JP2007144348A - 液滴吐出装置 - Google Patents
液滴吐出装置 Download PDFInfo
- Publication number
- JP2007144348A JP2007144348A JP2005344649A JP2005344649A JP2007144348A JP 2007144348 A JP2007144348 A JP 2007144348A JP 2005344649 A JP2005344649 A JP 2005344649A JP 2005344649 A JP2005344649 A JP 2005344649A JP 2007144348 A JP2007144348 A JP 2007144348A
- Authority
- JP
- Japan
- Prior art keywords
- head
- droplet
- arrow direction
- droplet discharge
- ejection head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Coating Apparatus (AREA)
Abstract
【課題】捨て打ち動作(フラッシング動作)に要する時間の短縮化を図り、液滴からなるパターンの生産性を向上させた液滴吐出装置を提供する。
【解決手段】マザー基板2MのY矢印方向外側及び反Y矢印方向外側に、それぞれ走査領域E内であって、マザー基板2MのY矢印方向及び反Y矢印方向の全体にわたって配置変更可能な第1吸収部材44A及び第2吸収部材44Bを配設した。そして、吐出ヘッドがマザー基板2MのY矢印方向外側及び反Y矢印方向外側(「フラッシング軌跡FR」)で走査されるときに、第1吸収部材44A及び第2吸収部材44Bを、それぞれ吐出ヘッドの直下に相対させるようにした。
【選択図】図3
【解決手段】マザー基板2MのY矢印方向外側及び反Y矢印方向外側に、それぞれ走査領域E内であって、マザー基板2MのY矢印方向及び反Y矢印方向の全体にわたって配置変更可能な第1吸収部材44A及び第2吸収部材44Bを配設した。そして、吐出ヘッドがマザー基板2MのY矢印方向外側及び反Y矢印方向外側(「フラッシング軌跡FR」)で走査されるときに、第1吸収部材44A及び第2吸収部材44Bを、それぞれ吐出ヘッドの直下に相対させるようにした。
【選択図】図3
Description
本発明は、液滴吐出装置に関する。
従来、液晶表示装置やエレクトロルミネッセンス表示装置等の表示装置には、画像を表示するための基板が備えられている。この種の基板には、品質管理や製造管理を目的として、その製造元や製品番号等の製造情報をコード化した識別コード(例えば、2次元コード)が形成されている。
こうした識別コードの製造方法には、金属箔にレーザ光を照射してコードパターンをスパッタ成膜するレーザスパッタ法や、研磨材を含んだ水を基板等に噴射してコードパターンを刻印するウォータージェット法が提案されている(特許文献1、特許文献2)。
しかし、上記レーザスパッタ法では、所望するサイズのコードパターンを得るために、金属箔と基板の間隙を、数〜数十μmに調整しなければならない。そのため、基板と金属箔の表面に対して非常に高い平坦性が要求されて、しかも、これらの間隙をμmオーダの精度で調整しなければならなかった。その結果、識別コードを製造する対象基板が制限されて、その汎用性を損なう問題があった。また、ウォータージェット法では、基板の刻印時に、水や塵埃、研磨剤等が飛散するため、対象基板を汚染させる問題があった。
そこで、近年では、上記生産上の問題を解消する識別コードの製造方法として、インクジェット法が注目されている。インクジェット法は、金属微粒子を含む液滴を液滴吐出ヘッドのノズルから吐出して、その液滴を乾燥させることによってコードパターンを製造する。そのため、識別コードを製造する対象基板の範囲を容易に拡大させることができて、対象基板を汚染させることなく識別コードを製造することができる。
特開平11−77340号公報
特開2003−127537号公報
ところで、上記する表示装置の製造工程では、その生産性を向上させるために、1枚のマザー基板に複数の識別コードを形成させるとともに、各識別コードに対応する基板の領域をそれぞれ切出して、1枚のマザー基板から複数の基板を製造させるようにしている。そのため、上記するインクジェット法では、マザー基板上に点在する識別コード上でのみ、液滴吐出ヘッドに液滴吐出動作を実行させて、識別コードを形成するための工程時間の大半を、識別コード間を移動する液滴吐出ヘッドの移動時間に費やしていた。
そこで、上記インクジェット法では、識別コードの生産性を向上させるために、液滴吐出ヘッドを多関節ロボット等の移動手段に搭載して、液滴吐出ヘッドを少なくとも2次元方向に高速移動させることが望まれていた。
しかしながら、上記液滴吐出ヘッドを高速移動させると、ノズル近傍の液状体の乾燥が加速して、液滴の吐出不良の頻度を増加させる問題があった。こうした問題は、増粘した液状体を強制的に吐出させるフラッシング動作の頻度を増加させることによって回復可能と考えられた。しかし、フラッシング動作の頻度を増加させると、液滴吐出ヘッドをフラッシング領域に移動させる回数が増加して、液滴吐出動作の工程時間を増加させる、ひいては液滴からなるパターンの生産性を損なう問題があった。
本発明は、上記問題を解決するためになされたものであり、その目的は、捨て打ち動作(フラッシング動作)に要する時間の短縮化を図り、液滴からなるパターンの生産性を向上させた液滴吐出装置を提供することである。
本発明の液滴吐出装置は、対象物に液滴を吐出させる液滴吐出ヘッドと、前記液滴吐出ヘッドを前記対象物の上方で少なくとも2次元方向に移動させるヘッド移動手段と、を備えた液滴吐出装置において、前記液滴吐出ヘッドから捨て打ちされた液滴を受容する受容部材と、前記液滴吐出ヘッドの前記対象物上における移動経路に対応させて、前記受容部材の配置位置を変更する配置変更手段と、を備えた。
本発明の液滴吐出装置によれば、対象物上の移動経路に対応した位置で液滴の捨て打ち動作(フラッシング動作)を実行させることができる。従って、捨て打ち動作(フラッシング動作)の工程時間を短縮させることができ、液滴からなるパターンの生産性を向上させることができる。
この液滴吐出装置において、前記配置変更手段は、前記液滴吐出ヘッドの前記対象物上における移動経路に対応させて、前記受容部材を移動させるようにしてもよい。
この液滴吐出装置によれば、受容部材を移動させる分だけ、液滴吐出ヘッドの移動範囲を拡大させることができ、対象物の範囲を拡大させることができる。
この液滴吐出装置によれば、受容部材を移動させる分だけ、液滴吐出ヘッドの移動範囲を拡大させることができ、対象物の範囲を拡大させることができる。
この液滴吐出装置において、前記移動経路に関する経路情報を生成する経路情報生成手段を備え、前記ヘッド移動手段は、前記経路情報生成手段の生成した前記経路情報に基づいて前記液滴吐出ヘッドを移動させて、前記配置変更手段は、前記経路情報生成手段の生成した前記経路情報に基づいて前記受容部材を移動させるようにしてもよい。
この液滴吐出装置によれば、液滴吐出ヘッドと受容部材とを、共通する経路情報に基づいて移動させることができる。従って、受容部材の移動する経路を、より確実に、液滴吐出ヘッドの移動状況に対応させることができる。
この液滴吐出装置において、前記ヘッド移動手段は、前記液滴吐出ヘッドが捨て打ちするときに、前記液滴吐出ヘッドを移動させて、前記配置変更手段は、前記液滴吐出ヘッドの前記移動に対応させて前記受容部材の配置位置を移動させるようにしてもよい。
この液滴吐出装置によれば、捨て打ちする液滴吐出ヘッドの移動に対応させて受容部材の配置位置を移動させることができる。従って、液滴吐出ヘッドの捨て打ちできる範囲を、さらに拡大させることができる。
この液滴吐出装置において、前記配置変更手段は、前記対象物の外縁に沿って形成されて前記受容部材を案内する案内凹部と、前記対象物上における移動経路に対応させて前記受容部材を移動させる受容部材移動手段と、を備えるようにしてもよい。
この液滴吐出装置によれば、対象物の外縁に沿って受容部材を移動させる分だけ、捨て打ち動作における液滴吐出ヘッドの移動距離を最短距離で対応させることができる。しかも、受容部材を案内凹部に沿って移動させるため、より安定した移動を受容部材に付与することができる。
この液滴吐出装置において、前記ヘッド移動手段は、多関節ロボットであってもよい。
この液滴吐出装置によれば、多関節ロボットによって移動させる液滴吐出ヘッドの移動
経路に、受容部材の配置位置を対応させることができる。従って、液滴吐出ヘッドを多関節ロボットによって移動させる分だけ、液滴吐出ヘッドの移動速度や移動範囲を拡張させることができる。その結果、フラッシング動作に要する時間を、より確実に短縮させることができて、液滴からなるパターンの生産性を向上させることができる。
この液滴吐出装置によれば、多関節ロボットによって移動させる液滴吐出ヘッドの移動
経路に、受容部材の配置位置を対応させることができる。従って、液滴吐出ヘッドを多関節ロボットによって移動させる分だけ、液滴吐出ヘッドの移動速度や移動範囲を拡張させることができる。その結果、フラッシング動作に要する時間を、より確実に短縮させることができて、液滴からなるパターンの生産性を向上させることができる。
以下、本発明を具体化した一実施形態を図1〜図6に従って説明する。まず、本発明の液滴吐出装置を利用して形成した識別コードを有する液晶表示装置1について説明する。
図1において、基板2の一側面(表面2a)には、その略中央位置に液晶分子を封入した四角形状の表示部3が形成されるとともに、その表示部3の外側に、走査線駆動回路4及びデータ線駆動回路5が形成されている。液晶表示装置1は、これら走査線駆動回路4が供給する走査信号と、データ線駆動回路5が供給するデータ信号に基づいて、前記表示部3内の液晶分子の配向状態を制御するようになっている。そして、液晶表示装置1は、図示しない照明装置からの平面光を液晶分子の配向状態によって変調して、表示部3の領域に所望の画像を表示するようになっている。
図1において、基板2の一側面(表面2a)には、その略中央位置に液晶分子を封入した四角形状の表示部3が形成されるとともに、その表示部3の外側に、走査線駆動回路4及びデータ線駆動回路5が形成されている。液晶表示装置1は、これら走査線駆動回路4が供給する走査信号と、データ線駆動回路5が供給するデータ信号に基づいて、前記表示部3内の液晶分子の配向状態を制御するようになっている。そして、液晶表示装置1は、図示しない照明装置からの平面光を液晶分子の配向状態によって変調して、表示部3の領域に所望の画像を表示するようになっている。
表面2aの左側下隅には、一辺が約1mmの正方形からなるコード領域Sが区画形成されて、そのコード領域S内には、16行×16列のデータセルCが仮想分割されている。そのコード領域Sの選択されたデータセルCの領域には、それぞれパターンとしてのドットDが形成されて、これら複数のドットDによって、液晶表示装置1の識別コード10が構成されている。
本実施形態では、ドットDの形成されたデータセルCの中心位置を「目標吐出位置P」とし、各データセルCの一辺の長さを「セル幅W」という。
各ドットDは、その外径がデータセルCの一辺の長さ(前記「セル幅W」)で形成された半球状のパターンである。このドットDは、金属微粒子(例えば、ニッケル微粒子やマンガン微粒子)を分散媒に分散させた液状体F(図5参照)の液滴FbをデータセルCに吐出して、データセルCに着弾した液滴Fbを乾燥及び焼成させることによって形成されている。着弾した液滴Fbの乾燥・焼成は、レーザ光B(図5参照)を照射することによって行われる。
各ドットDは、その外径がデータセルCの一辺の長さ(前記「セル幅W」)で形成された半球状のパターンである。このドットDは、金属微粒子(例えば、ニッケル微粒子やマンガン微粒子)を分散媒に分散させた液状体F(図5参照)の液滴FbをデータセルCに吐出して、データセルCに着弾した液滴Fbを乾燥及び焼成させることによって形成されている。着弾した液滴Fbの乾燥・焼成は、レーザ光B(図5参照)を照射することによって行われる。
そして、識別コード10は、各データセルC内のドットDの有無によって、液晶表示装置1の製品番号やロット番号等を再現させるようになっている。
本実施形態では、上記基板2の長手方向をX矢印方向とし、X矢印方向と直交する方向をY矢印方向という。
本実施形態では、上記基板2の長手方向をX矢印方向とし、X矢印方向と直交する方向をY矢印方向という。
次に、前記識別コード10を形成するための液滴吐出装置20について説明する。尚、本実施形態では、複数の前記基板2を切出し可能にした対象物としてのマザー基板2Mに、点在する複数の前記識別コード10を形成する場合について説明する。
図2において、液滴吐出装置20には、略直方体形状に形成された基台21が備えられて、その基台21の一側(X矢印方向側)には、複数の前記マザー基板2Mを収容可能にする基板ストッカ22が配設されている。基板ストッカ22は、図2における上下方向(Z矢印方向及び反Z矢印方向)に移動して、収容する各マザー基板2Mをそれぞれ基台21上に搬出可能にするとともに、基台21上のマザー基板2Mを対応するスロットに搬入可能にしている。
基台21の上面21aであって、その基板ストッカ22側(反X矢印方向側)には、Y矢印方向に延びる走行装置23が配設されている。走行装置23は、その内部に走行モータMS(図6参照)を有して、走行モータMSの出力軸に駆動連結される搬送装置24を
、Y矢印方向及び反Y矢印方向に走行させるようになっている。搬送装置24は、マザー基板2Mの裏面2Mbを吸着把持可能にした搬送アーム24aを有する水平多関節ロボットであって、その内部に配設された搬送モータMT(図6参照)の出力軸に駆動連結される搬送アーム24aを、XY平面上で伸縮自在に回動するとともに、上下方向に移動するようになっている。
、Y矢印方向及び反Y矢印方向に走行させるようになっている。搬送装置24は、マザー基板2Mの裏面2Mbを吸着把持可能にした搬送アーム24aを有する水平多関節ロボットであって、その内部に配設された搬送モータMT(図6参照)の出力軸に駆動連結される搬送アーム24aを、XY平面上で伸縮自在に回動するとともに、上下方向に移動するようになっている。
基台21の上面21aであって、そのY矢印方向両側には、マザー基板2Mの表面2Maを上側にして同マザー基板2Mを載置する一対の載置台25R,25Lが併設されている。一対の載置台25R,25Lは、それぞれ載置するマザー基板2Mの裏面2Mb側に、前記搬送アーム24aを抜き出し可能にする空間(凹部25a)を有して、同凹部25a内で前記搬送アーム24aを上動及び下動することによりマザー基板2Mの搬送及び載置を可能にしている。
そして、走行モータMS及び搬送モータMTに所定の駆動制御信号を供給すると、走行装置23及び搬送装置24は、前記基板ストッカ22内の各マザー基板2Mを搬出して、搬出したマザー基板2Mを、載置台25R,25Lのいずれか一方に載置するようになっている。また、走行装置23及び搬送装置24は、載置台25R,25Lに載置したマザー基板2Mを、基板ストッカ22内の所定のスロットに搬入して回収するようになっている。
尚、本実施形態では、図3に示すように、載置台25R,25Lに載置されたマザー基板2Mのコード領域Sであって、その最もX矢印方向側から順に、1行目コード領域S1、2行目コード領域S2、・・・、5行目コード領域S5という。
図2において、基台21の上面21aであって、前記一対の載置台25R,25Lの間には、ヘッド移動手段としての多関節ロボット(以下単に、スカラロボットという。)26が配設されて、そのスカラロボット26には、基台21の上面21aに固設されて上方(Z矢印方向)に延びる主軸27が備えられている。
主軸27の上端には、主軸27に設置された第1モータM1(図6参照)の出力軸に駆動連結される第1アーム28aが水平方向(XY平面方向)に回動可能に連結されている。その第1アーム28aの先端部には、第1アーム28aに設置された第2モータM2(図6参照)の出力軸に駆動連結される第2アーム28bが水平方向に回動可能に連結されている。第2アーム28bの先端部には、第2アーム28bに設置された第3モータM3(図6参照)の出力軸に駆動連結される円柱状の第3アーム28cが、そのZ矢印方向に沿う軸心を回動中心にして回動可能に連結されている。その第3アーム28cの下端部(手先)には、ヘッドユニット30が配設されている。
そして、これら第1、第2及び第3モータM1,M2,M3に所定の駆動制御信号を供給すると、スカラロボット26は、対応する第1、第2及び第3アーム28a,28b,28cを回動して、ヘッドユニット30を上面21a上の所定領域内で移動させるようになっている。すなわち、スカラロボット26は、前記主軸27を中心として、第1アーム28aのアーム長と第2アーム28bのアーム長を加算した半径からなる領域内(図3に示す2点鎖線の領域内:走査領域E)内でヘッドユニット30を移動させるようになっている。
尚、本実施形態のスカラロボット26は、各「目標吐出位置P」の位置座標に基づいて生成されて移動経路を構成する「目標軌跡R」に沿って、ヘッドユニット30(第3アーム28cの手先)を移動(走査)させるようになっている。
詳述すると、図3の矢印で示すように、スカラロボット26は、まず、第1、第2及び第3アーム28a、28b,28cを回動させて、ヘッドユニット30(第3アーム28cの手先)を、1行目コード領域S1の反Y矢印方向側の位置(「始点SP」)に配置させるようになっている。そして、スカラロボット26は、ヘッドユニット30を、1行目コード領域S1上で、Y矢印方向に沿って走査させるようになっている。
ヘッドユニット30が1行目コード領域S1上に走査させると、スカラロボット26は、第1、第2及び第3アーム28a、28b,28cを回動させて、ヘッドユニット30を、マザー基板2MのY矢印方向外側で180度だけ左回りに回転させながら、2行目コード領域S2のY矢印方向側まで回動させるようになっている。この際、スカラロボット26は、ヘッドユニット30の急激な加速・減速を回避させるために、各関節やヘッドユニット30の慣性モーメント等に基づいて、ヘッドユニット30を、マザー基板2MのY矢印方向外側で、半円弧状の軌跡(「フラッシング軌跡FR」)に沿うように回動させるようになっている。
そして、ヘッドユニット30が2行目コード領域S2上に到達すると、スカラロボット26は、第1、第2及び第3アーム28a、28b,28cを回動させて、ヘッドユニット30を、2行目コード領域S2上で、反Y矢印方向に沿って走査させるようになっている。
以後同様にして、スカラロボット26は、ヘッドユニット30を、3行目、4行目、5行目コード領域S3,S4,S5の順に、そのY矢印方向あるいは反Y矢印方向に沿って走査させて、5行目コード領域S5のY矢印方向側の位置(「終点EP」)まで移動させるようになっている。そして、スカラロボット26は、ヘッドユニット30を各行目コード領域S1,S2,S3,S4上に走査させる度に、マザー基板2MのY矢印方向(あるいは反Y矢印方向)の外側で、ヘッドユニット30を「フラッシング軌跡FR」に沿って回動させるようになっている。
すなわち、本実施形態のスカラロボット26は、ヘッドユニット30の配置方向をヘッドユニット30の移動する方向に対応させて、同ヘッドユニット30を、マザー基板2Mの上方と、同マザー基板2MのY矢印方向及び反Y矢印方向の両外側の上方で、九十九折り状の「目標軌跡R」に沿って走査させるようになっている。
本実施形態では、「目標軌跡R」に沿う方向を、「目標軌跡方向RA」という。
図4において、ヘッドユニット30には、箱体状に形成された液状体タンク31が配設されて、その液状体タンク31の下側には、液滴吐出ヘッド(以下単に、「吐出ヘッド」という。)32が配設されている。液状体タンク31は、前記液状体Fを導出可能に収容して、収容する液状体Fを、液滴吐出ヘッド32に導出するようになっている。その液状体タンク31のマザー基板2M側(下側)には、液滴吐出ヘッド32(以下単に、吐出ヘッド32という。)が配設されている。
図4において、ヘッドユニット30には、箱体状に形成された液状体タンク31が配設されて、その液状体タンク31の下側には、液滴吐出ヘッド(以下単に、「吐出ヘッド」という。)32が配設されている。液状体タンク31は、前記液状体Fを導出可能に収容して、収容する液状体Fを、液滴吐出ヘッド32に導出するようになっている。その液状体タンク31のマザー基板2M側(下側)には、液滴吐出ヘッド32(以下単に、吐出ヘッド32という。)が配設されている。
図5において、吐出ヘッド32の下側には、ノズルプレート33が備えられて、そのノズルプレート33の下面(ノズル形成面33a)には、マザー基板2Mの法線方向(Z矢印方向)に沿う複数の円形孔(ノズルN)が貫通形成されている。各ノズルNは、ヘッドユニット30の「目標軌跡方向RA」と直交する方向(図5において紙面と直交する方向)に沿って配列形成されて、その形成ピッチが、前記「セル幅W」と同じサイズで形成されている。
本実施形態では、マザー基板2Mの表面2Ma上の位置であって、各ノズルNの反Z矢印方向の位置を、それぞれ「着弾位置PF」という。
各ノズルNの上側には、前記液状体タンク31に連通するキャビティ34が形成されて、液状体タンク31の導出する液状体Fを、それぞれ対応するノズルN内に供給するようになっている。各キャビティ34の上側には、上下方向に振動可能な振動板35が貼り付けられて、キャビティ34内の容積を拡大・縮小するようになっている。振動板35の上側には、各ノズルNに対応する複数の圧電素子PZが配設されるとともに、所定の駆動信号(圧電素子駆動電圧COM1:図6参照)を受けて上下方向に収縮・伸張するようになっている。
各ノズルNの上側には、前記液状体タンク31に連通するキャビティ34が形成されて、液状体タンク31の導出する液状体Fを、それぞれ対応するノズルN内に供給するようになっている。各キャビティ34の上側には、上下方向に振動可能な振動板35が貼り付けられて、キャビティ34内の容積を拡大・縮小するようになっている。振動板35の上側には、各ノズルNに対応する複数の圧電素子PZが配設されるとともに、所定の駆動信号(圧電素子駆動電圧COM1:図6参照)を受けて上下方向に収縮・伸張するようになっている。
そして、「目標吐出位置P」が「着弾位置PF」に相対するときに、対応する圧電素子PZに対して圧電素子駆動電圧COM1を供給する。すると、圧電素子PZの収縮・伸張にともなって、対応するノズルN内の液状体Fの界面が振動して、圧電素子駆動電圧COM1に対応する重量の液滴Fbが、対応するノズルNから吐出される。吐出された液滴Fbは、反Z矢印方向に沿って飛行して、対応する「着弾位置PF」、すなわち「目標吐出位置P」に着弾する。「目標吐出位置P」に着弾した液滴Fbは、表面2Maで濡れ広がって、乾燥されるサイズ(本実施形態では、液滴Fbの外径が前記セル幅Wになるサイズ)になる。
尚、本実施形態では、液滴Fbの吐出動作の開始時から、吐出した液滴Fbの外径がセル幅Wになるまでの時間を「照射待機時間」とし、この「照射待機時間」の間に、ヘッドユニット30が、前記セル幅Wの2倍の距離「照射待機距離Lw」だけ走査されるようになっている。
図4において、ヘッドユニット30であって、その「目標軌跡方向RA」の反対側には、レーザヘッド37が配設されている。レーザヘッド37の内部には、前記ノズルNに対応する複数の半導体レーザLDが、前記ノズルNの配列方向に沿って配列されている。各半導体レーザLDは、それぞれ半導体レーザLDを駆動制御するための信号(レーザ駆動電圧COM2:図6参照)を受けて、液滴Fbの吸収波長に対応した波長領域のレーザ光Bを、その直下(反Z矢印方向)に出射するようになっている。レーザヘッド37の下端であって半導体レーザLDの直下(マザー基板2側)には、各半導体レーザLDに対応する複数の反射ミラーMが、前記ノズルNの配列方向に沿って配列されている。反射ミラーMは、対応する半導体レーザLDからのレーザ光Bを吐出ヘッド32側に全反射するとともに、全反射したレーザ光Bを対応する「目標吐出位置P」の「目標軌跡方向RA」の反対側に導くようになっている。
本実施形態では、マザー基板2M上の位置であって、表面2Maとレーザ光Bの光軸と交差する位置を、「照射位置PT」という。尚、本実施形態の「照射位置PT」は、その「着弾位置PF」との間の距離が、前記「照射待機距離Lw」になるように設定されている。すなわち、本実施形態の「照射位置PT」は、「目標吐出位置P」に着弾した液滴Fbが、「照射待機時間」の後に到達する位置に設定されている。
そして、「目標吐出位置P」が「照射位置PT」に相対するときに、対応する半導体レーザLDにレーザ駆動電圧COM2を供給する。すると、対応する半導体レーザLDからのレーザ光Bが、対応する反射ミラーMに全反射されて、「照射位置PT」に位置する液滴Fbの領域に照射される。液滴Fbの領域に照射されたレーザ光Bは、液滴Fbの溶媒あるいは分散媒等を蒸発(乾燥)して、液滴Fbの金属微粒子を焼成する。これによって、「目標吐出位置P」の領域に、データセルCに対応するサイズのドットDを形成することができる。
図2において、一対の載置台25R,25LのY矢印方向両側には、それぞれ一対のメンテナンス機構40(第1メンテナンス機構40A及び第2メンテナンス機構40B)が
配設されている。各メンテナンス機構40には、それぞれX矢印方向に延びる直方体形状に形成された外ケース41が備えられて、各外ケース41の上面には、それぞれ一対の載置台25R,25LのX矢印方向全幅に対応する幅を有してX矢印方向に延びる案内凹部42が形成されている。
配設されている。各メンテナンス機構40には、それぞれX矢印方向に延びる直方体形状に形成された外ケース41が備えられて、各外ケース41の上面には、それぞれ一対の載置台25R,25LのX矢印方向全幅に対応する幅を有してX矢印方向に延びる案内凹部42が形成されている。
各案内凹部42の内側には、それぞれ上面を開放する箱体状に形成された収容ケース43が配設されている。各収容ケース43は、外ケース41内に配設されて配置変更手段を構成する受容部材移動手段としての直動モータML(図6参照)の出力軸に駆動連結されて、対応する案内凹部42の形成方向、すなわちX矢印方向及び反X矢印方向に沿って直動するようになっている。各収容ケース43の内側には、それぞれ対応する収容ケース43内に充填された吸収部材44(第1吸収部材44A及び第2吸収部材44B)が配設されている。第1及び第2吸収部材44A,44Bは、それぞれ液状体Fを受容して吸収する多孔質材料によって形成されている。すなわち、第1及び第2メンテナンス機構40A,40Bは、それぞれ液状体Fを受容可能にした第1及び第2吸収部材44A,44Bを、それぞれ対応する載置台25R(あるいは載置台25L)のY矢印方向両側に位置する走査領域Eの全体にわたって移動させるようになっている。
そして、「目標軌跡R」に沿って走査される吐出ヘッド32が各案内凹部42の直上に侵入するときに、第1及び第2メンテナンス機構40A,40Bの直動モータMLに、第1及び第2吸収部材44A,44Bを移動させるための所定の駆動制御信号を供給する。すると、第1及び第2メンテナンス機構40A,40Bは、第1及び第2吸収部材44A,44Bの配置位置(X矢印方向の位置)を、吐出ヘッド32の移動する経路(X矢印方向の位置)に相対させて移動させるようになっている。
詳述すると、図3に示すように、まず第1、第2及び第3アーム28a、28b,28cの回動によって、吐出ヘッド32が「始点SP」に配置移動される、すなわち吐出ヘッド32が第1メンテナンス機構40Aの案内凹部42の直上に侵入する。すると、第1及び第2メンテナンス機構40Aは、第1及び第2吸収部材44A,44BのX矢印方向の中心位置が、「始点SP」のX矢印方向の位置に対応するように、第1及び第2吸収部材44A,44Bを配置移動させるようになっている(図3における実線位置に配置移動させるようになっている)。
そして、吐出ヘッド32が「始点SP」から1行目コード領域S1上に移動し始めるタイミングで、全て圧電素子PZに圧電素子駆動電圧COM1を供給する(フラッシング動作を実行させる)。すると、全てのノズルNから増粘した液状体Fが液滴Fbとして吐出されて、全てのノズルNの液滴吐出動作の安定化が図られる。この際、吐出された全ての液滴Fbは、その直下に位置する第1吸収部材44Aに受容されて吸収される。
また、吐出ヘッド32が、1行目コード領域S1のY矢印方向側まで走査されて、第2メンテナンス機構40Bの案内凹部42の直上に侵入する、すなわち「フラッシング軌跡FR」を形成し始める。すると、第1及び第2メンテナンス機構40A,40Bは、第1及び第2吸収部材44A,44BのX矢印方向の中心位置が、吐出ヘッド32(スカラロボット26の手先)のX矢印方向の位置に対応するように、第1及び第2吸収部材44Bを配置移動させるようになっている(図3における2点鎖線位置に配置移動させるようになっている)。
そして、吐出ヘッド32が「フラッシング軌跡FR」を形成(移動)する間に、全て圧電素子PZに圧電素子駆動電圧COM1を供給する(フラッシング動作を実行させる)。すると、未使用のノズルNを含む全てのノズルNから増粘した液状体Fが液滴Fbとして吐出されて、全てのノズルNの液滴吐出動作の安定化が図られる。この際、吐出された全
ての液滴Fbは、その直下に位置する第2吸収部材44Bに受容されて吸収される。
ての液滴Fbは、その直下に位置する第2吸収部材44Bに受容されて吸収される。
さらに、吐出ヘッド32が「フラッシング軌跡FR」を形成して、2行目コード領域S2の反Y矢印方向まで走査されるとともに、再び第1メンテナンス機構40Aの案内凹部42の直上に侵入する、すなわち再び「フラッシング軌跡FR」を形成し始める。すると、第1及び第2メンテナンス機構40A,40Bは、第1及び第2吸収部材44A,44BのX矢印方向の中心位置が、吐出ヘッド32(スカラロボット26の手先)のX矢印方向の位置に対応するように、第1及び第2吸収部材44Bを配置移動させるようになっている。
そして、吐出ヘッド32が「フラッシング軌跡FR」を形成(移動)する間に、全て圧電素子PZに圧電素子駆動電圧COM1を供給する(フラッシング動作を実行させる)。すると、未使用のノズルNを含む全てのノズルNから増粘した液状体Fが液滴Fbとして吐出されて、全てのノズルNの液滴吐出動作の安定化が図られる。この際、吐出された全ての液滴Fbは、その直下に位置する第1吸収部材44Aに受容されて吸収される。
以後同様に、第1及び第2メンテナンス機構40A,40Bは、ヘッドユニット30が「目標軌跡R」(各「フラッシング軌跡FR」)を形成する間に、同吐出ヘッド32のX矢印方向の位置に対応させて、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を変位させるようになっている。すなわち、第1及び第2メンテナンス機構40A,40Bは、マザー基板2M上における吐出ヘッド32の軌跡に対応させて、第1及び第2吸収部材44A,44Bの配置位置を変更させるようになっている。そして、第1及び第2メンテナンス機構40A,40Bは、フラッシング動作によって吐出される吐出ヘッド32からの液滴Fbを、対応する第1及び第2吸収部材44A,44Bによって受容して吸収させるようになっている。
尚、本実施形態では、第1及び第2吸収部材44A,44Bによって、受容部材が構成されている。
次に、上記のように構成した液滴吐出装置20の電気的構成を図6に従って説明する。
次に、上記のように構成した液滴吐出装置20の電気的構成を図6に従って説明する。
図6において、液滴吐出装置20には、CPU、ROM、RAM等からなる制御装置51が設けられている。制御装置51は、第3アーム28cの手先(吐出ヘッド32)の現在位置と各種制御プログラムに従って、走行装置23、搬送装置24及びスカラロボット26を駆動するとともに、吐出ヘッド32及びレーザヘッド37を駆動制御させるようになっている。
制御装置51には、起動スイッチ、停止スイッチ等の操作スイッチを有した入力装置52が接続されて、識別コード10に関する情報が、既定形式の「描画データIa」として入力されるようになっている。
そして、制御装置51は、入力装置52からの描画データIaに所定の展開処理を施してビットマップデータBMDを生成するとともに、同ビットマップデータBMDに基づいて、各「目標吐出位置P」の直交座標系における位置座標(各「教示座標」)を生成するようになっている。さらに、制御装置51は、描画データIaに対してビットマップデータBMDと異なる展開処理を施して、圧電素子駆動電圧COM1及びレーザ駆動電圧COM2を生成するようになっている。
制御装置51には、記憶部51Aが設けられて、各種データや各種プログラムが格納されている。例えば、記憶部51Aには、前記ビットマップデータBMDとフラッシングデータFMDが格納されている。
ビットマップデータBMDは、直交座標系における描画平面(マザー基板2Mの表面2Ma)を仮想分割した各位置に液滴Fbを吐出させるか否かを示すデータであって、各ビットの値(0あるいは1)に応じて、各圧電素子PZを駆動するか否かを規定するためのデータである。すなわち、ビットマップデータBMDは、吐出ヘッド32が各行目コード領域S1〜S5上を走査されるときに、同吐出ヘッド32の各ノズルNから液滴Fbを吐出させるか否かを規定させるためのデータである。
フラッシングデータFMDは、マザー基板2MのY矢印方向及び反Y矢印方向の各位置に液滴Fbを吐出させるか否かを示すデータであって、各ビットの値(0あるいは1)に応じて、各圧電素子PZを駆動するか否かを規定するためのデータである。すなわち、ビットマップデータBMDは、吐出ヘッド32が「フラッシング軌跡R」に沿って走査されるときに、同吐出ヘッド32の各ノズルNから液滴Fbを吐出させるか否かを規定させるためのデータである。尚、本実施形態のフラッシングデータFMDは、全てのノズルNから液滴Fbを吐出させるように設定されている。
そして、制御装置51は、これらビットマップデータBMD及びフラッシングデータFMDを所定のクロック信号に同期させた「描画制御信号SI」及び「ブラッシング制御信号FI」として、順次吐出ヘッド駆動回路56にシリアル転送するようになっている。
制御装置51には、経路情報生成手段を構成する補間演算部51Bと逆演算部51Cが設けられている。補間演算部51Bは、前記「教示座標」の間の空間に所定の補間周期で補間処理(例えば、直線補間や円弧補間、自由曲線補間等)を施して「目標軌跡R」を構成する複数の「補間点」の位置座標(「補間座標」)を順次演算するようになっている。そして、補間演算部51Bは、対応する「教示座標」と同「教示座標」までの空間を補間する複数の「補間座標」とからなる情報(経路情報としての「軌跡情報TaI」)を、逆演算部51Cに順次出力するようになっている。
逆演算部51Cは、補間演算部51Bからの「軌跡情報TaI」に基づいて、第3アーム28cの手先を、「教示座標」と同「教示座標」までの空間を補間する複数の「補間座標」とに相対させるための情報を順次演算するようになっている。すなわち、逆演算部51Cは、「軌跡情報TaI」に基づいて、「教示座標」と同「教示座標」までの空間を補間する複数の「補間座標」に対応する各アーム28a,28b,28cの「関節座標」(各モータM1,M2,M3の回動角等)に関する情報(「アーム回動情報θSI」)を順次生成するようになっている。そして、逆演算部51Cは、生成した「アーム回動情報θSI」をスカラロボット駆動回路55に出力するようになっている。
また、逆演算部51Cは、「軌跡情報TaI」に基づいて、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を、吐出ヘッド32(第3アーム28cの手先)のX矢印方向の位置に対応させる直動モータMLの「回動角」に関する情報(「直動モータ回動情報θLI」)を順次演算するようになっている。そして、逆演算部51Cは、生成した「直動モータ回動情報θLI」をメンテナンス機構駆動回路58に出力するようになっている。
制御装置51には、走行装置駆動回路53が接続されて、走行装置駆動回路53に対応する駆動制御信号を出力するようになっている。走行装置駆動回路53には、走行モータMSと走行モータ回転検出器MSEが接続されて、制御装置51からの駆動制御信号に応答して走行モータMSを正転または逆転させるとともに、走行モータ回転検出器MSEからの検出信号に基づいて、搬送装置24の移動方向及び移動量を演算するようになっている。
制御装置51には、搬送装置駆動回路54が接続されて、搬送装置駆動回路54に対応する駆動制御信号を出力するようになっている。搬送装置駆動回路54には、搬送モータMTと搬送モータ回転検出器MTEが接続されて、制御装置51からの駆動制御信号に応答して搬送モータMTを正転または逆転させるとともに、搬送モータ回転検出器MTEからの検出信号に基づいて、搬送アーム24aの移動方向及び移動量を演算するようになっている。
制御装置51には、スカラロボット駆動回路55が接続されて、スカラロボット駆動回路55に対応する駆動制御信号(前記「アーム回動情報θSI」)を出力するようになっている。スカラロボット駆動回路55には、第1モータM1、第2モータM2及び第3モータM3が接続されて、制御装置51からの「アーム回動情報θSI」に応答して、第1、第2及び第3モータM1,M2,M3を正転または逆転させるようになっている。また、スカラロボット駆動回路55には、第1モータ回転検出器M1E、第2モータ回転検出器M2E及び第3モータ回転検出器M3Eが接続されて、第1、第2及び第3モータ回転検出器M1E,M2E,M3Eからの検出信号に基づいて、第3アーム28cの手先(吐出ヘッド32)の移動方向及び移動量を演算するようになっている。
そして、制御装置51は、スカラロボット駆動回路55を介して、ヘッドユニット30を「目標軌跡R」に沿うような九十九折り状に走査するとともに、スカラロボット駆動回路55からの演算結果(吐出ヘッド32の現在位置)に基づいて各種制御信号を出力するようになっている。
詳述すると、制御装置51は、ヘッドユニット30の走査によって移動する「着弾位置PF」がマザー基板2Mの各「目標吐出位置P」に位置するタイミングで、液滴Fbを吐出させるための信号(「描画タイミング信号LP1」)を生成するとともに、生成した「描画タイミング信号LP1」を吐出ヘッド駆動回路56に出力するようになっている。
しかも、制御装置51は、ヘッドユニット30の走査によって移動する「着弾位置PF」がマザー基板2MのY矢印方向及び反Y矢印方向の外側に位置するタイミングで、増粘した液状体Fを吐出させるための「フラッシングタイミング信号LP2」を生成するようになっている。すなわち、制御装置51は、吐出ヘッド32が各案内凹部42の直上を通過するタイミングで、フラッシング動作を実行させるための「フラッシングタイミング信号LP2」を生成するとともに、生成した「フラッシングタイミング信号LP2」を吐出ヘッド駆動回路56に出力するようになっている。
制御装置51には、吐出ヘッド駆動回路56が接続されて、前記「描画タイミング信号LP1」及び前記「フラッシングタイミング信号LP2」を出力するようになっている。また、制御装置51は、吐出ヘッド駆動回路56に対して、前記圧電素子駆動電圧COM1を所定のクロック信号に同期させて出力するようになっている。さらにまた、制御装置51は、前記「描画制御信号SI」及び前記「フラッシング制御信号FI」を、それぞれ吐出ヘッド駆動回路56にシリアル転送するようになっている。吐出ヘッド駆動回路56は、制御装置51からの「描画制御信号SI」及び「フラッシング制御信号FI」を、それぞれ各圧電素子PZに対応させて順次シリアル/パラレル変換するようになっている。
そして、吐出ヘッド駆動回路56は、制御装置51からの「描画タイミング信号LP1」を受けると、シリアル/パラレル変換した「描画制御信号SI」に基づいて、選択された圧電素子PZに、それぞれ圧電素子駆動電圧COM1を供給させるようになっている。また、吐出ヘッド駆動回路56は、制御装置51からの「フラッシングタイミング信号LP2」を受けると、シリアル/パラレル変換した「フラッシング制御信号SI」に基づい
て、全ての圧電素子PZに、それぞれ圧電素子駆動電圧COM1を供給させるようになっている。
て、全ての圧電素子PZに、それぞれ圧電素子駆動電圧COM1を供給させるようになっている。
また、吐出ヘッド駆動回路56は、制御装置51からの「描画タイミング信号LP1」を受けると、シリアル/パラレル変換した「描画制御信号SI」をレーザヘッド駆動回路57に出力するようになっている。
制御装置51には、レーザヘッド駆動回路57が接続されて、所定のクロック信号に同期させたレーザ駆動電圧COM2を出力するようになっている。そして、レーザヘッド駆動回路57は、吐出ヘッド駆動回路56からの「描画制御信号SI」を受けると、所定の時間(「照射待機時間」)だけ待機して、「描画制御信号SI」に対応した各半導体レーザLDに、それぞれレーザ駆動電圧COM2を供給するようになっている。
そして、レーザヘッド駆動回路57が吐出ヘッド駆動回路56からの「描画制御信号SI」を受ける。すると、制御装置51は、レーザヘッド駆動回路57を介して、ヘッドユニット30を「照射待機時間」だけ走査して、「照射位置PT」が対応する「目標着弾位置P」に位置するタイミングで、「目標着弾位置P」の液滴Fbの領域に向かってレーザ光Bを照射させるようになっている。
制御装置51には、メンテナンス機構駆動回路58が接続されて、メンテナンス機構駆動回路58に対応する駆動制御信号(前記「直動モータ回動情報θLI」)を出力するようになっている。メンテナンス機構駆動回路58には、直動モータMLが接続されて、制御装置51からの「直動モータ回動情報θLI」に応答して、直動モータMLを正転または逆転させるようになっている。また、メンテナンス機構駆動回路58には、直動モータ回転検出器MLEが接続されて、直動モータ回転検出器MLEからの検出信号に基づいて、第1及び第2吸収部材44A,44Bの移動方向(X矢印方向又は反X矢印方向)及び移動量を演算するようになっている。
そして、制御装置51は、メンテナンス機構駆動回路58を介して、第1及び第2吸収部材44A,44Bを「フラッシング軌跡FR」に沿う吐出ヘッド32の移動に対応させるようになっている。
次に、液滴吐出装置20を使って識別コード10を形成する方法について説明する。
まず、入力装置52を操作して描画データIaを制御装置51に入力する。すると、制御装置51は、描画データIaに所定の展開処理を施して、ビットマップデータBMD及び「教示座標」を生成し、これらビットマップデータBMD及び「教示座標」を記憶部51Aに格納する。そして、各種情報を記憶部51Aに格納すると、制御装置51は、スカラロボット駆動回路55を介して、第3アーム28cの手先を「始点SP」まで移動させる。また、制御装置51は、メンテナンス機構駆動回路58を介して、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を「始点SP」(もしくは「始点SP」のY矢印方向)に対応させるように、第1及び第2吸収部材44A,44Bを移動させる。
まず、入力装置52を操作して描画データIaを制御装置51に入力する。すると、制御装置51は、描画データIaに所定の展開処理を施して、ビットマップデータBMD及び「教示座標」を生成し、これらビットマップデータBMD及び「教示座標」を記憶部51Aに格納する。そして、各種情報を記憶部51Aに格納すると、制御装置51は、スカラロボット駆動回路55を介して、第3アーム28cの手先を「始点SP」まで移動させる。また、制御装置51は、メンテナンス機構駆動回路58を介して、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を「始点SP」(もしくは「始点SP」のY矢印方向)に対応させるように、第1及び第2吸収部材44A,44Bを移動させる。
この間、制御装置51は、補間演算部51Bを介して、1行目コード領域S1の「始点SP」側に位置する「教示座標」から順に、後続する「教示座標」までの間を補間する複数の「補間座標」を順次生成して、複数の「補間座標」と後続する「教示座標」とからなる「軌跡情報TaI」を、逆演算部51Cに順次出力する。「軌跡情報TaI」を逆演算部51Cに出力すると、制御装置51は、逆演算部51Cを介して、複数の「補間座標」と後続する「教示座標」のそれぞれに第3アーム28cの手先を相対させる「アーム回動情報θSI」を順次生成する。さらに、「軌跡情報TaI」を逆演算部51Cに出力すると、制御装置51は、逆演算部51Cを介して、第1及び第2吸収部材44A,44Bの
X矢印方向の中心位置を第3アーム28cの手先(吐出ヘッド32)のX矢印方向の位置に対応させる「直動モータ回動情報θLI」を順次生成する。
X矢印方向の中心位置を第3アーム28cの手先(吐出ヘッド32)のX矢印方向の位置に対応させる「直動モータ回動情報θLI」を順次生成する。
そして、第3アーム28cの手先が「始点SP」に配置されて、第1及び第2吸収部材44A,44Bが、それぞれ対応するX矢印方向の中心位置を「始点SP」(もしくは「始点SP」のY矢印方向)に対応させるように配置される。
すると、制御装置51は、逆演算部51Cを介して、前記「アーム回動情報θSI」をスカラロボット駆動回路55に順次出力する。「アーム回動情報θSI」をスカラロボット駆動回路55に順次出力すると、制御装置51は、スカラロボット駆動回路55を介して、第3アーム28cの手先を、「始点SP」から1行目コード領域S1の最も反Y矢印方向側に位置する「教示座標」に向かって、「目標軌跡R」(Y矢印方向)に沿うように走査させる。
また、制御装置51は、逆演算部51Cを介して、前記「直動モータ回動情報θLI」をメンテナンス機構駆動回路58に順次出力する。「直動モータ回動情報θLI」をメンテナンス機構駆動回路58に順次出力すると、制御装置51は、メンテナンス機構駆動回路58を介して、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を、それぞれ第3アーム28cの手先(吐出ヘッド32)のY矢印方向の位置に対応させる。すなわち、制御装置51は、第1及び第2吸収部材44A,44Bの配置位置を維持させて、走査される吐出ヘッド32と相対させ続ける。
さらに、制御装置51は、吐出ヘッド駆動回路56にフラッシング制御信号FIと圧電素子駆動電圧COM1を出力するとともに、同吐出ヘッド駆動回路56にフラッシングタイミング信号LP2を出力する。そして、フラッシングタイミング信号LP2を吐出ヘッド駆動回路56に出力すると、制御装置51は、吐出ヘッド駆動回路56を介して、全ての圧電素子PZに圧電素子駆動電圧COM1を供給させて、全てのノズルNから、増粘した液状体Fを一斉に吐出させる。
この際、吐出された液状体F(液滴Fb)は、相対する第1吸収部材44Aに受容されて吸収される。これによって、吐出ヘッド32を「始点SP」からコード領域S上に移動させる過程で、吐出ヘッド32の増粘した液状体Fを捨て打ち(フラッシング)させることができる。
フラッシング動作を実行させると、制御装置51は、スカラロボット駆動回路55を介して、1行目コード領域S1(各「教示座標」)上のY矢印方向に沿う吐出ヘッド32の走査を開始する。そして、制御装置51は、スカラロボット駆動回路55からの演算結果に基づいて、吐出ヘッド32の走査とともに移動する「着弾位置PF」が、1行目コード領域S1の最も反Y矢印方向側に位置する「目標吐出位置P」に到達したか否かを判断する。この間、制御装置51は、吐出ヘッド駆動回路56に描画制御信号SIと圧電素子駆動電圧COM1を出力するとともに、レーザヘッド駆動回路57にレーザ駆動電圧COM2を出力する。
そして、吐出ヘッド32の走査とともに移動する「着弾位置PF」が、1行目コード領域S1の最も反Y矢印側に位置する「目標吐出位置P」に到達する。すると、制御装置51は、吐出ヘッド駆動回路56に描画タイミング信号LP1を出力して、描画制御信号SIに基づいて選択された圧電素子PZに、それぞれ圧電素子駆動電圧COM1を供給する。すると、選択されたノズルNから、一斉に液滴Fbが吐出されて、吐出された液滴Fbが、対応する「目標吐出位置P」に着弾する。「目標吐出位置P」に着弾した液滴Fbは、対応する「目標吐出位置P」の領域(データセルC内)で濡れ広がって、吐出動作の開
始から「照射待機時間」だけ経過すると、その外径をセル幅Wにする。
始から「照射待機時間」だけ経過すると、その外径をセル幅Wにする。
この間、制御装置51は、吐出ヘッド駆動回路56を介して、シリアル/パラレル変換した描画制御信号SIをレーザヘッド駆動回路57に出力する。
そして、吐出動作の開始から「照射待機時間」だけ経過すると、制御装置51は、各「照射位置PT」を「目標吐出位置P」に相対させて、描画制御信号SIに基づいて選択された半導体レーザLDに、それぞれレーザ駆動電圧COM2を供給する。すると、選択された半導体レーザLDから一斉にレーザ光Bが出射されて、出射されたレーザ光Bが、反射ミラーMの全反射によって、対応する「照射位置PT」、すなわち「目標吐出位置P」でセル幅Wになる液滴Fbの領域に照射される。レーザ光Bの照射された液滴Fbは、その溶媒あるいは分散媒の蒸発と金属微粒子の焼成によって、外径がセル幅WからなるドットDとして表面2Maに固着する。これによって、セル幅Wに整合したドットDが形成される。
そして、吐出動作の開始から「照射待機時間」だけ経過すると、制御装置51は、各「照射位置PT」を「目標吐出位置P」に相対させて、描画制御信号SIに基づいて選択された半導体レーザLDに、それぞれレーザ駆動電圧COM2を供給する。すると、選択された半導体レーザLDから一斉にレーザ光Bが出射されて、出射されたレーザ光Bが、反射ミラーMの全反射によって、対応する「照射位置PT」、すなわち「目標吐出位置P」でセル幅Wになる液滴Fbの領域に照射される。レーザ光Bの照射された液滴Fbは、その溶媒あるいは分散媒の蒸発と金属微粒子の焼成によって、外径がセル幅WからなるドットDとして表面2Maに固着する。これによって、セル幅Wに整合したドットDが形成される。
以後、同様に、制御装置51は、吐出ヘッド32(ヘッドユニット30)をY矢印方向(「目標軌跡R」)に沿って走査させて、各「着弾位置PF」が「目標吐出位置P」に到達する毎に、選択したノズルNから液滴Fbを吐出し、着弾した液滴Fbがセル幅Wになるタイミングで、同液滴Fbの領域にレーザ光Bを照射する。これによって、1行目コード領域S1の対応するデータセルC内に、それぞれドットDを形成する。
この間、制御装置51は、第1及び第2吸収部材44A,44Bは、メンテナンス機構駆動回路58を介して、「直動モータ回動情報θLI」に基づいて、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を、それぞれ吐出ヘッド32のY矢印方向の位置に対応させ続ける。すなわち、制御装置51は、第1及び第2吸収部材44A,44Bの配置位置を維持させる。
そして、1行目コード領域S1の各ドットDが形成されて、吐出ヘッド32が1行目コード領域S1の最もY矢印方向側まで移動される。
すると、制御装置51は、スカラロボット駆動回路55を介して、吐出ヘッド32の2行目コード領域S2への移動を開始する、すなわち「フラッシング軌跡FR」に沿う走査を開始する。また、制御装置51は、メンテナンス機構駆動回路58を介して、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を、それぞれ吐出ヘッド32のY矢印方向の位置に対応させる。すなわち、制御装置51は、第1及び第2吸収部材44A,44Bの反X矢印方向に移動させて、「フラッシング軌跡FR」に沿って移動する吐出ヘッド32に相対させる。さらに、制御装置51は、吐出ヘッド駆動回路56にフラッシング制御信号FIと圧電素子駆動電圧COM1を出力するとともに、同吐出ヘッド駆動回路56にフラッシングタイミング信号LP2を出力する。そして、フラッシングタイミング信号LP2を吐出ヘッド駆動回路56に出力すると、制御装置51は、吐出ヘッド駆動回路56を介して、未使用のノズルNを含む全てのノズルNから、増粘した液状体Fを一斉に吐出させる。
すると、制御装置51は、スカラロボット駆動回路55を介して、吐出ヘッド32の2行目コード領域S2への移動を開始する、すなわち「フラッシング軌跡FR」に沿う走査を開始する。また、制御装置51は、メンテナンス機構駆動回路58を介して、第1及び第2吸収部材44A,44BのX矢印方向の中心位置を、それぞれ吐出ヘッド32のY矢印方向の位置に対応させる。すなわち、制御装置51は、第1及び第2吸収部材44A,44Bの反X矢印方向に移動させて、「フラッシング軌跡FR」に沿って移動する吐出ヘッド32に相対させる。さらに、制御装置51は、吐出ヘッド駆動回路56にフラッシング制御信号FIと圧電素子駆動電圧COM1を出力するとともに、同吐出ヘッド駆動回路56にフラッシングタイミング信号LP2を出力する。そして、フラッシングタイミング信号LP2を吐出ヘッド駆動回路56に出力すると、制御装置51は、吐出ヘッド駆動回路56を介して、未使用のノズルNを含む全てのノズルNから、増粘した液状体Fを一斉に吐出させる。
この際、吐出された液状体F(液滴Fb)は、相対する第2吸収部材44Bに受容されて吸収される。これによって、吐出ヘッド32を「1行目コード領域S1」上から「2行目コード領域S2」上に移動させる過程で、吐出ヘッド32の増粘した液状体Fをフラッシングさせることができる。
以後同様に、制御装置51は、吐出ヘッド32を各行目コード領域S3〜S5上に順次移動させる過程で、第1及び第2吸収部材44A,44Bを反X矢印方向に移動させて、そのX矢印方向の中心位置を、各「フラッシング軌跡FR」に沿って移動する吐出ヘッド32の直下に相対させる。そして、制御装置51は、吐出ヘッド32が各「フラッシング
軌跡FR」に沿って移動する度に、吐出ヘッド32の増粘した液状体Fをフラッシングさせる。
軌跡FR」に沿って移動する度に、吐出ヘッド32の増粘した液状体Fをフラッシングさせる。
これによって、制御装置51は、マザー基板2M上の各コード領域Sに基づいて「目標軌跡R」を形成させることができ、吐出ヘッド32を同「目標軌跡R」に沿って走査させることができる。そして、吐出ヘッド32を「目標軌跡R」に沿って走査させる過程で、同吐出ヘッド32にフラッシング動作を実行させることができる。従って、液滴吐出装置20は、フラッシング動作に要する時間を短縮化させることができ、液滴FbからなるドットD(識別コード10)の生産性を向上させることができる。
次に、上記のように構成した本実施形態の効果を以下に記載する。
(1)上記実施形態によれば、マザー基板2MのY矢印方向外側及び反Y矢印方向外側に、それぞれ走査領域E内であって、マザー基板2MのY矢印方向及び反Y矢印方向の全体にわたって配置変更可能な第1及び第2吸収部材44A,44Bを配設した。そして、吐出ヘッド32がマザー基板2MのY矢印方向外側及び反Y矢印方向外側(「フラッシング軌跡FR」)で走査されるときに、第1及び第2吸収部材44A,44Bを、それぞれ吐出ヘッド32の直下に相対させるようにした。
(1)上記実施形態によれば、マザー基板2MのY矢印方向外側及び反Y矢印方向外側に、それぞれ走査領域E内であって、マザー基板2MのY矢印方向及び反Y矢印方向の全体にわたって配置変更可能な第1及び第2吸収部材44A,44Bを配設した。そして、吐出ヘッド32がマザー基板2MのY矢印方向外側及び反Y矢印方向外側(「フラッシング軌跡FR」)で走査されるときに、第1及び第2吸収部材44A,44Bを、それぞれ吐出ヘッド32の直下に相対させるようにした。
従って、マザー基板2M上で走査される吐出ヘッド32の軌跡(「目標軌跡R」)に対応した位置でフラッシング動作を実行させることができる。従って、フラッシング動作の工程時間を短縮させることができ、液滴FbからなるドットD(識別コード10)の生産性を向上させることができる。
(2)上記実施形態によれば、直動モータMLの駆動制御によって、第1及び第2吸収部材44A,44BをX矢印方向及び反X矢印方向に移動させるようにした。そして、吐出ヘッド32が「フラッシング軌跡FR」に沿って走査されるときに、直動モータMLを駆動制して、第1及び第2吸収部材44A,44Bを、それぞれ吐出ヘッド32の走査に対応させて移動させるようにした。
(2)上記実施形態によれば、直動モータMLの駆動制御によって、第1及び第2吸収部材44A,44BをX矢印方向及び反X矢印方向に移動させるようにした。そして、吐出ヘッド32が「フラッシング軌跡FR」に沿って走査されるときに、直動モータMLを駆動制して、第1及び第2吸収部材44A,44Bを、それぞれ吐出ヘッド32の走査に対応させて移動させるようにした。
従って、第1及び第2吸収部材44A,44Bを移動させる分だけ、吐出ヘッド32の走査範囲を拡大させることができ、マザー基板2M上で走査される吐出ヘッド32の軌跡(「目標軌跡R」)の自由度を拡大させることができる。
(3)上記実施形態によれば、補間演算部51B及び逆演算部51Cの生成する軌跡情報TaIに基づいてスカラロボット26、第1及び第2吸収部材44A,44Bを移動させる構成にした。従って、吐出ヘッド32と各吸収部材44A,44Bを、共通する軌跡情報TaIに基づいて移動させることができる。その結果、各吸収部材44A,44Bの移動方向や移動量を、より確実に、吐出ヘッド32の移動状況に対応させることができる。
(3)上記実施形態によれば、補間演算部51B及び逆演算部51Cの生成する軌跡情報TaIに基づいてスカラロボット26、第1及び第2吸収部材44A,44Bを移動させる構成にした。従って、吐出ヘッド32と各吸収部材44A,44Bを、共通する軌跡情報TaIに基づいて移動させることができる。その結果、各吸収部材44A,44Bの移動方向や移動量を、より確実に、吐出ヘッド32の移動状況に対応させることができる。
尚、上記実施形態は以下のように変更してもよい。
・上記実施形態では、第1及び第2吸収部材44A,44Bを吐出ヘッド32の走査軌跡(「フラッシング軌跡FR」)に対応させて移動させるようにした。これに限らず、例えば、着脱可能にした吸収部材の配置位置を、予め計測する「目標軌跡R(フラッシング軌跡FR)」毎に配置変更させる構成にしてもよい。これによれば、メンテナンス機構駆動回路58を要することなく、より簡便な構成で、フラッシング動作に要する時間を短縮化させることができる。
・上記実施形態では、「フラッシング軌跡FR」に沿う吐出ヘッド32の走査に対応させて第1及び第2吸収部材44A,44Bを移動させる構成にした。これに限らず、例えば、フラッシング動作の回数を少なくする場合には、第1及び第2吸収部材44A,44Bを、いずれか一つの「フラッシング軌跡FR」の直下に配置移動させて、吐出ヘッド32を走査させる間に、同第1及び第2吸収部材44A,44Bを静止させる構成にしてもよい。この構成においても、より簡便な構成で、フラッシング動作に要する時間を短縮化さ
せることができる。
・上記実施形態では、補間演算部51B及び逆演算部51Cの生成する軌跡情報TaIに基づいてスカラロボット26、第1及び第2吸収部材44A,44Bを移動させる構成にした。これに限らず、例えば、記憶部51Aに、予め「目標軌跡R」に対応する「アーム回動情報θSI」及び「直動モータ回動情報θLI」を格納させて、格納する「アーム回動情報θSI」及び「直動モータ回動情報θLI」に基づいてスカラロボット26、第1及び第2吸収部材44A,44Bを移動させる構成にしてもよい。
・上記実施形態では、ヘッドユニット30にレーザヘッド37を搭載する構成にしたが、これに限らず、レーザヘッド37を搭載しない構成であってもよい。これによれば、吐出ヘッド32の移動速度を、より高速で制御させることができ、識別コード10の生産性を向上させることができる。
・上記実施形態では、ヘッド移動手段を多関節ロボットに具体化したが、これに限らず、吐出ヘッド32を対象物上で2次元方向に移動可能な手段であればよい。
・上記実施形態では、液滴Fbの領域に照射するレーザ光Bによって、液滴Fbを乾燥・焼成する構成にした。これに限らず、例えば照射するレーザ光Bのエネルギーによって、液滴Fbを所望の方向に流動させる構成にしてもよく、あるいは液滴Fbの外縁のみに照射して液滴Fbをピニングする構成にしてもよい。すなわち、液滴Fbの領域に照射するレーザ光Bによって液滴Fbからなるパターンを形成する構成であればよい。
・上記実施形態では、液滴Fbによって半円球状のドットDを形成する構成にしたが、これに限らず、例えば、楕円形状のドットや線状のパターンを形成する構成であってもよい。
・上記実施形態では、吐出した液滴Fbによって識別コード10のドットDを形成する構成にした。これに限らず、例えば液晶表示装置1や、平面状の電子放出素子を備えて同素子から放出された電子による蛍光物質の発光を利用した電界効果型装置(FEDやSED等)等、各種表示装置に設けられる各種薄膜、金属配線、カラーフィルタ等を形成する構成にしてもよく、着弾した液滴Fbによってパターンを形成する構成であればよい。
・上記実施形態では、対象物をマザー基板2Mに具体化したが、これに限らず、例えばシリコン基板やフレキシブル基板、あるいは金属基板等であってもよく、着弾した液滴Fbによってパターンを形成する対象物であればよい。
・上記実施形態では、第1及び第2吸収部材44A,44Bを吐出ヘッド32の走査軌跡(「フラッシング軌跡FR」)に対応させて移動させるようにした。これに限らず、例えば、着脱可能にした吸収部材の配置位置を、予め計測する「目標軌跡R(フラッシング軌跡FR)」毎に配置変更させる構成にしてもよい。これによれば、メンテナンス機構駆動回路58を要することなく、より簡便な構成で、フラッシング動作に要する時間を短縮化させることができる。
・上記実施形態では、「フラッシング軌跡FR」に沿う吐出ヘッド32の走査に対応させて第1及び第2吸収部材44A,44Bを移動させる構成にした。これに限らず、例えば、フラッシング動作の回数を少なくする場合には、第1及び第2吸収部材44A,44Bを、いずれか一つの「フラッシング軌跡FR」の直下に配置移動させて、吐出ヘッド32を走査させる間に、同第1及び第2吸収部材44A,44Bを静止させる構成にしてもよい。この構成においても、より簡便な構成で、フラッシング動作に要する時間を短縮化さ
せることができる。
・上記実施形態では、補間演算部51B及び逆演算部51Cの生成する軌跡情報TaIに基づいてスカラロボット26、第1及び第2吸収部材44A,44Bを移動させる構成にした。これに限らず、例えば、記憶部51Aに、予め「目標軌跡R」に対応する「アーム回動情報θSI」及び「直動モータ回動情報θLI」を格納させて、格納する「アーム回動情報θSI」及び「直動モータ回動情報θLI」に基づいてスカラロボット26、第1及び第2吸収部材44A,44Bを移動させる構成にしてもよい。
・上記実施形態では、ヘッドユニット30にレーザヘッド37を搭載する構成にしたが、これに限らず、レーザヘッド37を搭載しない構成であってもよい。これによれば、吐出ヘッド32の移動速度を、より高速で制御させることができ、識別コード10の生産性を向上させることができる。
・上記実施形態では、ヘッド移動手段を多関節ロボットに具体化したが、これに限らず、吐出ヘッド32を対象物上で2次元方向に移動可能な手段であればよい。
・上記実施形態では、液滴Fbの領域に照射するレーザ光Bによって、液滴Fbを乾燥・焼成する構成にした。これに限らず、例えば照射するレーザ光Bのエネルギーによって、液滴Fbを所望の方向に流動させる構成にしてもよく、あるいは液滴Fbの外縁のみに照射して液滴Fbをピニングする構成にしてもよい。すなわち、液滴Fbの領域に照射するレーザ光Bによって液滴Fbからなるパターンを形成する構成であればよい。
・上記実施形態では、液滴Fbによって半円球状のドットDを形成する構成にしたが、これに限らず、例えば、楕円形状のドットや線状のパターンを形成する構成であってもよい。
・上記実施形態では、吐出した液滴Fbによって識別コード10のドットDを形成する構成にした。これに限らず、例えば液晶表示装置1や、平面状の電子放出素子を備えて同素子から放出された電子による蛍光物質の発光を利用した電界効果型装置(FEDやSED等)等、各種表示装置に設けられる各種薄膜、金属配線、カラーフィルタ等を形成する構成にしてもよく、着弾した液滴Fbによってパターンを形成する構成であればよい。
・上記実施形態では、対象物をマザー基板2Mに具体化したが、これに限らず、例えばシリコン基板やフレキシブル基板、あるいは金属基板等であってもよく、着弾した液滴Fbによってパターンを形成する対象物であればよい。
2M…対象物としてのマザー基板、20…液滴吐出装置、26…ヘッド移動手段としての多関節ロボット、32…液滴吐出ヘッド、44A…受容部材を構成する第1吸収部材、44B…受容部材を構成する第2吸収部材、51B…経路情報生成手段を構成する補間演算部、51C…経路情報生成手段を構成する逆演算部、Fb…液滴、ML…配置変更手段を構成する受容部材移動手段としての直動モータ、R…移動経路を構成する目標軌跡、TaI…経路情報としての軌跡情報。
Claims (6)
- 対象物に液滴を吐出させる液滴吐出ヘッドと、前記液滴吐出ヘッドを前記対象物の上方で少なくとも2次元方向に移動させるヘッド移動手段と、を備えた液滴吐出装置において、
前記液滴吐出ヘッドから捨て打ちされた液滴を受容する受容部材と、
前記液滴吐出ヘッドの前記対象物上における移動経路に対応させて、前記受容部材の配置位置を変更する配置変更手段と、
を備えたことを特徴とする液滴吐出装置。 - 請求項1に記載の液滴吐出装置において、
前記配置変更手段は、前記液滴吐出ヘッドの前記対象物上における移動経路に対応させて、前記受容部材を移動させることを特徴とする液滴吐出装置。 - 請求項2に記載の液滴吐出装置において、
前記移動経路に関する経路情報を生成する経路情報生成手段を備え、
前記ヘッド移動手段は、前記経路情報生成手段の生成した前記経路情報に基づいて前記液滴吐出ヘッドを移動させて、
前記配置変更手段は、前記経路情報生成手段の生成した前記経路情報に基づいて前記受容部材を移動させることを特徴する液滴吐出装置。 - 請求項2又は3に記載の液滴吐出装置において、
前記ヘッド移動手段は、前記液滴吐出ヘッドが捨て打ちするときに、前記液滴吐出ヘッドを移動させて、
前記配置変更手段は、前記液滴吐出ヘッドの前記移動に対応させて前記受容部材の配置位置を移動させることを特徴とする液滴吐出装置。 - 請求項1〜4のいずれか1つに記載の液滴吐出装置において、
前記配置変更手段は、
前記対象物の外縁に沿って形成されて前記受容部材を案内する案内凹部と、
前記対象物上における移動経路に対応させて前記受容部材を移動させる受容部材移動手段と、
を備えたことを特徴とする液滴吐出装置。 - 請求項1〜5のいずれか1つに記載の液滴吐出装置において、
前記ヘッド移動手段は、多関節ロボットであることを特徴とする液滴吐出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005344649A JP2007144348A (ja) | 2005-11-29 | 2005-11-29 | 液滴吐出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005344649A JP2007144348A (ja) | 2005-11-29 | 2005-11-29 | 液滴吐出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007144348A true JP2007144348A (ja) | 2007-06-14 |
Family
ID=38206388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005344649A Pending JP2007144348A (ja) | 2005-11-29 | 2005-11-29 | 液滴吐出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007144348A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10777223B2 (en) | 2017-03-30 | 2020-09-15 | Nhk Spring Co., Ltd. | Method of feeding agent and structural object subjected to the method |
-
2005
- 2005-11-29 JP JP2005344649A patent/JP2007144348A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10777223B2 (en) | 2017-03-30 | 2020-09-15 | Nhk Spring Co., Ltd. | Method of feeding agent and structural object subjected to the method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100824610B1 (ko) | 액적 토출 장치 | |
JP2007289837A (ja) | 液滴吐出装置及び識別コード | |
JP4363435B2 (ja) | パターン形成方法及び液滴吐出装置 | |
JP2007160926A (ja) | 液滴吐出装置 | |
KR100759307B1 (ko) | 액적 토출 장치 | |
JP2006272297A (ja) | 液滴吐出装置 | |
KR100765402B1 (ko) | 패턴 형성 방법 및 액적 토출 장치 | |
JP4525559B2 (ja) | 液滴吐出装置 | |
JP2007117922A (ja) | パターン形成方法及び液滴吐出装置 | |
JP4337761B2 (ja) | 液滴吐出装置、パターン形成方法、識別コードの製造方法、電気光学装置の製造方法 | |
JP5028794B2 (ja) | パターン形成方法及び液滴吐出装置 | |
JP4407684B2 (ja) | パターン形成方法及び液滴吐出装置 | |
JP2007144348A (ja) | 液滴吐出装置 | |
JP2007163609A (ja) | パターン形成方法及び液滴吐出装置 | |
JP2007152250A (ja) | パターン形成方法及び液滴吐出装置 | |
JP2007105661A (ja) | パターン形成方法及び液滴吐出装置 | |
JP4591129B2 (ja) | 液滴吐出装置及びパターン形成方法 | |
JP4400540B2 (ja) | パターン形成方法及び液滴吐出装置 | |
JP2007136303A (ja) | 液滴吐出装置 | |
JP2007136258A (ja) | 液滴吐出装置 | |
JP2007108497A (ja) | パターン形成方法及び液滴吐出装置 | |
JP2006263560A (ja) | 液滴吐出方法及び液滴吐出装置 | |
JP4442677B2 (ja) | 液滴吐出装置の液滴乾燥方法及び液滴吐出装置 | |
JP2007163608A (ja) | 液滴吐出装置 | |
JP2007098281A (ja) | パターン形成方法及び液滴吐出装置 |