JP2007128698A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2007128698A
JP2007128698A JP2005319192A JP2005319192A JP2007128698A JP 2007128698 A JP2007128698 A JP 2007128698A JP 2005319192 A JP2005319192 A JP 2005319192A JP 2005319192 A JP2005319192 A JP 2005319192A JP 2007128698 A JP2007128698 A JP 2007128698A
Authority
JP
Japan
Prior art keywords
manifold
region
gas
oxidant gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005319192A
Other languages
English (en)
Other versions
JP4967311B2 (ja
Inventor
Koichi Ijuin
浩一 伊集院
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005319192A priority Critical patent/JP4967311B2/ja
Publication of JP2007128698A publication Critical patent/JP2007128698A/ja
Application granted granted Critical
Publication of JP4967311B2 publication Critical patent/JP4967311B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】極低温始動時においても確実に動作温度まで昇温することが可能な燃料電池を提供すること。
【解決手段】アノード14、電解質膜12、及びカソード16を含む単位セルを有し、アノード14に水素を含む燃料ガスの供給を受けると共に、カソード16に酸素を含む酸化剤ガスの供給を受けて、電力を発生する燃料電池10と、燃料電池10の温度を取得する温度センサ78,80と、単位セルの面内の所定領域に燃料ガス及び酸化剤ガスを供給するガス供給手段と、を備え、ガス供給手段は、燃料電池10の始動時の温度が第1の所定値以下の場合は、単位セルの面内の領域Aのみに燃料ガス及び酸化剤ガスを供給する。
【選択図】図2

Description

本発明は、燃料電池システムに関する。
従来、例えば特開2004−228038号公報には、低温起動時に複数のセルの一部にて発電を行い、その熱により他のセルを加熱して始動性を向上する技術が開示されている。
特開2004−228038号公報 特開2003−272676号公報 特開平5−94831号公報 特開2004−247289号公報 特開2004−241273号公報
しかしながら、燃料電池の単位セルは面方向に拡がりを有しており、面内の温度分布は均一ではない。このため、低温始動時において、面内では生成水が凍結し易い領域と凍結し難い領域が存在する。上記従来の技術では、低温始動時における単位セルの面内での温度分布、凍結のし易さを考慮していないため、発電による反応熱を単位セルの面内の全域に伝達することが困難である。
このため、発電による生成水が一部の領域で凍結し、流路が閉塞してしまうという問題が生じる。そして、極低温時などの始動において、流路が閉塞した領域が拡大すると、燃料電池の運転がストールしてしまう虞がある。
この発明は、上述のような問題を解決するためになされたものであり、低温始動時においても確実に動作温度まで昇温することが可能な燃料電池を提供することを目的とする。
第1の発明は、上記の目的を達成するため、アノード、電解質膜、及びカソードを含む単位セルを有し、アノードに水素を含む燃料ガスの供給を受けると共に、カソードに酸素を含む酸化剤ガスの供給を受けて、電力を発生する燃料電池と、前記燃料電池の温度を推定又は取得する温度検知手段と、前記単位セルの面内の所定領域に前記燃料ガス及び前記酸化剤ガスを供給するガス供給手段と、を備え、前記ガス供給手段は、前記燃料電池の始動時の温度が第1の所定値以下の場合は、前記単位セルの面内の第1の領域のみに前記燃料ガス及び前記酸化剤ガスを供給することを特徴とする。
第2の発明は、第1の発明において、前記燃料電池の出力を取得する出力取得手段を備え、前記ガス供給手段は、前記第1の領域のみに前記燃料ガス及び前記酸化剤ガスを供給している際に、前記燃料電池の出力が所定値以下に低下した場合は、前記第1の領域への前記燃料ガス及び前記酸化剤ガスの供給を停止し、前記単位セルの面内の第2の領域のみに前記燃料ガス及び酸化剤ガスを供給することを特徴とする。
第3の発明は、第2の発明において、前記ガス供給手段は、前記第1の領域のみに前記燃料ガス及び前記酸化剤ガスを供給している際に、前記燃料電池の出力が前記所定値以下に低下しなかった場合は、前記単位セルの面内の全ての領域に前記燃料ガス及び前記酸化剤ガスを供給することを特徴とする。
第4の発明は、第2又は第3の発明において、前記ガス供給手段は、前記第2の領域のみに前記燃料ガス及び前記酸化剤ガスを供給している際に、前記第1の領域の温度が第2の所定値以上となった場合は、前記単位セルの面内の全ての領域に前記燃料ガス及び前記酸化剤ガスを供給することを特徴とする。
第5の発明は、第1〜第4の発明のいずれかにおいて、前記第2の領域が前記第1の領域よりも重力方向の下側に位置するように構成されたことを特徴とする。
第6の発明は、第2〜第5の発明のいずれかにおいて、前記ガス供給手段は、前記第1の領域と接続された第1の燃料ガスマニホールドと、前記第2の領域と接続された第2の燃料ガスマニホールドと、前記第1の領域のみに前記燃料ガスを供給する場合は、前記第1の燃料ガスマニホールドのみに前記燃料ガスを流し、前記第2の領域のみに前記燃料ガスを供給する場合は、前記第2の燃料ガスマニホールドのみに前記燃料ガスを流す燃料ガス供給制御手段と、を有することを特徴とする。
第7の発明は、第6の発明において、前記ガス供給手段は、前記第1の領域と接続された第1の酸化剤ガスマニホールドと、前記第2の領域と接続された第2の酸化剤ガスマニホールドと、前記第1の領域のみに前記酸化剤ガスを供給する場合は、前記第1の酸化剤ガスマニホールドのみに前記酸化剤ガスを流し、前記第2の領域のみに前記酸化剤ガスを供給する場合は、前記第2の酸化剤ガスマニホールドのみに前記酸化剤ガスを流す酸化剤ガス供給制御手段と、を有することを特徴とする。
第8の発明は、第7の発明において、前記第1及び第2の酸化剤ガスマニホールドのそれぞれは、酸化剤供給側マニホールドと、酸化剤排出側マニホールドとを含み、前記第1の酸化剤ガスマニホールドの酸化剤供給側マニホールドと、前記第2の酸化剤ガスマニホールドの酸化剤供給側マニホールドとが共通のマニホールドとして構成され、前記酸化剤ガス供給制御手段は、前記第1の酸化剤ガスマニホールドの酸化剤排出側マニホールド及び前記第2の酸化剤ガスマニホールドの酸化剤排出側マニホールドにおけるガスの流れを制御することで、前記第1の酸化剤ガスマニホールド又は前記第2の酸化剤ガスマニホールドのみに前記酸化剤ガスを供給することを特徴とする。
第9の発明は、第8の発明において、前記アノードへ前記燃料ガスを供給する第1の流路、前記カソードへ前記酸化剤ガスを供給する第2の流路及び冷却媒体が流れる第3の流路が前記単位セルの面内で同一の所定方向に延在し、前記第1及び第2の燃料ガスマニホールドのそれぞれは、燃料ガス供給側マニホールドと、燃料ガス排出側マニホールドとを含み、前記第3の流路に冷却媒体を供給する冷却媒体マニホールドを備え、前記冷却媒体マニホールドは、冷却媒体供給側マニホールドと、冷却媒体排出側マニホールドとを含み、前記単位セルの面直方向の平面的な配置において、前記燃料ガス排出側マニホールド、前記酸化剤ガス供給側マニホールド及び前記冷却媒体供給側マニホールドは前記第1、第2及び第3の流路の一端において前記所定方向と直交する方向に延在する第1のマニホールド領域に配列され、前記燃料ガス供給側マニホールド、前記酸化剤ガス排出側マニホールド及び前記冷却媒体排出側マニホールドは前記第1、第2及び第3の流路の他端において前記所定方向と直交する方向に延在する第2のマニホールド領域に配列され、前記酸化剤ガス供給側マニホールドは前記第1のマニホールド領域の長手方向の略中央に配置され、前記酸化剤ガス排出側マニホールドは前記第2のマニホールド領域の長手方向の両端部に配置され、前記冷却媒体供給側マニホールドは前記第1のマニホールド領域の長手方向の両端部に配置され、前記冷却媒体排出側マニホールドは前記第2のマニホールド領域の長手方向の略中央に配置され、前記燃料ガス供給側マニホールドは前記第2のマニホールド領域において、隣接する前記冷却媒体排出側マニホールドと前記酸化剤ガス排出側マニホールドの間に配置され、前記燃料ガス排出側マニホールドは前記第1のマニホールド領域において、隣接する前記酸化剤ガス供給側マニホールドと前記冷却媒体供給側マニホールドの間に配置されたことを特徴とする。
第1の発明によれば、単位セルの面内の一部の領域のみで発電を行うことができるため、低温始動時に燃料電池を局所的に加熱することができ、生成水の凍結により燃料電池がストールしてしまうことを確実に回避することができる。
第2の発明によれば、第1の領域のみに燃料ガス及び酸化剤ガスを供給している際に燃料電池の出力が所定値以下に低下した場合は、生成水の凍結により第1の領域で流路が閉塞していることが想定できるため、第2の領域での発電に切り換えることにより、燃料電池がストールしてしまうことを抑えることができる。また、第2の領域は、第1の領域の発電による反応熱で暖機されているため、第2の領域で発電を行った際に生成水の凍結を抑えることができる。
第3の発明によれば、第1の領域のみに燃料ガス及び酸化剤ガスを供給している際に、燃料電池の出力が所定値以下に低下しなかった場合は、生成水の凍結による影響が小さいと判断できるため、単位セルの面内の全ての領域に燃料ガス及び酸化剤ガスを供給することで、燃料電池の全体を動作温度に到達させることができる。
第4の発明によれば、第2の領域のみに燃料ガス及び酸化剤ガスを供給している際に、第1の領域の温度が第2の所定値以上となった場合は、第1の領域が所定レベルまで暖機されたと判断できるため、単位セルの面内の全ての領域に燃料ガス及び酸化剤ガスを供給することで、燃料電池の全体を動作温度に到達させることができる。
第5の発明によれば、燃料電池の運転終了後は内部に残留する水分が重力方向の下側に移動するため、低温始動時に、重力方向の上側に位置する第1の領域から発電を行うことで、生成水の凍結を最小限に抑えることができ、低温起動性を向上することが可能となる。また、重力方向の下側に位置する第2の領域では、低温始動時に既に凍結により閉塞していることが想定できるため、凍結による閉塞が生じていない第1の領域に燃料ガス、酸化剤ガスを供給することで、ガスを供給する補機の駆動力を軽減できる。
第6の発明によれば、第1及び第2の燃料ガスマニホールドから第1及び第2の領域のそれぞれに燃料ガスを供給することができる。従って、第1の燃料ガスマニホールドのみに燃料ガスを流すことで第1の領域のみに燃料ガスを供給することができ、第2の燃料ガスマニホールドのみに燃料ガスを流すことで第2の領域のみに燃料ガスを供給することができる。
第7の発明によれば、第1及び第2の酸化剤ガスマニホールドから第1及び第2の領域のそれぞれに酸化剤ガスを供給することができる。従って、第1の酸化剤ガスマニホールドのみに酸化剤ガスを流すことで第1の領域のみに酸化剤ガスを供給することができ、第2の酸化剤ガスマニホールドのみに燃料ガスを流すことで第2の領域のみに酸化剤ガスを供給することができる。
第8の発明によれば、第1の酸化剤ガスマニホールドの酸化剤供給側マニホールドと、第2の酸化剤ガスマニホールドの酸化剤供給側マニホールドとを共通のマニホールドとして構成したため、マニホールドのスペースを縮小することができるとともに、酸化剤供給側マニホールドに接続される配管、制御バルブ等の構成を簡素にすることができる。
第9の発明によれば、第1のマニホールド領域の中央から第2のマニホールド領域の両端に向けて酸化剤ガスを流すことができ、単位セルの面内に均等に酸化剤ガスを供給することができる。また、第2のマニホールド領域の中央から第1のマニホールド領域の両端に向けて冷却媒体を流すことができ、単位セルの面内に均等に冷却媒体を供給することができる。また、燃料ガス供給側マニホールドを第2のマニホールド領域の隣接する冷却媒体排出側マニホールドと酸化剤ガス排出側マニホールドの間に配置し、燃料ガス排出側マニホールドを第1のマニホールド領域の隣接する酸化剤ガス供給側マニホールドと冷却媒体供給側マニホールドの間に配置したため、燃料ガス供給側マニホールド及び燃料ガス排出側マニホールドが第1及び第2のマニホールド領域内で偏って配置されることがなく、単位セルの面内に均等に燃料ガスを供給することができる。
以下、図面に基づいてこの発明のいくつかの実施形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。なお、以下の実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る燃料電池10を示す模式図であって、単位セルの積層方向に沿った断面を示している。図1に示すように、燃料電池10は固体電解質膜12の裏面側にアノード14を配し、表面側にカソード16を配したセル板18と、セル板18を挟むように配置されたプレート20、およびプレート22を有して構成されている。燃料電池10の単位セルは、固体電解質膜12、アノード14、およびカソード16から構成され、固体電解質膜12の面方向に拡がる所定範囲に構成されている。
図1に示すように、プレート20,22は、プレス加工により断面形状が凹凸状に形成された金属板から成り、プレート20とアノード14の間には燃料ガス(水素ガス、アノードガス)の流路24が設けられている。また、プレート22とカソード16の間には酸化剤ガス(酸素を含むガス、カソードガス)の流路26が設けられている。更に、プレーム20とプレート22の間には、冷却水の流路28が設けられている。このように、プレート20,22はメタルセパレータを構成しており、本実施形態の燃料電池10は、プレート20,22の表裏面に燃料ガスの流路24、または酸化剤ガスの流路26と冷却水の流路28が設けられた表裏一体構造を有している。
燃料電池10のアノード14では、燃料ガスが送り込まれると、この燃料ガス中の水素から水素イオンを生成し(H→2H+2e)、カソード16は、酸化剤ガスが送り込まれると、この酸化剤ガス中の酸素から酸素イオンを生成し、燃料電池10内では電力が発生する。また、これと同時にカソード16において、上記の水素イオンと酸素イオンとから水(生成水)が生成される((1/2)O+2H+2e→HO)。この水のほとんどは、燃料電池10内で発生する熱を吸収して水蒸気となり、主としてカソードオフガス中に含まれて排出される。
燃料電池10は、図1に示す構成を単位セルの積層方向に繰り返し配置することで構成されている。そして、図1に示すように、各流路24,26,28のそれぞれは、単位セルの積層方向に沿った各階層において、独立した流路として構成されている。
図2は、燃料電池10の平面構成を示す模式図であって、単位セルの積層方向(単位セルの面直方向)から燃料電池10を見た状態を模式的に示している。各流路24,26,28は単位セルの積層方向に沿って重なるように設けられているため、図2では各流路24,26,28を破線で略式に示している。図2に示すように、各流路24,26,28は燃料電池10の一端から他端に向けて直線状に延在している。
このように本実施形態では、各流路24,26,28がプレート20,22に対して表裏一体に設けられた構造の燃料電池10において、燃料ガス、酸化剤ガス、冷却水を同一方向に流しているため、単位セルの積層方向の厚さを低減することができ、燃料電池10の小型化を達成することができる。
各流路24,26,28の両端には、各流路24,26,28のそれぞれと個別に接続される分配部(ディンプル)30a,30b,30cが単位セルの積層方向に重なるように設けられている。分配部30a,30b,30cは、各流路24,26,28の両端部において、積層されたセル板18及びプレート20,22の間に隙間を設けることで構成されている。分配部30a,30b,30cの更に外側には、マニホールド領域32が設けられている。
マニホールド領域32には、燃料ガス供給側マニホールド34、燃料ガス排出側マニホールド36、冷却水供給側マニホールド38、冷却水排出側マニホールド40、酸化剤ガス供給側マニホールド42、酸化剤ガス排出側マニホールド44が設けられている。各マニホールド32,34,36,38,40,42,44は、積層されたセル板18とプレート20,22の両端部において、セル板18及びプレート20,22を貫通するように単位セルの積層方向に延在する流路として設けられている。
燃料ガスの流路24の両端には燃料ガスの分配部30aが設けられており、図2の左側の分配部30aは、接続流路35を介して燃料ガス供給側マニホールド34と接続されている。また、図2の右側の分配部30aは、接続流路37を介して燃料ガス排出側マニホールド36と接続されている。
同様に、酸化剤ガスの流路26の両端には、酸化剤ガスの分配部30bが設けられており、図2の右側の分配部30bは、接続流路43を介して酸化剤ガス供給側マニホールド42と接続されている。また、図2の左側の分配部30bは、接続流路45を介して酸化剤ガス排出側マニホールド44と接続されている。
同様に、冷却水の流路28の両端には冷却水の分配部30cが設けられており、図2の右側の分配部30cは、接続流路39を介して冷却水供給側マニホールド38と接続されている。また、図2の左側の分配部30cは、接続流路41を介して冷却液排出側マニホールド40と接続されている。
図2において、酸化剤ガスは、図2の右側のマニホールド領域32の酸化剤ガス供給側マニホールド42(1箇所)から分配部30bを経由して流路26に入る。そして、反応が行われた後、流路26内の酸化剤ガスは、図2の左側の分配部30bから酸化剤ガス排出側マニホールド44(2箇所)へ流れて排出される。ここで、1箇所に設けられた酸化剤ガス供給側マニホールド42は図2の右側のマニホールド領域32の中心部分に配置され、2箇所に設けられた酸化剤ガス排出側マニホールド44は図2の左側のマニホールド領域32の両端に配置されている。
また、冷却水は、図2の右側のマニホールド領域32の冷却水供給側マニホールド38(2箇所)から分配部30cを経由して流路28に入る。そして、流路28内の冷却水は、図2の左側の分配部30cから冷却水排出側マニホールド40(1箇所)へ流れて排出される。ここで、2箇所に設けられた冷却水供給側マニホールド38は図2の右側のマニホールド領域32の両端に配置され、1箇所に設けられた冷却水排出側マニホールド40は図2の左側のマニホールド領域32の中心部分に配置されている。
また、燃料ガスは、図2の左側のマニホールド領域32の燃料ガス供給側マニホールド34(2箇所)から分配部30aを経由して流路24に入る。そして、反応が行われた後、流路24内の燃料ガスは、図2の右側の分配部30aから燃料ガス排出側マニホールド36(2箇所)へ流れて排出される。
図2に示すように、左側のマニホールド領域32に設けられた2つの燃料ガス供給側マニホールド34のそれぞれには、燃料ガスの配管54,56が接続されている。各配管54,56は水素ボンベ58に接続されている。また、各配管54,56には燃料ガスの流量を調整するための制御弁60,62が設けられている。
図2の右側のマニホールド領域32に設けられた2つの燃料ガス排出側マニホールド36のそれぞれには、配管64,66が接続されている。燃料ガス排出側マニホールド36に排出された反応後の燃料ガスは、これらの配管64,66から排出される。
右側のマニホールド領域32に設けられた酸化剤ガス供給側マニホールド42には、酸化剤ガスの配管68が接続されている。配管68にはエアポンプが接続されており、エアポンプから供給された酸化剤ガスは、配管68を経由して酸化剤ガス供給側マニホールド42へ送られる。
また、左側のマニホールド領域32に設けられた2つの酸化剤ガス排出側マニホールド44には、それぞれ配管70,72が接続されている。各配管70,72には、流量を調整するための制御弁74,76が設けられている。酸化剤ガス排出側マニホールド44に排出された反応後の酸化剤ガスは、これらの配管70,72から排出される。
燃料電池10には、温度センサ78及び温度センサ80が設けられている。温度センサ78は、図2に示す領域Aにおける燃料電池10の温度を検出する。また、温度センサ80は、図2に示す領域Bにおける燃料電池10の温度を検出する。なお、外気温センサの検出値から燃料電池10の温度を推定しても良い。
燃料電池10は制御装置(ECU(Electronic Control Unit)、図1及び図2において不図示)によって制御される。制御装置には、温度センサ78,80などシステムが備える各種センサ、および燃料電池10の出力を検出するセンサの出力が供給されている。また、制御装置には制御弁60,62,74,76が接続されている。このような構成によれば、各センサの出力に基づいて燃料ガス、酸化剤ガスの流量を制御することができ、燃料電池10を所望の運転状態で運転することができる。
図2に示すように、右側のマニホールド領域32には仕切り板50が設けられている。また、左側のマニホールド領域32には仕切り板52が設けられている。仕切り板50は、分配部30a,30b,30cを横断するように設けられており、流路24,26,28の端部から酸化剤ガス供給側マニホールド42に達する範囲に設けられている。
仕切り板50は、酸化剤ガス供給側マニホールド42の長手方向、すなわち単位セルの積層方向に沿って、各層内に設けられている。このため、図2の右側に積層されている分配部30a,30b,30cは、仕切り板50によってその中央部分で分断されている。
仕切り板52は、分配部30a,30b,30cを横断するように設けられており、流路24,26,28の端部から冷却水排出側マニホールド40に達する範囲に設けられている。仕切り板52も単位セルの積層方向に沿って各層内に設けられている。このため、図2の左側に積層されている分配部30a,30b,30cは、仕切り板52によってその中央部分で分断されている。
従って、仕切り板50,52によれば、分配部30a,30b,30c内における燃料ガス、酸化剤ガス、冷却液の流れを分配部30a,30b,30cの中央部分で遮断することができる。なお、仕切り板50,52は、各層毎にアクリル板等を挿入することで構成しても良いし、プレート20,22と一体のリブ等から構成しても良い。
そして、このような構成によれば、制御弁60,62,74,76の開閉状態を制御することで、図2に示す領域A、領域Bの一方のみに燃料ガス、および酸化剤ガスを流すことができ、領域A、領域Bの一方のみで発電を行うことが可能となる。ここで、領域A、領域Bは、仕切り板50,52を結ぶ直線であって流路24,26,28と直交する方向に燃料電池10を2等分する中心線Cの位置で燃料電池10を分割して得られる2つの領域である。
例えば、領域Aのみで発電を行う場合は、制御弁60が開かれ、制御弁62が閉じられる。これにより、配管56内の燃料ガスの流れが停止し、水素ボンベ58から供給された燃料ガスは配管54を通って領域A内の燃料ガス供給側マニホールド34へ送られる。
領域A内の燃料ガス供給側マニホールド34へ送られた燃料ガスは、接続流路35を通って燃料ガスの分配部30bヘ送られる。このとき、分配部30bは仕切り板52によって分断されているため、分配部30bに送られた燃料ガスが領域B側へ送られることはない。従って、領域Aの流路24のみに燃料ガスを供給することができる。領域Aの流路24から排出された反応後の燃料ガスは、領域Aの燃料ガス排出側マニホールド36へ送られて排出される。
また、領域Aのみで発電を行う場合は、制御弁74が開かれ、制御弁76が閉じられる。これにより、配管72内のガスの流れが停止し、領域B内の流路26からの酸化剤ガスの排出が停止するため、領域B内の流路26への酸化剤ガスの供給が停止する。一方、制御弁74を開くことにより配管70内ではガスが流れるため、領域A内の流路26からは酸化剤ガスが排出される。そして、エアポンプから配管68を経由して酸化剤ガスが送り込まれるため、領域A内の流路24には酸化剤ガスが供給される。従って、領域Aのみに酸化剤ガスを流すことができる。
このように、領域Aのみで発電を行う場合は、制御弁60を開き、制御弁62を閉じることで領域Aのみに燃料ガスを供給し、また、制御弁74を開き、制御弁76を閉じることで領域Bのみに酸化剤ガスを供給する。これにより、領域A内のみで発電を行うことができる。
同様の方法で、領域Bのみで発電を行う場合は、制御弁60を閉じ、制御弁62を開くことで領域Bのみに燃料ガスを供給する。また、制御弁74を閉じ、制御弁76を開くことで領域Bのみに酸化剤ガスを供給する。これにより、領域B内のみで発電を行うことができる。
従って、本実施形態の燃料電池10によれば、単位セルの面方向において、一部の領域のみで部分発電を行うことができる。このため、運転条件、環境条件等に応じて発電を行う領域を決定することで、燃料電池10の運転状態を最適に制御することが可能となる。
特に、本実施形態では、低温始動時に燃料電池10の一部の領域のみで発電を行うことで、燃料電池10内の水分の凍結を抑え、低温時の始動性を向上させるようにしている。
上述したように燃料電池10内では発電に伴って水が生成されるが、−30℃程度の低温時に始動した場合、燃料電池10内で生成された水分が凍結してしまい、流路26,28が閉塞してしまう場合がある。
このため、本実施形態では、低温時の始動の際は領域A、領域Bの一方の領域のみで発電を行うとともに、発電による反応熱で他方の領域を暖機し、領域A、領域Bの暖機状態に応じて発電を行う領域を適宜切り換えるようにしている。
具体的には、低温時の始動直後は領域Aのみで発電を行う。発電を開始した当初は、領域A内の流路24,26に生成水が生じていないため、凍結により流路24,26が閉塞してしまうことがなく、発電を確実に行うことができる。また、発電による反応熱は隣接する領域Bに伝達されるため、領域Bの温度を昇温することができる。
一方、この状態で発電を継続すると、反応によって生成された水分が領域Aの流路24,26内で凍結し始め、流路24,26の一部が閉塞する。そして、流路24,26が閉塞している領域が拡大していくと、燃料電池10の出力が次第に低下し、燃料電池10の発電がストールする場合がある。
このため、本実施形態では、燃料電池10がストールする以前のタイミングで発電を行う領域を切り換える操作を行う。具体的には、燃料電池10の出力が所定のしきい値よりも低下した場合は、領域Aでの発電を停止し、領域Bでの発電に切り換える。領域Bは、領域Aの発電による反応熱で所定のレベルまで暖機されており、始動時よりも低温起動性が向上している。従って、領域B内の流路24,26における生成水の凍結が抑えられ、燃料電池10がストールしてしまうことを確実に抑えることができる。そして、領域Bの発電による反応熱によって領域B、領域Aの双方が昇温していく。
これにより、領域Bの発電によって領域Aの温度を昇温することができ、領域A内で凍結していた水分が溶け出す。そして、生成水の凍結が進行しない温度(例えば−15℃程度)まで領域Aの温度が上昇した場合は、領域Bと領域Aの双方に燃料ガス、酸化剤ガスを供給し、領域A、領域Bの双方で発電を行う。これにより、燃料電池10全体が暖機され、燃料電池10が動作温度に到達した後は通常運転を行うことができる。
このように、本実施形態の手法によれば、燃料電池10内の複数の領域毎に発電を行うようにしたため、生成水の凍結により流路24,26が閉塞することが想定される場合は、発電を行う領域を切り換えることで、凍結により燃料電池10の運転がストールしてしまうことを回避できる。そして、各領域毎に順次に発電を行うことで、燃料電池10を暖機することができ、燃料電池10をストールさせることなく動作温度に昇温することができる。従って、−30℃程度の極低温からの始動であっても、燃料電池10を確実に動作温度まで昇温することが可能となる。
また、仕切り板50,52を設けたことにより、領域Aと領域Bの双方にガスを供給した場合に、分配部30a,30bに沿って領域Aと領域Bの間で相互に燃料ガス、または酸化剤ガスが流れることがないため、燃料ガス、または酸化剤ガスが分配部30a,30bに沿って流れる距離を最小限に抑えることができる。従って、分配部30a,30b,30cで発生する圧力損失を最小限に抑えることが可能となり、領域A、領域Bの全域にほぼ均等に燃料ガス、酸化剤ガス、冷却水を供給することが可能となる。これにより、燃料電池10の発電効率を高めることが可能となる。
図2は、単位セルの面方向が重力方向となるように燃料電池10を配置した例を示している。始動時に最初に発電を行う領域は領域A、領域Bのいずれであっても構わないが、図2のように単位セルの面方向を重力方向とした場合は、上側に位置する領域Aの発電を先に行い、その後、下側に位置する領域Bの発電に切り換えることが好適である。図2の配置の場合は、運転終了後に燃料電池10内に残存する水分が重力方向に移動し、領域B内に溜まるため、低温始動時に領域Bから発電を行うと、水分の多い領域Bで流路の閉塞がより生じ易くなるためである。従って、水分の少ない領域Aの発電を先に行うことで、凍結による流路24,26の閉塞を確実に抑えた状態で燃料電池10を昇温することができる。
なお、図2の構成は、領域Aと領域Bの双方に1つの酸化剤ガス供給側マニホールド42から酸化剤ガスを供給しているが、領域A,Bのそれぞれに酸化剤ガスを供給するため、酸化剤ガス供給側マニホールド42を2つに分割しても良い。図3は、2つの酸化剤ガス供給側マニホールド42a,42bを設けた例を示す模式図である。図3において、酸化剤ガス供給側マニホールド42aは接続流路43aを介して領域Aの分配部30aと接続されている。また、酸化剤ガス供給側マニホールド42bは接続流路43bを介して領域Bの分配部30aと接続されている。図3の構成によれば、酸化剤ガス供給側マニホールド42aから領域Aのみに酸化剤ガスを供給することができる。この場合、反応後の酸化剤ガスは、領域Aの酸化剤ガス排出側マニホールド44から排出される。また、酸化剤ガス供給側マニホールド42bから領域Bのみに酸化剤ガスを供給することができ、反応後の酸化剤ガスは、領域Bの酸化剤ガス排出側マニホールド44から排出される。
また、図2の構成は、単位セルの面内を2つの領域A,Bに分割しているが、単位セルの面内をより多くの領域に分割して、各領域毎に順次に発電を行っても良い。また、領域Aのみの発電、領域Bのみの発電を順次に繰り返し行うことで領域A、領域Bの双方を昇温しても良い。
次に、図4のフローチャートに基づいて、本実施形態のシステムにおける処理の手順について説明する。先ず、ステップS1では、燃料電池10の始動が行われたか否かを判定する。燃料電池10の始動が行われた場合はステップS2へ進み、始動が行われていない場合は処理を終了する(RETURN)。
ステップS2では、燃料電池10に燃料ガス、酸化剤ガスを供給する。次のステップS3では、低温下の始動であるか否かを判定する。ここでは、温度センサ78,80の検出値に基づいて、燃料電池10の温度が所定値(例えば−15℃)以下の場合は低温下の始動であると判定する。低温下の始動の場合はステップS4へ進む。
ステップS4では、制御弁60および制御弁74を開き、制御弁62および制御弁76を閉じることで、領域Aのみに燃料ガス、酸化剤ガスを供給し、領域Aのみで発電を行う。
一方、ステップS3で低温下の始動ではないと判定された場合は、ステップS8へ進む。この場合、凍結により燃料電池10がストールする虞がないため、通常に燃料電池10を起動することができる。従ってステップS8では、領域A、領域Bの双方で発電を行う。
ステップS4の後はステップS5へ進む。ステップS5では、燃料電池10の出力が所定値以下に低下したか否かを判定し、出力が所定値以下に低下した場合はステップS6へ進む。
ステップS6に進んだ場合は、領域Aの発電により生成された水分が凍結して流路24,26が閉塞していることが想定されるため、領域Bでの発電に切り換える。すなわち、ここでは、制御弁60および制御弁74を閉じ、制御弁62および制御弁76を開く。これにより、領域Bのみに燃料ガス、酸化剤ガスが供給され、領域Bのみで発電が行われる。領域Bでは発電による水分が生成されておらず、また領域Bは領域Aの発電により暖機されているため、領域Bの発電に切り換えることで、発電による出力を確保することができる。
一方、ステップS5で出力が所定値以下に低下しない場合は、ステップS8へ進む。この場合、低温下の始動ではあるものの、燃料電池10がストールするレベルまでは凍結が進行しないと考えることができる。従って、ステップS8では、領域A、領域Bの双方で発電を行い、通常の方法で燃料電池10を暖機する。
ステップS6の後はステップS7へ進む。ステップS7では、領域Aの温度を温度センサ78で検出し、領域Aの温度が所定温度(例えば−15℃)以上に昇温しているか否かを判定する。領域Aの温度が所定温度以上に昇温している場合は、領域Bの発電により領域Aの温度が十分に昇温しており、凍結のおそれが生じないため、ステップS8へ進む。ステップS8では、領域A、領域Bの双方で発電を行う。ステップS8の後は処理を終了する(RETURN)。一方、ステップS7で領域Aの温度が所定温度以上に昇温していない場合は、ステップS7で待機し、領域Bでの発電を継続する。
以上説明したように本実施形態によれば、燃料電池10内の複数の領域毎に発電を行うようにしたため、生成水の凍結により流路24,26が閉塞することが想定される場合は、発電を行う領域を切り換えることで、燃料電池10がストールしてしまうことを回避できる。従って、低温始動時であっても、燃料電池10を確実に動作温度まで昇温することが可能となり、燃料電池10の低温始動性を向上することができる。
本発明の一実施形態に係る燃料電池の断面を示す模式図である。 本発明の一実施形態に係る燃料電池の平面構成を示す模式図である。 酸化剤ガス供給側マニホールドを2つ設けた例を示す模式図である。 本発明の一実施形態に係るシステムの処理手順を示すフローチャートである。
符号の説明
10 燃料電池
12 固体電解質膜
14 アノード
16 カソード
20,22 プレート(メタルセパレータ)
24 燃料ガスの流路
26 酸化剤ガスの流路
28 冷却水の流路
32 マニホールド領域
34 燃料ガス供給側マニホールド
36 燃料ガス排出側マニホールド
38 冷却水供給側マニホールド
40 冷却水排出側マニホールド
42 酸化剤ガス供給側マニホールド
44 酸化剤ガス排出側マニホールド
60,62,74,76 制御弁
78,80 温度センサ

Claims (9)

  1. アノード、電解質膜、及びカソードを含む単位セルを有し、アノードに水素を含む燃料ガスの供給を受けると共に、カソードに酸素を含む酸化剤ガスの供給を受けて、電力を発生する燃料電池と、
    前記燃料電池の温度を推定又は取得する温度検知手段と、
    前記単位セルの面内の所定領域に前記燃料ガス及び前記酸化剤ガスを供給するガス供給手段と、を備え、
    前記ガス供給手段は、前記燃料電池の始動時の温度が第1の所定値以下の場合は、前記単位セルの面内の第1の領域のみに前記燃料ガス及び前記酸化剤ガスを供給することを特徴とする燃料電池システム。
  2. 前記燃料電池の出力を取得する出力取得手段を備え、
    前記ガス供給手段は、前記第1の領域のみに前記燃料ガス及び前記酸化剤ガスを供給している際に、前記燃料電池の出力が所定値以下に低下した場合は、前記第1の領域への前記燃料ガス及び前記酸化剤ガスの供給を停止し、前記単位セルの面内の第2の領域のみに前記燃料ガス及び酸化剤ガスを供給することを特徴とする請求項1記載の燃料電池システム。
  3. 前記ガス供給手段は、前記第1の領域のみに前記燃料ガス及び前記酸化剤ガスを供給している際に、前記燃料電池の出力が前記所定値以下に低下しなかった場合は、前記単位セルの面内の全ての領域に前記燃料ガス及び前記酸化剤ガスを供給することを特徴とする請求項2記載の燃料電池システム。
  4. 前記ガス供給手段は、前記第2の領域のみに前記燃料ガス及び前記酸化剤ガスを供給している際に、前記第1の領域の温度が第2の所定値以上となった場合は、前記単位セルの面内の全ての領域に前記燃料ガス及び前記酸化剤ガスを供給することを特徴とする請求項2又は3記載の燃料電池システム。
  5. 前記第2の領域が前記第1の領域よりも重力方向の下側に位置するように構成されたことを特徴とする請求項1〜4のいずれかに記載の燃料電池システム。
  6. 前記ガス供給手段は、
    前記第1の領域と接続された第1の燃料ガスマニホールドと、
    前記第2の領域と接続された第2の燃料ガスマニホールドと、
    前記第1の領域のみに前記燃料ガスを供給する場合は、前記第1の燃料ガスマニホールドのみに前記燃料ガスを流し、前記第2の領域のみに前記燃料ガスを供給する場合は、前記第2の燃料ガスマニホールドのみに前記燃料ガスを流す燃料ガス供給制御手段と、
    を有することを特徴とする請求項2〜5のいずれかに記載の燃料電池システム。
  7. 前記ガス供給手段は、
    前記第1の領域と接続された第1の酸化剤ガスマニホールドと、
    前記第2の領域と接続された第2の酸化剤ガスマニホールドと、
    前記第1の領域のみに前記酸化剤ガスを供給する場合は、前記第1の酸化剤ガスマニホールドのみに前記酸化剤ガスを流し、前記第2の領域のみに前記酸化剤ガスを供給する場合は、前記第2の酸化剤ガスマニホールドのみに前記酸化剤ガスを流す酸化剤ガス供給制御手段と、
    を有することを特徴とする請求項6記載の燃料電池システム。
  8. 前記第1及び第2の酸化剤ガスマニホールドのそれぞれは、酸化剤供給側マニホールドと、酸化剤排出側マニホールドとを含み、
    前記第1の酸化剤ガスマニホールドの酸化剤供給側マニホールドと、前記第2の酸化剤ガスマニホールドの酸化剤供給側マニホールドとが共通のマニホールドとして構成され、
    前記酸化剤ガス供給制御手段は、前記第1の酸化剤ガスマニホールドの酸化剤排出側マニホールド及び前記第2の酸化剤ガスマニホールドの酸化剤排出側マニホールドにおけるガスの流れを制御することで、前記第1の酸化剤ガスマニホールド又は前記第2の酸化剤ガスマニホールドのみに前記酸化剤ガスを供給することを特徴とする請求項7記載の燃料電池システム。
  9. 前記アノードへ前記燃料ガスを供給する第1の流路、前記カソードへ前記酸化剤ガスを供給する第2の流路及び冷却媒体が流れる第3の流路が前記単位セルの面内で同一の所定方向に延在し、
    前記第1及び第2の燃料ガスマニホールドのそれぞれは、燃料ガス供給側マニホールドと、燃料ガス排出側マニホールドとを含み、
    前記第3の流路に冷却媒体を供給する冷却媒体マニホールドを備え、前記冷却媒体マニホールドは、冷却媒体供給側マニホールドと、冷却媒体排出側マニホールドとを含み、
    前記単位セルの面直方向の平面的な配置において、前記燃料ガス排出側マニホールド、前記酸化剤ガス供給側マニホールド及び前記冷却媒体供給側マニホールドは前記第1、第2及び第3の流路の一端において前記所定方向と直交する方向に延在する第1のマニホールド領域に配列され、前記燃料ガス供給側マニホールド、前記酸化剤ガス排出側マニホールド及び前記冷却媒体排出側マニホールドは前記第1、第2及び第3の流路の他端において前記所定方向と直交する方向に延在する第2のマニホールド領域に配列され、
    前記酸化剤ガス供給側マニホールドは前記第1のマニホールド領域の長手方向の略中央に配置され、前記酸化剤ガス排出側マニホールドは前記第2のマニホールド領域の長手方向の両端部に配置され、
    前記冷却媒体供給側マニホールドは前記第1のマニホールド領域の長手方向の両端部に配置され、前記冷却媒体排出側マニホールドは前記第2のマニホールド領域の長手方向の略中央に配置され、
    前記燃料ガス供給側マニホールドは前記第2のマニホールド領域において、隣接する前記冷却媒体排出側マニホールドと前記酸化剤ガス排出側マニホールドの間に配置され、前記燃料ガス排出側マニホールドは前記第1のマニホールド領域において、隣接する前記酸化剤ガス供給側マニホールドと前記冷却媒体供給側マニホールドの間に配置されたことを特徴とする請求項8記載の燃料電池システム。
JP2005319192A 2005-11-02 2005-11-02 燃料電池システム Expired - Fee Related JP4967311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319192A JP4967311B2 (ja) 2005-11-02 2005-11-02 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319192A JP4967311B2 (ja) 2005-11-02 2005-11-02 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2007128698A true JP2007128698A (ja) 2007-05-24
JP4967311B2 JP4967311B2 (ja) 2012-07-04

Family

ID=38151190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319192A Expired - Fee Related JP4967311B2 (ja) 2005-11-02 2005-11-02 燃料電池システム

Country Status (1)

Country Link
JP (1) JP4967311B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176435A (ja) * 2008-01-21 2009-08-06 Daihatsu Motor Co Ltd 燃料電池システム
JP2010540770A (ja) * 2007-09-25 2010-12-24 コミサリア ア レネルジー アトミーク エ オ エネルジー アルテルナティヴ 水素回収装置付き高温電解槽
JP2012094256A (ja) * 2010-10-25 2012-05-17 Toyota Motor Corp 燃料電池システムおよびその制御方法
DE112009004990T5 (de) 2009-06-22 2012-11-22 Toyota Jidosha K.K. Brennstoffzellensystem und Steuerverfahren beim Starten des Brennstoffzellensystems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305014A (ja) * 2001-04-06 2002-10-18 Honda Motor Co Ltd 燃料電池
JP2002313393A (ja) * 2001-04-17 2002-10-25 Honda Motor Co Ltd 燃料電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305014A (ja) * 2001-04-06 2002-10-18 Honda Motor Co Ltd 燃料電池
JP2002313393A (ja) * 2001-04-17 2002-10-25 Honda Motor Co Ltd 燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540770A (ja) * 2007-09-25 2010-12-24 コミサリア ア レネルジー アトミーク エ オ エネルジー アルテルナティヴ 水素回収装置付き高温電解槽
JP2009176435A (ja) * 2008-01-21 2009-08-06 Daihatsu Motor Co Ltd 燃料電池システム
DE112009004990T5 (de) 2009-06-22 2012-11-22 Toyota Jidosha K.K. Brennstoffzellensystem und Steuerverfahren beim Starten des Brennstoffzellensystems
US9337502B2 (en) 2009-06-22 2016-05-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method at starting in the fuel cell system
JP2012094256A (ja) * 2010-10-25 2012-05-17 Toyota Motor Corp 燃料電池システムおよびその制御方法
US8785066B2 (en) 2010-10-25 2014-07-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method therefor

Also Published As

Publication number Publication date
JP4967311B2 (ja) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4296226B2 (ja) 燃料電池システム
US7901823B2 (en) Fuel cell employing cooling liquid passages for starting at low temperature
JP2009026737A (ja) 燃料電池システム及びその運転方法
JP4967311B2 (ja) 燃料電池システム
JP2008311160A (ja) 燃料電池システム
JP2002246052A (ja) 燃料電池装置及びその起動方法
JP2006338984A (ja) 燃料電池システム
JP2005093117A (ja) 燃料電池システム
JP4864225B2 (ja) 燃料電池
JP2011076728A (ja) 燃料電池およびその水抜き方法
JP2006216431A (ja) 燃料電池システム
JP2008004418A (ja) 熱交換システム
JP2013206657A (ja) 燃料電池発電システム
JP2009218113A (ja) 燃料電池システム
JP3671914B2 (ja) 純水タンクの断熱構造
JP2007042417A (ja) 燃料電池
JP2006049133A (ja) 燃料電池システム
JP2005129263A (ja) 燃料電池システム
JP2005322569A (ja) 燃料電池スタック及び燃料電池システム
JP2005032626A (ja) 燃料電池発電システムの純水タンク
JP2006164717A (ja) 燃料電池システム
JP2008176974A (ja) 燃料電池システム
JP2008192349A (ja) 燃料電池システム
JP2009059650A (ja) 燃料電池スタック及び燃料電池システム
JP2007103137A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees