコンデンサ電極層458とは、誘電体層416aを挟んで対向することにより、コンデンサC25を構成している。コンデンサ電極層482とコンデンサ電極層458とは、誘電体層416aを挟んで対向することにより、コンデンサC26を構成している。コンデンサ電極層484とコンデンサ電極層458とは、誘電体層416aを挟んで対向することにより、コンデンサC27を構成している。コンデンサ電極層486とコンデンサ電極層458とは、誘電体層416aを挟んで対向することにより、コンデンサC28を構成している。 Capacitor electrode layers 450, 452, 454, 456, 480, 482, 484, and 486 are formed on the dielectric layer 416a. The capacitor electrode layer 480 and the capacitor electrode layer 458 constitute a capacitor C25 by facing each other with the dielectric layer 416a interposed therebetween. The capacitor electrode layer 482 and the capacitor electrode layer 458 constitute a capacitor C26 by facing each other with the dielectric layer 416a interposed therebetween. The capacitor electrode layer 484 and the capacitor electrode layer 458 constitute a capacitor C27 by facing each other with the dielectric layer 416a interposed therebetween. The capacitor electrode layer 486 and the capacitor electrode layer 458 constitute a capacitor C28 by facing each other with the dielectric layer 416a interposed therebetween.
 更に、コンデンサ電極層480のy軸方向の正方向側の端部には、引き出し部481が設けられている。これにより、図35に示すように、コンデンサC25は、外部電極E11と外部電極E19,E20との間に接続されるようになる。また、コンデンサ電極層482のy軸方向の正方向側の端部には、引き出し部483が設けられている。これにより、図35に示すように、コンデンサC26は、外部電極E13と外部電極E19,E20との間に接続されるようになる。また、コンデンサ電極層484のy軸方向の正方向側の端部には、引き出し部485が設けられている。これにより、図35に示すように、コンデンサC27は、外部電極E15と外部電極E19,E20との間に接続されるようになる。また、コンデンサ電極層486のy軸方向の正方向側の端部には、引き出し部487が設けられている。これにより、図35に示すように、コンデンサC28は、外部電極E17と外部電極E19,E20との間に接続されるようになる。 Furthermore, a lead-out portion 481 is provided at the end of the capacitor electrode layer 480 on the positive side in the y-axis direction. Thereby, as shown in FIG. 35, the capacitor C25 is connected between the external electrode E11 and the external electrodes E19 and E20. In addition, a lead portion 483 is provided at the end of the capacitor electrode layer 482 on the positive side in the y-axis direction. As a result, as shown in FIG. 35, the capacitor C26 is connected between the external electrode E13 and the external electrodes E19, E20. In addition, a lead portion 485 is provided at the end of the capacitor electrode layer 484 on the positive side in the y-axis direction. Thereby, as shown in FIG. 35, the capacitor C27 is connected between the external electrode E15 and the external electrodes E19 and E20. A lead-out portion 487 is provided at the end of the capacitor electrode layer 486 on the positive side in the y-axis direction. Thereby, as shown in FIG. 35, the capacitor C28 is connected between the external electrode E17 and the external electrodes E19 and E20.
 誘電体層424aには、コンデンサ電極層460,462,464,466,490,492,494,496が形成されている。コンデンサ電極層490とコンデンサ電極層468とは、誘電体層424bを挟んで対向することにより、コンデンサC25を構成している。コンデンサ電極層492とコンデンサ電極層468とは、誘電体層424bを挟んで対向することにより、コンデンサC26を構成している。コンデンサ電極層494とコンデンサ電極層468とは、誘電体層424bを挟んで対向することにより、コンデンサC27を構成している。コンデンサ電極層496とコンデンサ電極層468とは、誘電体層424bを挟んで対向することにより、コンデンサC28を構成している。 Capacitor electrode layers 460, 462, 464, 466, 490, 492, 494, 496 are formed on the dielectric layer 424a. The capacitor electrode layer 490 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C25. The capacitor electrode layer 492 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C26. The capacitor electrode layer 494 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C27. The capacitor electrode layer 496 and the capacitor electrode layer 468 are opposed to each other with the dielectric layer 424b interposed therebetween, thereby forming a capacitor C28.
 更に、コンデンサ電極層490のy軸方向の正方向側の端部には、引き出し部491が設けられている。これにより、図35に示すように、コンデンサC25は、外部電極E11と外部電極E19,E20との間に接続されるようになる。また、コンデンサ電極層492のy軸方向の正方向側の端部には、引き出し部493が設けられている。これにより、図35に示すように、コンデンサC26は、外部電極E13と外部電極E19,E20との間に接続されるようになる。また、コンデンサ電極層494のy軸方向の正方向側の端部には、引き出し部495が設けられている。これにより、図35に示すように、コンデンサC27は、外部電極E15と外部電極E19,E20との間に接続されるようになる。また、コンデンサ電極層496のy軸方向の正方向側の端部には、引き出し部497が設けられている。これにより、図35に示すように、コンデンサC28は、外部電極E17と外部電極E19,E20との間に接続されるようになる。 Furthermore, a lead portion 491 is provided at the end of the capacitor electrode layer 490 on the positive side in the y-axis direction. Thereby, as shown in FIG. 35, the capacitor C25 is connected between the external electrode E11 and the external electrodes E19 and E20. In addition, a lead portion 493 is provided at the end of the capacitor electrode layer 492 on the positive side in the y-axis direction. As a result, as shown in FIG. 35, the capacitor C26 is connected between the external electrode E13 and the external electrodes E19, E20. A lead-out portion 495 is provided at the end of the capacitor electrode layer 494 on the positive side in the y-axis direction. Thereby, as shown in FIG. 35, the capacitor C27 is connected between the external electrode E15 and the external electrodes E19 and E20. In addition, a lead portion 497 is provided at the end of the capacitor electrode layer 496 on the positive side in the y-axis direction. Thereby, as shown in FIG. 35, the capacitor C28 is connected between the external electrode E17 and the external electrodes E19 and E20.
 ノイズフィルタ410bは、コンデンサC25~C28が追加されて、Π型構造をとることによって、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失を急峻かつ大きくすることができる。 The noise filter 410b is added with capacitors C25 to C28 and has a saddle type structure, whereby the insertion loss of the filter with respect to normal mode noise and common mode noise can be increased sharply.
(第11の実施形態)
 以下に、第11の実施形態に係るノイズフィルタ410cの構成について図面を参照しながら説明する。図36は、第11の実施形態に係るノイズフィルタ410cの積層体412cの分解斜視図である。図37は、ノイズフィルタ410cの等価回路図である。図36及び図37において、図20及び図21と同じ構成については、同じ参照符号が付してある。
(Eleventh embodiment)
The configuration of the noise filter 410c according to the eleventh embodiment will be described below with reference to the drawings. FIG. 36 is an exploded perspective view of the multilayer body 412c of the noise filter 410c according to the eleventh embodiment. FIG. 37 is an equivalent circuit diagram of the noise filter 410c. 36 and 37, the same components as those in FIGS. 20 and 21 are denoted by the same reference numerals.
 積層体412cは、図36に示すように、誘電体層416a,416b,424a,424bの代わりに、誘電体層416c,424cが設けられている点において、図20に示す積層体412aと相違する。以下、積層体412cと積層体412aとの相違点を中心に説明を行う。 As shown in FIG. 36, the laminate 412c is different from the laminate 412a shown in FIG. 20 in that dielectric layers 416c and 424c are provided instead of the dielectric layers 416a, 416b, 424a, and 424b. . Hereinafter, the difference between the stacked body 412c and the stacked body 412a will be mainly described.
 ノイズフィルタ410cでは、図36に示すように、コイルL21,L22,L23,L24の途中に、コンデンサ電極層500,503が形成された誘電体層416c,424cが挿入される。より詳細には、誘電体層416cは、誘電体層418cと誘電体層418dとの間に配置される。また、誘電体層424cは、誘電体層422cと誘電体層422dとの間に配置される。コンデンサ電極層500,503(接地用電極)は、z軸方向から平面視した場合に、コイルL21~L24のコイル軸と重ならないように、電極層が形成されていない空白部を有している。ビア導体432c,436d,440d,444cは、コンデンサ電極層500,503と接触しないように、空白部を貫通している。これにより、コンデンサ電極層500は、誘電体層416c,418を挟んでコイル電極層430,442と対向して、コンデンサC29,C32を形成している。また、コンデンサ電極層503は、誘電体層422,424cを挟んでコイル電極層434,438と対向して、コンデンサC30,C31を形成している。 In the noise filter 410c, as shown in FIG. 36, dielectric layers 416c and 424c on which capacitor electrode layers 500 and 503 are formed are inserted in the middle of the coils L21, L22, L23, and L24. More specifically, the dielectric layer 416c is disposed between the dielectric layer 418c and the dielectric layer 418d. The dielectric layer 424c is disposed between the dielectric layer 422c and the dielectric layer 422d. Capacitor electrode layers 500 and 503 (grounding electrodes) have blank portions in which no electrode layers are formed so as not to overlap with the coil axes of coils L21 to L24 when viewed in plan from the z-axis direction. . The via conductors 432c, 436d, 440d, and 444c penetrate the blank portion so as not to contact the capacitor electrode layers 500 and 503. Thereby, the capacitor electrode layer 500 forms capacitors C29 and C32 so as to face the coil electrode layers 430 and 442 with the dielectric layers 416c and 418 interposed therebetween. Further, the capacitor electrode layer 503 is opposed to the coil electrode layers 434 and 438 with the dielectric layers 422 and 424c interposed therebetween to form capacitors C30 and C31.
 更に、コンデンサ電極層500は、x軸方向の両端において引き出し部501,502を有している。引き出し部501,502はそれぞれ、外部電極E19,E20に接続されている。その結果、コンデンサC29は、図37に示すように、コイルL21と外部電極E19,E20との間に接続されるようになる。同様に、コンデンサC32は、図37に示すように、コイルL24と外部電極E19,E20との間に接続されるようになる。 Furthermore, the capacitor electrode layer 500 has lead portions 501 and 502 at both ends in the x-axis direction. The lead portions 501 and 502 are connected to the external electrodes E19 and E20, respectively. As a result, the capacitor C29 is connected between the coil L21 and the external electrodes E19 and E20 as shown in FIG. Similarly, the capacitor C32 is connected between the coil L24 and the external electrodes E19 and E20 as shown in FIG.
 また、コンデンサ電極層503は、x軸方向の両端において引き出し部504,505を有している。引き出し部504,505はそれぞれ、外部電極E19,E20に接続されている。その結果、コンデンサC30は、図37に示すように、コイルL22と外部電極E19,E20との間に接続されるようになる。同様に、コンデンサC31は、図37に示すように、コイルL23と外部電極E19,E20との間に接続されるようになる。 The capacitor electrode layer 503 has lead portions 504 and 505 at both ends in the x-axis direction. The lead portions 504 and 505 are connected to the external electrodes E19 and E20, respectively. As a result, the capacitor C30 is connected between the coil L22 and the external electrodes E19 and E20 as shown in FIG. Similarly, the capacitor C31 is connected between the coil L23 and the external electrodes E19 and E20 as shown in FIG.
 ノイズフィルタ410cによれば、以下に説明するように、コモンモードノイズを効率よく除去することができる。より詳細には、コイルが発生した磁束が電極層を貫通する際には、渦電流損が電極層において発生し、ノイズフィルタのコモンモードノイズの除去特性が低下する。そこで、ノイズフィルタ410cでは、コンデンサ電極層500,503に空白部が設けられている。これにより、コイルL21~L24にて発生した磁束は、コンデンサ電極層500,503の空白部を貫通するようになり、コンデンサ電極層500,503にて渦電流損が発生せず、コイルL21~L24にて発生する磁束が強くなる。その結果、コイルL21~L24の磁気的な結合が強くなり、ノイズフィルタ410cにおいて、コモンモードノイズの除去特性が向上する。また、コイルL21~L24にて発生する磁束が強くなるので、LCフィルタLC11~LC14によるノーマルモードノイズの除去特性も向上する。 According to the noise filter 410c, common mode noise can be efficiently removed as described below. More specifically, when the magnetic flux generated by the coil penetrates the electrode layer, eddy current loss occurs in the electrode layer, and the common mode noise removal characteristics of the noise filter are degraded. Therefore, in the noise filter 410c, the capacitor electrode layers 500 and 503 are provided with blank portions. As a result, the magnetic flux generated in the coils L21 to L24 penetrates through the blank portions of the capacitor electrode layers 500 and 503, and no eddy current loss occurs in the capacitor electrode layers 500 and 503, and the coils L21 to L24. The magnetic flux generated at becomes stronger. As a result, the magnetic coupling of the coils L21 to L24 is strengthened, and the common mode noise removal characteristic is improved in the noise filter 410c. Further, since the magnetic flux generated in the coils L21 to L24 becomes stronger, the normal mode noise removal characteristics by the LC filters LC11 to LC14 are also improved.
 また、ノイズフィルタ410cでは、コイル電極層430,434,438,442が、コイル電極層とコンデンサ電極層の一方とを兼ねている。故に、ノイズフィルタ410cでは、ノイズフィルタ410aに比べて、誘電体層の枚数を減らすことが可能となる。 Further, in the noise filter 410c, the coil electrode layers 430, 434, 438, and 442 serve as one of the coil electrode layer and the capacitor electrode layer. Therefore, in the noise filter 410c, the number of dielectric layers can be reduced as compared with the noise filter 410a.
(第12の実施形態)
 以下に、第12の実施形態に係るノイズフィルタ410dの構成について図面を参照しながら説明する。図38は、第12の実施形態に係るノイズフィルタ410dの積層体412dの分解斜視図である。図39は、ノイズフィルタ410dの等価回路図である。図38及び図39において、図20、図21、図36及び図37と同じ構成については、同じ参照符号が付してある。
(Twelfth embodiment)
The configuration of the noise filter 410d according to the twelfth embodiment will be described below with reference to the drawings. FIG. 38 is an exploded perspective view of the multilayer body 412d of the noise filter 410d according to the twelfth embodiment. FIG. 39 is an equivalent circuit diagram of the noise filter 410d. 38 and 39, the same components as those in FIGS. 20, 21, 36, and 37 are denoted by the same reference numerals.
 積層体412dは、図38に示すように、誘電体層416a,416b、424a,424bが更に追加されている点において、図36に示す積層体412cと相違する。誘電体層416a,416b,424a,424bは、図20に示す積層体412aに含まれているものと同じである。 The laminated body 412d is different from the laminated body 412c shown in FIG. 36 in that dielectric layers 416a, 416b, 424a, and 424b are further added as shown in FIG. The dielectric layers 416a, 416b, 424a, 424b are the same as those included in the stacked body 412a shown in FIG.
 以上のような積層体412dによれば、図39に示すように、外部電極E12と外部電極E19,E20との間にコンデンサC21が設けられ、外部電極E14と外部電極E19,E20との間にコンデンサC22が設けられ、外部電極E16と外部電極E19,E20との間にコンデンサC23が設けられ、外部電極E18と外部電極E19,E20との間にコンデンサC24が設けられるようになる。これにより、ノイズフィルタ410dは、Π型構造をとることによって、ノーマルモードノイズ及びコモンモードノイズに対するフィルタの挿入損失を急峻かつ大きくすることができる。 According to the laminated body 412d as described above, as shown in FIG. 39, the capacitor C21 is provided between the external electrode E12 and the external electrodes E19, E20, and between the external electrode E14 and the external electrodes E19, E20. The capacitor C22 is provided, the capacitor C23 is provided between the external electrode E16 and the external electrodes E19 and E20, and the capacitor C24 is provided between the external electrode E18 and the external electrodes E19 and E20. Thereby, the noise filter 410d can have a steep and large filter insertion loss with respect to normal mode noise and common mode noise by adopting a saddle type structure.
(第13の実施形態)
 以下に、第13の実施形態に係るノイズフィルタ410eの構成について図面を参照しながら説明する。図40は、第13の実施形態に係るノイズフィルタ410eの積層体412eの分解斜視図である。図40において、図20と同じ構成については、同じ参照符号が付してある。
(13th Embodiment)
The configuration of the noise filter 410e according to the thirteenth embodiment will be described below with reference to the drawings. FIG. 40 is an exploded perspective view of the multilayer body 412e of the noise filter 410e according to the thirteenth embodiment. In FIG. 40, the same components as those in FIG. 20 are denoted by the same reference numerals.
 積層体412eは、図40に示すように、誘電体層416a,416b、424a,424bの代わりに誘電体層416d,416e,424d,424eが設けられている点において、図20に示す積層体412aと相違する。以下に、積層体412eと積層体412aの相違点について説明する。 As shown in FIG. 40, the stacked body 412e is provided with dielectric layers 416d, 416e, 424d, and 424e instead of the dielectric layers 416a, 416b, 424a, and 424b. And different. Hereinafter, differences between the stacked body 412e and the stacked body 412a will be described.
 誘電体層416dには、コンデンサ電極層550,552,554,556が形成されている。コンデンサ電極層550,552,554,556は、図20に示すコンデンサ電極層450,452,454,456に比べてx軸方向の幅が狭く形成されている。これにより、コンデンサ電極層550,552,554,556(信号用電極)は、z軸方向から平面視したときに、コイルL21,L24のコイル軸と重ならないようになっている。更に、コンデンサ電極層550,552,554,556のy軸方向の負方向側の端部にはそれぞれ、外部電極E12,E14,E16,E18と接続される引き出し部551,553,555,557が設けられている。 Capacitor electrode layers 550, 552, 554, and 556 are formed on the dielectric layer 416d. The capacitor electrode layers 550, 552, 554, and 556 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 450, 452, 454, and 456 shown in FIG. As a result, the capacitor electrode layers 550, 552, 554, and 556 (signal electrodes) do not overlap the coil axes of the coils L21 and L24 when viewed in plan from the z-axis direction. Further, lead portions 551, 553, 555, and 557 connected to the external electrodes E12, E14, E16, and E18, respectively, are provided at the negative end portions of the capacitor electrode layers 550, 552, 554, and 556 in the y-axis direction. Is provided.
 また、誘電体層416eには、コンデンサ電極層558が形成されている。該コンデンサ電極層558は、z軸方向から平面視したときに、コンデンサ電極層550,552,554,556と重なると共に、コイルL21,L24のコイル軸と重ならないように、電極層が形成されていない空白部を有するように形成されている。 Further, a capacitor electrode layer 558 is formed on the dielectric layer 416e. The capacitor electrode layer 558 is formed with an electrode layer so as to overlap with the capacitor electrode layers 550, 552, 554, and 556 and not to overlap with the coil axes of the coils L21 and L24 when viewed in plan from the z-axis direction. It is formed to have no blanks.
 また、誘電体層424dには、コンデンサ電極層560,562,564,566が形成されている。コンデンサ電極層560,562,564,566は、図20に示すコンデンサ電極層460,462,464,466に比べてx軸方向の幅が狭く形成されている。これにより、コンデンサ電極層560,562,564,566は、積層方向から平面視したときに、コイルL22,L23のコイル軸と重ならないようになっている。更に、コンデンサ電極層560,562,564,566のy軸方向の負方向側の端部にはそれぞれ、外部電極E12,E14,E16,E18と接続される引き出し部561,563,565,567が設けられている。 Further, capacitor electrode layers 560, 562, 564, 566 are formed on the dielectric layer 424d. The capacitor electrode layers 560, 562, 564, and 566 are formed to have a narrower width in the x-axis direction than the capacitor electrode layers 460, 462, 464, and 466 shown in FIG. As a result, the capacitor electrode layers 560, 562, 564, 566 do not overlap with the coil axes of the coils L22, L23 when viewed in plan from the stacking direction. Further, lead portions 561, 563, 565, and 567 connected to the external electrodes E12, E14, E16, and E18 are respectively provided at the negative side end portions of the capacitor electrode layers 560, 562, 564, and 566 in the y-axis direction. Is provided.
 また、誘電体層424eには、コンデンサ電極層568が形成されている。該コンデンサ電極層568は、z軸方向から平面視したときに、コンデンサ電極層560,562,564,566と重なると共に、コイルL22,L23のコイル軸と重ならないように、電極層が形成されていない空白部を有するように形成されている。 Further, a capacitor electrode layer 568 is formed on the dielectric layer 424e. The capacitor electrode layer 568 is formed with an electrode layer so as to overlap with the capacitor electrode layers 560, 562, 564, 566 and not to overlap with the coil axes of the coils L22, L23 when viewed in plan from the z-axis direction. It is formed to have no blanks.
 以上のような構成を有するノイズフィルタ410eは、ノイズフィルタ410aと同じように、図21に示す回路構成を有する。 The noise filter 410e having the above configuration has the circuit configuration shown in FIG. 21 in the same manner as the noise filter 410a.
 ノイズフィルタ410eによれば、コンデンサ電極層550,552,554,556,558,560,562,564,566,568が、z軸方向から平面視したときに、コイルL21~L24と重ならないように形成されている。そのため、ノイズフィルタ410eでは、コンデンサ電極層550,552,554,556,558,560,562,564,566,568における渦電流損の発生が抑制され、コイルL21~L24にて発生する磁束が強くなる。その結果、コイルL21とコイルL22との磁気的な結合及びコイルL23とコイルL24との磁気的な結合が強くなり、ノイズフィルタ410eのコモンモードノイズ除去特性がノイズフィルタ410aに比べて向上する。 According to the noise filter 410e, the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 do not overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 410e, the generation of eddy current loss in the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 is suppressed, and the magnetic flux generated in the coils L21 to L24 is strong. Become. As a result, the magnetic coupling between the coil L21 and the coil L22 and the magnetic coupling between the coil L23 and the coil L24 are strengthened, and the common mode noise removal characteristics of the noise filter 410e are improved as compared with the noise filter 410a.
(第14の実施形態)
 以下に、第14の実施形態に係るノイズフィルタ410fの構成について図面を参照しながら説明する。図41は、第14の実施形態に係るノイズフィルタ410fの積層体412fの分解斜視図である。図41において、図20、図34及び図40と同じ構成については、同じ参照符号が付してある。
(Fourteenth embodiment)
The configuration of the noise filter 410f according to the fourteenth embodiment will be described below with reference to the drawings. FIG. 41 is an exploded perspective view of the multilayer body 412f of the noise filter 410f according to the fourteenth embodiment. 41, the same components as those in FIGS. 20, 34 and 40 are denoted by the same reference numerals.
 積層体412fは、図41に示すように、誘電体層416a,416b,424a,424bの代わりに、誘電体層416d,416e,416f,424d,424e,424fが設けられている点において、図34に示す積層体412bと相違する。以下に、積層体412fと積層体412bの相違点について説明する。 As shown in FIG. 41, the laminated body 412f is provided with dielectric layers 416d, 416e, 416f, 424d, 424e, and 424f instead of the dielectric layers 416a, 416b, 424a, and 424b. It differs from the laminate 412b shown in FIG. Hereinafter, differences between the stacked body 412f and the stacked body 412b will be described.
 積層体412fは、図41に示すように、誘電体層414cと誘電体層416dとの間に、誘電体層416fが設けられている。該誘電体層416fには、コンデンサ電極層650,652,654,656が形成されている。コンデンサ電極層650,652,654,656は、z軸方向から平面視したときに、コンデンサ電極層558と重なるように形成されている。これにより、コンデンサ電極層650とコンデンサ電極層550とは、コンデンサC25を構成する。コンデンサ電極層652とコンデンサ電極層552とは、コンデンサC26を構成する。コンデンサ電極層654とコンデンサ電極層554とは、コンデンサC27を構成する。コンデンサ電極層656とコンデンサ電極層556とは、コンデンサC28を構成する。更に、コンデンサ電極層650,652,654,656のy軸方向の正方向側の端部にはそれぞれ、外部電極E11,E13,E15,E17と接続される引き出し部651,653,655,657が設けられている。 As shown in FIG. 41, in the stacked body 412f, a dielectric layer 416f is provided between the dielectric layer 414c and the dielectric layer 416d. Capacitor electrode layers 650, 652, 654, 656 are formed on the dielectric layer 416f. Capacitor electrode layers 650, 652, 654, and 656 are formed to overlap capacitor electrode layer 558 when viewed in plan from the z-axis direction. Thereby, capacitor electrode layer 650 and capacitor electrode layer 550 constitute capacitor C25. Capacitor electrode layer 652 and capacitor electrode layer 552 constitute capacitor C26. Capacitor electrode layer 654 and capacitor electrode layer 554 constitute capacitor C27. Capacitor electrode layer 656 and capacitor electrode layer 556 constitute capacitor C28. Furthermore, lead portions 651, 653, 655, and 657 connected to the external electrodes E11, E13, E15, and E17, respectively, are provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 650, 652, 654, and 656. Is provided.
 また、誘電体層424fには、コンデンサ電極層660,662,664,666が形成されている。コンデンサ電極層660,662,664,666は、z軸方向から平面視したときに、コンデンサ電極層568と重なるように形成されている。これにより、コンデンサ電極層660とコンデンサ電極層560とは、コンデンサC25を構成する。コンデンサ電極層662とコンデンサ電極層562とは、コンデンサC26を構成する。コンデンサ電極層664とコンデンサ電極層564とは、コンデンサC27を構成する。コンデンサ電極層666とコンデンサ電極層566とは、コンデンサC28を構成する。更に、コンデンサ電極層660,662,664,666のy軸方向の正方向側の端部にはそれぞれ、外部電極E11,E13,E15,E17と接続される引き出し部661,663,665,667が設けられている。 Further, capacitor electrode layers 660, 662, 664, 666 are formed on the dielectric layer 424f. The capacitor electrode layers 660, 662, 664, and 666 are formed so as to overlap with the capacitor electrode layer 568 when viewed in plan from the z-axis direction. Thereby, the capacitor electrode layer 660 and the capacitor electrode layer 560 constitute a capacitor C25. Capacitor electrode layer 662 and capacitor electrode layer 562 constitute capacitor C26. Capacitor electrode layer 664 and capacitor electrode layer 564 constitute capacitor C27. Capacitor electrode layer 666 and capacitor electrode layer 566 constitute capacitor C28. Further, lead portions 661, 663, 665, and 667 connected to the external electrodes E11, E13, E15, and E17 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 660, 662, 664, and 666. Is provided.
 以上のような構成を有するノイズフィルタ410fは、ノイズフィルタ410bと同じように、図35に示す回路構成を有する。 The noise filter 410f having the above configuration has the circuit configuration shown in FIG. 35, like the noise filter 410b.
 ノイズフィルタ410fによれば、コンデンサ電極層558,568,650,652,654,656,660,662,664,666が、z軸方向から平面視したときに、コイルL21~L24と重ならないように形成されている。そのため、ノイズフィルタ410fでは、コンデンサ電極層558,568,650,652,654,656,660,662,664,666における渦電流損の発生が抑制され、コイルL21~L24にて発生する磁束が強くなる。その結果、コイルL21とコイルL22との磁気的な結合及びコイルL23とコイルL24との磁気的な結合が強くなり、ノイズフィルタ410fのコモンモードノイズ除去特性がノイズフィルタ410bに比べて向上する。 According to the noise filter 410f, the capacitor electrode layers 558, 568, 650, 652, 654, 656, 660, 662, 664 and 666 do not overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 410f, the generation of eddy current loss in the capacitor electrode layers 558, 568, 650, 652, 654, 656, 660, 662, 664, and 666 is suppressed, and the magnetic flux generated in the coils L21 to L24 is strong. Become. As a result, the magnetic coupling between the coil L21 and the coil L22 and the magnetic coupling between the coil L23 and the coil L24 are strengthened, and the common mode noise removal characteristics of the noise filter 410f are improved as compared with the noise filter 410b.
(第15の実施形態)
 以下に、第15の実施形態に係るノイズフィルタ410gの構成について図面を参照しながら説明する。図42は、第15の実施形態に係るノイズフィルタ410gの積層体412gの分解斜視図である。図42において、図20及び図38と同じ構成については、同じ参照符号が付してある。
(Fifteenth embodiment)
The configuration of the noise filter 410g according to the fifteenth embodiment will be described below with reference to the drawings. FIG. 42 is an exploded perspective view of the multilayer body 412g of the noise filter 410g according to the fifteenth embodiment. 42, the same components as those in FIGS. 20 and 38 are denoted by the same reference numerals.
 積層体412gは、図42に示すように、誘電体層416a,416b,424a,424bの代わりに、誘電体層416d,416e,424d,424eが設けられている点において、図38に示す積層体412dと相違する。誘電体層416d,416e,424d,424eは、図38に示したものと同じであるので詳細な説明を省略する。 As shown in FIG. 42, the laminate 412g is different from the dielectric layers 416a, 416b, 424a, 424b in that dielectric layers 416d, 416e, 424d, 424e are provided. It is different from 412d. The dielectric layers 416d, 416e, 424d, and 424e are the same as those shown in FIG.
 以上のような構成を有するノイズフィルタ410gは、ノイズフィルタ410dと同じように、図39に示す回路構成を有する。 The noise filter 410g having the above configuration has the circuit configuration shown in FIG. 39, like the noise filter 410d.
 ノイズフィルタ410gによれば、コンデンサ電極層550,552,554,556,558,560,562,564,566,568が、z軸方向から平面視したときに、コイルL21~L24と重ならないように形成されている。そのため、ノイズフィルタ410gでは、コンデンサ電極層550,552,554,556,558,560,562,564,566,568における渦電流損の発生が抑制され、コイルL21~L24にて発生する磁束が強くなる。その結果、コイルL21とコイルL22との磁気的な結合及びコイルL23とコイルL24との磁気的な結合が強くなり、ノイズフィルタ410gのコモンモードノイズ除去特性がノイズフィルタ410dに比べて向上する。 According to the noise filter 410g, the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 do not overlap with the coils L21 to L24 when viewed in plan from the z-axis direction. Is formed. Therefore, in the noise filter 410g, the occurrence of eddy current loss in the capacitor electrode layers 550, 552, 554, 556, 558, 560, 562, 564, 566, and 568 is suppressed, and the magnetic flux generated in the coils L21 to L24 is strong. Become. As a result, the magnetic coupling between the coil L21 and the coil L22 and the magnetic coupling between the coil L23 and the coil L24 are strengthened, and the common mode noise removal characteristics of the noise filter 410g are improved as compared with the noise filter 410d.
(第16の実施形態)
 以下に、第16の実施形態に係るノイズフィルタ410hの構成について図面を参照しながら説明する。図43は、第16の実施形態に係るノイズフィルタ410hの積層体412hの分解斜視図である。図44は、ノイズフィルタ410hの等価回路図である。図43及び図44において、図20及び図21と同じ構成については、同じ参照符号が付してある。
(Sixteenth embodiment)
The configuration of the noise filter 410h according to the sixteenth embodiment will be described below with reference to the drawings. FIG. 43 is an exploded perspective view of the multilayer body 412h of the noise filter 410h according to the sixteenth embodiment. FIG. 44 is an equivalent circuit diagram of the noise filter 410h. 43 and 44, the same components as those in FIGS. 20 and 21 are denoted by the same reference numerals.
 積層体412hは、図43に示すように、誘電体層424aと誘電体層426cとの間に、誘電体層424gが設けられている点において、図20に示す積層体412aと相違する。以下に、積層体412hと積層体412aの相違点について説明する。 As shown in FIG. 43, the laminated body 412h is different from the laminated body 412a shown in FIG. 20 in that a dielectric layer 424g is provided between the dielectric layer 424a and the dielectric layer 426c. Hereinafter, differences between the stacked body 412h and the stacked body 412a will be described.
 積層体412hは、図43に示すように、誘電体層424aと誘電体層426cとの間に、誘電体層424gが設けられている。該誘電体層424gには、コンデンサ電極層760,762,764,766が形成されている。コンデンサ電極層760,762,764,766はそれぞれ、z軸方向から平面視したときに、コンデンサ電極層460,462,464,466と重なるように形成されている。これにより、コンデンサ電極層460とコンデンサ電極層760とは、コンデンサC33を構成する。コンデンサ電極層462とコンデンサ電極層762とは、コンデンサC34を構成する。コンデンサ電極層464とコンデンサ電極層764とは、コンデンサC35を構成する。コンデンサ電極層466とコンデンサ電極層766とは、コンデンサC36を構成する。更に、コンデンサ電極層760,762,764,766のy軸方向の正方向側の端部にはそれぞれ、外部電極E11,E13,E15,E17と接続される引き出し部761,763,765,767が設けられている。 As shown in FIG. 43, in the stacked body 412h, a dielectric layer 424g is provided between the dielectric layer 424a and the dielectric layer 426c. Capacitor electrode layers 760, 762, 764, and 766 are formed on the dielectric layer 424g. Capacitor electrode layers 760, 762, 764, and 766 are formed so as to overlap capacitor electrode layers 460, 462, 464, and 466, respectively, when viewed in plan from the z-axis direction. Thereby, the capacitor electrode layer 460 and the capacitor electrode layer 760 constitute a capacitor C33. The capacitor electrode layer 462 and the capacitor electrode layer 762 constitute a capacitor C34. The capacitor electrode layer 464 and the capacitor electrode layer 764 constitute a capacitor C35. Capacitor electrode layer 466 and capacitor electrode layer 766 constitute capacitor C36. Furthermore, lead portions 761, 763, 765, and 767 connected to the external electrodes E11, E13, E15, and E17 are respectively provided at the ends on the positive side in the y-axis direction of the capacitor electrode layers 760, 762, 764, and 766. Is provided.
 以上のような構成を有するノイズフィルタ410hは、図44に示す回路構成を有する。より詳細には、コイルL21,L22,L23,L24のそれぞれの両端間に、コンデンサC33,C34,C35,C36が形成される。そして、コンデンサ電極層760,762,764,766の形状や面積等を調整することにより、コンデンサC33,C34,C35,C36の容量を調整でき、ノイズフィルタ410hのコモンモードノイズ及びノーマルモードノイズの除去特性を調整できる。 The noise filter 410h having the above configuration has a circuit configuration shown in FIG. More specifically, capacitors C33, C34, C35, and C36 are formed between both ends of the coils L21, L22, L23, and L24. The capacitances of the capacitors C33, C34, C35, and C36 can be adjusted by adjusting the shape and area of the capacitor electrode layers 760, 762, 764, and 766, and the common mode noise and normal mode noise of the noise filter 410h can be removed. The characteristics can be adjusted.
(その他の実施形態)
 以下に、その他の実施形態に係るノイズフィルタ410i~410nについて図面を参照しながら説明する。図45~図47はそれぞれ、その他の実施形態に係るノイズフィルタ410i~410kの積層体412i~412kの分解斜視図である。図48は、図47のノイズフィルタ410kの等価回路図である。図49~図51は、その他の実施形態に係るノイズフィルタ410l~410nの積層体412l~412nの分解斜視図である。
(Other embodiments)
Hereinafter, noise filters 410i to 410n according to other embodiments will be described with reference to the drawings. 45 to 47 are exploded perspective views of stacked bodies 412i to 412k of noise filters 410i to 410k according to other embodiments, respectively. FIG. 48 is an equivalent circuit diagram of the noise filter 410k of FIG. 49 to 51 are exploded perspective views of stacked bodies 412l to 412n of noise filters 410l to 410n according to other embodiments.
 ノイズフィルタ410iは、図45に示すような積層体412iを備えていてもよい。ノイズフィルタ410iは、図36に示すノイズフィルタ410cと同じ図37に示す等価回路を有している。 The noise filter 410i may include a stacked body 412i as shown in FIG. The noise filter 410i has the same equivalent circuit shown in FIG. 37 as the noise filter 410c shown in FIG.
 また、ノイズフィルタ410jは、図46に示すような積層体412jを備えていてもよい。ノイズフィルタ410jは、図38に示すノイズフィルタ410dと同じ図39に示す等価回路を有している。 Further, the noise filter 410j may include a laminated body 412j as shown in FIG. The noise filter 410j has the same equivalent circuit shown in FIG. 39 as the noise filter 410d shown in FIG.
 また、ノイズフィルタ410kは、図47に示すような積層体412kを備えていてもよい。ノイズフィルタ410kは、図48に示す等価回路を有している。ノイズフィルタ410kによれば、ベタ信号パターンを挿入して、磁気結合を調整することにより、ノーマルモード、コモンモード減衰において複数の共振点を得ることができる。 Further, the noise filter 410k may include a laminated body 412k as shown in FIG. The noise filter 410k has an equivalent circuit shown in FIG. According to the noise filter 410k, a plurality of resonance points can be obtained in normal mode and common mode attenuation by inserting a solid signal pattern and adjusting magnetic coupling.
 また、ノイズフィルタ410l~410nは、図49~図51に示すような積層体412l~412nを備えていてもよい。 Further, the noise filters 410l to 410n may include stacked bodies 412l to 412n as shown in FIGS.
 なお、第10の実施形態、第16の実施形態及びその他の実施形態では詳しく説明しなかったが、ノイズフィルタ410b~410nにおいても、ノイズフィルタ410aと同じく、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数は、0.3以上0.7以下である。これにより、ノイズフィルタ410b~410nにおいても、ノイズフィルタ410aと同様に、携帯電話のドライバとレシーバとの間におけるコモンモードノイズ対策及びノーマルモードノイズ対策を行うことができる。 Although not described in detail in the tenth embodiment, the sixteenth embodiment, and other embodiments, in the noise filters 410b to 410n, as in the noise filter 410a, the coupling coefficient between the coil L21 and the coil L22 and The coupling coefficient between the coil L23 and the coil L24 is not less than 0.3 and not more than 0.7. Thereby, also in the noise filters 410b to 410n, the common mode noise countermeasure and the normal mode noise countermeasure can be taken between the driver and the receiver of the mobile phone, similarly to the noise filter 410a.
 なお、ノイズフィルタ410b~410nについても、誘電体層424gが設けられてもよい。 Note that the dielectric layer 424g may also be provided for the noise filters 410b to 410n.
 なお、ノイズフィルタ410a~410nにおいて、コモンモードチョークコイルを1つ又は3つ以上備えていてもよい。 The noise filters 410a to 410n may include one or more common mode choke coils.
(電子装置)
 以下に、ノイズフィルタ410a~410nを備えている電子装置について図面を参照する。図52は、ノイズフィルタ410a~410nを備えた電子装置600の構成図である。以下の説明では、電子装置600は、ノイズフィルタ410aを備えているものとする。なお電子装置600は、例えば、携帯電話などであり、図52では、携帯電話等の一部を抽出して記載してある。
(Electronic device)
Hereinafter, an electronic device including noise filters 410a to 410n will be described with reference to the drawings. FIG. 52 is a configuration diagram of an electronic device 600 including noise filters 410a to 410n. In the following description, it is assumed that the electronic device 600 includes the noise filter 410a. The electronic device 600 is, for example, a mobile phone. In FIG. 52, a part of the mobile phone or the like is extracted and described.
 電子装置600は、図52に示すように、ノイズフィルタ410a、ドライバ602a,602b、レシーバ604a,604b及び信号線S1~S8を備えている。 52, the electronic device 600 includes a noise filter 410a, drivers 602a and 602b, receivers 604a and 604b, and signal lines S1 to S8.
 ドライバ602aは、互いに逆相の波形を有する2つの信号を生成し、信号線S1,S3に出力する。信号線S1,S3はそれぞれ、外部電極E11,E13に接続され、差動伝送路を構成している。信号線S2,S4はそれぞれ、外部電極E12,E14に接続され、差動伝送路を構成している。これにより、LCフィルタLC11は、信号線S1と信号線S2との間に接続され、LCフィルタLC12は、信号線S3と信号線S4との間に接続されている。レシーバ604aは、差動伝送路を構成している信号線S2,S4に接続されており、信号線S2,S4を伝送する2つの信号の差分信号を検出する。 The driver 602a generates two signals having waveforms in opposite phases and outputs them to the signal lines S1 and S3. The signal lines S1 and S3 are connected to the external electrodes E11 and E13, respectively, and constitute a differential transmission path. The signal lines S2 and S4 are connected to the external electrodes E12 and E14, respectively, and constitute a differential transmission path. Thereby, the LC filter LC11 is connected between the signal line S1 and the signal line S2, and the LC filter LC12 is connected between the signal line S3 and the signal line S4. The receiver 604a is connected to the signal lines S2 and S4 constituting the differential transmission path, and detects a differential signal between the two signals transmitted through the signal lines S2 and S4.
 ドライバ602bは、互いに逆相の波形を有する2つの信号を生成し、信号線S5,S7に出力する。信号線S5,S7はそれぞれ、外部電極E15,E17に接続され、差動伝送路を構成している。信号線S6,S8はそれぞれ、外部電極E16,E18に接続され、差動伝送路を構成している。これにより、LCフィルタLC13は、信号線S5と信号線S6との間に接続され、LCフィルタLC14は、信号線S7と信号線S8との間に接続されている。レシーバ604bは、差動伝送路を構成している信号線S6,S8に接続されており、信号線S6,S8を伝送する2つの信号の差分信号を検出する。 The driver 602b generates two signals having waveforms with opposite phases, and outputs them to the signal lines S5 and S7. The signal lines S5 and S7 are connected to the external electrodes E15 and E17, respectively, and constitute a differential transmission path. The signal lines S6 and S8 are connected to the external electrodes E16 and E18, respectively, and constitute a differential transmission path. Thereby, the LC filter LC13 is connected between the signal line S5 and the signal line S6, and the LC filter LC14 is connected between the signal line S7 and the signal line S8. The receiver 604b is connected to the signal lines S6 and S8 constituting the differential transmission path, and detects a differential signal between the two signals transmitted through the signal lines S6 and S8.
 電子装置600によれば、コモンモードノイズが、ノイズフィルタ410a~410nにより除去されるようになる。より詳細には、理想的な差動伝送路を流れる2つの信号の電流の和は一定である。よって、通常、コモンモードノイズは、差動伝送路を流れる2つの信号には生じない。しかしながら、差動伝送路では、ドライバ602a,602bのインピーダンスのばらつき等により、点D+,D-における信号の振幅及び位相が崩れてコモンモードノイズが発生する場合がある。そこで、ドライバ602a,602bとレシーバ604a,604bとの間に、ノイズフィルタ410a~410nを挿入することにより、コモンモードノイズが除去されるようになる。 According to the electronic apparatus 600, common mode noise is removed by the noise filters 410a to 410n. More specifically, the sum of the currents of two signals flowing through an ideal differential transmission line is constant. Therefore, normally, common mode noise does not occur in two signals flowing through the differential transmission path. However, in the differential transmission path, the amplitude and phase of the signals at the points D + and D− may be disrupted due to variations in impedance of the drivers 602a and 602b, and common mode noise may occur. Therefore, common mode noise is removed by inserting noise filters 410a to 410n between the drivers 602a and 602b and the receivers 604a and 604b.
 また、電子装置600によれば、ノーマルモードノイズが、ノイズフィルタ410a~410nにより除去されるようになる。より詳細には、ノイズフィルタ410aでは、コイルL21とコイルL22との結合係数及びコイルL23とコイルL24との結合係数を0.3以上0.7以下としているので、携帯電話のドライバとレシーバとの間を伝送する差動信号に発生するノーマルモードノイズを効果的に除去できる。 Further, according to the electronic apparatus 600, normal mode noise is removed by the noise filters 410a to 410n. More specifically, in the noise filter 410a, the coupling coefficient between the coil L21 and the coil L22 and the coupling coefficient between the coil L23 and the coil L24 are 0.3 or more and 0.7 or less. It is possible to effectively remove normal mode noise generated in differential signals transmitted between the two.
 本発明は、ノイズフィルタ及びこれを備えた電子装置に有用であり、特に、差動信号波形の品質低下を抑制しつつ、携帯電話のドライバとレシーバとの間におけるコモンモードノイズ対策及びノーマルモードノイズ対策に適している点において優れている。 INDUSTRIAL APPLICABILITY The present invention is useful for a noise filter and an electronic apparatus including the noise filter, and in particular, a common mode noise countermeasure and a normal mode noise between a driver and a receiver of a mobile phone while suppressing a deterioration in the quality of a differential signal waveform. It is excellent in that it is suitable for countermeasures.

Claims (34)

  1.  2つのコイルからなる第1のコモンモードチョークコイルと、
     第1のコイルを含む第1のLCフィルタと、
     第2のコイルを含む第2のLCフィルタと、
     を備え、
     前記第1のコモンモードチョークコイルの2つのコイルは、前記第1のコイル及び前記第2のコイルとして兼用されていること、
     を特徴とするノイズフィルタ。
    A first common mode choke coil comprising two coils;
    A first LC filter including a first coil;
    A second LC filter including a second coil;
    With
    The two coils of the first common mode choke coil are also used as the first coil and the second coil;
    Noise filter characterized by.
  2.  前記第1のLCフィルタは、第1のコンデンサを、含み、
     前記第2のLCフィルタは、第2のコンデンサを、含み、
     前記第1のコイル及び前記第2のコイルは、絶縁層とコイル電極層とが積層されることにより構成されており、
     前記第1のコンデンサ及び前記第2のコンデンサは、絶縁層とコンデンサ電極層とが積層されることにより構成されており、
     前記絶縁層、前記コイル電極層及び前記コンデンサ電極層は、前記第1のコイル及び前記第2のコイルが、積層方向において、前記第1のコンデンサと前記第2のコンデンサとの間に位置するように、積層されていること、
     を特徴とする請求の範囲第1項に記載のノイズフィルタ。
    The first LC filter includes a first capacitor;
    The second LC filter includes a second capacitor;
    The first coil and the second coil are configured by laminating an insulating layer and a coil electrode layer,
    The first capacitor and the second capacitor are configured by laminating an insulating layer and a capacitor electrode layer,
    The insulating layer, the coil electrode layer, and the capacitor electrode layer are arranged such that the first coil and the second coil are positioned between the first capacitor and the second capacitor in the stacking direction. To be laminated,
    The noise filter according to claim 1, wherein:
  3.  前記第1のコイル及び前記第2のコイルは、積層方向から平面視したときに、同じ方向に電流が周回する構造を有していること、
     を特徴とする請求の範囲第2項に記載のノイズフィルタ。
    The first coil and the second coil have a structure in which current circulates in the same direction when viewed in plan from the stacking direction,
    The noise filter according to claim 2, wherein:
  4.  前記コンデンサ電極層は、積層方向から平面視したときに、前記第1のコイルのコイル軸及び前記第2のコイルのコイル軸と重ならないように形成された信号用電極を含むこと、
     を特徴とする請求の範囲第2項又は請求の範囲第3項のいずれかに記載のノイズフィルタ。
    The capacitor electrode layer includes a signal electrode formed so as not to overlap the coil axis of the first coil and the coil axis of the second coil when viewed in plan from the stacking direction;
    The noise filter according to any one of claims 2 and 3, wherein:
  5.  前記第1のコイルと前記第2のコイルにより発生する磁束の大きさは、略等しいこと、
     を特徴とする請求の範囲第3項に記載のノイズフィルタ。
    The magnitudes of magnetic flux generated by the first coil and the second coil are substantially equal;
    The noise filter according to claim 3, wherein:
  6.  前記コンデンサ電極層は、前記第1のLCフィルタと前記第2のLCフィルタとの境界線に対して、略線対称な構造を有していること、
     を特徴とする請求の範囲第4項に記載のノイズフィルタ。
    The capacitor electrode layer has a substantially line-symmetric structure with respect to a boundary line between the first LC filter and the second LC filter;
    The noise filter according to claim 4, wherein:
  7.  前記コンデンサ電極層は、積層方向から平面視したときに、前記第1のコイルのコイル軸及び前記第2のコイルのコイル軸と重ならないように形成された接地用電極を含むこと、
     を特徴とする請求の範囲第2項ないし請求の範囲第6項のいずれかに記載のノイズフィルタ。
    The capacitor electrode layer includes a ground electrode formed so as not to overlap the coil axis of the first coil and the coil axis of the second coil when viewed in plan from the stacking direction;
    The noise filter according to any one of claims 2 to 6, wherein:
  8.  第3のコイル及び第3のコンデンサからなる第3のLCフィルタと、
     第4のコイル及び第4のコンデンサからなる第4のLCフィルタと、
     2つのコイルからなる第2のコモンモードチョークコイルと、
     を更に備え、
     前記第3のコイル及び前記第4のコイルは、前記第2のコモンモードチョークコイルの2つのコイルとして兼用されていること、
     を特徴とする請求の範囲第1項ないし請求の範囲第7項のいずれかに記載のノイズフィルタ。
    A third LC filter comprising a third coil and a third capacitor;
    A fourth LC filter comprising a fourth coil and a fourth capacitor;
    A second common mode choke coil comprising two coils;
    Further comprising
    The third coil and the fourth coil are also used as two coils of the second common mode choke coil;
    The noise filter according to any one of claims 1 to 7, characterized by the above.
  9.  前記第3のLCフィルタ及び前記第4のLCフィルタは、前記第1のLCフィルタ及び前記第2のLCフィルタとは電気的に接続されていないこと、
     を特徴とする請求の範囲第8項に記載のノイズフィルタ。
    The third LC filter and the fourth LC filter are not electrically connected to the first LC filter and the second LC filter;
    The noise filter according to claim 8, wherein:
  10.  前記第1のコイルは、前記第3のコイル及び/又は前記第4のコイルと容量結合していること、
     を特徴とする請求の範囲第8項又は請求の範囲第9項のいずれかに記載のノイズフィルタ。
    The first coil is capacitively coupled to the third coil and / or the fourth coil;
    The noise filter according to any one of claims 8 and 9, wherein:
  11.  前記第3のコイル及び前記第4のコイルは、絶縁層とコイル電極層とが積層されることにより構成されており、
     前記第3のコンデンサ及び前記第4のコンデンサは、絶縁層とコンデンサ電極層とが積層されることにより構成されており、
     前記絶縁層、前記コイル電極層及び前記コンデンサ電極層は、前記第3のコイル及び前記第4のコイルが、積層方向において、前記第3のコンデンサと前記第4のコンデンサとの間に位置するように、積層されていること、
     を特徴とする請求の範囲第10項に記載のノイズフィルタ。
    The third coil and the fourth coil are configured by laminating an insulating layer and a coil electrode layer,
    The third capacitor and the fourth capacitor are configured by laminating an insulating layer and a capacitor electrode layer,
    The insulating layer, the coil electrode layer, and the capacitor electrode layer are arranged such that the third coil and the fourth coil are positioned between the third capacitor and the fourth capacitor in the stacking direction. To be laminated,
    The noise filter according to claim 10, wherein:
  12.  前記絶縁層と共に積層され、かつ、前記第1のコイルと前記第3のコイルとを容量結合させる結合用電極層を、
     更に備えること、
     を特徴とする請求の範囲第11項に記載のノイズフィルタ。
    A coupling electrode layer laminated with the insulating layer and capacitively coupling the first coil and the third coil;
    To provide further,
    The noise filter according to claim 11, wherein:
  13.  前記結合用電極層は、積層方向から平面視したときに、前記第1のLCフィルタと前記第3のLCフィルタとの間に渡って形成されていること、
     を特徴とする請求の範囲第12項に記載のノイズフィルタ。
    The coupling electrode layer is formed between the first LC filter and the third LC filter when viewed in plan from the stacking direction;
    The noise filter according to claim 12, wherein:
  14.  前記結合用電極層は、積層方向から平面視したときに、前記第1のコイルのコイル軸、前記第2のコイルのコイル軸、前記第3のコイルのコイル軸及び前記第4のコイルのコイル軸と重ならないように形成されていること、
     を特徴とする請求の範囲第13項に記載のノイズフィルタ。
    The coupling electrode layer has a coil axis of the first coil, a coil axis of the second coil, a coil axis of the third coil, and a coil of the fourth coil when viewed in plan from the stacking direction. Be formed so as not to overlap the shaft,
    The noise filter according to claim 13, wherein:
  15.  前記第1のコイルの両端に第5のコンデンサを形成させるコンデンサ電極を更に備えること、
     を特徴とする請求の範囲第1項ないし請求の範囲第14項のいずれかに記載のノイズフィルタ。
    A capacitor electrode for forming a fifth capacitor at both ends of the first coil;
    The noise filter according to any one of claims 1 to 14, wherein:
  16.  0.3以上0.7以下の結合係数で結合している2つのコイルからなる第1のコモンモードチョークコイルと、
     第1のコイルを含む第1のLCフィルタと、
     第2のコイルを含む第2のLCフィルタと、
     を備え、
     前記第1のコモンモードチョークコイルの2つのコイルは、前記第1のコイル及び前記第2のコイルとして兼用されていること、
     を特徴とするノイズフィルタ。
    A first common mode choke coil composed of two coils coupled with a coupling coefficient of 0.3 to 0.7;
    A first LC filter including a first coil;
    A second LC filter including a second coil;
    With
    The two coils of the first common mode choke coil are also used as the first coil and the second coil;
    Noise filter characterized by.
  17.  前記第1のコモンモードチョークコイルの結合係数は、0.3以上0.6以下であること、
     を特徴とする請求の範囲第16項に記載のノイズフィルタ。
    The coupling coefficient of the first common mode choke coil is not less than 0.3 and not more than 0.6;
    The noise filter according to claim 16, wherein:
  18.  前記第1のLCフィルタは、第1のコンデンサを、含み、
     前記第2のLCフィルタは、第2のコンデンサを、含み、
     前記第1のコイル及び前記第2のコイルは、絶縁層とコイル電極層とが積層されることにより構成されており、
     前記第1のコンデンサ及び前記第2のコンデンサは、絶縁層とコンデンサ電極層とが積層されることにより構成されており、
     前記絶縁層、前記コイル電極層及び前記コンデンサ電極層は、前記第1のコイル及び前記第2のコイルが、積層方向において、前記第1のコンデンサと前記第2のコンデンサとの間に位置するように、積層されていること、
     を特徴とする請求の範囲第16項又は請求の範囲第17項のいずれかに記載のノイズフィルタ。
    The first LC filter includes a first capacitor;
    The second LC filter includes a second capacitor;
    The first coil and the second coil are configured by laminating an insulating layer and a coil electrode layer,
    The first capacitor and the second capacitor are configured by laminating an insulating layer and a capacitor electrode layer,
    The insulating layer, the coil electrode layer, and the capacitor electrode layer are arranged such that the first coil and the second coil are positioned between the first capacitor and the second capacitor in the stacking direction. To be laminated,
    The noise filter according to any one of claims 16 and 17, characterized by the above.
  19.  前記第1のコイル及び前記第2のコイルは、積層方向から平面視したときに、同じ方向に電流が周回する構造を有していること、
     を特徴とする請求の範囲第18項に記載のノイズフィルタ。
    The first coil and the second coil have a structure in which current circulates in the same direction when viewed in plan from the stacking direction,
    The noise filter according to claim 18, wherein:
  20.  前記コンデンサ電極層は、積層方向から平面視したときに、前記第1のコイルのコイル軸及び前記第2のコイルのコイル軸と重ならないように形成された信号用電極を含むこと、
     を特徴とする請求の範囲第18項又は請求の範囲第19項のいずれかに記載のノイズフィルタ。
    The capacitor electrode layer includes a signal electrode formed so as not to overlap the coil axis of the first coil and the coil axis of the second coil when viewed in plan from the stacking direction;
    20. The noise filter according to claim 18, wherein the noise filter is characterized by the following.
  21.  前記第1のコイルと前記第2のコイルにより発生する磁束の大きさは、略等しいこと、
     を特徴とする請求の範囲第19項に記載のノイズフィルタ。
    The magnitudes of magnetic flux generated by the first coil and the second coil are substantially equal;
    The noise filter according to claim 19, wherein:
  22.  前記コンデンサ電極層は、前記第1のLCフィルタと前記第2のLCフィルタとの境界線に対して、略線対称な構造を有していること、
     を特徴とする請求の範囲第20項に記載のノイズフィルタ。
    The capacitor electrode layer has a substantially line-symmetric structure with respect to a boundary line between the first LC filter and the second LC filter;
    21. The noise filter according to claim 20, wherein:
  23.  前記コンデンサ電極層は、積層方向から平面視したときに、前記第1のコイルのコイル軸及び前記第2のコイルのコイル軸と重ならないように形成された接地用電極を含むこと、
     を特徴とする請求の範囲第18項ないし請求の範囲第22項のいずれかに記載のノイズフィルタ。
    The capacitor electrode layer includes a ground electrode formed so as not to overlap the coil axis of the first coil and the coil axis of the second coil when viewed in plan from the stacking direction;
    The noise filter according to any one of claims 18 to 22, characterized by the above-mentioned.
  24.  第3のコイル及び第3のコンデンサからなる第3のLCフィルタと、
     第4のコイル及び第4のコンデンサからなる第4のLCフィルタと、
     0.3以上0.7以下の結合係数で結合している2つのコイルからなる第2のコモンモードチョークコイルと、
     を更に備え、
     前記第3のコイル及び前記第4のコイルは、前記第2のコモンモードチョークコイルの2つのコイルとして兼用されていること、
     を特徴とする請求の範囲第16項ないし請求の範囲第23項のいずれかに記載のノイズフィルタ。
    A third LC filter comprising a third coil and a third capacitor;
    A fourth LC filter comprising a fourth coil and a fourth capacitor;
    A second common mode choke coil composed of two coils coupled with a coupling coefficient of 0.3 or more and 0.7 or less;
    Further comprising
    The third coil and the fourth coil are also used as two coils of the second common mode choke coil;
    The noise filter according to any one of claims 16 to 23.
  25.  前記第1のコモンモードチョークコイルの結合係数は、0.3以上0.6以下であること、
     を特徴とする請求の範囲第24項に記載のノイズフィルタ。
    The coupling coefficient of the first common mode choke coil is not less than 0.3 and not more than 0.6;
    25. The noise filter according to claim 24, wherein:
  26.  前記第3のLCフィルタ及び前記第4のLCフィルタは、前記第1のLCフィルタ及び前記第2のLCフィルタとは電気的に接続されていないこと、
     を特徴とする請求の範囲第24項又は請求の範囲第25項のいずれかに記載のノイズフィルタ。
    The third LC filter and the fourth LC filter are not electrically connected to the first LC filter and the second LC filter;
    26. A noise filter according to claim 24 or claim 25, wherein:
  27.  前記第1のコイルは、前記第3のコイル及び/又は前記第4のコイルと容量結合していること、
     を特徴とする請求の範囲第24項ないし請求の範囲第26項のいずれかに記載のノイズフィルタ。
    The first coil is capacitively coupled to the third coil and / or the fourth coil;
    27. The noise filter according to any one of claims 24 to 26, wherein:
  28.  前記第3のコイル及び前記第4のコイルは、絶縁層とコイル電極層とが積層されることにより構成されており、
     前記第3のコンデンサ及び前記第4のコンデンサは、絶縁層とコンデンサ電極層とが積層されることにより構成されており、
     前記絶縁層、前記コイル電極層及び前記コンデンサ電極層は、前記第3のコイル及び前記第4のコイルが、積層方向において、前記第3のコンデンサと前記第4のコンデンサとの間に位置するように、積層されていること、
     を特徴とする請求の範囲第27項に記載のノイズフィルタ。
    The third coil and the fourth coil are configured by laminating an insulating layer and a coil electrode layer,
    The third capacitor and the fourth capacitor are configured by laminating an insulating layer and a capacitor electrode layer,
    The insulating layer, the coil electrode layer, and the capacitor electrode layer are arranged such that the third coil and the fourth coil are positioned between the third capacitor and the fourth capacitor in the stacking direction. To be laminated,
    28. The noise filter according to claim 27.
  29.  前記絶縁層と共に積層され、かつ、前記第1のコイルと前記第3のコイルとを容量結合させる結合用電極層を、
     更に備えること、
     を特徴とする請求の範囲第25項に記載のノイズフィルタ。
    A coupling electrode layer laminated with the insulating layer and capacitively coupling the first coil and the third coil;
    To provide further,
    26. The noise filter according to claim 25, wherein:
  30.  前記結合用電極層は、積層方向から平面視したときに、前記第1のLCフィルタと前記第3のLCフィルタとの間に渡って形成されていること、
     を特徴とする請求の範囲第29項に記載のノイズフィルタ。
    The coupling electrode layer is formed between the first LC filter and the third LC filter when viewed in plan from the stacking direction;
    30. A noise filter according to claim 29, wherein:
  31.  前記結合用電極層は、積層方向から平面視したときに、前記第1のコイルのコイル軸、前記第2のコイルのコイル軸、前記第3のコイルのコイル軸及び前記第4のコイルのコイル軸と重ならないように形成されていること、
     を特徴とする請求の範囲第30項に記載のノイズフィルタ。
    The coupling electrode layer has a coil axis of the first coil, a coil axis of the second coil, a coil axis of the third coil, and a coil of the fourth coil when viewed in plan from the stacking direction. Be formed so as not to overlap the shaft,
    The noise filter according to claim 30, wherein:
  32.  前記第1のコイルの両端に第5のコンデンサを形成させるコンデンサ電極を更に備えること、
     を特徴とする請求の範囲第16項ないし請求の範囲第31項のいずれかに記載のノイズフィルタ。
    A capacitor electrode for forming a fifth capacitor at both ends of the first coil;
    32. The noise filter according to claim 16, wherein the noise filter is any one of claims 16 to 31.
  33.  請求の範囲第16項に記載のノイズフィルタと、
     第1の信号線ないし第4の信号線からなる差動伝送路と、
     を備え、
     前記第1のLCフィルタは、前記第1の信号線と前記第2の信号線との間に接続されており、
     前記第2のLCフィルタは、前記第3の信号線と前記第4の信号線との間に接続されていること、
     を特徴とする電子装置。
    A noise filter according to claim 16,
    A differential transmission line comprising a first signal line to a fourth signal line;
    With
    The first LC filter is connected between the first signal line and the second signal line,
    The second LC filter is connected between the third signal line and the fourth signal line;
    An electronic device characterized by the above.
  34.  請求の範囲第24項に記載のノイズフィルタと、
     第1の信号線ないし第8の信号線からなる差動伝送路と、
     前記第1のLCフィルタは、前記第1の信号線と前記第2の信号線との間に接続されており、
     前記第2のLCフィルタは、前記第3の信号線と前記第4の信号線との間に接続されており、
     前記第3のLCフィルタは、前記第5の信号線と前記第6の信号線との間に接続されており、
     前記第4のLCフィルタは、前記第7の信号線と前記第8の信号線との間に接続されていること、
     を特徴とする電子装置。
    The noise filter according to claim 24,
    A differential transmission path comprising a first signal line to an eighth signal line;
    The first LC filter is connected between the first signal line and the second signal line,
    The second LC filter is connected between the third signal line and the fourth signal line,
    The third LC filter is connected between the fifth signal line and the sixth signal line;
    The fourth LC filter is connected between the seventh signal line and the eighth signal line;
    An electronic device characterized by the above.
PCT/JP2009/054719 2008-03-12 2009-03-12 Noise filter and electronic device using the same WO2009113604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980108212.9A CN101960716B (en) 2008-03-12 2009-03-12 Noise filter and electronic device using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008063342A JP4466751B2 (en) 2008-03-12 2008-03-12 Noise filter
JP2008-063342 2008-03-12
JP2008268826 2008-10-17
JP2008-268826 2008-10-17
JP2009055046A JP4412420B1 (en) 2008-10-17 2009-03-09 Noise filter and electronic device equipped with the same
JP2009-055046 2009-03-09

Publications (1)

Publication Number Publication Date
WO2009113604A1 true WO2009113604A1 (en) 2009-09-17

Family

ID=41065265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054719 WO2009113604A1 (en) 2008-03-12 2009-03-12 Noise filter and electronic device using the same

Country Status (1)

Country Link
WO (1) WO2009113604A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738368A (en) * 1993-07-20 1995-02-07 Tdk Corp 180× phase shifter
WO2001067470A1 (en) * 2000-03-08 2001-09-13 Matsushita Electric Industrial Co., Ltd. Noise filter and electronic device using noise filter
JP2003116267A (en) * 2001-10-05 2003-04-18 Canon Inc Power source
JP2005295102A (en) * 2004-03-31 2005-10-20 Otowa Denki Kogyo Kk Filter
JP2007027445A (en) * 2005-07-15 2007-02-01 Murata Mfg Co Ltd Laminated common mode choke coil
JP2007134594A (en) * 2005-11-11 2007-05-31 Murata Mfg Co Ltd Common mode choke coil
JP2007159069A (en) * 2005-12-09 2007-06-21 Toko Inc Layered common mode filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738368A (en) * 1993-07-20 1995-02-07 Tdk Corp 180× phase shifter
WO2001067470A1 (en) * 2000-03-08 2001-09-13 Matsushita Electric Industrial Co., Ltd. Noise filter and electronic device using noise filter
JP2003116267A (en) * 2001-10-05 2003-04-18 Canon Inc Power source
JP2005295102A (en) * 2004-03-31 2005-10-20 Otowa Denki Kogyo Kk Filter
JP2007027445A (en) * 2005-07-15 2007-02-01 Murata Mfg Co Ltd Laminated common mode choke coil
JP2007134594A (en) * 2005-11-11 2007-05-31 Murata Mfg Co Ltd Common mode choke coil
JP2007159069A (en) * 2005-12-09 2007-06-21 Toko Inc Layered common mode filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEHO YAMAMURA: "Teihon Troidal Core Katsuyo Hyakka revised new edition", 15 December 2006, CQ PUBLISHING CO., LTD., pages: 354 - 355 *

Similar Documents

Publication Publication Date Title
JP5613979B2 (en) Noise filter
CN106058395B (en) Stacking complex electronic device comprising coil and capacitor
US10944375B2 (en) Multilayer band pass filter
US9755606B2 (en) Common mode filter and ESD-protection-circuit-equipped common mode filter
CN103166588B (en) Band pass filter
US20150214915A1 (en) Common mode filter
JP6074653B2 (en) Common mode noise filter
JP2004274161A (en) Noise suppression circuit
KR20060101342A (en) Multilayer condenser
TW201820781A (en) LC filter
JP2011004324A (en) Laminated composite filter
JP4412420B1 (en) Noise filter and electronic device equipped with the same
JP4434301B2 (en) LC composite electronic components
CN101960716B (en) Noise filter and electronic device using the same
WO2009113604A1 (en) Noise filter and electronic device using the same
JP5725158B2 (en) Electronic components
JP2011049622A (en) Filter part
JP2003087074A (en) Laminated filter
JP4466751B2 (en) Noise filter
JP5439797B2 (en) Noise filter
JP4636280B2 (en) Bandpass filter
JP5568901B2 (en) Noise filter
JP4505440B2 (en) Multilayer high-pass filter
WO2021205793A1 (en) Lc resonator and lc filter
JP6773218B2 (en) Electronic components

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108212.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718693

Country of ref document: EP

Kind code of ref document: A1