JP2007142313A - 計測工具及び調整方法 - Google Patents

計測工具及び調整方法 Download PDF

Info

Publication number
JP2007142313A
JP2007142313A JP2005336792A JP2005336792A JP2007142313A JP 2007142313 A JP2007142313 A JP 2007142313A JP 2005336792 A JP2005336792 A JP 2005336792A JP 2005336792 A JP2005336792 A JP 2005336792A JP 2007142313 A JP2007142313 A JP 2007142313A
Authority
JP
Japan
Prior art keywords
light
wafer
optical system
mark
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005336792A
Other languages
English (en)
Inventor
Yuho Kanatani
有歩 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005336792A priority Critical patent/JP2007142313A/ja
Publication of JP2007142313A publication Critical patent/JP2007142313A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】物体ステージの回転による姿勢変化に影響されること無く、投影光学系の設計に影響を与えること無く、マーク位置情報の検出を行う。
【解決手段】計測工具22は、マスクステージ上に搭載されたときに投影光学系に対向する光透過部48が形成された本体52と、本体の内部に配置され、光透過部を介して入射した光が経由する光学系(24,30,38,44)とを含む。計測工具22をマスクステージ上に搭載し、照明光ILで照射されたマークからの光が光透過部を介して本体内に入射可能な位置にマスクステージを移動する。これによりその入射した光が光学系を経由して本体52外に設けられたディテクタ82で受光される。マスクステージを移動させることで、計測工具の光透過部48を、投影光学系の光軸(AX)上に位置させた状態で、マークの位置を計測する。
【選択図】図4

Description

本発明は、計測工具及び調整方法に係り、特にマスクステージ上のマスクに形成されたパターンを物体ステージ上の物体に投影光学系を介して転写する露光装置で用いられる計測工具、該計測工具を用いて、物体ステージ上に存在するマークを投影光学系を介して計測した結果を考慮して、露光装置のパラメータを調整する調整方法に関する。
例えば半導体素子(集積回路等)は、ウエハ上に10層以上の回路パターン(レチクルパターン)を重ね合わせて形成されるため、半導体素子の製造に用いられる投影露光装置では、露光に際して、前層までの露光でウエハ上に既に形成されている露光対象のショット領域とレチクルパターンの投影位置(露光位置)とを正確に重ね合わせることが重要である。
そこで、近年の投影露光装置では、第2層以降の露光の際には、露光に先立って、各ショット領域に前層までの露光の際にウエハ上の各ショット領域に付設されたアライメントマークの位置情報を検出し、このマークの位置情報に基づいて各ショット領域と露光位置との位置関係を調整して、重ね合わせ露光を行うことがなされている。
しかるに、ウエハ上のアライメントマークの位置情報の検出は、色収差に起因する位置検出誤差の発生を回避する観点から、投影光学系から離間した位置に検出視野を有するオフアクシス方式のアライメント系により行われるのが、一般的である。この方式のアライメント系を用いたマークの位置情報の検出は、アッベ誤差などを考慮して、アライメント系の検出視野の中心を通る測長軸を有する干渉計の計測値によって規定される座標系(アライメント座標系)を基準として行われる。
一方、露光に際してのウエハの位置合わせは、アッベ誤差を考慮して、投影光学系の光軸を通る測長軸を有する干渉計の計測値によって規定される座標系(露光座標系)を基準として行われる。
従って、高精度な重ね合わせ露光を実現するためには、アライメント座標系と露光座標系とは、それらの原点同士を重ね合わせたときに、お互いに高精度に一致することが望ましいが、実際には、各干渉計を構成する多数の光学系の個々の製造誤差、設置状態、変形などにより、座標系間のずれは不可避である。そこで、実際には、両座標系間の関係を調整している。かかる調整は、従来、投影光学系を介してウエハステージ上の一対の基準マークとこれに対応するレチクルR上の一対のレチクルマークとを同時に観察するための露光波長の光を用いたVRA(Video Reticle Alignment)方式のセンサ(例えば特許文献1参照)を用いて、計測用のウエハ上のマークの位置を計測することで行っていた。
上記両座標系は、ウエハが載置されるテーブル(又はステージ)を回転させてもマーク位置が一定に保たれるように調整される必要がある。しかし、VRA方式のセンサは、投影光学系の中心に対して例えばX軸方向に離れた位置にそれぞれ設置されているため、テーブル(又はステージ)のY軸回り及びZ軸回りの回転などの姿勢変化によってウエハ上のマークがデフォーカスする、又は視野から外れてしまうことがあり、このような場合に、両座標系間の調整が困難になることがあった。
特開平7−176468号公報
上記のテーブル(又はステージ)のY軸回り及びZ軸回りの回転などの姿勢変化によってウエハ上のマークが視野から外れるという不都合を解決するためには、投影光学系と光学系を共有し、かつ視野中心が一致するウエハアライメントセンサを用意すれば良い。しかし、投影光学系は、露光のために最適化された設計となっているため、内部にセンサ用の光学系を組み込むことは実際問題として困難である。
本発明は、上記の事情の下でなされたもので、第1の観点からすると、マスクステージ上のマスクに形成されたパターンを物体ステージ上の物体に投影光学系を介して転写する露光装置で用いられる計測工具であって、前記マスクステージ上に搭載可能な形状を有し、搭載されたときに前記投影光学系に対向する一方の面の所定の位置に光透過部が形成された本体と;前記本体の内部に配置され、前記光透過部を介して入射した光が経由する光学系と;を含む計測工具である。
これによれば、計測工具(本体)をマスクステージ上に搭載し、物体ステージ上に存在するマークからの光が光透過部を介して本体内に入射可能な位置にマスクステージを移動する。これによりその入射した光が光学系を経由して本体内又は本体外に設けられた受光素子(ディテクタ)で受光される。本体を移動させて、投影光学系の光軸上に光透過部を位置させることで、その光透過部を介して、投影光学系の光軸上に位置させたマークの位置を計測することが可能となる。
従って、投影光学系と視野中心が一致するマーク検出系を得ることができ、物体ステージの回転による姿勢変化によって影響を殆ど受けることなく、かつ投影光学系の設計に影響を与えること無く、マーク位置情報の検出を行うことが可能になる。
本発明は、第2の観点からすると、本発明の計測工具を用いて、前記物体ステージ上に存在するマークを前記投影光学系を介して計測する工程と;その計測結果を考慮して、露光装置のパラメータを調整する工程と;を含む調整方法である。
これによれば、本発明の計測工具を用いて、物体ステージ上に存在するマークを投影光学系を介して計測することで、物体ステージの回転による姿勢変化の影響を受けることなく、物体ステージ上に存在するマークの位置情報を確実に計測することができ、この計測結果を考慮して、露光装置のパラメータ(例えば、前述の両座標系間の調整のための補正式の係数など)を良好に調整することが可能となる。従って、この調整後のパラメータに基づいて所定の処理を行うことで、高精度な露光が可能となる。
以下、本発明の一実施形態を図1〜図11に基づいて説明する。図1には、本発明に係る調整方法が適用される一実施形態の露光装置100の概略構成が示されている。この露光装置100は、ステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャナ)である。
この露光装置100は、光源及び照明光学系を含み、照明光(露光光)ILによりレチクルRを照明する照明系10、レチクルRを保持するレチクルステージRST、投影光学系PLを含む投影ユニットPU、ウエハWが載置されるウエハステージWST、前記レチクルステージRST及び前記投影ユニットPUなどが搭載されたボディBD及びこれらの制御系等を備えている。
前記照明系10は、例えば特開2001−313250号公報(対応する米国特許出願公開第2003/0025890号公報)などに開示されるように、光源、オプティカルインテグレータ等を含む照度均一化光学系、ビームスプリッタ、リレーレンズ、可変NDフィルタ、レチクルブラインド等(いずれも不図示)を含んで構成されている。この照明系10では、レチクルブラインドで規定されたレチクルR上のスリット状の照明領域を照明光ILによりほぼ均一な照度で照明する。ここで、照明光ILとしては、一例としてArFエキシマレーザ光(波長193nm)が用いられている。
前記レチクルステージRSTは、レチクルベース36上に、その底面に設けられた不図示のエアベアリングによって例えば数μm程度のクリアランスを介して浮上支持されている。このレチクルステージRST上には、レチクルRが、例えば真空吸着(又は静電吸着)され、保持されている。レチクルステージRSTは、ここでは、リニアモータ等を含むレチクルステージ駆動系12により、後述する投影光学系PLの光軸AXに垂直なXY平面内で2次元的に(X軸方向、Y軸方向及びXY平面に直交するZ軸回りの回転方向(θz方向)に)微少駆動可能であるとともに、レチクルベース36上を所定の走査方向(ここでは、図1における紙面直交方向であるY軸方向とする)に指定された走査速度で駆動可能となっている。
レチクルステージRSTのステージ移動面内の位置は、レチクルベース36に取り付けられたレチクルレーザ干渉計(以下、「レチクル干渉計」という)16によって、移動鏡15を介して、例えば0.5〜1nm程度の分解能で常時検出されている。この場合、投影ユニットPUを構成する鏡筒40の側面に固定された固定鏡14を基準として位置計測が行われる。ここで、実際には、レチクルステージRST上にはY軸方向に直交する反射面を有するY移動鏡とX軸方向に直交する反射面を有するX移動鏡とが設けられ、これらの移動鏡に対応してレチクルY干渉計とレチクルX干渉計とが設けられ、更に、これに対応して、X軸方向位置計測用の固定鏡と、Y軸方向位置計測用の固定鏡が設けられているが、図1ではこれらが代表的に移動鏡15、レチクル干渉計16、固定鏡14として示されている。ここで、レチクルY干渉計とレチクルX干渉計の一方、例えばレチクルY干渉計は、光軸を2軸有する2軸干渉計であり、このレチクルY干渉計の計測値に基づきレチクルステージRSTのY位置に加え、θz方向の回転も計測できる。
レチクル干渉計16の計測値は、ステージ制御装置19及びこれを介して主制御装置20に送られている。ステージ制御装置19では、主制御装置20からの指示に応じ、レチクル干渉計16の計測値に基づいてレチクルステージ駆動系12を介してレチクルステージRSTを駆動制御する。
レチクルRの上方には、投影光学系PLを介して後述する基準マーク板FM上の一対の第1基準マークとこれに対応するレチクルR上の一対のレチクルマークとを同時に観察するための露光波長の光を用いたTTR(Through The Reticle)アライメント系から成る一対のレチクルアライメント系13A,13BがX軸方向に所定距離隔てて設けられている。レチクルアライメント系13A,13Bとしては、例えば特開平7−176468号公報(対応する米国特許第5,646,413号)などに開示されるものと同様のVRA方式のセンサが用いられている。レチクルアライメント系13A,13Bは、投影光学系PLの光軸AXを基準として、X軸方向の一側と他側にそれぞれ配置され、図1に示される第1位置(図4中に仮想線(二点鎖線)で示される)と、第1位置からさらに光軸AXから離れる方向へ所定距離移動した第2位置(図4中に実線で示される)との間で、それぞれ往復移動可能に構成されている(図4中の両矢印参照)。
レチクルアライメント系13A,13Bがそれぞれ第1位置にある状態では、レチクルアライメント系13A,13Bは、光軸AXを基準として図1における左右対称な配置となり、レチクルR上のパターン領域のX軸方向の一側と他側にそれぞれ配置された一対のレチクルアライメントマークと、これに対応する、ウエハW上又は後述する基準マーク板上のマークとを投影光学系PLを介して同時に検出可能となる。例えば、一対のレチクルアライメントマークがともに、レチクルアライメント系13A,13Bそれぞれの検出中心で観測された場合には、レチクルR(パターン領域)の投影中心が、投影光学系PLの光軸AX上に位置しているとみなすことができる。また、ウエハWや後述する基準マーク板上の一対のマークが同時に、レチクルアライメント系13A,13Bの検出中心で観測された場合には、一対のマークの中点が、投影光学系PLの光軸AXに位置しているとみなすことができる。
レチクルアライメント系13A,13Bそれぞれの上方には、図1に示されるように、一対の受光ユニット11A,11Bが配置されている。これらの受光ユニット11A,11Bの具体的な配置、構成などについては、後に詳述する。
前記投影ユニットPUは、レチクルステージRSTの図1における下方でボディBDの一部に保持されている。このボディBDは、クリーンルームの床面F上に設置されたフレームキャスタFC上に設けられた第1コラム(メインフレーム)32と、この第1コラム32の上に固定された第2コラム34とを備えている。
前記フレームキャスタFCは、床面F上に水平に置かれたベースプレートBSと、該ベースプレートBS上に固定された複数本、例えば3本(又は4本)の脚部39(ただし、図1における紙面奥側の脚部は図示省略)とを備えている。
前記第1コラム32は、上記フレームキャスタFCを構成する複数本、例えば3本(又は4本)の脚部39それぞれの上端に個別に固定された複数、例えば3つの第1防振機構56A,56B,56C(但し、図1では紙面奥側の第1防振機構56Cは図示省略、図7参照)によって、ほぼ水平に支持されている。
前記第1コラム32は、鏡筒定盤とも呼ばれ、そのほぼ中央部に不図示の円形開口が形成されている。この円形開口内に、投影ユニットPU(フランジFLGが設けられた鏡筒40と、該鏡筒40に保持された複数の光学素子から成る投影光学系PLとによって構成されている)が、上方から挿入され、フランジ部を介して第1コラム32に支持示されている。
前記第1コラム32の上面には、投影ユニットPUを取り囲む位置に、複数本、例えば3本の脚41(但し、図1における紙面奥側の脚は図示省略)の一端(下端)が固定されている。これら複数本の脚41によってレチクルベース36が水平に支持されている。すなわち、レチクルベース36とこれを支持する3本の脚41とによって第2コラム34が構成されている。レチクルベース36には、その中央部に照明光ILの通路となる開口36aが形成されている。
前記ウエハステージWSTは、投影ユニットPUの下方に水平に配置されたステージベース(ステージ定盤)71の上面に、その底面に設けられた複数のエアベアリングを介して浮上支持されている。
前記ステージベース71は、前述のベースプレートBS上に設置されたメンテプレートと呼ばれる平板MP上の複数箇所(例えば3箇所)にそれぞれ配置された、複数(例えば3つ)の支持部材73と、該各支持部材73の上面にそれぞれ固定された複数(ここでは3つ)の第2防振機構66A〜66C(但し、図1では紙面奥側の第2防振機構66Cは図示省略、図7参照)とによってほぼ水平に支持されている。
前記ステージベース71の+Z側の面(上面)は、その平坦度が非常に高くなるように加工されており、ウエハステージWSTのガイド面とされている。
前記ウエハステージWSTは、投影光学系PLの図1における下方で、リニアモータ(あるいは平面モータ)などのアクチュエータを含むXY駆動系31(図1では不図示、図7参照)によって上記ガイド面に沿ってXY面内で駆動されるXYステージ28と、該XYステージ28上にZ・チルト駆動系29(図7参照)を介して搭載され、該Z・チルト駆動系29によってZ軸方向、θx方向(X軸回りの回転方向)、θy方向(Y軸回りの回転方向)の3自由度方向に微小駆動されるウエハテーブルWTとを含む。ウエハテーブルWTの上面に、ウエハホルダWHを介してウエハWが真空吸着(又は静電吸着)等により固定されている。
前記Z・チルト駆動系29は、例えば、XYステージ28上でウエハテーブルWTを3点で支持する3つのアクチュエータ(例えば、ボイスコイルモータ又は電磁石)と、各アクチュエータによるウエハテーブルWTの支持点のZ軸方向の駆動量を個別に計測する3つのリニアエンコーダとを含んで構成されている。なお、Z・チルト駆動系29は実際には、XYステージ28上に存在するが、本明細書では、一部の箇所で図示及び説明の便宜上から図1のウエハステージ駆動系27の一部であるかのような説明を行っている(図7等参照)。
前記ウエハテーブルWT上には、基準マーク板FMが、その表面がウエハWとほぼ同一高さとなる状態で設けられている。この基準マーク板FMの表面には、少なくとも一対のレチクルアライメント用の第1基準マークと、これらの第1基準マークに対して既知の位置関係にある、アライメント系ALGのベースライン計測用の第2基準マークなどが形成されている。
ウエハテーブルWT(ウエハステージWST)のXY面内の位置情報は、ウエハテーブルWTの上部に固定された移動鏡17に測長ビームを照射するウエハ干渉計システム18によって、例えば0.5〜1nm程度の分解能で常時検出されている。このウエハ干渉計システム18は、第1コラム32に吊り下げ状態で固定され、投影ユニットPUを構成する鏡筒40の側面に固定された固定鏡57の反射面を基準とする移動鏡17の反射面の位置情報をウエハステージWSTの位置情報として計測する。
ここで、ウエハテーブルWT上には、実際には、図2に示されるように、走査方向であるY軸方向に直交する反射面を有するY移動鏡17Yと、非走査方向であるX軸方向に直交する反射面を有するX移動鏡17Xとが設けられ、これに対応して固定鏡及びレーザ干渉計も、X軸方向位置計測用とY軸方向位置計測用のものがそれぞれ設けられているが、図1ではこれらが代表的に移動鏡17、固定鏡57、ウエハ干渉計システム18として図示されている。なお、例えば、ウエハテーブルWTの端面を鏡面加工して反射面(移動鏡17X、17Yの反射面に相当)を形成しても良い。
前記ウエハ干渉計システム18は、図2に示されるように、Y軸干渉計ユニット18Yと、2つのX軸干渉計ユニット18X1、18X2とを含んで構成されている。
Y軸干渉計ユニット18Yからは、図2に示されるように、平面視で(+Z側から見て)投影光学系PLの光軸AXを通るY軸に平行な参照ビーム(投影光学系PLの+Y側の側面に固定されている固定鏡に照射されている)の光軸WYEに対して対称な配置のY軸方向の光軸WYL、WYR(光軸の間隔をDXとする)をそれぞれ有する一対の測長ビーム(測定光)がY移動鏡17Yにそれぞれ照射されている。本実施形態では、Y軸干渉計ユニット18Yの光軸WYL、WYRの計測値の平均値に基づいて、ウエハテーブルWTのY軸方向位置が主制御装置20によって算出される。Y軸干渉計ユニット18Yの光軸WYL、WYRの計測値は、光軸WYL、WYRをそれぞれ有する測長ビームと光軸WYEを有する参照ビームとの光路長差、すなわち各測長ビームの照射点における移動鏡17Y表面の投影光学系PLに対するY軸方向の相対変位に相当する。光軸WYL,WYRの少なくとも一方は、実際にはZ軸方向に配置が異なる計測軸を2軸を有し、この2軸の計測値に基づいて、ウエハテーブルWTのθx回転(ピッチング)が主制御装置20によって算出される。また、光軸WYLとWYRの計測値の差からθz(ヨーイング成分)が主制御装置20によって算出される。
前記X軸干渉計ユニット18X1からは、図2に示されるように、後述するオフアクシス・アライメント系ALGの検出中心ALGXを通るX軸方向の光軸WXFを有する測長ビーム(測定光)がX移動鏡17Xに照射されている。X軸干渉計ユニット18X1の光軸WXFの計測値に基づいて、ウエハテーブルWTのX軸方向の位置情報が、主制御装置20によって算出される。ここで、X軸干渉計ユニット18X1の光軸WXFの計測値は、光軸WXFを有する測長ビームと対応する参照ビーム(アライメント系ALGの検出中心ALGXを通るX軸方向の光軸に沿ってアライメント系ALGの−X側の面に固定される固定鏡に照射されている)との光路長差、すなわち測長ビームが照射される位置における移動鏡17X表面のアライメント系ALGに対するX軸方向の相対変位に相当する。光軸WXFは、実際にはZ軸方向に配置が異なる計測軸を2軸を有し、この2軸の計測値に基づいて、ウエハテーブルWTのθy回転(ローリング)が主制御装置20によって算出される。
一方、前記X軸干渉計ユニット18X2からは、図2に示されるように、投影光学系PLの光軸AXを通るX軸方向の光軸WXBを有する測長ビーム(測定光)がX移動鏡17Xに照射されている。なお、光軸WXBと光軸WXFとの間隔をDYとする(図2参照)。X軸干渉計ユニット18X2の光軸WXBの計測値に基づいて、ウエハテーブルWTのX軸方向位置が主制御装置20によって算出される。X軸干渉計ユニット18X2の光軸WXBの計測値は、光軸WXBを有する測長ビームと対応する参照ビーム(投影光学系PLの光軸AXを通るX軸方向の光軸に沿って投影ユニットPUの−X側の面に固定される固定鏡に照射されている)との光路長差、すなわち測長ビームが照射される位置における移動鏡17X表面の投影光学系PLに対するX軸方向の相対変位に相当する。光軸WXBは、実際にはZ軸方向に配置が異なる計測軸を2軸を有し、この2軸の計測値に基づいて、ウエハテーブルWTのθy回転(ローリング)が主制御装置20によって算出される。
主制御装置20は、アライメント系ALGを用いてウエハW上のアライメントマーク(ウエハマーク)又は基準マーク板FM上の第2基準マークの位置情報を検出する際には、X軸干渉計ユニット18X1の計測値に基づいて、ウエハテーブルWTのX位置情報、ローリング情報を算出するが、露光時などには、X軸干渉計ユニット18X2の計測値に基づいて、ウエハテーブルWTのX位置情報、ローリング情報を算出する。これにより、露光時、ウエハアライメント時のいずれにおいても、いわゆるアッベ誤差なく、ウエハテーブルWTのX位置情報、ローリング情報を計測することが可能である。
上述のように、ウエハ干渉計システム18は、3つの干渉計ユニット18Y、18X1、18X2を含み、Z軸方向を除く5自由度方向に関するウエハテーブルWTの位置情報を計測する1つのシステムとして観念することもできるが、以下では、アライメント系ALGによるアライメントマークを検出する際に有効となるX軸干渉計ユニット18X1とY軸干渉計ユニット18Yとを含んで構成される計測システム(第1計測装置)と、露光時に有効となるX軸干渉計ユニット18X2とY軸干渉計ユニット18Yとを含んで構成される計測システム(第2計測装置)との2つの計測装置を含んで構成されるシステムとして説明する。また、第1計測装置の計測値で規定される座標系を「アライメント座標系」ともいい、第2計測装置の計測値で規定される座標系を「露光座標系」ともいう。
ウエハステージWSTの5自由度方向の位置情報(又は速度情報)は、ステージ制御装置19及びこれを介して主制御装置20に送られ、ステージ制御装置19では、主制御装置20からの指示に応じて、ウエハステージWSTの位置情報(又は速度情報)に基づいて、XY駆動系31を介してウエハステージWSTのXY面内の位置を制御する。
図1に戻り、第1コラム32の下面には、照射系42a及び受光系42bを含む、例えば特開平6−283403号公報(対応米国 特許第5,448,332号)等に開示されるものと同様の斜入射方式の多点焦点位置検出系(以下、適宜「多点AF系」とも呼ぶ)が設けられている。多点AF系(42a,42b)からの焦点ずれ信号(デフォーカス信号)は、ステージ制御装置19及びこれを介して主制御装置20に供給されている。
ステージ制御装置19は、走査露光時などに、主制御装置20からの指示に応じ、焦点ずれ信号(デフォーカス信号)に基づいてウエハW表面のZ位置、θx方向の回転,θy方向の回転を算出し、その算出結果にもとづいて、ウエハテーブルWTに対する3つの支持点のそれぞれをZ軸方向に駆動する各アクチュエータの駆動量を算出し、ウエハテーブルWTのZ軸方向への移動、及び2次元方向の傾斜(すなわち、θx,θy方向の回転)(ウエハWのフォーカス・レベリング動作)を制御する。
さらに、第1コラム32の投影ユニットPUの−Y側には、オフアクシス・アライメント系ALGが設けられている。このアライメント系ALGとしては、例えば、画像処理方式のFIA(Field Image Alignment)系のセンサが用いられている。このアライメント系ALGは、図2に示される検出中心ALGX(指標中心)を基準とする検出視野内のマークの位置情報を主制御装置20に供給する。主制御装置20は、この供給された情報と、ウエハ干渉計システム18の計測値とに基づいて、検出対象のマーク、具体的には前述した基準マーク板FM上の第2基準マーク又はウエハW上のアライメントマークのアライメント座標系(X軸干渉計ユニット18X1の光軸と、Y軸干渉計ユニット18Yの光軸とによって規定される座標系)上における位置情報を計測する。
さらに、第1コラム32には、3つのZ干渉計ユニット102A,102B,102C(但し、図1ではZ干渉計ユニット102Aの奥側のZ干渉計ユニット102Cは不図示、図7参照)が設けられている。
Z干渉計ユニット102A、102B、102Cのそれぞれは、ステージベース71のX軸方向の一側と他側の上面にそれぞれ固定された不図示のコーナキューブ型ミラー(例えばレトロリフレクタに、測長ビームを照射し、その反射光を受光することで、それぞれの内部の参照鏡を基準としてコーナキューブ型ミラー、すなわちステージベース71のZ軸方向の位置(Z干渉計ユニット102A、102B、102Cとステージベース71との相対位置)を、例えば0.5〜1nm程度の分解能で常時検出する。
Z干渉計ユニット102A、102B、102Cの計測値は、ステージ制御装置19及びこれを介して主制御装置20に供給される。ステージ制御装置19及び主制御装置20は、Z干渉計ユニット102A、102B、102Cの計測値に基づいて、第1コラム32の下面(又は上面)を基準として、ステージベース71上面のZ軸方向、θx方向、θy方向に関する位置情報を計測する。
図3には、本実施形態に係る計測工具22の平面図が受光ユニット11A,11B等とともに示されている。また、図4には、計測工具22の縦断面図が、受光ユニット11A,11B及びレチクルアライメント系13A,13B等とともに示されている。
計測工具22は、図3及び図4を総合するとわかるように、全体的には、レチクルRと同様の形状を有しており、レチクルRを搬送する不図示のレチクル搬送系によって、レチクルステージRST上に搬入(ロード)することが可能である。
この計測工具22は、一例としてレチクルRと同様の矩形板状(外形が正方形状)のガラス基板から成る本体52を有し、該本体52の表面及び裏面には、クロム等の長方形状の遮光膜54A、54Bが形成されている(図4等参照)。表面側の遮光膜54Aは、図3に示されるように、Y軸方向に長い長方形領域と、該長方形領域のY軸方向中央部+X端、−X端からそれぞれ外側に延設された一対の延設領域とを含む形状を有している。この遮光膜54Aの一対の延設領域には、遮光膜54Aの中心(本体52の中心にほぼ一致)に対して左右対称の配置で、一対の開口部58が形成されている。また、一対の延設領域には、別の一対の開口部59が形成されている(図4参照)。
裏面側の遮光膜54Bは、上記の開口部59が形成されていない点を除き、遮光膜54Aと同様に形成されている。但し、この遮光膜54Bの開口部58の内部には、十字マークから成る位置検出用のマークRM1,RM2がそれぞれ形成されている(図3参照)。これらのマークRM1,RM2は、前述したレチクルアライメント系13A,13Bがともに前述の第1位置にあり、図3の位置に計測工具22が位置決めされたときに、レチクルアライメント系13A,13Bによって同時に観察が可能な配置となっている。
また、計測工具22の中央部には、本体52の中心の近傍に本体52を、上下に貫通するほぼ正方形の透孔(貫通状態の開口)48、50が、それぞれ形成されている。一方の透孔48の中心を通るY軸に平行な直線と、他方の透孔50の中心を通るX軸に平行な直線との交点が本体52の中心にほぼ一致している。
本体52の図3におけるY軸方向中央部近傍には、図4に示されるように、本体52の+X側の端面から前述の透孔48に達する断面矩形の穴60が形成され、この穴60の内部に、ハーフミラー24、スリット板26、レンズ系30,38及びミラー44を含む光学系が配置されている。ハーフミラー24及びミラー44は、ともにXY面及びYZ面に対して45°で斜設されている。また、ミラー44は、図4における左斜め上側にその反射面を向けている。この光学系は、実際には、図5に示されるように、予め光学系ユニット46として構成され、この光学系ユニット46が、矢印Cで示されるように、穴60の内部に挿入されることで、本体52に組みつけられている。また、本体52の透孔48の下方には、レンズ62が固定されている。このレンズ62と投影光学系PLとから成る光学系を介して、ウエハW表面とスリット板26とは、光学的に共役な関係になっている。スリット板26には、Z軸方向の中央部にY軸方向に細長いスリット26a(図5参照)が形成されている。
また、不図示ではあるが、本体52の図3におけるY軸方向中央部近傍には、−X側の端面から透孔50に達する断面矩形の穴が形成されている。この穴の内部に、図6に平面図にて示されるような、ハーフミラー64、スリット板68、ミラー70、レンズ系72,74及びミラー76を含む光学系ユニット78が挿入され、組みつけられている。ハーフミラー64は、XY面及びXZ面に対して45°で斜設され、ミラー70は、その反射面が−Y側を向き、YZ面及びXZ面に対して45°で斜設されている。また、ミラー76は、その反射面が+Z側を向き、XY面及びYZ面に対して45°で斜設されている。また、組み付け状態では、ハーフミラー64が、上方から見て透孔50の内部に位置し、また、ミラー76が、上方から見て遮光膜54Aに形成された−X側の開口部59の内部に位置する。また、本体52の透孔50の下方には、投影光学系PLとともにウエハW表面とスリット板68とを、光学的に共役な関係にする不図示のレンズが固定されている。スリット板68には、Z軸方向の中央部にX軸方向に細長いスリットが形成されている。このスリットを以下では、適宜スリット68aと記述する(図11参照)。
また、図4に示されるように、受光ユニット11Bは、ミラー80、レンズ系81及び受光素子(例えばフォトマルプライヤチューブ(PMT)など)82を含む。ミラー80は、前述のミラー44と同様に、XY面及びYZ面に対して45°で斜設され、その反射面が図4における右斜め下方向を向いている。ミラー80は、計測工具22が図3の位置にあるときには、図4に示されるように、ミラー44の上方に位置する。図4の状態では、レンズ系30、38、ミラー44、80及びレンズ系81を含む光学系を介して、スリット板26と受光素子82とは光学的に共役な関係になっている(但し、上記PMTを使う場合には、光量検知をするのみなのでこの共役関係を必ずしも満たしている必要はない)。
同様に、受光ユニット11Aは、ミラー83、レンズ系84及び受光素子(例えばフォトマルプライヤチューブ(PMT)など)85を含む。ミラー83は、計測工具22が図3の位置にあるときには、前述のミラー76の上方(+Z側)に位置する。図4の状態では、ミラー70、レンズ系72、74、ミラー76、83及びレンズ系84を含む光学系を介して、スリット板68と受光素子85とは光学的に共役な関係になっている(但し、上記PMTを使う場合には、光量検知をするのみなのでこの共役関係を必ずしも満たしている必要はない)。
図7には、本実施形態の露光装置100における、制御系の主要な構成がブロック図にて示されている。この図7中、主制御装置20及びステージ制御装置19を中心として、制御系が構成されている。
主制御装置20は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含んで構成され、装置全体を統括して制御する。また、ステージ制御装置19は、マイクロコンピュータから成り、主制御装置20の指示の下、レチクル干渉計16、ウエハ干渉計システム18から得られる両ステージRST、WSTの位置の計測結果などに基づいて、レチクルステージ駆動系12、ウエハステージ駆動系27、第1防振機構56A〜56C及び第2防振機構66A〜66C等を制御する。
上述のように構成された露光装置100では、以下のようにして、既に回路パターンが転写された複数のショット領域を有するウエハWに対し、重ね合わせ露光が行われる。
まず、主制御装置20は、ステージ制御装置19に指示を与え、アライメント系ALGの検出視野内に、ウエハW上の幾つかのショット領域に付設されたアライメントマークが位置するように、ウエハステージWSTを移動させる。そして、主制御装置20は、アライメントマークのアライメント座標系での位置情報をアライメント系ALGの検出結果及び第1計測装置(干渉計ユニット18X1,18Y)の計測結果より求め、それらの位置情報に基づいて、アライメント座標系におけるウエハW上のショット領域の配列モデルを統計的手法を用いて推定する。次に、主制御装置20は、ステージ制御装置19に指示を与えて、推定された配列情報に基づいて、露光座標系の下で、投影光学系PLによりウエハW上の各ショット領域に対する重ね合わせ露光が可能な位置(露光位置)に、ウエハテーブルWTを移動させるとともに、重ね合わせ露光を行う。
ところで、第1計測装置(干渉計ユニット18X1,18Y)の計測値から得られるウエハテーブルWTの位置情報(すなわちアライメント座標系におけるウエハテーブルWTの位置情報)は、ウエハテーブルWTの基準位置(例えばウエハ中心)を原点としたときのアライメント系ALGの検出中心との相対位置座標を示すものである。また、第2計測装置(干渉計ユニット18X2,18Y)の計測値から得られるウエハテーブルWTの位置情報(すなわち露光座標系におけるウエハテーブルWTの位置情報)は、ウエハテーブルWTの同じ基準位置(例えばウエハ中心)を原点としたときの投影光学系PLの光軸AXの相対位置座標を示すものである。また、アライメント座標系におけるアライメントマークの位置情報に基づいて、露光座標系の下で正確に位置合わせを行うためには、アライメント座標系の下で推定されたウエハWのショット領域の配列情報が、露光座標系でほぼ完全に再現される必要がある。すなわち、アライメント座標系の原点と、露光座標系の原点とを一致させた場合に、両座標系がほぼ正確に重なり合うことが前提である。
上記2つの座標系は、前述のように、それぞれの座標軸を測長軸とする干渉計の計測値によって規定されるものであり、露光装置の組み立て工程では、アライメント座標系と露光座標系との間のずれが最小となるように、ウエハ干渉計システム18の各干渉計の内部の光学系の設置状態(第1コラム32からの吊り下げ固定の状態)などの調整が行われる。しかしながら、このような調整を行っても、両座標系の間には、多少のずれが残存する。そこで、本実施形態では、実際の重ね合わせ露光に先立って、両座標系の間のずれの調整を行う。
次に、本実施形態に係る露光装置100におけるパラメータの調整方法について、一例として、上記のアライメント座標系と露光座標系との間のずれを補正する、干渉計補正式の調整を採り上げて説明する。
本実施形態に係る調整方法では、図10に示される基準ウエハWTを用いる。この基準ウエハWTには、複数のショット領域SAi(i=1〜imax)がマトリックス状に形成されており、各ショット領域SAiの中心近傍には、2次元マークCMiが形成されている。より正確には、2次元マークCMiは、L字状のマークであり、L字を構成する一方の辺の中心線と他方の辺の中心線との交点が、ショット領域SAiの中心にほぼ正確に一致している。
図8及び図9には、本実施形態に係る調整方法を行う際の主制御装置20の処理手順を示すフローチャートが示されている。なお、前提条件として、処理開始に先立って、ウエハ干渉計システム18のリセット(原点復帰)がすでに行われているものとする。また、アライメント座標系と、露光座標系とのオフセット成分等は、予め求められているものとする。
まず、ステップ701において、計測工具22を、不図示のレチクルローダ(レチクル搬送系)を用いて、レチクルステージRST上にロードするとともに、基準ウエハWTを、不図示のウエハローダを用いて、ウエハステージWSTにロードする。なお、計測工具22をロードするに先立って、計測工具22のプリアライメントが行われており、図3に示されるように、レチクルと同様に正方形の外形を持つ計測工具22内の内部の長方形の遮光膜54の長手方向がY軸方向に平行となる状態で、レチクルステージRSTに吸着保持されるものとする。また、基準ウエハWTをロードするに先立って、基準ウエハWTのプリアライメントが行われており、図10に示されるように、同一行のショット領域の配列方向がX軸方向に平行となり、同一列のショット領域列方向がY軸方向に平行となる状態で、ウエハホルダWH上に吸着保持されるものとする。ここで、基準ウエハWTが、閾値以上のオフセット成分又は回転成分を有している場合には、基準ウエハWTのロードのリトライを行うようにしても良い。
次のステップ703では、ショット領域SAiを識別するためのショット番号を示すカウンタのカウント値iを1に初期化する(i←1)。
次のステップ705では、ウエハテーブルWTのZ軸方向の位置、θx方向、θy方向、θz方向に関する姿勢を、基準の位置及び姿勢としたままで(Z位置を原点位置、ピッチング量、ローリング量、ヨーイング量を0としたままで)、ショット領域SAi(ここではSA1)の2次元マークCMiの設計上位置座標に基づいて、2次元マークCMiがアライメント系ALGの検出中心に位置するように、ウエハステージWSTを位置決めする。この場合、ウエハテーブルWT(ウエハW)の位置は、第1計測装置(干渉計ユニット18X1,18Y)によって計測されている。すなわち、ウエハテーブルWT(ウエハW)の位置は、アライメント座標系上で管理されている。
次のステップ707では、この状態におけるアライメント座標系での2次元マークCMiの位置情報(ショット領域SAiの中心の位置情報)をアライメント系ALGの検出結果及び第1計測装置(干渉計ユニット18X1,18Y)の計測結果を用いて算出する。
次のステップ709では、ウエハテーブルWTの位置及び姿勢を所定範囲内で所定ピッチずらす。具体的には、ウエハテーブルWTをZ軸方向に微小な所定ピッチだけずらすか、θx、θy、θz方向のいずれか1つの回転方向に微小な所定角度だけ回転させる。なお、Z位置の移動は、ステージ制御装置19の制御の下、Z・チルト駆動系29を介して行われ、θx、θy、θzの回転は、ステージ制御装置19の制御の下、Z・チルト駆動系29又はXY駆動系31を介して、アライメント系ALGの検出中心軸ALGX又は該検出中心軸と垂直に交差する軸を回転中心として行われる。
次のステップ711では、この状態におけるアライメント座標系での2次元マークCMiの位置情報(ショット領域SAiの中心の位置情報)をアライメント系ALGの検出結果及び第1計測装置(干渉計ユニット18X1,18Y)の計測結果を用いて検出する。
次のステップ713では、Z、θx、θy、θzすべての方向に関して、ウエハテーブルWTを、所定範囲内で所定間隔移動させたときの2次元マークCMiの位置情報の検出が完了したか否かを判断する。ここでは、まだ、所定ピッチを1回だけずらしただけなので、このステップ713における判断は否定され、ステップ709に戻る。
以降、ステップ713において判断が肯定されるまで、ステップ709〜ステップ713の処理が繰り返され、Z、θx、θy、θzすべての方向に関する、所定範囲内での所定ピッチ間隔での2次元マークCMiの位置情報(ショット領域SAi(SA1)の中心の位置情報)が検出される。ステップ713において判断が肯定されると、ステップ715に進み、カウント値iがimax達したか否かを判断する。この場合、i=1であるから、ここでの判断は否定され、ステップ717に進んでカウント値iを1だけインクリメントした後(i←i+1)、ステップ705に戻る。
以降、ステップ715における判断が肯定されるまで、ステップ705〜ステップ717のループの処理(判断を含む)が繰り返され、ショット領域(計測対象となるサンプルショット領域)SAi(i=1〜imax)の2次元マークCMiのアライメント座標系上の位置情報(ショット領域SAiの中心の位置情報)が検出される。ステップ715における判断が肯定されると、ステップ719に進む。ステップ719では、上記ステップ707及びステップ711で検出された各2次元マークCMiの位置情報に基づいて、最小二乗法を用いて、次式で示されるショット領域SAiの配列モデルの係数Cxi1〜i6、Cyi1〜i6を求める。
Figure 2007142313
ここで、X’,Y’,Z’,θx’,θy’,θz’は、ショット領域SAiのショット中心の設計上の位置座標(ショット中心の座標)であり、X,Yは、アライメント座標系でのそのショット領域SAiのショット中心の配列モデルでの位置座標(ショット中心の座標)である。上記式(1)に示されるように、この配列モデルは、ショット領域SAiの設計上の位置座標X’,Y’,Z’,θx’,θy’,θz’を説明変数とし、実際の位置座標X,Yを目的変数とした線形多項式である。
本実施形態では、上記式(1)に示される、アライメント座標系での基準ウエハWTのショット領域SAiの配列モデルを、アライメント座標系と、基準となる理想的なステージの座標系との違いを表す線形多項式として扱う。
上記式(1)に示される線形多項式の最高次数などは、予め、ウエハ干渉計システム18によるウエハテーブルWTの6自由度方向の計測状態をモデル化したモデルを用いたシミュレーションにより求められているものとする。このステップ719の処理の終了後は、図9のステップ801に進む。
ステップ801では、投影光学系PLの光軸上に計測工具22の本体52の中心が一致し、かつ計測工具22の回転誤差がほぼ零となるように、レチクルステージRSTを位置決めする。具体的には、前述の第1の位置にある、レチクルアライメント系13A,13Bによって、ウエハテーブルWTに設けられた基準板FMの一対の第1基準マーク(不図示)と、計測工具22の一対のマークRM1、RM2とが検出されるように、レーザ干渉計16、第2計測装置の計測値にそれぞれ基づいてレチクルステージRST、XYステージ28を移動する。そして、レチクルアライメント系13A,13Bの検出結果に基づいてレチクルステージRSTのXY面内の位置(回転を含む)を調整する。
次のステップ802では、ウエハステージWSTを投影光学系PLの下方の露光位置に移動させる。この際、ウエハステージWST(ウエハテーブルWT)のX軸方向の位置制御に関しては、適切なタイミングで、X軸ウエハ干渉計ユニット18X1の計測値からX軸干渉計ユニット18X2の計測値を用いるように制御系を切り替える。これにより、ウエハステージWST(ウエハテーブルWT)は、露光座標系の下で位置制御されるようになる。また、レチクルアライメント系13A,13Bを第2位置に退避させる。次のステップ803では、カウント値iを1に初期化する(i←1)。
次のステップ805では、ウエハテーブルWTのZ軸方向の位置を原点位置、θx方向、θy方向、θz方向に関する姿勢を、基準の姿勢(ピッチング量、ローリング量、ヨーイング量を0)としたままで、投影光学系PLの光軸AX近傍に、ショット領域SAi(ここではSA1)のショット中心が位置するように、ウエハステージWST(ウエハテーブルWT)を位置決めする。
次のステップ807では、この状態での2次元マークCMiの露光座標系上の位置情報を、計測工具22及び受光ユニット11A,11Bを用いて検出する。具体的には、照明系10からの照明光ILで計測工具22を照明し、透孔48、50をそれぞれ通過した照明光ILを投影光学系PLを介して基準ウエハWT上の2次元マークCMiの近傍に照射する。これにより、基準ウエハWTからの反射回折光が透孔48、50、計測工具22内部の光学系、及び受光ユニット11A,11B内部のレンズ系等を介して受光素子82、85で受光される。この状態で、ウエハステージWSTを図11中に矢印Fで示される方向(+X方向及び+Y方向に関してともに45°を成す方向)に所定速度で走査して、2次元マークCMiからの光を逐次スリット26a、68a及びレンズ系等を介して受光素子82、85でそれぞれ受光することで、マークCMの像強度分布を検出する。
すなわち、上記のウエハステージWSTの矢印F方向の走査は、図11に模式的に示されるように、マークCMの像(空間像)CM’に対してスリット26a、68aを矢印G方向に走査するのと等価であり、スリット26a、68aを介してスリットスキャン方式で2次元マークCMiの空間像CM’の計測が行われる。
従って、受光素子82、85からそれぞれ出力される2次元マークCMiの一方の辺、他方の辺に対応する空間像強度信号、すなわち受光ユニット11A、11Bの検出結果と、第2計測装置(干渉計ユニット18X2,18Y)の計測結果とに基づいて、露光座標系上での2次元マークCMiの位置情報(ショット領域SAi(SA1)の中心の位置情報)を検出する。
次のステップ809では、ウエハテーブルWTの位置及び姿勢を所定範囲内で所定ピッチずらす。具体的には、ウエハテーブルWTをZ軸方向に微小な所定ピッチだけずらすか、θx、θy、θz方向のいずれか1つの回転方向に微小な所定角度だけ回転させる。この場合、θx、θy、θzの回転は、投影光学系PLの光軸AX又は該光軸AXと垂直に交差する軸を回転軸として行われる。
なお、レチクルアライメント系13A,13B(VRA(Video Reticle Alignment)方式のセンサ)で基準ウエハ上の一対のマークを検出する場合には、ウエハテーブルWTをθy方向に回転させた場合に、レチクルアライメント系13A,13Bの一方では、マークがデフォーカスする場合があるが、本実施形態では、ショット領域Siの中心にある2次元マークCMiを、計測工具22及び受光ユニット11A,11Bを用いて検出するので、ウエハテーブルWTをθy方向に回転させても2次元マークCMiがデフォーカスするおそれはない。
次のステップ811では、この状態での露光座標系における2次元マークCMの位置情報を、レチクルアライメント系13A,13Bの検出結果及び第2計測装置(ウエハ干渉計ユニット18X2,18Y)の計測結果を用いて検出する。
次のステップ813では、Z、θx、θy、θzすべての方向に関して、所定範囲内で所定間隔移動させたときの2次元マークCMiの位置情報の検出が完了したか否かを判断する。ここでは、まだ、所定ピッチを1回だけずらしただけなので、ここでの判断は否定され、ステップ809に戻る。
以降、ステップ813において判断が肯定されるまで、ステップ809〜ステップ813の処理(判断を含む)を繰り返し、Z、θx、θy、θzすべての方向に関する、所定範囲内での所定ピッチ間隔での2次元マークCMiの位置情報(ショット領域SAi(SA1)の中心の位置情報)が検出される。ステップ813において判断が肯定されると、ステップ815に進み、カウント値iがimaxを超えたか否かを判断する。この場合、i=1であるから、ここでの判断は否定され、ステップ817に進んでカウント値iを1インクリメントした後、ステップ805に戻る。
以降、ステップ815における判断が肯定されるまで、ステップ805〜ステップ817のループの処理(判断を含む)が繰り返され、ショット領域(計測対象となるサンプルショット領域)SAi(i=1〜imax)の2次元マークCMiの露光座標系上の位置情報(ショット領域SAiの中心の位置情報)が検出される。ステップ815における判断が肯定されると、ステップ819に進む。ステップ819では、上記ステップ807、811で検出された2次元マークCMiの位置情報(ショット領域SAiの中心の位置情報)に基づいて、回帰分析により、具体的には最小二乗法により、次式で示されるショット領域の配列モデルの係数を求める。
Figure 2007142313
ここで、X’,Y’,Z’,θx’,θy’,θz’は、ショット領域SAiの設計上の位置座標(ショット中心の座標)であり、X,Yは、露光座標系でのそのショット領域SAiの配列モデルでの位置座標(ショット中心の座標)である。上記式(2)に示されるように、この配列モデルは、ショット領域の設計上の位置座標X’,Y’,Z’,θx’,θy’,θz’を説明変数とし、実際の位置座標X,Yを目的変数とした線形多項式である。
本実施形態では、上記式(2)に示される、露光座標系での基準ウエハWTのショット領域SAiの配列モデルを、露光座標系と、基準となる理想的なステージの座標系との違いを表す線形多項式として扱う。
なお、上記式(2)に示される線形多項式の最高次数などは、上記式(1)に示される線形多項式の最高次数と同じとなるように、前述のシミュレーションなどにより予め設定されている。
次のステップ821では、上記ステップ719で推定されたアライメント座標系でのショット配列モデルと、上記ステップ819で推定された露光座標系でのショット配列モデルとに基づいて、干渉計の計測値の補正関数を設定する。本実施形態では、上記式(1)で示されるショット配列モデルの線形多項式をアライメント座標系でのウエハテーブルWTの位置座標の補正に用いる線形多項式としてステージ制御装置19に設定し、上記式(2)で示されるショット配列モデルの線形多項式を露光座標系でのウエハテーブルWTの位置座標の補正に用いる線形多項式としてステージ制御装置19に設定する。
以上のような線形多項式による補正を行うことにより、補正後のアライメント座標系と、露光座標系は、ほぼ一致するようになる。すなわち、基準ウエハWTを介して両座標系の相対的なずれが調整されたこととなる。
図9に戻り、ステップ823では、基準ウエハWT及び計測工具22をアンロードした後、本ルーチンの一連の処理を終了する。
アライメント時には、上記式(1)の線形多項式によって補正されたアライメント座標系におけるウエハテーブルWTの位置情報の検出が行われ、露光時には、上記式(2)の線形多項式によって補正された露光座標系の下での位置合わせ及び露光が行われる。すなわち、アライメント座標系の原点と、露光座標系の原点とを一致させた場合に、両座標系がほぼ正確に重なり合うようになっているので、重ね合わせ精度の良好な露光が実現される。
以上説明したように、本実施形態に係る計測工具22によると、該計測工具22をレチクルステージRST上に搭載し、照明光ILで計測工具22が照明されると、透孔48、50を介して照明光ILが基準ウエハWT上に照射される。そして、照明光ILで照射された基準ウエハWT上の2次元マークCMiからの反射回折光が透孔48、50を介して本体52内に入射可能な位置にレチクルステージRSTを移動する。これによりその入射した反射回折光が光学系を経由して本体52外に設けられた受光素子(ディテクタ)82、85で受光される。そして、この状態で、ウエハステージWSTを前述の矢印F方向に走査することで、透孔48、50を投影光学系PLの光軸AX近傍上に位置させて、2次元マークCMiの空間像を、スリットスキャン方式で検出し、その検出結果とその検出時の干渉計ユニット18Y、18X2の計測結果とに基づいて、マークCMの位置を計測することが可能となる。従って、投影光学系PLの設計に影響を与えずに、投影光学系PLと視野中心が一致するマーク検出系を得ることができ、ウエハテーブルWTの回転による姿勢変化によってウエハテーブルWTに搭載された基準ウエハWT上の2次元マークCMiがデフォーカスしたり、視野から外れ、マーク位置情報の検出が困難になるということがない。
また、計測工具22は、全体形状が、通常のレチクルと同様の形状を有しているので、その搬送のための専用の工具を用意せずとも、レチクルRをレチクルステージRSTに搭載するレチクル搬送系によって露光装置に搭載することが可能である。
また、計測工具22は、レチクルと同様に位置検出用マークRM1,RM2が形成されているので、それらのマークRM1,RM2をレチクルアライメント系13A,13Bで検出し、その検出結果に基づいて、レチクルステージRSTを駆動して計測工具22を所定の位置に位置決めするだけで、受光ユニット11A,11Bに対する計測工具22の位置合わせを容易に実行できる。
また、計測工具22は、光学素子のみを備えているので、電気配線等が不要であり、その計測工具22部分の構成を簡単にすることができる。
また、計測工具22及び受光ユニット11A,11Bによって、投影光学系PLの光軸AX付近に検出視野を有するマーク検出系が構成されており、そのマーク検出系により、アライメント検出系ALGと同じ2次元マークCMiを検出するので、検出対象のマークの相違に起因する検出誤差をなくすことができる。
また、上記のマーク検出系(22、11A,11B)は、照明光として露光用の照明光ILを用いるので、任意のウエハの観察が可能である。
また、上記実施形態では、基準ウエハWT上の2次元マークCMiの検出に際し、計測工具22に対してウエハステージWSTを前述の矢印F方向に相対移動することで、2次元マークCMiのX位置及びY位置の同時計測が可能であり、これによって、2次元マークCMiのX位置及びY位置を別々に計測する場合に比べて計測時間を短縮することができる。
また、本実施形態によると、前述した干渉計補正式の調整を行うに際し、アライメント座標系上における2次元マークCMi(ショット領域Si)の位置情報を検出した後、第2計測装置でウエハテーブルWTの位置を計測しながら計測工具22を用い、上述のようにして、ウエハテーブルWTの回転による姿勢変化に影響を受けることなく、ウエハテーブルWTに搭載された基準ウエハWT上のマークを検出することができる。従って、その第2計測装置の計測結果と計測工具22を用いた計測結果とに基づいて、露光座標系上における2次元マークCMi(ショット領域Si)の位置情報を確実に計測することができる。そして、アライメント座標系上における2次元マークCMi(ショット領域Si)の位置情報の検出結果と、露光座標系上における2次元マークCMi(ショット領域Si)の位置情報の検出結果とに基づいて、所定の演算処理を行うことで、各座標系の補正式の調整を高精度に行う。従って、この調整後のパラメータに基づいて所定の処理を行うことで、高精度な露光が可能となる。
なお、上記実施形態では、マークCMの検出を露光光である照明光ILを用いた落射照明により行う関係から、計測工具22に上下に貫通する透孔48,50が形成された場合について説明したが、例えば2次元マークCMiとして、発光マークを用いる場合には、その発光マークを下方から照明光IL又はこれとほぼ同一波長の光により照明する方式を採用できるので、計測工具22には、投影光学系PLに対向する側の面にのみ光透過部が形成されていれば良い。この場合、その発光マークからの光が光透過部を介して計測工具の本体内に入射可能な位置にレチクルステージRSTを移動することで、その入射した光が光学系を経由して本体内又は本体外に設けられたディテクタで受光される。従って、上記実施形態と同様にして、その発光マークの位置情報を検出することができる。
また、上記実施形態では、計測工具22とは別に、受光素子を有する受光ユニット11A,11Bを備えた場合について説明したが、これに限らず、本体52内に光学系及び受光素子の両者が配置されていても良い。
また、上記実施形態では、2次元マークCMiの検出に際し、受光ユニット11A,11Bと計測工具22との位置関係を所望の位置関係に維持するため、ウエハステージWSTを走査するものとしたが、かかる位置関係が維持できる構成を採用するのであれば、計測工具(レチクルステージRST)、又はウエハステージWST及び計測工具(レチクルステージRST)を走査することとしても良い。
また、上記実施形態では、計測工具22には、位置検出用のマークRM1,RM2が形成された場合について説明したが、位置検出用のマークは、複数組形成しても良い。また、計測工具22にマークRM1,RM2のようなマークに加え、ウエハステージWST上に設けられた空間像計測器で検出が可能な別のマークを少なくとも1つ形成しても良い。
また、上記実施形態では、アライメント系ALGと前述のマーク検出系とで、同一の2次元マークCMiを検出するものとしたが、これに限らず、アライメント系ALGにより検出されるマークとは別に、前述のマーク検出系により検出されるマークを設けても良いことは勿論である。また、マークCMiは、複数のパターン(ラインパターンなど)の集合体として形成しても良い。その場合に各ラインパターンの間隔は、等間隔でも不等間隔でも良い(不等間隔であれば、紛らわしいマークの誤検出を防止できる)。
なお、上記実施形態では、スリットスキャン方式の空間像計測器から成るマーク検出系を、計測工具22を含んで構成するものとしたが、これに限らず、前述のアライメント系13A,13BのようなVRA系のような結像式のセンサから成るマーク検出系を、計測工具を含んで構成することとしても良いし、あるいは計測工具の本体内に像を撮像するカメラを設置しても良い。かかる場合には、上記実施形態のような2系統の光学系を用意することなく、2次元マークCMiのXY2次元方向の位置を検出することが可能となる。
また、上記実施形態では、計測工具22の内部に2系統の光学系を配置し、2次元マークCMiのX軸方向の位置情報、Y軸方向の位置情報を、それぞれ計測する計測軸が2軸のマーク検出系を構成するものとしたが、これに限らず、計測工具の内部により多くの系統の光学系を配置しても良い。上記実施形態のようなスキャン型の露光装置であればレチクルステージをスキャン方向に大きく移動させられるので、計測工具の複数のY位置に光学系を搭載しておき、レチクルステージ位置によってどの光学系を使うかを選択するようにしても良い。また、マークからの光の空中伝送を行うX位置を揃えておけば、計測工具内の異なる光学系に対して、外部の受光ユニットとして、同一の受光ユニットを用いることができる。
また、上記実施形態では、計測工具22は、レチクルとほぼ同形状であるとしたが、これに限らず、計測工具は、レチクル搬送系によりレチクルステージ上に搭載が可能であれば、その外形は特に問わない。なお、計測工具は、特殊な冶具などを用いることなく、レチクルステージ上に固定できることが望ましい。また、計測工具は、アライメントが可能なパターンが配置されていれば、その材質も特に問わない。
なお、上記実施形態では、ウエハステージWSTが、XY面内で移動するXYステージ28と、該XYステージ28上にZ・チルト駆動系29を介して搭載されたZ、θx、θy方向に移動可能なウエハテーブルWTとを含んで構成されるものとしたが、これに限らず物体ステージは6自由度方向に移動可能な単一のステージであっても良い。
なお、上記実施形態では、基準ウエハWTを介して、アライメント座標系と露光座標系との相対的なずれを調整したが、ウエハテーブルWT上又はウエハホルダWH上に基準ウエハWTのショット領域SAiのマークに相当するマークを設け、そのマークの位置情報を検出することにより、アライメント座標系と、露光座標系とを調整するようにしてもよい。
なお、上記実施形態では、基準ウエハWT上の全てのショット領域SAiの位置情報に基づいて、最小二乗法を用いて上記式(1)、式(2)の線形多項式の係数を求めたが、統計的に見て、妥当な配列モデルを算出できるのであれば、全てのショット領域SAiについて位置情報を検出する必要はない。すなわち、全てのショット領域SAiのうち、幾つかのショット領域SAiをサンプルショット領域として抽出し、抽出されたサンプルショット領域の位置情報だけを検出するようにしてもよい。
なお、上記実施形態では、計測工具22を用いて、ウエハステージWST上に存在する2次元マークCMiを投影光学系PLを介して計測し、その計測結果を考慮して、露光装置のパラメータとして、干渉計補正式(の各係数)を調整し、その調整後の干渉計補正式を用いてアライメント座標系と露光座標系との相対的なずれを調整したが、本発明はこれには限られない。
また、上記式(1)、式(2)は、各座標軸の補正後の位置座標を目的変数とする線形多項式であったが、これに限らず、各座標軸の位置座標の補正量を目的変数とする線形多項式を採用するようにしてもよい。
また、上記実施形態では、アライメント座標系と露光座標系とで、Y軸方向に平行な測長軸を有するY軸干渉計ユニットを共通のものとしたが、これには限られない。すなわちアライメント座標系と露光座標系とで、Y軸干渉計ユニットを別のもの(例えば、Y軸干渉計ユニット18Yとは別に−Y側に設置されている干渉計ユニット)としても構わない。
また、上記実施形態では、本発明がスキャナに適用された場合について説明したが、これに限らず、ステップ・アンド・リピート方式の露光装置(ステッパ)などの静止露光型の露光装置にも本発明の調整方法は適用が可能である。さらに、例えば特開平10−154659号公報などに開示される、投影光学系PLとウエハとの間に液体(例えば純水など)が満たされる液浸型露光装置、あるいはステップ・アンド・スティッチ方式の露光装置なども、本発明を好適に適用できる。
また、上記実施形態の露光装置における投影光学系の倍率は縮小系のみならず等倍および拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。
なお、上記実施形態では、露光装置100が、照明光ILとしてArFエキシマレーザ光を用いる場合について説明したが、これに限らず、KrFエキシマレーザ光(波長248nm)は勿論、超高圧水銀ランプからの紫外域の輝線(例えばg線、i線など)や、波長が170nm以下の光、例えばF2レーザ光(波長157nm)、Kr2レーザ光(波長146nm)等の他の真空紫外光を用いても良い。
また、例えば、真空紫外光として上記各光源から出力されるレーザ光に限らず、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(Er)(又はエルビウムとイッテルビウム(Yb)の両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
なお、本発明は、半導体製造用の露光装置に限らず、液晶表示素子などを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられるデバイスパターンをセラミックウエハ上に転写する露光装置、及び撮像素子(CCDなど)、マイクロマシン、有機EL、DNAチップなどの製造に用いられる露光装置などにも適用することができる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
半導体デバイスは、デバイスの製造、性能設計を行うステップ、この設計ステップに基づいたレチクルRを製作するステップ(マスク製作工程)、シリコン材料からウエハを製作するステップ(ウエハ製作工程)、上記実施形態の露光装置100によりレチクルRのパターンをウエハWに転写し、ウエハW上に回路パターンを形成するステップ(ウエハ処理工程)、メモリリペアステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。
本発明の計測工具は、マスクステージ上のマスクに形成されたパターンを物体ステージ上の物体に投影光学系を介して転写する露光装置に用いるのに適している。また、本発明の調整方法は、そのような露光装置のパラメータを調整するのに適している。
本発明の一実施形態に係る露光装置の構成を概略的に示す図である。 ウエハステージに関する座標系を規定する干渉計の測長軸の配置を示す平面図である。 計測工具の平面図を受光ユニット等とともに示す図である。 計測工具22の縦断面図を、受光ユニット及びレチクルアライメント系等とともに示す図である。 計測工具のガラス基板に対して光学系ユニットが挿入されている状態を示す図である。 計測工具のガラス基板に組みつけられた−X側の光学系ユニットの構成を示す図である。 本発明の一実施形態の露光装置における、制御系の主要な構成を示すブロック図である。 一実施形態に係る調整方法を行う際の主制御装置20の処理手順を示すフローチャート(その1)である。 一実施形態に係る調整方法を行う際の主制御装置20の処理手順を示すフローチャート(その2)である。 基準ウエハの一例を示す図である。 計測工具を用いたマークの計測方法を説明するための図である。
符号の説明
22…計測工具、24…ハーフミラー、26…スリット板、30…レンズ系、38…レンズ系、44…ミラー、46…光学系ユニット、48…透孔、48…透孔、50…透孔、52…ガラス基板、68…スリット板、70…ミラー、72…レンズ系、74…レンズ系、76…ミラー、78…光学系ユニット、82……受光素子、85…受光素子、100…露光装置、RST…レチクルステージ、R…レチクル、WST…ウエハステージ、W…ウエハ、PL…投影光学系、RM1,RM2…アライメント用マーク、CMn…マーク。

Claims (9)

  1. マスクステージ上のマスクに形成されたパターンを物体ステージ上の物体に投影光学系を介して転写する露光装置で用いられる計測工具であって、
    前記マスクステージ上に搭載可能な形状を有し、搭載されたときに前記投影光学系に対向する一方の面の所定の位置に光透過部が形成された本体と;
    前記本体の内部に配置され、前記光透過部を介して入射した光が経由する光学系と;を含む計測工具。
  2. 前記本体は、前記マスクステージに対してマスクを搬入するマスク搬送系によって搬送可能であることを特徴とする請求項1に記載の計測工具。
  3. 前記所定の位置は、前記本体がマスクステージに搭載された際に、該マスクステージの位置を調整することで、前記投影光学系の光軸近傍を通過した光を前記光透過部を介して入射させることが可能な位置であることを特徴とする請求項1又は2に記載の計測工具。
  4. 前記本体の他方の面には前記光透過部に対向して別の光透過部が形成され、
    前記光学系は、前記2つの光透過部の間に配置され、前記他方の面側の光透過部から入射した光を前記一方の面側の光透過部に向けて透過させ、前記一方の面側の光透過部から入射した光を前記本体の内部に向けて反射する分岐光学素子と、該分岐光学素子で反射された前記光が入射する光学部材とを含むことを特徴とする請求項1〜3のいずれか一項に記載の計測工具。
  5. 前記本体の内部には、前記光学系を経由した前記光を受光する光検出器が配置されていることを特徴とする請求項1〜4のいずれか一項に記載の計測工具。
  6. 前記本体には、前記光学系を経由した前記光を外部の光検出器に送出するための送出部が形成されていることを特徴とする請求項1〜4のいずれか一項に記載の計測工具。
  7. 前記本体には、該本体の位置検出用のマークが複数形成されていることを特徴とする請求項6に記載の計測工具。
  8. 前記光学系は、前記本体がマスクステージに搭載された際に、前記物体ステージ上に存在するマークと光学的にほぼ共役となる位置に配置されたスリット板をさらに含むことを特徴とする請求項1〜7のいずれか一項に記載の計測工具。
  9. 請求項1〜8のいずれか一項に記載の計測工具を用いて、前記物体ステージ上に存在するマークを前記投影光学系を介して計測する工程と;
    その計測結果を考慮して、露光装置のパラメータを調整する工程と;を含む調整方法。
JP2005336792A 2005-11-22 2005-11-22 計測工具及び調整方法 Pending JP2007142313A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336792A JP2007142313A (ja) 2005-11-22 2005-11-22 計測工具及び調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336792A JP2007142313A (ja) 2005-11-22 2005-11-22 計測工具及び調整方法

Publications (1)

Publication Number Publication Date
JP2007142313A true JP2007142313A (ja) 2007-06-07

Family

ID=38204788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336792A Pending JP2007142313A (ja) 2005-11-22 2005-11-22 計測工具及び調整方法

Country Status (1)

Country Link
JP (1) JP2007142313A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031656A1 (ja) * 2007-09-07 2009-03-12 Nikon Corporation 吊り下げ装置及び露光装置
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2009031656A1 (ja) * 2007-09-07 2009-03-12 Nikon Corporation 吊り下げ装置及び露光装置
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
CN111176083B (zh) 测量装置、光刻系统、曝光装置、测量方法以及曝光方法
JP6035695B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP4683232B2 (ja) 像面計測方法、露光方法及びデバイス製造方法、並びに露光装置
US10684562B2 (en) Measurement device, lithography system and exposure apparatus, and device manufacturing method
TWI548953B (zh) A moving body system and a moving body driving method, a pattern forming apparatus and a pattern forming method, an exposure apparatus and an exposure method, and an element manufacturing method
TWI609252B (zh) Moving body driving system and moving body driving method, pattern forming apparatus and method, exposure apparatus and method, element manufacturing method, and determination method
TWI534408B (zh) Position measuring system, exposure apparatus, position measuring method, exposure method and component manufacturing method, and measuring tool and measuring method
CN111948913B (zh) 基板处理系统及基板处理方法
JP5071894B2 (ja) ステージ装置、パターン形成装置、露光装置、ステージ駆動方法、露光方法、並びにデバイス製造方法
JP2007142313A (ja) 計測工具及び調整方法
WO2006035925A1 (ja) 計測方法及び露光方法、並びにデバイス製造方法
JP2009278097A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2009004771A (ja) 露光方法及び装置、並びにデバイス製造方法
JP2004014876A (ja) 調整方法、空間像計測方法及び像面計測方法、並びに露光装置
JP5861858B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2009054726A (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP2006060152A (ja) 光学特性測定装置、ステージ装置及び露光装置
JP2011258922A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2010123793A (ja) 光学特性計測方法、露光方法、及びデバイス製造方法
JP2009252994A (ja) 露光方法及びデバイス製造方法、並びに露光装置
JP2006310683A (ja) 調整方法
JP2006032807A (ja) 露光装置及びデバイス製造方法
JP2006190794A (ja) 調整方法、露光方法及び露光装置
JP6102230B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2005064373A (ja) 露光装置