JP2011076728A - 燃料電池およびその水抜き方法 - Google Patents

燃料電池およびその水抜き方法 Download PDF

Info

Publication number
JP2011076728A
JP2011076728A JP2009223830A JP2009223830A JP2011076728A JP 2011076728 A JP2011076728 A JP 2011076728A JP 2009223830 A JP2009223830 A JP 2009223830A JP 2009223830 A JP2009223830 A JP 2009223830A JP 2011076728 A JP2011076728 A JP 2011076728A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
gas
water
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009223830A
Other languages
English (en)
Inventor
Akio Kano
昭雄 狩野
Yasunobu Yoshimura
康伸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2009223830A priority Critical patent/JP2011076728A/ja
Publication of JP2011076728A publication Critical patent/JP2011076728A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】運転停止時に電池が凍結環境に置かれても、損傷・劣化を防止する。
【解決手段】燃料電池システムの運転時に、燃料電池本体1に燃料ガス、酸化剤ガス、冷却水がそれぞれ供給する。冷却水は冷却水循環手段4より燃料電池本体1に供給され、冷却水循環手段4に戻る。運転停止状態では、燃料ガスと酸化剤ガスの供給を停止し、冷却水排出バルブ13を切り替え、燃料電池本体1からの冷却水をドレンタンク11へ流す。吸引手段10により冷却水流路7を負圧とし、燃料電池本体1内の冷却水をドレンタンク11に貯める。燃料ガス流路5と酸化剤ガス流路6に存在する水は、多孔質セパレータを介して冷却水流路7、冷却水排出ライン9を通ってドレンタンク11に貯める。燃料電池本体1内のすべての水が排出されるのに必要な所定の時間を経過した後に、吸引手段10を停止する。ドレンタンク11に貯めた水は冷却水ポンプ24により冷却水循環手段4に戻す。
【選択図】図1

Description

この発明は、セパレータの少なくとも一部が多孔質であり、反応ガス系統と冷却水系統間で水移動が可能な燃料電池において、燃料電池内の水を効果的に除去し、運転停止時に電池が凍結しても燃料電池の劣化を防止する燃料電池およびその水抜き方法に関する。
燃料電池発電設備は、燃料電池本体で水素と酸素とを反応させて発電する。この反応は発熱反応であるため、冷却水を用いて燃料電池本体(特に、固体高分子型燃料電池の場合には、固体高分子電解質膜)の冷却が行われている。
ところが、このような燃料電池発電設備を、例えば冬季や寒冷地で利用する場合、当該燃料電池発電設備の運転停止中に冷却水等の水が凍結してしまう場合がある。冷却水等の水が凍結すると、凍結による体積膨張に伴う応力が、この水の流路に作用して、例えば燃料電池本体の故障原因になる場合がある。また、凍結により燃料ガスや空気の流動性が阻害されて、燃料電池発電設備の運転開始がスムースに行えなくなる場合が生じる。
凍結による故障や劣化を防止するためには、凍結しないように保温しておく方法、あるいは電池内から水を抜いてしまう方法の2つがある。前者は保温のためのヒータ等の追加の設備が必要であることや、保温するためにエネルギーが必要となり現実的ではない。後者については運転停止時に保温に必要なエネルギーが不要ということで、以下のような提案がされている。
特許文献1および2では、アノードおよびカソードを真空ポンプやブロアで負圧にすることで、燃料電池内のアノードおよびカソード系統の水を除去することが提案されている。
特許文献3では、セパレータの少なくとも一部が多孔質であり、反応ガス系統と冷却水系統間で水移動が可能な燃料電池において、冷却水系統を負圧に維持し反応ガス系統の水を除去することが提案されている。
特許文献4では、セパレータが多孔質であり、反応ガス系統と冷却水系統間で水移動が可能な燃料電池において、反応ガス系統を閉止し負圧とし、冷却水系統の水を反応ガス系統に移動させ、その後に反応ガス系統をパージして、冷却水系統、反応ガス系統の水を除去することが提案されている。
特許文献5では、セパレータが多孔質であり、反応ガス系統と冷却水系統間で水移動が可能な燃料電池において、冷却水系統を負圧とし、反応ガス系統の水を冷却水系統に移動させ、冷却水系統、反応ガス系統の水を除去することが提案されている。
特許文献6では、反応ガス系統を負圧とし、反応ガス系統内の水を除去・蒸発させることが提案されている。
特許文献7では、反応ガス系統の水をドレンタンク(水タンク)に回収することが提案されている。
特開2005−251411号公報 特開2007−35464号公報 特開2008−536287号公報 特開2005−158503号公報 特開2004−111060号公報 特許第3455725号公報 特開2003−317754号公報
しかしながら、セパレータの少なくとも一部が多孔質であり、反応ガス系統と冷却水系統間で水移動が可能な燃料電池に特許文献1、2、6を適用する場合は、冷却水系統の水が抜けない、反応ガス系統が寸止めタイプのガス流路の場合には水が抜けにくい問題があり、凍結による電池の損傷および劣化を完全に抑えることが不可能であった。
特許文献3では、セパレータの少なくとも一部が多孔質であり、反応ガス系統と冷却水系統間で水移動が可能な燃料電池に適用することを想定しているが、冷却水系統を停止中のいかなる場合も負圧に維持しておく必要があり、電源が随時必要である。また冷却水系統の水は完全に抜けないので、凍結し燃料電池が損傷する恐れがある。
特許文献4では、負圧のコントロールが不可であり、水抜きが不確実になる恐れがあること、反応ガス系統が寸止めタイプのガス流路の場合には水が抜けにくい問題があり、凍結による電池の損傷および劣化を完全に抑えることが不可能であった。
特許文献5では、冷却水ポンプを用いて冷却水系統に負圧にしているが、冷却水系統に水枯れが生じた場合に十分に水を除去することができず、電池内の水を十分に除去することができない恐れがある。
特許文献7では、冷却水の回収系統に単にドレンタンクを設けただけであるため、冷却水系統から水を効果的に回収することはできない。特に、反応ガス系統と冷却水系統間で水やガスが双方で移動しない緻密質材料のセパレータが一般的であるが、その場合反応ガス系統と冷却水系統を個別に水抜きする必要がある。また反応ガス系統が寸止めタイプのガス流路の場合には水が抜けにくい問題がある。
本発明は、上記のような従来技術の課題を解決するためになされたものであり、セパレータの少なくとも一部が多孔質であり、反応ガス系統と冷却水系統間で水移動が可能な燃料電池において、反応ガス系統と冷却水系統の双方に存在する燃料電池内の水を効率的かつ効果的に除去し、運転停止時に電池が凍結しても燃料電池の劣化を防止もしくは抑制することが可能な燃料電池およびその水抜き方法を提供することを目的とする。
上記の目的を達成するため、本発明では、燃料電池の冷却水系統の電池下流に水落しと真空ポンプが接続され、燃料極系統、酸化剤極系統、冷却水系統の少なくともいずれか一つにガスを導入可能とすることを特徴とする。
本発明によれば、冷却水系統の下流の吸引手段を作動させることにより、冷却水系統および燃料極系統、酸化剤極系統の水を除去することが可能となる。電池内の水を除去することによって、運転停止時に電池が凍結環境に置かれても、損傷・劣化を防止もしくは抑制することが可能な燃料電池の水抜き方法を提供することができる。
本発明に係る第1実施形態の燃料電池システムの構成図。 本発明に係る第2実施形態の燃料電池システムの構成図。 本発明に係る第3実施形態の燃料電池システムの構成図。 本発明に係る第4実施形態の燃料電池システムの構成図。 本発明に係る第5実施形態の燃料電池システムの構成図。 本発明を適用する燃料電池のスタックの一例を示す断面図。
本発明を以下に示す各実施形態に基づいて、図面を参照して説明する。ここで、各実施形態において同一または類似の構成部分には共通の符号を付し、重複する説明は省略する。
(1)第1実施形態
図1及び図6を参照して第1実施形態の構成を説明する。ここに、図1は第1実施形態における燃料電池のシステム構成を示す図、図6は燃料電池のスタックの一部断面を示す図である。
電解質としてプロトン伝導性を有する固体高分子電解質膜を用いた燃料電池システムでは、図1および図6に示すように水素を含む燃料ガスを燃料ガス供給手段2より燃料ガス流路5に供給し、酸素を含む酸化剤ガスを酸化剤ガス供給手段3より酸化剤ガス流路6に供給して発電を行う。
この場合、層状の燃料極31、固体高分子電解質膜33及び酸化剤極32に対し、燃料ガスと酸化剤ガスはセパレータ34に設けられた燃料ガス流路5及び酸化剤ガス流路6に沿って供給される。電池反応によって燃料ガス中の水素と酸化剤ガス中の酸素が消費され、反応生成物の水が水蒸気として排出される。
固体高分子電解質膜33は平衡する水蒸気圧により膜の含水率が変化し、電解質膜の抵抗が変化する特性があり、電解質膜の抵抗を小さくし、十分な発電性能を得るためには固体高分子電解質膜に水分を加える、つまり加湿が必要になる。セパレータ35とセパレータ36は多孔質の材料で構成されており、冷却水流路7よりセパレータを介して燃料ガス流路5および酸化剤ガス流路6を水により加湿する。この加湿方式を内部加湿方式と呼ぶ。
冷却水は、冷却水を貯める機能、冷却水を浄化する機能及び冷却水を循環させる機能を有する冷却水循環手段4より、冷却水供給ライン8を介して燃料電池本体1の冷却水流路7を通り、冷却水排出ライン9を介して冷却水循環手段4に戻る。冷却水排出ライン8に冷却水排出切替えバルブ13があり、ドレンタンク11を介し吸引手段10につながっている。ドレンタンク11にはドレン排出バルブ12が付いている。
以上の構成を有する第1実施形態の作用について説明する。
燃料電池システムの運転時には、燃料電池本体1に燃料ガス、酸化剤ガス、冷却水がそれぞれ供給されており、冷却水は先述のごとく冷却水循環手段4より燃料電池本体1に供給され、冷却水循環手段4に戻っている。
長期間運転を停止し、停止期間中に燃料電池が凍結状態で保管されることが想定される場合、通常の運転停止と異なり、以下のような手順にて停止操作が行われる。運転状態より運転停止状態に切り替えられると、燃料ガスと酸化剤ガスの供給が停止する。次いで、冷却水排出バルブ13が切り替わり燃料電池本体1からの冷却水はドレンタンク11へと流れる。
その状態で吸引手段10を動作させると冷却水流路7は負圧となり、燃料電池本体1内の冷却水がドレンタンク11に貯められる。その際に燃料ガス流路5と酸化剤ガス流路6に存在する水も水を通す機能を有する多孔質セパレータを介して冷却水流路7、冷却水排出ライン9を通ってドレンタンク11に貯められる。燃料電池本体1内のすべての水が排出されるのに必要な所定の時間を経過した後に、吸引手段を10停止する。ドレンタンク11に貯められた水は、必要に応じて冷却水ポンプ24により冷却水循環手段4に戻される。
上記のような構成並びに作用を有する第1実施例においては、吸引ポンプ24によって、燃料電池本体1内の燃料ガス系統、酸化剤ガス系統、冷却水系統の水がすべて排出される。その結果、運転停止時に電池が凍結環境に置かれても、損傷・劣化を防止もしくは抑制できる効果がある。
(2)第2実施形態
図2を用いて、本発明の第2実施形態の構成を説明する。図2は第2実施形態における燃料電池のシステム構成を示す図である。なお、前記第1実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
第2実施形態の燃料電池システムは、第1実施形態の燃料電池システムにおいて、燃料ガスの供給ラインに燃料ガス系統パージガス切替えバルブ14を、酸化剤ガスの供給ラインに酸化剤ガス系統パージガス切替えバルブ15を、冷却水供給ライン8に冷却水系統パージガス切替えバルブ16を付加した構成となっている。
以上の構成になる第2実施形態の燃料電池システムにおいて、長期間運転を停止し、停止期間中に燃料電池が凍結状態で保管されることが想定される場合、通常の運転停止と異なり以下のような手順にて停止操作が行われる。
運転状態より運転停止状態に切り替えられると、第1実施形態と同様に燃料ガスと酸化剤ガスの供給が停止し、次いで、冷却水排出バルブ13が切り替わり、燃料電池本体1からの冷却水はドレンタンク11へと流れる。この場合、燃料ガス系統パージガス切替えバルブ14、酸化剤ガス系統パージガス切替えバルブ15及び冷却水系統パージガス切替えバルブ16がそれぞれ切り替わり、パージガスが燃料電池本体11に供給される。
パージガスは電池の劣化を防止する観点から不活性ガスが望ましいが、電池内に残留する水の凍結による電池の劣化と比較して劣化が軽微であれば、その他のガス(例えば原燃料ガスであるメタンなど)をパージガスとして使用可能である。
この第2実施形態において、第1実施形態と同様に吸引手段10を動作させると冷却水流路7は負圧となり、燃料電池本体1内の冷却水がドレンタンク11に貯められる。同時に、燃料ガス系統、酸化剤ガス系統及び冷却水系統にパージガスが燃料電池内の流路に溜まっている水を排出するのに必要な圧力をかけて流れるため、効率的かつ効果的に燃料電池内の水がドレンタンク11に排出される。
(3)第3実施形態
図3は、本発明の第3実施形態を示すものである。この第3実施形態は、酸化剤ガスの供給ラインに酸化剤ガス系統パージガス切替えバルブ15を、冷却水供給ライン8に冷却水系統パージガス切替えバルブ16をそれぞれ設け、これら各バルブ15,16に対して、パージガスとして原燃料ガスのメタンを供給している。
このような構成の第3実施形態においても、前記第2実施形態と同様に、吸引手段10を動作させると冷却水流路7は負圧となり、燃料電池本体1内の冷却水がドレンタンク11に貯められる。同時に、燃料ガス系統、酸化剤ガス系統及び冷却水系統にパージガスである燃料ガスが供給され、燃料電池内の流路に溜まっている水を排出するため、効率的かつ効果的に燃料電池内の水がドレンタンク11に排出される。
(4)第4実施形態
図4を用いて、本発明の第4実施形態の構成を説明する。図4は第4実施形態における燃料電池のシステム構成を示す図である。第4実施形態の燃料電池システムは、前記第1実施形態の燃料電池システムにおいて、冷却水排出切替えバルブ13の代わりに冷却水系統排出ライン用コネクタ22を設置した構成となっている。また、ドレンタンク11、ドレン排出バルブ12、吸引手段10から構成された吸引装置ユニット23が別途用意され、この吸引装置ユニット23は、燃料電池の運転時及び通常の運転停止時には、冷却水排出ラインより切り離されている。
以上の構成になる第4実施形態のシステムでは、運転状態より運転停止状態に切り替えられると、燃料ガスと酸化剤ガスの供給が停止される。次いで、冷却水系統排出ライン用コネクタ22を切り離し、燃料電池本体1側の冷却水排出ライン9に吸引装置ユニット23を接続する。その後、この吸引装置ユニット23の吸引手段10により冷却水排出ライン9から、冷却水を吸引し、回収する。吸引装置ユニット23の接続後の作用については、前記第1実施形態と同様である。
(5)第5実施形態
図5を用いて本発明の第5実施形態の構成を説明する。図5は第5実施形態における燃料電池のシステム構成を示す図である。第5実施形態の燃料電池システムは、前記第2実施形態の燃料電池システムにおいて、燃料ガスの供給ラインに燃料ガス系統パージガス供給用コネクタ19を、酸化剤ガスの供給ラインに酸化剤ガス系統パージガス供給用コネクタ20を、冷却水供給ライン8に冷却水系統パージガス供給用コネクタ21を付与した構成となっている。
以上の構成になる燃料電池システムの作用について説明する。運転状態より運転停止状態に切り替えられると、燃料ガスと酸化剤ガスの供給が停止する。次いで、冷却水系統排出ライン用コネクタ22を切り離し、燃料電池本体1側の冷却水排出ライン9に吸引装置ユニット23を接続する。また燃料ガス系統パージガス供給用コネクタ19、酸化剤ガス系統パージガス供給用コネクタ20、冷却水系統パージガス供給用コネクタ21を切り離し、パージガス(望ましくは不活性ガスもしくは燃料電池の劣化が軽微なガスなど)を導入するためのガスボンベなどを接続する。
このような構成を有する第5実施形態では、前記第2実施形態と同様に、燃料ガス系統、酸化剤ガス系統及び冷却水系統にパージガスを供給して、その圧力を利用すると共に、吸引手段10による負圧の作用を利用することで、各系統内部の水を効果的に回収することができる。しかも、パージガスの供給源と吸引装置ユニット23を一時的に接続できる構成のため、燃料電池システムを簡素化できる効果がある。
(6)各実施形態の効果
第1実施形態から第5実施形態は長期間運転を停止し、停止期間中に燃料電池が凍結状態で保管されることが想定される場合の停止方法である。具体的には製造後の出荷試験時、ユーザーサイドに設置後の長期間運転停止時などに行われる。第1実施形態乃至第3実施形態は燃料電池システム自体に吸引手段10、ドレンタンク11などが設置されており、水抜き機能を有しているため、長期間運転停止が予定される場合はいつでも操作することが可能である。特にユーザー自身が操作(長期間停止モードスイッチを押すなど)することで、水抜きを行うことが可能であり、利便性に優れる。
第4実施形態および第5実施形態は、吸引装置ユニット23を一時的に接続する方法であるため、製造後の出荷試験時に設備の整った場所での実施が容易である。また、ユーザーサイドに設置後において、停止期間中に燃料電池が凍結状態で保管されることが想定される場合、専門のメンテナンスサービスを利用することにより吸引装置ユニット23を一時的に接続することで水抜きが実施可能となる。そのため、燃料電池システム自体に水抜き機能は有さなくても特段に問題はなく、かつ燃料電池システムのコストを低減することが可能である。特に、煩雑に燃料電池本体の水抜きを実施する必要がない場合には、コスト面から有利となる。
以下、図4に示す第5実施形態を例に挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。
燃料電池の運転が停止された後、冷却水系統排出ライン用コネクタ22を外し、吸引手段10、ドレンタンク11、ドレン排出バルブ12からなる吸引装置ユニット23を冷却水系統の燃料電池側に接続する。酸化剤ガス系統パージガス供給用コネクタ20を外し、燃料電池側に窒素ガスボンベと流量計を取り付ける。吸引手段10を動作させた状態で1NL/minで1分間窒素を流し燃料電池本体1内の酸化剤ガスおよび酸化剤ガス流路6内の残留水の大部分を排出した後に、窒素ガス流量を35N/minまで増やし、酸化剤ガス流路6内の残留水をほぼ完全に取り除く。
このときの吸引手段10の動作による燃料電池本体1内の負圧度は−5〜−50kPaの範囲(望ましくは−10〜−30kPa)であり、上限の−5kPaは水抜きに必要な圧力から求められ、燃料電池の系統の圧力損失や水抜きに要す時間などから決まる値である。また下限値−50kPaは多孔質セパレータの水封によるガスシール耐圧の基準から決まる値である。以上の負圧度の値は、各燃料電池システム毎に最適な値があり、上記の範囲に限定されるものではない。
このときの酸化剤ガス流路6の圧力損失は10kPaであることをあらかじめ実験的に求めており、35NL/minでこの圧力になればほぼ酸化剤ガス流路6内には残留水がないことを事前に確かめている。
今後説明する燃料ガス系統と冷却水系統の水抜きについても同様の方法で窒素ガス流量と圧力損失の値を決めている。また窒素ガス流量と圧力損失の値も上記の負圧度同様、各燃料電池システム毎に最適な値があり、上記の範囲に限定されるものではない。
酸化剤ガス流路6の水抜き完了後、酸化剤ガス系統パージガス供給用コネクタ20を元通りに接続する。その後、燃料ガス系統パージガス供給用コネクタ20を外し、燃料電池側に窒素ガスボンベと流量計を取り付ける。吸引手段10を動作させた状態で1NL/minで1分間窒素を流し燃料電池本体1内の燃料ガスおよび燃料ガス流路5内の残留水の大部分を排出した後に、窒素ガス流量を3N/minまで増やし、燃料ガス流路5内の残留水をほぼ完全に取り除く。このときの燃料ガス流路5の圧力損失は3kPaである。
燃料ガス流路5の水抜き完了後、燃料ガス系統パージガス供給用コネクタ19を元通りに接続する。その後、冷却水ガス系統パージガス供給用コネクタ21を外し、燃料電池側に窒素ガスボンベと流量計を取り付ける。吸引手段10を動作させた状態で1NL/minで1分間窒素を流し燃料電池本体1内の冷却水および冷却水流路7内の残留水の大部分を排出した後に、窒素ガス流量を14N/minまで増やし、冷却水流路7内の残留水をほぼ完全に取り除く。このときの冷却水流路7の圧力損失は2.5kPaである。
冷却水流路7の水抜き完了後、冷却水系統パージガス供給用コネクタ21を元通りに接続する。吸引装置ユニット23を取り外し、冷却水系統排出ライン用コネクタ22を元通りに接続する。なお上記の実施例は酸化剤ガス系統、燃料ガス系統、冷却水系統の順に水抜きを実施しているが、特に水抜きの順番に限定はなく、また窒素ガスボンベを複数準備すれば3つの系統を同時に水抜きすることも可能であり、水抜き時間の短縮を図ることができる。
なお、本発明は前記の実施形態に限定されるものではなく、セパレータの一部が多孔質材料から成り、各系統間でセパレータの多孔質部分を通じて水の移動が可能な燃料電池にも適用可能である。
1:燃料電池本体
2:燃料ガス供給手段
3:酸化剤ガス供給手段
4:冷却水循環手段
5:燃料ガス流路
6:酸化剤ガス流路
7:冷却水流路
8:冷却水供給ライン
9:冷却水排出ライン
10:吸引手段
11:ドレンタンク
12:ドレン排出バルブ
13:冷却水排出切替えバルブ
14:燃料ガス系統パージガス切替えバルブ
15:酸化剤ガス系統パージガス切替えバルブ
16:冷却水系統パージガス切替えバルブ
17:酸化剤ガス系統原燃料ガスパージライン
18:冷却水系統酸化剤ガスパージライン
19:燃料ガス系統パージガス供給用コネクタ
20:酸化剤ガス系統パージガス供給用コネクタ
21:冷却水系統パージガス供給用コネクタ
22:冷却水系統排出ライン用コネクタ
23:吸引装置ユニット
24:冷却水ポンプ
25:改質器
26:改質器バイパスラインバルブ
31:燃料極
32:酸化剤極
33:固体高分子電解質膜
34:セパレータ
35:片面反応ガス流路/他面冷却水流路を有するセパレータを構成するための部品プレート
36:片面反応ガス流路を有するセパレータを構成するための部品プレート
37:端部シールシート固定用段差

Claims (5)

  1. セパレータの少なくとも一部が多孔質であり、燃料極系統と冷却水系統間および酸化剤極系統と前記冷却水系統間の少なくとも一部で水移動が可能な燃料電池において、
    前記燃料電池の前記冷却水系統の電池下流にドレンタンクと、このドレンタンクに冷却水系統の水を回収する吸引手段が接続されていることを特徴とする燃料電池。
  2. 前記燃料極系統、前記酸化剤極系統、前記冷却水系統の少なくともいずれか一つにガスを導入し、そのガスの圧力と前記吸引手段の負圧とにより前記系統中の水を前記ドレンタンクに回収することを特徴とする請求項1記載の燃料電池。
  3. 前記ドレンタンクと吸引手段とを備えた吸引装置ユニットを備え、前記冷却水系統には、この吸引装置ユニットを接続するコネクタが設けられ、燃料電池装置内部の水抜き時において、前記吸引装置が冷却水系統に対して前記コネクタを介して接続されることを特徴とする請求項1または請求項2に記載の燃料電池。
  4. セパレータの少なくとも一部が多孔質であり、燃料極系統と冷却水系統間および酸化剤極系統と前記冷却水系統間の少なくとも一部で水移動が可能な燃料電池の水抜き方法において、
    前記燃料電池の前記冷却水系統の電池下流にドレンタンクと、このドレンタンクに冷却水系統の水を回収する吸引手段を接続し、
    燃料電池の停止時において、前記吸引手段からの負圧により、冷却水系統及び多孔質セパレータを介して前記系統内の水をドレンタンクに吸引して回収することを特徴とする燃料電池の水抜き方法。
  5. 前記冷却水系統と水移動が可能な系統に対してパージガスを導入し、このパージガスの圧力と前記吸引手段の負圧とにより、前記系統内部の水をドレンタンクに回収することを特徴とする請求項4記載の燃料電池の水抜き方法。
JP2009223830A 2009-09-29 2009-09-29 燃料電池およびその水抜き方法 Pending JP2011076728A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223830A JP2011076728A (ja) 2009-09-29 2009-09-29 燃料電池およびその水抜き方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223830A JP2011076728A (ja) 2009-09-29 2009-09-29 燃料電池およびその水抜き方法

Publications (1)

Publication Number Publication Date
JP2011076728A true JP2011076728A (ja) 2011-04-14

Family

ID=44020541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223830A Pending JP2011076728A (ja) 2009-09-29 2009-09-29 燃料電池およびその水抜き方法

Country Status (1)

Country Link
JP (1) JP2011076728A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026850A (ja) * 2012-07-27 2014-02-06 Toshiba Fuel Cell Power Systems Corp 燃料電池発電装置及び燃料電池発電装置の冷却水回収方法
JP2018517234A (ja) * 2015-04-14 2018-06-28 プロトン モータ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフツングProton Motor Fuel Cell Gmbh 人工空気を用いた燃料電池作動方法及び装置
CN110621177A (zh) * 2017-05-12 2019-12-27 日本烟草产业株式会社 电池单元的检查装置以及电池单元的检查系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223855A (ja) * 1993-01-28 1994-08-12 Mazda Motor Corp 燃料電池自動車
JPH11273705A (ja) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd 燃料電池装置
JP2006500733A (ja) * 2002-02-27 2006-01-05 日産自動車株式会社 燃料電池システム及び燃料電池を凍結から保護する方法
JP2006066116A (ja) * 2004-08-25 2006-03-09 Nissan Motor Co Ltd 燃料電池システム制御装置及び燃料電池システム制御方法
JP2009212045A (ja) * 2008-03-06 2009-09-17 Ebara Ballard Corp 燃料電池システム及び燃料電池の除水方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223855A (ja) * 1993-01-28 1994-08-12 Mazda Motor Corp 燃料電池自動車
JPH11273705A (ja) * 1998-03-20 1999-10-08 Sanyo Electric Co Ltd 燃料電池装置
JP2006500733A (ja) * 2002-02-27 2006-01-05 日産自動車株式会社 燃料電池システム及び燃料電池を凍結から保護する方法
JP2006066116A (ja) * 2004-08-25 2006-03-09 Nissan Motor Co Ltd 燃料電池システム制御装置及び燃料電池システム制御方法
JP2009212045A (ja) * 2008-03-06 2009-09-17 Ebara Ballard Corp 燃料電池システム及び燃料電池の除水方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026850A (ja) * 2012-07-27 2014-02-06 Toshiba Fuel Cell Power Systems Corp 燃料電池発電装置及び燃料電池発電装置の冷却水回収方法
JP2018517234A (ja) * 2015-04-14 2018-06-28 プロトン モータ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフツングProton Motor Fuel Cell Gmbh 人工空気を用いた燃料電池作動方法及び装置
CN110621177A (zh) * 2017-05-12 2019-12-27 日本烟草产业株式会社 电池单元的检查装置以及电池单元的检查系统

Similar Documents

Publication Publication Date Title
JP5083233B2 (ja) 燃料電池システム
US20100055523A1 (en) Fuel cell system
JP4599461B2 (ja) 燃料電池システム
JP5435970B2 (ja) 燃料電池システム
JP5287184B2 (ja) 燃料電池システム
JP2012134067A (ja) 燃料電池システム
EP1614176A1 (en) Fuel cell system
JP2011076728A (ja) 燃料電池およびその水抜き方法
JP2010244778A (ja) 燃料電池システム
JP2009199751A (ja) 燃料電池システム、および、燃料電池システムの制御方法
JP2008300057A (ja) 燃料電池システム
JP2009193838A (ja) 燃料電池システムおよびその制御方法
JP2008522367A (ja) 停止工程中に作動可能な燃料電池システムによって動力を与えられるリアクタント用空気ポンプによる水の除去
JP2007157508A (ja) 気液分離装置および気液分離装置を備えた燃料電池発電システム
JP2007324071A (ja) 燃料電池システム
JP3705182B2 (ja) 水循環装置
JP2009110684A (ja) 燃料電池システム
JP7026324B2 (ja) 燃料電池システム
JP2006338984A (ja) 燃料電池システム
JP2006190616A (ja) 燃料電池システムの掃気処理装置及び掃気処理方法
JP2000208158A (ja) 固体高分子電解質型燃料電池発電装置
JP2005093374A (ja) 燃料電池発電システムおよび燃料電池発電システムの停止方法
JP2009238669A (ja) 燃料電池システム
JP4434130B2 (ja) 燃料電池装置
JP2011204447A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513