JP2007109986A - 微細パターンの形成方法 - Google Patents

微細パターンの形成方法 Download PDF

Info

Publication number
JP2007109986A
JP2007109986A JP2005301052A JP2005301052A JP2007109986A JP 2007109986 A JP2007109986 A JP 2007109986A JP 2005301052 A JP2005301052 A JP 2005301052A JP 2005301052 A JP2005301052 A JP 2005301052A JP 2007109986 A JP2007109986 A JP 2007109986A
Authority
JP
Japan
Prior art keywords
substrate
layer
processed
mask
fine pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005301052A
Other languages
English (en)
Inventor
Hidetoshi Sato
英俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005301052A priority Critical patent/JP2007109986A/ja
Publication of JP2007109986A publication Critical patent/JP2007109986A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】押し型の破損を防止して、歩留まり良く大量の製品を生産することが可能な微細パターンの形成方法を提供する。
【解決手段】基板2又は前記基板上に形成された被加工層4の表面に未硬化状態の光硬化性樹脂層32を形成し、該光硬化性樹脂層に、微細に形成された成型用凸部8を有する押し型6を押し当てた状態で前記光硬化性樹脂層を硬化させることにより前記成型用凸部が転写された窪み部を有するマスクを形成し、前記マスクの存在下で加工を施すことにより前記基板又は前記被加工層に加工を施して微細パターンを形成するようにした微細パターンの形成方法において、前記光硬化性樹脂層を形成する前に、前記成型用凸部の高さよりも深い凸部収容凹部を有するストッパパターン22を前記被加工層の表面に形成する。
【選択図】図5

Description

本発明は、ナノインプリント技術を用いる微細パターンの形成方法に関するものである。
従来、半導体集積回路等の製造工程においては、微細なパターンを精度良く得ようとする場合には、加工せんとする材料表面に塗布したフォトレジストを適当な露光装置で露光し、これを更に現像することによって得たレジストパターンを加工のマスクとして利用する、いわゆるフォトリソグラフィ技術を用いるのが普通である。しかし、これら従来の方法では、得ようとするパターンが微細に成る程、使用する装置コストは指数関数的に上昇するのが現状である。特に上記露光装置は、パターン寸法が100nmを切るあたりからは、弗化アルゴンエキシマレーザを使用する高NA(開口係数)スキャナーや、シンクロトロン放射光などを用いたX線露光装置、電子ビーム描画装置など非常に高額な装置が必要であった。
これに対して、最近にあっては、微細パターンの凸部を持つ押し型を形成し、この押し型をレジスト材料に押しつけることによりその凸部形状をレジスト材料に反転転写するナノインプリント技術が実用になってきた(特許文献1)。このナノインプリント技術を実施するナノインプリント装置は原理的に簡易な構造になるため、そのコストは前記フォトリソグラフィ用の露光装置に較べると数分の一程度と安く、しかも解像性は、それらに劣ることがない。
特開2000−323461号公報
ところで、上述したような微細パターンの凸部を有する押し型を用いたナノインプリント技術によれば、フォトリソグラフィ技術を用いる場合よりも製造コストを大幅に抑制することができる。
しかしながら、上記ナノインプリント技術は押し型を相手側に押し付けるのが特徴であるため、凸部パターンが微細になればなる程、押し型の微細な凸形状が相手側の基板に僅かに接触しただけでも壊れる危険性が増大する。この押し型は、通常は電子ビーム描画装置で長時間かけて描画して作製するため、非常に高価であり、押し型の破損は費用と時間の点で大きな損失となる。特に、押し型の微細な凸形状の寸法が非常に小さいため、押し型に破損が生じてもそれを簡単には検出できず、結果として、不良を多数出してしまって歩留まりを大きく下げてしまう場合もあった。このように、押し型の凸形状が、極めて薄い壁状や棒状の凸形状となるような場合には破損し易い形状であることから、この押し型を用いて製品を量産することはかなり困難であった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、押し型の破損を防止して、歩留まり良く大量の製品を生産することが可能な微細パターンの形成方法を提供することにある。
請求項1に係る発明は、基板又は前記基板上に形成された被加工層の表面に未硬化状態の光硬化性樹脂層を形成し、該光硬化性樹脂層に、微細に形成された成型用凸部を有する押し型を押し当てた状態で前記光硬化性樹脂層を硬化させることにより前記成型用凸部が転写された窪み部を有するマスクを形成し、前記マスクの存在下で加工を施すことにより前記基板又は前記被加工層に加工を施して微細パターンを形成するようにした微細パターンの形成方法において、前記光硬化性樹脂層を形成する前に、前記成型用凸部の高さよりも深い凸部収容凹部を有するストッパパターンを前記基板又は前記被加工層の表面に形成するようにしたことを特徴とする微細パターンの形成方法である。
この場合、例えば請求項2に規定するように、前記マスクをエッチング用のマスクとして用い、前記加工としてエッチング加工を施す。
また、例えば請求項3に規定するように、前記マスクをメッキ用のマスクとして用い、前記加工としてメッキ加工を施す。
本発明に係る微細パターンの製造方法によれば、エッチング用のマスクとなる光硬化性樹脂層を形成する前に、上記成型用凸部の高さよりも深い凸部収容凹部を有するストッパパターンを上記被加工層の表面に形成し、このストッパパターンの凸部収容凹部で上記成型用凸部を保護するようにしたので、この成型用凸部が基板側に直接当たることがなくなり、これにより、押し型の破損を防止して、歩留まり良く大量の製品を生産することができる。
以下に、本発明に係る微細パターンの形成方法の一実施例を添付図面に基づいて詳述する。
図1は加工されるべき被加工層が形成された第1実施例用の基板を示す図、図2は微細な成型用凸部を有する第1実施例用の押し型を示す図、図3は第1実施例用のフォトマスクを示す図、図4乃至図6は本発明に係る微細パターンの形成方法の第1実施例を示す工程図である。
図1に示すように、本発明方法においては、半導体ウエハ等のように平坦性の良好な基板2の表面に形成された薄膜等の被加工層4に対して100nm程度、或いはそれ以下の微細パターンを形成する。上記被加工層4は、絶縁膜や金属膜等の種々の膜種が適用される。
図2はナノインプリント用の押し型6を示し、この表面には、例えば矩形状の断面を有する壁状、または棒状に凸状になされた微細な成型用凸部8を有し、その周辺にはアライメントマーク凸部10が設けられている。このナノインプリント用の押し型6は、透明な石英ガラスよりなり、また上記成型用凸部8は、100nm程度、或いはそれ以下の幅や径を有しており、必要に応じて適当なバイアス値を加えた大きさに設定する。またこの成型用凸部8の高さH1は例えば350nm程度に設定されている。
この押し型6は、例えば電子ビーム描画装置を用いる既成のフォトマスク製造技術、中でも板状の石英ガラスを僅かに彫り込む方式の位相シフトマスクと呼ばれるマスク製造技術を流用して製作することができる。尚、ここでは、押し型を装着するプリント装置としてステップアンドリピート方式のナノインプリント装置を利用するので、そのインプリント領域(1回でプリントする領域)は最大で50mm角程度である。
図3はフォトマスク12を示し、これは透明な材料、例えばガラス板よりなり、このフォトマスク12の表面(下面)には、上記成型用凸部8のパターンに対応してパターン化された遮光膜14が形成され、またその周辺部には、上記アライメントマーク凸部10に対応したアライメント用の遮光膜16が形成されており、光を通さないようにしている。この場合、上記成型凸部8やアライメントマーク凸部10に対応する部分には、この成型用凸部8やアライメントマーク凸部10の外周面よりも所定の間隔、例えば3μm程度だけ僅かに広くなされた部分において遮光膜14、16を形成しないようにし、それ以外の部分に遮光膜14、16を形成している。この遮光膜14、16として例えばクロム金属等を用いることができる。
上記したような基板2、押し型6及びフォトマスク12を用いて行われる本発明方法の第1実施例について説明する。
まず、図4(A)に示すように、上記基板2の被加工層4の表面に例えばポジ型のフォトレジスト20を所定の厚さH2で均一に塗布する。この厚さH2は、上記成型用凸部8の高さH1よりも厚くし、例えば400nm程度に設定する。
次に、ステッパーやアライナーなど、一般的な露光装置を使用し、基板2上に予め設けてあるアライメントマーク(図示せず)の位置を検出することにより上記フォトマスク12と基板2の位置を合わせ、フォトマスク12の遮光膜14、16のパターンを基板2のフォトレジスト20上にステップアンドリピート方式で露光し、フォトマスク12の透明部分に対応する部分を感光させた潜像をフォトレジスト20中に得る(図4(B)参照)。そして、規定濃度のアルカリ性現像液で現像して、上記の潜像部分を溶解して除去し、フォトレジスト20よりなる本発明の特徴とするストッパパターン22を形成する。これにより、フォトレジスト20が除去された部分に、上記成型用凸部8を収容するための凸部収容凹部24が転写されて形成される。また同様に、アライメントマーク凸部10に対応したアライメントマーク凹部26も転写されて形成されることになる。
さらに、上記ストッパパターン22に紫外光を照射しながら基板温度を200℃まで上昇することによりフォトレジスト20中のポリマー分子同士を架橋して熱、光、溶剤、薬品等に強いストッパパターン22を得る。このストッパパターン22の高さ、すなわち凸部収容凹部24の深さH3は、若干目減りして380nm近辺になる。すなわち、この凸部収容凹部24、26の深さH3を、この時点で上記成型用凸部8、10の高さH1よりも深くなるように設定する。
次に、上記押し型6を、ステップアンドリピート方式の自動位置合わせ機能付きナノインプリント装置に設置する。そして、上記基板2をウエハステージに吸着固定した後、これを押し型6の下に持って行き、押し型6に接近させる。そして、基板2上のストッパパターン22に転写されたアライメントマーク凹部26と、押し型6に形成しておいたアライメントマーク凸部10とを光学顕微鏡28や光学センサ等で同時に見ながらステージ(図示せず)を動かして、押し型6と基板2の相対位置をおおよそ合わせて粗い位置合わせを行う(図4(D)参照)。その後一旦、ステージを例えば下方向や横方向に移動して(図5(A)では下方向へ移動した場合を示す)、上記基板2を押し型6より離し、基板2の上にナノインプリント用の光硬化性樹脂をノズル30より垂らしてストッパパターン22上に盛り上げて延び広がるのを待ち、光硬化性樹脂層32を形成する(図5(A)参照)。
この後、ステージを先程の位置に戻し、押し型6と基板2の合わせ状態を保ったまま、押し型6をナノインプリント用の光硬化性樹脂32に軽く押し当てて上記光硬化性樹脂32を伸び広げる。そして、押し型6を押し当てた状態で、前記基板2上のストッパパターン22に設けたアライメントマーク凹部26と押し型6に形成したアライメントマーク凸部10を光学顕微鏡28で見ながらステージを動かして厳密に位置合わせをする(図5(B)参照)。
その後、さらに押圧力を大きくして押し板6を規定の圧力で基板2に押しつける。そして、透明な押し型6を通して紫外線UVを照射して上記光硬化性樹脂層32を硬化させる(図5(C)参照)。この際、降下した上記押し型6は、基板2側のストッパパターン22の上端面に当たって止まり、ストッパパターン22はストッパとして機能し、しかも、上記ストッパパターン22上には、成型用凸部8、10の高さH1より深い凸部収容凹部24、26が形成されているので、この凸部収容凹部24、26内に上記成型用凸部8、10が非接触状態で収容されることになる。換言すれば、上記ストッパパターン22は、押し型6の成型用凸部8、10に対応した部分には無いので、この押し型6の成型用凸部8、10はストッパパターン22に触れることなく、且つやや強く押し当てても、まず上記ストッパパターン22の頂部22A(図5(A)参照)が押し型6の下面6A(図5(A)参照)に直接的に当たってストップされることにより、これ以上は深く押し型6が基板2に接近することはない。
すなわち、予め形成してあったフォトレジスト20よりなるストッパパターン22が、押し型6のストッパとして機能する。この時、押し型6の成型用凸部8、10の高さH1は350nmであり、これに対してストッパパターン22の高さ(深さ)H3は380nmであるので、押し型6の成型用凸部8、10が基板2側に当たって折れたり、損傷等を受けることがない。
またこの際、成型用凸部8、10の外周面と、これを収容する成型用凹部24、26の内周面との間隔W1は、このナノインプリント装置の位置合わせ精度以上の大きさになるように設定されている。尚、ここでの位置合わせ精度とは、例えば図4(D)に示すような、押し型6と基板2が接触しない状態で位置合わせする時に生じる誤差に、光硬化性樹脂を載せるため一旦移動したステージが再び元の位置に戻る際の誤差(平行移動の位置誤差や回転によって生じた変化分等)、そして粘性を有する光硬化性樹脂に押し型6を押し当てる際に生じる機械的な位置ずれを含んだものであり、使用する装置によってその誤差原因及びその成分毎の大きさは千差万別である。
すなわち、ここでは成型用凸部8、10の周囲を間隔W1以上の隙間をあけて取り囲むように設計してあるので、両者が接触することを防止して成型用凸部8、10が破損することを阻止することができる。この場合、間隔W1は位置合わせ精度等を考慮して十分な余裕を見て例えば3μm程度に設定されている。尚、この場合、上述のように光学顕微鏡28を用いて2回位置合わせを行うようにして(図4(D)及び図5(B))、位置合わせ精度がより高い場合には、上記間隔W1はもっと狭くすることができ、例えば1μm程度に設定することができる。
その後、図6(A)に示すように、押し型6を上方に引き剥がして押し型6の1個分の成型用凸部8、10の転写パターンとなるエッチング用の窪み部36が基板2上の凸部収容凹部24、26中の光硬化性樹脂層32中に形成される。このエッチング用の窪み部36は溝状、或いは穴状に形成されている。基板2上には、上記1個分のインプリント領域が複数配列されているので、続いて他の領域についても上記各工程を順次繰り返し行って、最終的に基板全体のインプリントを終了する。さて、インプリントで押されてできたエッチング用の窪み部36の底には薄い光硬化性樹脂層32の残渣32Aが残されるので(図6(A)参照)、引き続き、酸素ガスを用いる反応性イオンエッチング装置で異方性エッチングを行って、上記残渣32Aを取り去ることにより上記の加工しようとする被加工層4の面を露出させ、これによりエッチング用のマスク38を形成する(図6(B)参照)。
この後、被加工層4の材料に応じたエッチングガス等を用いた反応性イオンエッチング装置により、上記光硬化性樹脂層32とフォトレジスト20よりなるストッパパターン22とで形成されるエッチング用のマスク38をマスクにして被加工層4を異方性エッチングする(図6(C)参照)。この後、酸素プラズマアッシング装置により上記エッチング用のマスク38を除去することで、押し型6の成型用凸部8、10に対応した微細パターン40を得ることができる(図6(D)参照)。
上記実施例では、被加工層4としては絶縁膜や金属膜等の一般的な場合を例にとって説明したが、その一例として例えば液晶表示素子のマトリクス状に配列された例えばアルミニウム合金よりなる反射型の画素電極等を形成する場合にも本発明を適用することができる。この場合には、金属が埋め込まれた導通孔を持つ絶縁層上に加工の対象となる金属膜が被加工層4として形成されている。上記導通孔内の埋め込み金属は、各画素毎に基板表面に予め形成されたスイッチングトランジスタ等を含む駆動回路に接続されており、この金属膜よりなる被加工層4に、エッチングで細い溝を縦横に多数切り込んで分離することによりマトリクス状の画素電極を得るものである。
上記金属膜よりなる被加工層4の表面は、処理開始の前に、予め例えばCMP(Chemical Mechanical Polishing)法等によって平面を平坦に研磨しておく。そして、先に説明した図4(A)に示す工程から順に処理を行うことになる。この場合、1つの画素電極の大きさは、例えば7μm×7μm程度であり、また画素電極間の幅である電極間隙は100nm程度の大きさである。従って、先に説明したように、押し型6の成型用凸部8の幅は100nm程度に設定され、また、先に図5(C)にて説明したように、押し型6と基板2のストッパパターン22とを押し当てた時に成型用凸部8の外周面と凸部収容凹部24の内周面との間隔W1が1μm程度になるように設定されている。そして、この成型用凸部8は、マトリクス状の溝を切るために格子状に形成されることになる。
また、先の実施例では、図4(D)に示すような粗い位置合わせと図5(B)に示すように厳密な位置合わせの両位置合わせを行ったが、ここでは上記間隔W1の300nmの大きさがインプリン装置の位置合わせ精度よりも遥かに大きく、且つ画素電極の面積に対する貫通孔の断面面積は遥かに小さいので、上記貫通孔内の埋め込み金属の位置に対する画素電極の位置合わせの精度はそれ程高くなくて済むので、従って、図4(D)に示すような粗い位置合わせを一回行うことで1μm程度の位置合わせ精度が確保できるので、この結果、図5(B)に示すような厳密な位置合わせ操作を省略することができる。
また、この金属膜よりなる被加工層4をエッチングする場合には、図6(C)に示すエッチング工程において、エッチングガスとして例えば塩素(Cl )ガス、三塩化ホウ素(BCl )ガス等を用いることができる。これにより、画素間隙が100nmのマトリクス状に配列された画素電極を得ることができる。
<第2実施例>
上記第1実施例では、マスク38をエッチング用のマスクとして用いることによって、加工としてエッチング加工を施すようにしたが、この第2実施例では、上記マスク38をメッキ用のマスクとして用いることによって、加工としてメッキ加工を施すようにしている。
図7は本発明に係る微細パターンの形成方法の第2実施例の後段のフローを示す工程図である。
ここで最終的に形成すべき微細パターンは、第1実施例の場合とは凹凸が逆になっているパターンである。また電気メッキを用いることから、ここでは被加工層4は電気を通す導電体(金属)の場合に限られる。
まず、図6(B)に示すように反応性イオンエッチングが完了したならば、この図6(B)に示す基板2を、図7(A)に示すようにメッキ槽60中に入れる。このメッキ槽60中には、例えばニッケルメッキ液62が収容されていると共に、メッキ母材としてメッキ電極64が浸積されている。そして、このメッキ電極64と上記基板2の導電性の被加工層4との間に、上記メッキ電極64が陽極となるようにして直流メッキ電源66を接続し、電気メッキを行う。
この場合、上記被加工層4がメッキ用導電下地となって、ニッケルメッキ液に接している部分、すなわち、被加工層4が露出している窪み部36の底部より徐々にニッケル金属が析出し、この窪み部36を次第に埋め込んで行くことになる。この場合、上記マスク38はメッキ用のマスクとして機能し、窪み部36はメッキ用の窪み部として機能することになる。そして、所定の厚さまで、上記ニッケル金属が析出したならば、電気メッキ加工を終了し、この基板2をメッキ槽60から取り出す。
次に、図6(D)に示す工程と同じ酸素プラズマアッシングを行うことにより、図7(B)に示すようにメッキ用のマスク38を除去し、これによりニッケル製の凸部パターン68が形成されることになる。この状態では、各凸部パターン68の下端部は、金属製の導電性の被加工層4により共通に導通状態になっている。そのため、次に、図7(C)に示すように、上記導電性の被加工層4をエッチング処理して不要な部分を取り除く。
この場合、上記ニッケル製の凸部68がマスクとして機能し、このマスク以外の部分の被加工層4がエッチングにより取り除かれ、ニッケル製の微細パターン70が形成されることになる。このマスク以外の部分の被加工層4は、その材料に応じたエッチングガス等を用いた反応性イオンエッチングにより除去される。この場合、ニッケル金属と被加工層4とのエッチング選択比が少ない場合には、このエッチングで削り取られる分だけ上記ニッケル製の凸部68の高さ及び幅を予め大きく設定しておくのは勿論である。
尚、ここではメッキ金属としてニッケル金属を用いたが、これに限定されず、他の金属を用いることができるのは勿論である。
<第3実施例>
次に本発明方法の第3実施例について説明する。
先の第1実施例では、被加工層4としては絶縁膜や金属膜等の一般的な場合及びマトリクス状の画素電極を形成するときのような金属膜の場合を例にとって説明したが、ここでは絶縁膜の場合を例にとって説明する。
図8は加工されるべき被加工層が形成された第3実施例用の基板を示す図、図9は微細な成型用凸部を有する第3実施例用の押し型を示す図、図10は第3実施例用のフォトマスクを示す図、図11乃至図13は本発明に係る微細パターンの形成方法の第3実施例を示す工程図である。尚、図1乃至図6に示す構成部分と同一構成部分については同一符号を付して、その説明を省略する。
この第3実施例では、基板2上に下層配線50がパターン化されて形成されており、同時に、基板2の周辺部には位置合わせを行うためのアライメントマーク52が上記下層配線50と同じ材料膜で形成されている。そして、上記下層配線50及びアライメントマーク52を含んで基板2の表面全体を覆うようにして絶縁膜が被加工層4として形成されている。この被加工層の厚さH4は、例えば300nmである。そして、この絶縁膜よりなる被加工層4の上部に今後設けられることになる上層配線(図示せず)と上記下層配線とを接続して所望の回路を形成する目的で、上記絶縁膜よりなる被加工層4にエッチングにより所定の貫通孔を形成するものである。
ここで、図9に示す押し型6には、図2に示す場合と同様に高さH1が350nmで幅が100nm程度の成型用凸部8が形成されると共に、周辺部にはアライメントマーク凸部10が形成されている。
また図10に示す透明な材料よりなるフォトマスク12には、所定のパターンになされた遮光膜14が図3に示す場合と同様に形成されているが、ここでは上記基板2にアライメントマーク52を用いていることから、このフォトマスク12には、図3に示す場合と異なってアライメント用の遮光膜16(図3参照)を設けていない。尚、このアライメント用の遮光膜16をここでも設けるようにしてもよい。
実際の微細パターンの形成工程は、図11乃至図13に示されており、これらの各工程は先に図4乃至図6において説明した各工程にそれぞれ対応している。ただし、図11(D)及び図12(B)において押し型6と基板2側との粗い、または厳密な位置合わせを行う場合には、押し型6に形成してあるアライメントマーク凸部10と基板2に形成してあるアライメントマーク52を光学顕微鏡28や光学センサで同時に見ながらステージ(図示せず)を移動させて、両者の粗い、または厳密な相対位置合わせを行う。
また図11(C)及び図11(D)に示すように、隣り合う成型用凸部8同士の間隔が狭い場合には、2つ或いはそれ以上の数の成型用凸部8を一所に1つの凹部で収容できるような大きさの凸部収容凹部24を作るようにすればよい。
また、図13(C)において、エッチング用の窪み部36の底部に露出している絶縁膜よりなる被加工層4(図13(B)参照)をエッチングする場合には、エッチングガスとしてテトラフロロカーボン(CF )ガス等を用いることができる。これにより、図13(D)に示すように、絶縁膜よりなる被加工層4に、下層配線50まで届くように所望の径である例えば直径100nmの貫通孔56を形成することができる。
この場合にも、先の第1実施例で説明したと同様に、押し型6が基板2側へ相対的に降下する際には、基板2側のストッパパターン32の上端面に当たってストッパとして機能し、しかも、上記ストッパパターン32上には、成型用凸部8、10の高さH1より深い凸部収容凹部24、26が形成されているので、この凸部収容凹部24、26内に上記成型用凸部8、10が非接触状態で収容されることになる。
従って、押し型6の成型用凸部8、10が基板2側に当たって折れたりする等の損傷を受けることを未然に防止することができる。
以上のように、例えばLCOSなど、反射型画像表示素子の画素電極をエッチングして分離する際に、本発明方法を使うことにより、100nm以下の極細い画素間隙の画素電極を得ることができ、このため、表示素子の反射率が上がり、且つ画素電極の隙間が目に見えにくいため、美しい投影映像が得られる。また、押し型が基板に接触して破損することが無くなり、押し型の製作費用を削減できるのみならず、製品歩留まりの向上を図ることができる。
また上記各実施例では基板2上に被加工層4を形成し、この被加工層4をエッチング等で加工する場合を例にとって説明したが、これに限らず、基板2上にフォトレジスト20を直接的に塗布し、この基板2自体の表面を加工するようにしてもよい。
尚、以上の各実施例において、被加工層4として例に挙げた絶縁膜や金属膜は単に一例を示したに過ぎず、これらに限定されないのは勿論である。
加工されるべき被加工層が形成された第1実施例用の基板を示す図である。 微細な成型用凸部を有する第1実施例用の押し型を示す図である。 第1実施例用のフォトマスクを示す図である。 本発明に係る微細パターンの形成方法の第1実施例を示す工程図である。 本発明に係る微細パターンの形成方法の第1実施例を示す工程図である。 本発明に係る微細パターンの形成方法の第1実施例を示す工程図である。 本発明に係る微細パターンの形成方法の第2実施例の後段のフローを示す工程図である。 加工されるべき被加工層が形成された第3実施例用の基板を示す図である。 微細な成型用凸部を有する第3実施例用の押し型を示す図である。 第3実施例用のフォトマスクを示す図である。 本発明に係る微細パターンの形成方法の第3実施例を示す工程図である。 本発明に係る微細パターンの形成方法の第3実施例を示す工程図である。 本発明に係る微細パターンの形成方法の第3実施例を示す工程図である。
符号の説明
2…基板、4…被加工層、6…押し型、8…成型用凸部、10…アライメントマーク凸部、12…フォトマスク、14…遮光膜、16…アライメント用の遮光膜、22…ストップパターン、24…凸部収容凹部、26…アライメントマーク凹部、32…光硬化性樹脂層、36…窪み部、38…マスク、40…微細パターン、H1…成型用凸部の高さ、H3…凸部収容凹部の深さ。

Claims (3)

  1. 基板又は前記基板上に形成された被加工層の表面に未硬化状態の光硬化性樹脂層を形成し、該光硬化性樹脂層に、微細に形成された成型用凸部を有する押し型を押し当てた状態で前記光硬化性樹脂層を硬化させることにより前記成型用凸部が転写された窪み部を有するマスクを形成し、前記マスクの存在下で加工を施すことにより前記基板又は前記被加工層に加工を施して微細パターンを形成するようにした微細パターンの形成方法において、
    前記光硬化性樹脂層を形成する前に、
    前記成型用凸部の高さよりも深い凸部収容凹部を有するストッパパターンを前記基板又は前記被加工層の表面に形成するようにしたことを特徴とする微細パターンの形成方法。
  2. 前記マスクをエッチング用のマスクとして用い、前記加工としてエッチング加工を施すことを特徴とする請求項1記載の微細パターンの形成方法。
  3. 前記マスクをメッキ用のマスクとして用い、前記加工としてメッキ加工を施すことを特徴とする請求項1記載の微細パターンの形成方法。

JP2005301052A 2005-10-14 2005-10-14 微細パターンの形成方法 Pending JP2007109986A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301052A JP2007109986A (ja) 2005-10-14 2005-10-14 微細パターンの形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301052A JP2007109986A (ja) 2005-10-14 2005-10-14 微細パターンの形成方法

Publications (1)

Publication Number Publication Date
JP2007109986A true JP2007109986A (ja) 2007-04-26

Family

ID=38035593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301052A Pending JP2007109986A (ja) 2005-10-14 2005-10-14 微細パターンの形成方法

Country Status (1)

Country Link
JP (1) JP2007109986A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023360A (ja) * 2008-07-22 2010-02-04 Toppan Printing Co Ltd インプリント方法、プレインプリントモールド、プレインプリントモールド製造方法、インプリント装置
JP2010530641A (ja) * 2007-06-18 2010-09-09 モレキュラー・インプリンツ・インコーポレーテッド インプリント・リソグラフィのための溶媒支援層の形成
JP2011521438A (ja) * 2008-02-08 2011-07-21 モレキュラー・インプリンツ・インコーポレーテッド インプリント・リソグラフィにおけるはみ出し低減
JP2012004515A (ja) * 2010-06-21 2012-01-05 Dainippon Printing Co Ltd インプリント用モールド、アライメント方法、インプリント方法、およびインプリント装置
JP2021139729A (ja) * 2020-03-04 2021-09-16 国立研究開発法人産業技術総合研究所 マイクロウェル付きナノピラー構造基板、および、その製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530641A (ja) * 2007-06-18 2010-09-09 モレキュラー・インプリンツ・インコーポレーテッド インプリント・リソグラフィのための溶媒支援層の形成
JP2011521438A (ja) * 2008-02-08 2011-07-21 モレキュラー・インプリンツ・インコーポレーテッド インプリント・リソグラフィにおけるはみ出し低減
JP2010023360A (ja) * 2008-07-22 2010-02-04 Toppan Printing Co Ltd インプリント方法、プレインプリントモールド、プレインプリントモールド製造方法、インプリント装置
JP2012004515A (ja) * 2010-06-21 2012-01-05 Dainippon Printing Co Ltd インプリント用モールド、アライメント方法、インプリント方法、およびインプリント装置
JP2021139729A (ja) * 2020-03-04 2021-09-16 国立研究開発法人産業技術総合研究所 マイクロウェル付きナノピラー構造基板、および、その製造方法
JP7345843B2 (ja) 2020-03-04 2023-09-19 国立研究開発法人産業技術総合研究所 マイクロウェル付きナノピラー構造基板、および、その製造方法

Similar Documents

Publication Publication Date Title
US7922960B2 (en) Fine resist pattern forming method and nanoimprint mold structure
CN1960855B (zh) Uv刻印用的柔顺性的硬质模板
US7960090B2 (en) Pattern forming method, pattern formed thereby, mold, processing apparatus, and processing method
JP2004304097A (ja) パターン形成方法および半導体装置の製造方法
KR101354742B1 (ko) 템플릿 기판 및 그 제조 방법
US20120009791A1 (en) Pattern formation method
JP2005508075A (ja) リソグラフィックテンプレート
KR20090119041A (ko) 임프린트 기판의 제조방법 및 임프린팅 방법
JP2007027361A (ja) インプリント用モールド
JP2007042715A (ja) インプリント用モールド及びその製造方法
KR20110093654A (ko) 패턴 형성 방법
KR20160119896A (ko) 임프린트 리소그래피 방법, 이를 이용한 임프린트 리소그래피용 마스터 템플릿의 제조 방법 및 이에 의해 제조된 임프린트 리소그래피용 마스터 템플릿
JP2007109986A (ja) 微細パターンの形成方法
JP4867423B2 (ja) インプリント用型部材、インプリント用型部材の製造方法、及びインプリント方法
US9586343B2 (en) Method for producing nanoimprint mold
JP6115300B2 (ja) インプリント用モールド、インプリント方法、パターン形成体
WO2015043321A1 (zh) 一种纳米压印光刻装置及其方法
JP2007210275A (ja) インプリント用モールド
JP5326192B2 (ja) インプリント用モールド及びインプリント用モールド製造方法
JP2011199136A (ja) インプリント用モールド及びその作製方法並びにパターン転写体
JP2013251320A (ja) ナノインプリントモールドおよびその製造方法
JP6015140B2 (ja) ナノインプリントモールドおよびその製造方法
JP2012190827A (ja) インプリントモールド及びその作製方法、パターン形成体
JP2016092360A (ja) 欠陥修正方法および微細構造体の製造方法
JP6206632B2 (ja) ナノインプリント用ブランクスおよびナノインプリント用テンプレートの製造方法