JP2007156084A - 光学部品の製造方法 - Google Patents

光学部品の製造方法 Download PDF

Info

Publication number
JP2007156084A
JP2007156084A JP2005350703A JP2005350703A JP2007156084A JP 2007156084 A JP2007156084 A JP 2007156084A JP 2005350703 A JP2005350703 A JP 2005350703A JP 2005350703 A JP2005350703 A JP 2005350703A JP 2007156084 A JP2007156084 A JP 2007156084A
Authority
JP
Japan
Prior art keywords
line
space
sacrificial layer
optical component
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005350703A
Other languages
English (en)
Inventor
Junichi Sakamoto
淳一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005350703A priority Critical patent/JP2007156084A/ja
Publication of JP2007156084A publication Critical patent/JP2007156084A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

【課題】誘電体によるラインアンドスペース構造を積層するに際し、微細な積層構造を形成することができ、光学的機能を損なわず、光吸収の発生を抑制することが可能となる光学部品の製造方法を提供する。
【解決手段】光学部品の製造方法において、つぎの(1)〜(3)の工程を有する構成とする。
(1)誘電体による第1のラインアンドスペース構造における中空構造のスペース部に、該第1のラインアンドスペース構造を形成する材料と選択比の高い材料による犠牲層を埋め込むに際し、前記中空構造の底部中空部を残して、前記犠牲層を埋め込む工程。
(2)平坦化処理を施して誘電体による第2の構造部材を形成し、該第2の構造部材をパターニングしてラインアンドスペース構造を形成する工程。
(3)前記第1のラインアンドスペース構造の中空構造のスペース部に埋め込んだ犠牲層を、エッチングにより取り除く工程。
【選択図】 図1

Description

本発明は、光学部品の製造方法に関し、特にプロジェクタや、放送機器用カメラなどに用いられる可視光領域(波長、約400〜700nm)で機能する偏光ビームスプリッタなどの光学部品の製造方法に関するものである。
フォトニック結晶は、屈折率の異なる媒質を半波長程度の間隔で交互に並べた人口結晶であり、光に対するバンドギャップを形成することによって、光を自在にコントロールし得るものとして、近年において注目を集めている。
このようなフォトニック結晶によるものとして、例えば、特許文献1では、ラインアンドスペース構造を積層して得られる、フォトニック結晶導波路が提案されている。
ここでは、まず、基板上にGaAs層が設けられ、フォトリソグラフィーとRIE(Reactive Ion Etching)とを利用し、ラインアンドスペース構造が得られる。
このラインアンドスペース構造の積層方法として、このラインアンドスペース構造を有する基板を、ラインが接するように重ね合わせ、H雰囲気で、650℃程度に加熱することにより、ライン構造同士を融着させる方式が、開示されている。
一方、中空構造を得るために、犠牲層を用いることは、マイクロマシンの製造方法において、一般的に用いられる手法である。
例えば、特許文献2では、静電マイクロモータの製造方法において、SiO層、あるいは、PSG(リン珪酸ガラス)層を、犠牲層として、HF系溶液でウエットエッチングにより、取り除いている。
また、特許文献3では、フォトレジストを犠牲層とし、フォトレジストをスピンコート、パターニング、成膜を繰り返し、最後に犠牲層をドライエッチングすることにより、ミラーデバイスを得ようとするものである。
特開2001−74955号公報 特開平4−328715号公報 米国特許第4,662,746号明細書
しかしながら、上記従来例の特許文献1によるラインアンドスペース構造の積層方法は、つぎのような問題を有している。
この方法を用いた場合、水素が拡散することにより、共有結合や金属結合を実現することができる金属や半導体ではライン構造同士を有効に接合できるものの、誘電体への適応は困難である。
また、可視域において透過光学系で機能させる光学部品は、その構成要素として、金属や半導体材料を用いた場合、光吸収が生じ、好ましくない。
また、可視光量域で機能する光学部品を製造するに際し、上記従来例の特許文献1や特許文献2の犠牲層プロセスをそのまま適用させることは困難である。
すなわち、上記従来例はマイクロマシンの製造方法であり、犠牲層を取り除くための開口部は、数μmから数十μmの広さを持っていることから、可視光量域で機能する光学部品の製造にそのまま適用させることは困難である。
すなわち、可視光量域で機能する偏光ビームスプリッタ等を作成するに際しては、ラインアンドスペース構造におけるビッチを微細に構成することが必要となる。
例えば、後に詳細に説明する図2示される本発明の一つの構成例でもある偏光ビームスプリッタ等を作成するに際しては、図3、図4に示されるように、ラインアンドスペース構造におけるビッチP1およびP2は140nm程度の微細な構造が必要となる。
これらのピッチが大きい場合、可視域の回折現象で、異常分散が発生し、特定の波長領域の信号を弱めてしまう現象が発生する。
また、図3、図4に示されるように、ラインアンドスペース構造におけるL1は40nm、S1は100nm、L2は95nm、S2は、45nm程度である。ここで、屈折率は、構造部材であるTiOと、スペース部の空気の比率で定義される。
したがって、図2に示されるように、スペースが広い符号8a、8bで記された層は、低屈折率層として機能する。また、スペース部の狭い符号9で示された層は、高屈折率層として機能する。
ここで、上記従来例の特許文献1や特許文献2の犠牲層プロセスを用いて、低屈折率層8a上に高屈折率層9を設ける場合の模式図を、図10に示す。
図10(a)において、TiOをラインアンドスペース構造102に、パターニングした基板101を準備する。
ライン幅は40nm、高さは400nmであり、スペース部のアスペクト比は4である。パターニングは、従来のフォトリソ法を用いることで、実現可能である。
次に、図10(b)において、この基板に、犠牲層となる有機物材料110を埋め込み、平坦化する。
有機物は、アクリル、ポリスチレン、ポリカーボネートなど、犠牲層除去の際TiOと選択比の取れる材料であれば良い。あるいは、金属などの酸やアルカリでエッチング可能な材料も使用可能である。
次に、図10(c)において、犠牲層の余分な部分を、RIEやCMPなどの手法を用いて、TiOライン上面が露出するまで、エッチングを行う。そして、犠牲層埋め込み構造111を得る。
次に、図10(d)において、高屈折率層となる、TiO層105を形成する。この形成方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法など、物理的成膜法を用いることが可能である。
その後、フォトリソ法を用いて、低屈折率層と直行する方向に、ラインアンドスペース構造を設ける。ライン幅は95nm、高さは70nmであり、スペース部のアスペクト比は1.56である。
最後に、図10(e)において、高屈折率層のスペース部より、犠牲層を取り除く。
このとき、ドライの手法では、プラズマアッシング、RIEなどが用いられ、ウエット手法では、酸、アルカリ、有機溶剤などの、等方性エッチング手法が用いられる。
前述のように、低屈折率層のスペース部のアスペクト比は、4と大きい。
また、高屈折率層の開口部は45nmと狭いため、いずれの手法を用いた場合でも、図10(e)に示すように、犠牲層材料112がスペース構造底部に残留してしまうという問題が発生する。
この残留物は、低屈折率層の屈折率を上昇させ、かつ、エッチングにより変質しているため、可視域における光の吸収原因となり、偏光ビームスプリッタの分光特性を劣化させる原因となる。
以上のように、可視光量域で機能する光学部品、例えば上記した偏光ビームスプリッタのような光学部品を製造するに際し、上記従来例の特許文献1や特許文献2の犠牲層プロセスをそのまま適用させることは困難である。
本発明は、誘電体によるラインアンドスペース構造を積層するに際し、微細な積層構造を形成することができ、光学的機能を損なわず、光吸収の発生を抑制することが可能となる光学部品の製造方法を提供することを目的とするものである。
本発明は、上記課題を解決するため、つぎのように構成した光学部品の製造方法を提供するものである。
本発明の光学部品の製造方法は、中空構造によるラインアンドスペース構造を積層して構成された光学部品の製造方法において、つぎの(1)〜(3)の工程を有することを特徴とするものである。
(1)誘電体による第1のラインアンドスペース構造における中空構造のスペース部に、該第1のラインアンドスペース構造を形成する材料と選択比の高い材料による犠牲層を埋め込むに際し、前記中空構造の底部中空部を残して、前記犠牲層を埋め込む工程。
(2)前記犠牲層を埋め込んだ後、平坦化処理を施して前記第1のラインアンドスペース構造の上に誘電体による第2の構造部材を形成し、該第2の構造部材をパターニングしてラインアンドスペース構造を形成する工程。
(3)前記第2の構造部材をパターニングした後、前記第1のラインアンドスペース構造の中空構造のスペース部に埋め込んだ犠牲層を、エッチングにより取り除く工程。
を有することを特徴とする光学部品の製造方法。
また、本発明の光学部品の製造方法は、前記犠牲層を埋め込む工程において、ラミネート法を用いて前記犠牲層を埋め込むことを特徴としている。
また、本発明の光学部品の製造方法は、前記犠牲層を埋め込む工程において、Alを斜入射蒸着する方法を用いて前記犠牲層を埋め込むことを特徴としている。また、本発明の光学部品の製造方法は、前記第1のラインアンドスペース構造及び第2の構造部材によるラインアンドスペース構造は、スペース部の幅が100nm以下に形成されていることを特徴としている。
また、本発明の光学部品の製造方法は上記したいずれかに記載の光学部品の製造方法により製造されたラインアンドスペース構造を用い、光学部品として偏光ビームスプリッタを製造することを特徴としている。
また、本発明の光学部品の製造方法は、上記したいずれかに記載の光学部品の製造方法により製造されたラインアンドスペース構造を用い、光学部品として位相板を製造することを特徴としている。
本発明によれば、誘電体によるラインアンドスペース構造を積層するに際し、微細な積層構造を形成することができ、光学的機能を損なわず、光吸収の発生を抑制することが可能となる。
本発明は、上記構成により、誘電体のラインアンドスペース構造を積層して得られる、可視域で機能する光学部品において、微細なラインアンドスペースの構造でも、積層構造を実現することができる。
また、その光学的機能を損なわず、低吸収の光学素子を製造する方法を提供することができる。
それは、本発明者のつぎのような知見に基づくものである。
すなわち、第1の誘電体のスペース部を、第1のライン構造材料と選択比の高い犠牲層材料で埋め込むに際し、犠牲層材料を、第1の誘電体スペース部の中間まで埋め込み、底部は、中空構造を維持するようにする。
前記犠牲層材料を埋め込んだ後、平坦化処理を施して第2の構造部材を形成しパターニングした後、前記第1のラインアンドスペース構造のスペース部に埋め込んだ材料を、エッチングにより取り除く。
エッチング工程において、取り除くことが困難な、狭いスペースの底部に犠牲層が残存することがなく、これにより偏光ビームスプリッタ等の分光特性を劣化させる原因を排除することが可能となることが見出された。
特に、スペース部が狭い100nm以下の構造の作成が可能となり、可視光領域において有益な、偏光ビームスプリッタ、位相板などの光学部品の製造方法を実現することができる。
以下に、本発明の実施例について説明する。
[実施例1]
実施例1では、本発明を適用した誘電体のラインアンドスペース構造を積層して得られる、可視域で機能する偏光ビームスプリッタの製造方法について説明する。
図1に、本実施例における偏光ビームスプリッタを得るためのラインアンドスペース構造の製造方法を説明する図を示す。
図1において、1は基板、2はTiOによるラインアンドスペース構造、3、4は犠牲層、5はTiO、6は中空構造である。
作成に際して、まず、ガラス基板1に、TiOによるラインアンドスペース構造2を設けた基板1を準備する。
このTiOによるラインアンドスペース構造は、TiOをスパッタリング法で成膜した後、フォトリソグラフィー法でレジストをパターニングし、ICPエッチング装置にてTiOのスペース部をエッチングした。
その後、残りのレジストを剥離して基板を得た(図1(a))。
フォトリソグラフィー法において、露光は、干渉露光法、EB描画法、ステッパを用いる方法などがあるが、本実施例では、干渉露光法を使用した。
光源はNd−YAGの4倍波である266nmのレーザを用い、基板の法線方向に対する光線入射角を71.8°とし、2光束干渉法にて、ラインアンドスペース構造を実現した。
得られたTiO層2のライン幅は40nm、スペース幅は100nm、高さは400nmであった。
次に、この基板に、犠牲層をつぎのように形成した。
この犠牲層材料として、日立化成社製ドライフィルムPF9150を用いた。
ドライフィルムは、一般的にPETフィルムにフォトレジストを、ワイヤーバーで塗布乾燥し、保護フィルムでラミネートしたもので、フォトレジストの膜厚は、様々な物がある。今回は、もっとも薄い2.3μmの物を使用した。
このドライフィルムの保護フィルムを剥がし、上記基板のTiOライン上に空気が入らないよう密着させ、ラミネータに通した。
ラミネート条件は、ロール温度80℃、送りスピード0.5m/分、ロール圧力:0.4Mpaである。
これらの条件を調節することにより、スペース部に入り込む犠牲層(フォトレジスト)の量を決定することができる。
ラミネート後、PETフィルムを剥離して犠牲層3を得た(図1(b))。
ここで、SEMにより、断面観察をした結果、犠牲層のスペース部への押し込み平均深さは120nmであった。
また、犠牲層が基板部へ達する個所は無く、TiO層2のライン構造を破壊すること無く、中空構造を維持していた。
また、押し込まれる深さに対して、レジスト層の厚さは厚いため、表面は、平坦性を維持していた。
次に、この基板を、RIE装置にて、表面の犠牲層を除去し、TiO層2のラインの表面が露出するまで、酸素ガス雰囲気中でエッチングした。
エッチングレートは500nm/分で、4分25秒実施した。
これにより、スペース上部に犠牲層4が残留した状態で、TiO層2のラインの表面が露出した第1の基板を得た(図1(c))。
次に、スパッタリング法によりTiO層を成膜した。その後、上記TiO層2のラインと同様にして、フォトリソグラフィー法でレジストをパターニングし、ICPエッチング装置にてTiOのスペース部をエッチングした。
その後、残りのレジストを剥離してTiO層5による第2の基板を得た(図1(d))。
得られたTiO層5のライン幅は95nm、スペース幅は45nm、高さは70nmであった。
次に、プラズマアッシング装置を用いて、酸素ガス雰囲気中で犠牲層4の除去を行った。
圧力は2.66Pa、RFパワーは1000Wで、5分保持した。
その後、装置から取り出し、断面をSEMで観察した結果、中空構造のスペース部6には、犠牲層は残留すること無く、すべて取り除かれていた。
こうして、TiO層2とTiO層5との2層からなるラインアンドスペース構造を得た(図1(e))。
その後、同様のプロセスを繰り返し、第1の基板であるTiO層2のラインアンドスペース構造と同様のパターンルールで、第3のTiO層のラインアンドスペース構造を形成し、3層構造とした後、対向するガラス基板を接着する。
これにより、可視光量域で機能する偏光ビームスプリッタを得た。
図2に、本実施例により得られた上記偏光ビームスプリッタの構成を示す。
図2において、7aおよび7bは、ガラス部材で構成されたプリズム基板、8aおよび8bはTiOで構成された低屈折率層、9はTiOで構成された高屈折率層である。
また、図3にそのa−a’断面を、図4にb−b’断面をそれぞれ示す。
図3において、P1、L1、S1は、それぞれ、低屈折率層8aおよび低屈折率層8bのピッチ幅、ライン幅、スペース幅である。
また、図4において、P2、L2、S2は、高屈折率層9のピッチ幅、ライン幅、スペース幅である。
本実施例の偏光ビームスプリッタでは、P1およびP2は140nm程度の微細な構造を得ることができた。
この偏光ビームスプリッタの分光特性を測定した。その結果を、図5に示す。図5中の、縦軸は透過率、横軸は波長、●はS偏光成分、◆はP偏光成分の値を示す。
この結果、可視域において、異常分散も無く、可視域において光吸収も発生していない、消光比の高い優れた特性の偏光ビームスプリッタが得られた。
[実施例2]
実施例2においては、本発明を適用した位相板の製造方法について説明する。図6に、本実施例における位相板を説明する図を示す。
図6において、13は基板、14はTaによるラインアンドスペース構造、15はTa層、16はSiO層である。
作成に際して、まず、ガラス基板13に、Taのラインアンドスペース構造である14を設けた基板を準備する。
このTaラインアンドスペース構造は、Taをスパッタリング法で成膜した後、フォトリソグラフィー法でレジストをパターニングし、ICPエッチング装置にてTaのスペース部をエッチングした。その後、残りのレジストを剥離して基板を得た。
フォトリソグラフィー法において、露光は、実施例1と同様、干渉露光法を使用した。
光源はNd−YAGの4倍波である266nmのレーザを用い、基板の法線方向に対する光線入射角を56.2°とし、2光束干渉法にて、ラインアンドスペース構造を実現した。
得られたTa層14のライン幅は130nm、スペース幅は30nm、高さは960nmであった。
次に、この基板に、犠牲層を形成した。犠牲層材料として東京応化工業(株)社製ドライフィルムUS−230を用いた。ドライフィルムのレジスト厚は20μmである。
このドライフィルムの保護フィルムを剥がし、上記基板のTaライン上に空気が入らないよう密着させ、ラミネータに通した。
ラミネート条件は、ロール温度90℃、送りスピード0.5m/分、ロール圧力:0.6Mpaである。
ラミネート後、PETフィルムを剥離して犠牲層を得た。
ここで、SEMにより、断面観察をした結果、犠牲層のスペース部への押し込み平均深さは280nmであった。
また、犠牲層が基板部へ達する個所は無く、Taライン構造を破壊することも無く、中空構造を維持していた。
また、押し込まれる深さに対して、レジスト層の厚さは厚いため、表面は、平坦性を維持していた。
次に、この基板を、RIE装置にて、表面の犠牲層を除去し、第1のTaラインの表面が露出するまで、酸素ガス雰囲気中でエッチングした。
エッチングレートは1000nm/分で、19分45秒実施した。
その結果、スペース上部に犠牲層が残留した状態で、Taラインの表面が露出した基板を得た。
次に、スパッタリング法によりTa層を240nmの厚さで成膜した後、SiO層を100nmの厚さで、積層成膜した。
その後、第1の層と同様にして、フォトリソグラフィー法でレジストをパターニングし、ICPエッチング装置にてTaとSiOのスペース部をエッチングした。
その後、残りのレジストを剥離してTaのラインアンドスペース構造15およびSiOのラインアンドスペース構造16を得た。
得られた積層構造のライン幅は96nm、スペース幅は64nm、高さは340nmであった。Taの高さは、240nm、SiOの高さは、100nmであった。
次に、プラズマアッシング装置を用いて、酸素ガス雰囲気中で犠牲層の除去を行った。
圧力は2.66Pa、RFパワーは1000Wで、5分保持した。その後、装置から取り出し、断面をSEMで観察した結果、スペース部には、犠牲層は残留すること無く、すべて取り除かれていた。
こうして、Taによるラインアンドスペース構造14とTa層15からなる2層のTa上に、1層のSiO層16が積層されたラインアンドスペース構造を得た。
こうして得られた光学素子は、位相板として機能する。最終層に積層されたSiOパターンは、反射防止効果を増大させる働きがある。
この位相板の分光特性を測定した。測定は、垂直入射で、行った。その結果を、図7に示す。
図7中の、縦軸は透過率、横軸は波長、●は、その波長における透過率の値を示す。
この結果、可視域において、透過率が高い位相板が得られた。
また、分光エリプソメータにより、可視域の位相差を測定した結果を図8に示す。縦軸は位相差である。
これによると可視域全域において、90±10°の位相差を持っており、可視域において平坦な位相特性を示すことがわかった。
この特性は、水晶板(位相差90±25°)を用いた位相板よりも優れており、光学部品として有効であることが確認できた。
[実施例3]
実施例3においては、図1(a)の基板に対し、45°の方向から、Alを斜入射蒸着で成膜した。
そのときの断面を図9(a)に示す。
Al層17の表面は、凹凸が発生していた。
この基板を、リン酸16、硝酸2、酢酸1、水1の割合で混合した、混酸溶液に3分間浸漬し、等方性のウエットエッチング処理を実施した。
その結果、TiOライン構造の上部が10nm露出した、Alの埋め込み構造18を得た。
この基板に対し、実施例1と同様に、成膜、フォトリソ工程を経た後、埋め込まれたAlを上記混酸溶液に10分間浸漬し、完全に取り除いた(図9(b))。以下、実施例1と同様にして、偏光特性の優れた偏光ビームスプリッタが得られた。
(比較例1)
比較例1を、前述した従来例と同様の図10に示す方法により、2層からなるTiOによるラインアンドスペース構造を作成した。
実施例1と同様にして、第1のTiOラインアンドスペース構造102を得た(図10(a)参照)。
この基板に、犠牲層110を形成した。犠牲層材料として、化薬マイクロケム社製のSU8−3000を、スピンコート法にて塗布後、180℃で1分間、ホットプレートにてプリベークを行った。基板冷却後、同様のスピンコート処理を、繰り返し施した。これは、犠牲層110の表面を平坦化するためである(図10(b)参照)。
この基板の断面をSEMで観察した結果、TiOラインアンドスペースパターン上の犠牲層110の厚さは90nmであった。
次に、この基板を、RIE装置にて、表面の犠牲層110を除去し、第1のTiOラインの表面が露出するまで、酸素ガス雰囲気中でエッチングした。エッチングレートは50nm/分で、2分間実施した。その結果、スペース内部に犠牲層111が残留した状態で、TiOラインの表面が露出した基板を得た(図10(c)参照)。
次に、スパッタリング法によりTiO層105を成膜した。その後、第1の層と同様にして、フォトリソグラフィー法でレジストをパターニングし、ICPエッチング装置にてTiOのスペース部をエッチングした。その後、残りのレジストを剥離して基板を得た(図10(d)参照)。
得られたTiO層105のライン幅は95nm、スペース幅は45nm、高さは70nmであった。
次に、プラズマアッシング装置を用いて、酸素ガス雰囲気中で犠牲層の除去を行った。
圧力は2.66Pa、RFパワーは1000Wで、20分保持した。
その後、装置から取り出し、断面をSEMで観察した結果、中空構造のスペース部106に、犠牲層変質物112が残留しており、すべてを取り除くことはできなかった(図10(e)参照)。
さらに、同様のプロセスを繰り返し、第1のTiOラインアンドスペース構造と同様のパターンルールで第3のTiOラインアンドスペース構造を形成し、3層構造とした後、対向するガラス基板を接着し、偏光ビームスプリッタを得た。
この偏光ビームスプリッタの分光特性を測定した。その結果を、図11に示す。
図11中の、縦軸は透過率、横軸は波長、●はS偏光成分、◆はP偏光成分の値を示す。
この結果、可視域において、アノマリーなどの異常分散は無いものの、可視域、特に短波長側で光吸収が、大きく発生して、このように得られた偏光ビームスプリッタは、可視用光学部品として使用できないことが判明した。
(比較例2)
実施例2において、犠牲層の埋め込みを、比較例1と同様の製造方法でサンプルを作成した。
その結果、比較例1と同様、可視域、特に短波長側で光吸収が、大きく発生して、このように得られた位相板は、可視用光学部品として使用できないことが判明した。
本発明の実施例1における偏光ビームスプリッタを得るためのラインアンドスペース構造の製造方法を説明する図。 本発明の実施例1におけるラインアンドスペース構造の製造方法で得られた偏光ビームスプリッタの模式図。 図2のa−a’断面図。 図2のb−b’断面図。 本発明の実施例1におけるラインアンドスペース構造の製造方法で得られた偏光ビームスプリッタの分光特性図。 本発明の実施例2における位相板の模式図。 本発明の実施例2における位相板の分光特性図。 本発明の実施例2における位相板の位相特性図。 本発明の実施例3における偏光ビームスプリッタを得るためのラインアンドスペース構造の製造方法を説明する図。 従来例及び比較例における偏光ビームスプリッタを得るためのラインアンドスペース構造の製造方法を説明する図。 比較例で得られた偏光ビームスプリッタの分光特性図。
符号の説明
1、13:基板
2、5、8a、8b、9:TiO
3、4、10、11:犠牲層
6:中空構造のスペース部
7a、7b:プリズム
14、15:Ta
16:SiO
17:Al
18:Al埋め込み構造





Claims (6)

  1. 中空構造によるラインアンドスペース構造を積層して構成された光学部品の製造方法であって、
    誘電体による第1のラインアンドスペース構造における中空構造のスペース部に、該第1のラインアンドスペース構造を形成する材料と選択比の高い材料による犠牲層を埋め込むに際し、前記中空構造の底部中空部を残して、前記犠牲層を埋め込む工程と、
    前記犠牲層を埋め込んだ後、平坦化処理を施して前記第1のラインアンドスペース構造の上に誘電体による第2の構造部材を形成し、該第2の構造部材をパターニングしてラインアンドスペース構造を形成する工程と、
    前記第2の構造部材をパターニングした後、前記第1のラインアンドスペース構造の中空構造のスペース部に埋め込んだ犠牲層を、エッチングにより取り除く工程と、
    を有することを特徴とする光学部品の製造方法。
  2. 前記犠牲層を埋め込む工程において、ラミネート法を用いて前記犠牲層を埋め込むことを特徴とする請求項1に記載の光学部品の製造方法。
  3. 前記犠牲層を埋め込む工程において、Alを斜入射蒸着する方法を用いて前記犠牲層を埋め込むことを特徴とする請求項1に記載の光学部品の製造方法。
  4. 前記第1のラインアンドスペース構造及び第2の構造部材によるラインアンドスペース構造は、スペース部の幅が100nm以下に形成されていることを特徴とする請求項1〜3のいずれか1項に記載の光学部品の製造方法。
  5. 請求項1〜4のいずれか1項に記載の光学部品の製造方法により製造されたラインアンドスペース構造を用い、光学部品として偏光ビームスプリッタを製造することを特徴とする光学部品の製造方法。
  6. 請求項1〜4のいずれか1項に記載の光学部品の製造方法により製造されたラインアンドスペース構造を用い、光学部品として位相板を製造することを特徴とする光学部品の製造方法。
JP2005350703A 2005-12-05 2005-12-05 光学部品の製造方法 Pending JP2007156084A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350703A JP2007156084A (ja) 2005-12-05 2005-12-05 光学部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350703A JP2007156084A (ja) 2005-12-05 2005-12-05 光学部品の製造方法

Publications (1)

Publication Number Publication Date
JP2007156084A true JP2007156084A (ja) 2007-06-21

Family

ID=38240535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350703A Pending JP2007156084A (ja) 2005-12-05 2005-12-05 光学部品の製造方法

Country Status (1)

Country Link
JP (1) JP2007156084A (ja)

Similar Documents

Publication Publication Date Title
US7929209B2 (en) Optical element and method of manufacturing optical element with each of first and second layers having a repetition structure
JP4614916B2 (ja) 窪みの形成方法、枠型の形成方法および枠型
JP2006330178A (ja) 光学装置及び光学装置の製造方法
CN102414585A (zh) 光学元件、偏振滤光器、光学隔离器和光学设备
JPH1059746A (ja) 光学素子の製造方法
US20090168170A1 (en) Wire grid polarizer and method for fabricating the same
US20070267057A1 (en) Optical device and method of forming the same
EP0273792A1 (fr) Procédé de réalisation sur un substrat d'éléments espacés les uns des autres
CN100449336C (zh) 光学元件及制造光学元件的方法
JP2007156084A (ja) 光学部品の製造方法
JP5404227B2 (ja) 光学素子の製造方法および光学素子
US8305686B2 (en) Method for producing optical element and the optical element
JP2001318247A (ja) 3次元フォトニック結晶体及びその製造方法
US8309176B2 (en) Manufacturing method of three-dimensional structure
JP2009139793A (ja) 光学素子およびその製造方法
JP6992980B2 (ja) 光触媒作用を有する積層構造体の製造方法
TWI517241B (zh) 圖案化偏光膜的製作方法
CA2367064A1 (en) Methods of fabricating etched structures
Astrova et al. 1D Periodic Structures Obtained by Deep Anisotropic Etching of Silicon
JP2006189496A (ja) 光学部品及びその製造方法
JPH11125728A (ja) パターン作製方法
JP2008286830A (ja) 3次元フォトニック結晶の製造方法
JP2007003810A (ja) 光学素子およびその製造方法
JPS6199916A (ja) 薄膜磁気ヘツドの製造方法
JPH04286707A (ja) 薄膜磁気ヘッド