JP2007097710A - 電子内視鏡装置 - Google Patents

電子内視鏡装置 Download PDF

Info

Publication number
JP2007097710A
JP2007097710A JP2005289146A JP2005289146A JP2007097710A JP 2007097710 A JP2007097710 A JP 2007097710A JP 2005289146 A JP2005289146 A JP 2005289146A JP 2005289146 A JP2005289146 A JP 2005289146A JP 2007097710 A JP2007097710 A JP 2007097710A
Authority
JP
Japan
Prior art keywords
light
spectral
spectral image
region
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005289146A
Other languages
English (en)
Other versions
JP4712505B2 (ja
Inventor
Shinji Takeuchi
信次 竹内
Daisuke Ayame
大輔 綾目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2005289146A priority Critical patent/JP4712505B2/ja
Publication of JP2007097710A publication Critical patent/JP2007097710A/ja
Application granted granted Critical
Publication of JP4712505B2 publication Critical patent/JP4712505B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

【課題】電子内視鏡装置において、診断用分光画像の品質の低下を抑制する。
【解決手段】生体粘膜1を撮像する面順次方式の分光画像取得手段10を用い、互いに異なる波長域の各照明光Ler、Leg、Lebの照明を受けて生体粘膜1で反射した反射光Lkr、Lkg、Lkbを受光手段12で受光して分光画像データGsを取得する際に、受光手段12での長波長域の受光レベルに対する短波長域での受光レベルの比率を、生体粘膜の長波長域での分光反射率に対する短波長域での分光反射率の比率より大きくなるようにして上記反射光を受光する。分光画像データ演算手段により、上記分光画像データGsの値を、上記長波長域の受光レベルに対する短波長域の受光レベルの比率を大きくすることのない受光手段12での受光で得られる分光画像データの値に補正した分光画像推定演算を実行して分光演算画像データGeを得、診断用分光画像を作成する。
【選択図】図1

Description

本発明は電子内視鏡装置に関し、詳しくは、生体粘膜の分光画像を作成してこの生体粘膜を診断する電子内視鏡装置に関するものである。
従来より、固体撮像素子を用いた電子内視鏡装置として、狭い波長帯域のみに光を透過させる狭帯域バンドパスフィルタを通して消化器官、例えば胃等の生体粘膜を撮像して上記生体粘膜の狭帯域分光画像を得、上記狭帯域分光画像等を合成して診断用分光画像を生成する電子内視鏡装置(Narrow Band Imaging-NBl)が知られている。この装置は、互いに異なる波長域の光を透過させる3種類の狭帯域バンドパスフィルタを組み合わせた回転フィルタを備え面順次方式で撮像を行なうものであり、上記各狭帯域バンドパスフィルタを通して分光された各照明光を順次生体粘膜に照射しつつ上記生体粘膜を撮像してこの生体粘膜を示す狭帯域分光画像を取得するものである。このようにして得られた狭帯域分光画像を合成して得られた上記生体粘膜の診断用分光画像は、従来では得られなかった生体粘膜の微細構造を表現することができる。
一方、固体撮像素子に通常のカラー画像撮影に使用するRGB回転フィルタを配置して面順次方式で撮像を行なう電子内視鏡装置に関しても、生体粘膜の撮像で得られたカラー画像データに基づく演算処理により上記狭帯域バンドパスフィルタを通して得られた狭帯域分光画像と同等の画像を取得する方式が提案されている。
上記方式は、可視波長域における生体粘膜の分光反射率に関する多数の測定データを用いて上記生体粘膜の分光反射率を推定するための主成分分析を行った結果、第1主成分から第3主成分の3つの主成分により上記生体粘膜の可視波長全域に亘る分光反射率を略復元できることを見出して提案されたものである。この復元手法によれば、上記生体粘膜の分光反射率に関する多数の測定データを用いて予め求めた分光反射推定マトリクスデータと、上記3つの主成分に対応する通常のRGB回転フィルタを通した撮像で得られたRGB各色の画像データとの演算により上記狭帯域分光画像と同等の画像を疑似的に得ることができる(特許文献1および非特許文献1参照)。
特開2003−93336号公報 財団法人東京大学出版会発行、著者三宅洋一のディジタルカラー画像の解析・評価(P148〜P153)
ところで、生体粘膜の分光反射率は図4に示すように長波長域より短波長域の方が低くなるため、上記生体粘膜で反射した反射光を撮像素子で撮像したときの長波長域(例えば赤色)の光の受光レベルに比して短波長域(例えば緑色や青色)の光の受光レベルが低くなる。一方、上記各色の光の受光によって得られる画像信号に含まれるノイズ成分には撮像素子で受光可能な最大の受光レベルに対して略一定の割合で混入する固定ノイズ成分が存在する。すなわち、上記画像信号を読み取って得られる分光画像には受光レベルに関係なく最大受光レベルに対して一定の割合で混入する固定ノイズ成分が含まれている。したがって、上記長波長域に対応する分光画像に混入する固定ノイズ成分の割合に比して短波長域に対応する分光画像に混入する固定ノイズ成分の割合が大きくなり、短波長域に対応する分光画像の品質が低下する。そのため、短波長域に対応する分光画像に混入する固定ノイズ成分の割合を小さくしたいという要請がある。
これに対して、撮像素子で撮像する際の短波長域に対応する受光レベルを高めて上記短波長域に対応する分光画像に混入する固定ノイズ成分の割合を小さくすることが考えられるが、短波長域に対応する受光レベルを高めると長波長域に対応する受光レベルが上記最大受光レベルを超えて飽和してしまうという問題がある。
本発明は、上記事情に鑑みてなされたものであり、診断用分光画像の品質の低下を抑制することができる電子内視鏡装置を提供することを目的とするものである。
本発明の電子内視鏡装置は、互いに異なる波長域に対応した各照明光の順次照射を受けた生体粘膜で反射した前記各照明光の反射光を受光する受光手段を有し、前記生体粘膜の分光画像を示す分光画像データを取得する面順次方式の分光画像取得手段と、前記分光画像データと予め入力され記憶された分光反射推定マトリクスデータとに基づく分光画像推定演算により前記生体粘膜の特定波長における分光画像を示す分光演算画像データを得る分光画像データ演算手段と、前記分光演算画像データに基づいて前記生体粘膜の診断用分光画像を作成する診断用分光画像作成手段とを備えた電子内視鏡装置において、分光画像取得手段が、互いに異なる波長域のうちの最も長波長側の長波長域の反射光を受光した受光手段での受光レベルJpに対する前記長波長域より短波長側の短波長域の反射光を受光した前記受光手段での受光レベルJsの比率Hj(Hj=Js/Jp)を、前記生体粘膜上の前記反射光の反射領域における前記長波長域での分光反射率Kpに対する前記反射領域における前記短波長域での分光反射率Ksの比率Hk(Hk=Ks/Kp)より大きく(Hj>Hk)なるようにして前記反射光を受光するものであり、分光画像データ演算手段が、前記長波長域の受光レベルに対する前記短波長域の受光レベルの比率を大きくした受光手段での受光で得られた前記短波長域に対応する前記分光画像データの値を、前記長波長域の受光レベルに対する前記短波長域の受光レベルの比率を大きくすることのない受光手段での受光で得られる前記短波長域に対応する分光画像データの値に補正した分光画像推定演算を実行することを特徴とするものである。
なお、前記面順次方式とは、互いに異なる波長域に対応した各照明光の順次照射を受けた生体粘膜で反射した前記各照明光の反射光のそれぞれを互いに異なるタイミングで受光手段により受光する方式である。
また、前記長波長域の受光レベルJpに対する前記短波長域の受光レベルJsの比率Hjを、生体粘膜の長波長域の分光反射率Kpに対するこの生体粘膜の分光反射率Ksの比率Hkより大きくするとは、長波長域の受光レベルJpを小さくすることなく、短波長域の受光レベルJsを大きくして前記受光レベル間の比率Hjを前記分光反射率間の比率Hkより大きくすることを意味する。
前記互いに異なる波長域は、赤色の波長域、緑色の波長域、および青色の波長域とすることができる。
前記分光画像取得手段は、互いに異なる波長域における受光手段での各受光レベルのいずれをも最大受光レベルの50%以上、好ましくは80%以上にするものであることが望ましい。
前記分光画像取得手段は、短波長域における受光手段での受光レベルを長波長域における受光手段での受光レベルに略一致させるものとすることができる。なお、前記受光レベルを略一致させるとは、長波長域における受光レベルと短波長域における受光レベルとの差を長波長域における受光レベルの±20%以内、好ましくは±10%以内にすることを意味する。
前記分光画像取得手段は、生体粘膜へ順次照射される各照明光の光強度を定める開口絞りと、開口絞りの開口量を制御する開口絞り制御手段とを有するものとし、前記制御手段は、各照明光のうちの短波長域に対応する短波長域照明光の光強度に対する前記各照明光のうちの長波長域に対応する長波長域照明光の光強度の比率Hnを、前記前記分光反射率間の比率Hkに略一致させるものとすることができる。なお、前記略一致させるとは、前記比率Hkと前記比率Hnとの差を前記比率Hkの±20%以内、好ましくは±10%以内にすることを意味する。
前記分光画像取得手段は、互いに異なる波長域に対応する各照明光を生体粘膜へ順次照射する照明光順次照射手段を有するものとし、前記照明光順次照射手段は、照明光源と、この照明光源から発せられた光を順次互いに異なる波長域に分光して各照明光を生成するための分光手段と、前記照明光源に供給する電流を制御して各照明光の光強度を調節する光強度調節手段とを有し、短波長域に対応する短波長域照明光の光強度に対する長波長域に対応する長波長域照明光の光強度の比率Hnを、前記分光反射率間の比率に略一致させるものとすることができる。なお、前記略一致させるとは、前記比率Hkと前記比率Hnとの差を前記比率Hkの±20%以内、好ましくは±10%以内にすることを意味する。
前記長波長域は波長600nm〜700nmの波長域、前記短波長域は波長400nm〜500nmの波長域とし、かつ、前記分光画像取得手段は、前記受光レベル間の比率Hjを0.25以上にするものとすることができる。
前記互いに異なる波長域は、互いに重複しない波長域であって、かつ、各波長域の和を取った合成波長域が可視波長域の全域をカバーするものであることが望ましいが、必ずしもそのような場合に限らない。
本発明の電子内視鏡装置によれば、分光画像取得手段を、互いに異なる波長域に対応した各照明光の順次照射を受けた生体粘膜で反射した各照明光の反射光のうちの長波長域の反射光を受光した受光手段での受光レベルJpに対する短波長域の反射光を受光した受光手段での受光レベルJsの比率Hjを、生体粘膜上の上記反射光の反射領域における長波長域での分光反射率Kpに対する上記短波長域での分光反射率Ksの比率Hkより大きくなるようにして上記反射光を受光して分光画像データを取得するものとし、分光画像データ演算手段を、長波長域の受光レベルに対する短波長域の受光レベルの比率を大きくした受光手段での受光で得られた上記短波長域に対応する分光画像データの値を、上記短波長域の受光レベルの比率を大きくすることのない受光手段での受光で得られる上記短波長域に対応する分光画像データの値に補正した分光画像推定演算を実行するものとしたので、上記短波長域に対応する分光画像データに混入するノイズ成分の割合を少なくすることができ、上記分光画像データに基づいて作成した診断用分光画像の品質の低下を抑制することができる。
すなわち、受光手段で得られる分光画像データに混入するノイズ成分の中には、受光レベルの変動量に比例して増減するノイズ成分も存在するが、受光レベルの変動量に比例して増減しない固定的なノイズ成分も存在する。このような、固定ノイズ成分は、受光レベルの大きさにかかわらず分光画像データ中に略一定量混入している。したがって、受光レベルの大きいときに得られた分光画像データの値中に占める固定ノイズ成分の割合は、受光レベルの小さいときに得られた分光画像データの値中に占める固定ノイズ成分の割合より小さくなる。すなわち、大きな受光レベルで得られた分光画像データの値の方が、小さな受光レベルで得られた分光画像データの値より上記値に占める固定ノイズ成分の割合を少なくすることができる。
一方、生体粘膜の短波長域における分光反射率は長波長域における分光反射率より小さく、また、従来の方式では、生体粘膜で反射した反射光を受光手段で受光したときの長波長域の受光レベルに対する短波長域の受光レベルの比率と、上記生体粘膜の長波長域における分光反射率に対する短波長域における分光反射率とが等しくなるように設定されていた。すなわち、電子内視鏡装置を用いて被写体を観察した場合と、上記被写体を直接観察した場合とで上記被写体の色が一致するように設定していた。
上記のことにより、上記長波長域に対応する受光レベルJpに対する短波長域に対応する受光レベルJsの比率Hjを、生体粘膜の長波長域における分光反射率Kpに対する短波長域における分光反射率Ksの比率Hkより大きくなるようにして受光手段で受光し分光画像データを取得することにより、短波長域に対応する分光画像データの値に含まれる固定ノイズ成分の割合を少なくすることができる。これにより、固定ノイズ成分の割合を少なくした短波長域の分光画像データを用いた分光画像推定演算を実行することができ、診断用分光画像に含まれるノイズ成分を低減することができるので、上記診断用分光画像の品質の低下を抑制することができる。
また、互いに異なる波長域を、赤色の波長域、緑色の波長域、および青色の波長域とすれば、これらの波長域は、従来のカラー画像観察用の電子内視鏡装置で使用されている波長域であるので、従来の電子内視鏡装置の多くの部分を流用して本発明の電子内視鏡装置を製作することができ装置コストの上昇を抑えることができる。
また、分光画像取得手段を、互いに異なる各波長域における受光レベルのいずれをも最大受光レベルの50%以上、より好ましくは80%以上とすれば、より確実に短波長域に対応する分光画像データの値中に占める固定ノイズの割合を小さくすることができるので、診断用分光画像の品質の低下をより確実に抑制することができる。
なお、分光画像取得手段を、短波長域における受光手段での受光レベルを長波長域における受光手段での受光レベルに略一致させるものとすれば、各波長域における受光レベルをさらに高めることができる。すなわち、上記反射光は受光手段の最大受光レベルを超えることなく受光する必要があるため、各波長域における反射光の互いの受光レベルを近づけた方が、より高い受光レベルでの受光手段による受光が可能となる。例えば各波長域における受光レベルを互いに一致させれば、受光手段の最大受光レベルでの受光が可能となる。これにより分光画像データの値中に占める固定ノイズの割合をさらに小さくすることができるので、診断用分光画像の品質の低下をさらに抑制することができる。
ここで、分光画像取得手段を、生体粘膜へ順次照射される各照明光の光強度を定める開口絞りと、開口絞りの開口量を制御する開口絞り制御手段とを有するものとし、上記制御手段が、上記各照明光のうちの短波長域に対応する短波長域照明光の光強度に対する上記各照明光のうちの長波長域に対応する長波長域照明光の光強度の比率Hnを、上記分光反射率間の比率Hkに略一致させるものとすれば、より確実に短波長域に対応する分光画像データの値中に占める固定ノイズの割合を小さくすることができるので、診断用分光画像の品質の低下をより確実に抑制することができる。
また、分光画像取得手段を、互いに異なる波長域に対応する各照明光を生体粘膜へ順次照射する照明光順次照射手段を有するものとし、上記照明光順次照射手段を、照明光源と、この照明光源から発せられた光を順次互いに異なる波長域に分光して各照明光を生成するための分光手段と、照明光源に供給する電流を制御して各照明光の光強度を調節する光強度調節手段とを有し、上記短波長域に対応する短波長域照明光の光強度に対する上記長波長域に対応する長波長域照明光の光強度の比率Hnを、前記分光反射率間の比率Hkに略一致させるものとすれば、より確実に短波長域に対応する分光画像データの値中に占める固定ノイズの割合を小さくすることができるので、診断用分光画像の品質の低下をより確実に抑制することができる。
上記長波長域を波長600nm〜700nmの波長域、上記短波長域を波長400nm〜500nmの波長域とし、かつ、上記分光画像取得手段を、上記受光レベルの間の比率Hjを0.25以上にするものとすれば、より確実に短波長域に対応する分光画像データの値中に占める固定ノイズの割合を小さくすることができるので、診断用分光画像の品質の低下をより確実に抑制することができる。
以下、本発明の実施の形態について、図面を用いて説明する。図1は本発明の電子内視鏡装置の実施の形態の概略構成を示すブロック図、図2は撮像部および分光モザイクフィルタを拡大して示す斜視図である。
本発明の電子内視鏡装置は、生体粘膜の分光画像を撮像する際に、長波長域より短波長域を強調した撮像を行って上記分光画像を示す分光画像データを得、上記分光画像データ用いて上記短波長域の強調分を補正した分光画像推定演算を実行して特定波長における分光画像を示す分光演算画像データを得、上記分光演算画像データに基づいて診断用分光画像を作成するものである。
図1に示すように、本発明の実施の形態の1例である電子内視鏡装置100は、互いに異なる波長域である赤色域、緑色域、青色域に対応した各照明光Ler、Leg、Lebの順次照射を受けた生体粘膜1で反射した各照明光Ler、Leg、Lebの反射光Lkr、Lkg,Lkbを受光する受光手段であるCCD等からなる撮像部12を有し、上記生体粘膜1の分光画像を示す分光画像データGsを取得する面順次方式の分光画像取得手段10と、上記分光画像データGsと予め入力され記憶された分光反射推定マトリクスデータとに基づく分光画像推定演算により上記生体粘膜1の特定波長における分光画像を示す分光演算画像データGeを得る分光画像データ演算手段20と、上記分光演算画像データGeに基づいて生体粘膜1の診断用分光画像を作成する診断用分光画像作成手段30とを備えている。
分光画像取得手段10は、上記互いに異なる波長域のうちの最も長波長側の長波長域の反射光を受光した撮像部12での受光レベルJpに対する上記長波長域より短波長側の短波長域の反射光を受光した撮像部12での受光レベルJsの比率Hj(Hj=Js/Jp)を、生体粘膜1上の上記反射光の反射領域における長波長域における分光反射率Kpに対する短波長域における分光反射率Ksの比率Hk(Hk=Ks/Kp)より大きく(Hj>Hk)なるようにして上記反射光を受光するものである。なお、上記分光画像取得手段10は、上記長波長域の反射光を受光した撮像部12での受光レベルJpを低下させることなく、上記受光レベル間の比率Hjを上記分光反射率間の比率Hkより大きくなるようにして上記反射光を撮像部12で受光するものである。
分光画像データ演算手段20は、上記受光レベル間の比率Hjを上記分光反射率間の比率Hkより大きくなるようにした受光で得られた上記短波長域に対応する分光画像データの値を、上記長波長域の受光レベルに対する短波長域の受光レベルの比率を大きくすることのない受光手段での受光で得られる上記短波長域に対応する分光画像データの値に補正した分光画像推定演算を実行するものである。
以下、上記分光画像取得手段10について説明する。分光画像取得手段10は、上記受光手段である撮像部12の他に、上記互いに異なる波長域に対応する各照明光Ler、Leg、Lebを生体粘膜1へ順次照射する照明光順次照射手段14を有している。
上記撮像部12は、図2に示すように、多数の受光画素12Gが2次元状に配列されたものである。
上記照明光順次照射手段14は、平行光束にせしめられた光を発する照明光源65と、照明光源65から発せられた光を通し順次互いに異なる波長域に分光して各照明光Ler、Leg、Lebを生成するための分光手段である円板形状の回転分光フィルタ66および回転分光フィルタ66を回転させる回転モータ67と、照明光源65に供給する電流を制御して上記各照明光Ler、Leg、Lebの光強度を調節する光強度調節手段68とを有している。上記光強度調節手段68は、短波長域である緑色域に対応する照明光Legの光強度に対する長波長域である赤色域に対応する照明光Lerの光強度の比率を分光反射率間の比率Hkに略一致させるとともに、短波長域である青色域に対応する照明光Lebの光強度に対する長波長域である赤色域に対応する照明光Lerの光強度の比率を上記分光反射率間の比率Hkに略一致させる。
なお、上記照明光源65から発せられる光は、ここでは白色光として説明するが、このような場合に限らず、上記白色光とは異なる分光光強度特性を有する光とすることもできる。
回転分光フィルタ66は、上記円板形状を円周方向に3分割した各部分である赤色域透過フィルタ部分66R、緑色域透過フィルタ部分66G、および青色域透過フィルタ部分66Bを組み合わせて形成したものである。また、赤色域透過フィルタ部分66Rの赤色域の光に対する透過率、緑色域透過フィルタ部分66Gの緑色域の光に対する透過率、および青色域透過フィルタ部分66Bの青色域の光に対する透過率は共に等しい。
光強度調節手段68は、回転モータ67に配されているエンコーダからの回転位置信号を入力し、上記回転位置信号から上記各透過フィルタ部分66(赤色域透過フィルタ部分66R、緑色域透過フィルタ部分66G、青色域透過フィルタ部分66B)の回転位置を検出する。そしてこの光強度調節手段68は、照明光源65に供給する電流の大きさを調節することにより照明光源65から発せられ各透過フィルタ部分に入射させる光の強度を各透過フィルタ部分66毎に調節する。
また、上記照明光順次照射手段14は、上記照明光源65から発せられ回転分光フィルタ66で分光された光を伝播させる後述する照明光伝播光学系64を有している。
なお、上記分光画像取得手段10は、上記撮像部12および上記照明光伝播光学系64の一部分を収容した湾曲自在で細長形状の挿入部72、および挿入部72に接続され一体化された上記挿入部72の湾曲動作等を操作するアングル操作部74からなる内視鏡部70を有している。上記アングル操作部74は上記照明光源65の側に位置しており上記挿入部72が被検体内に挿入される。
上記挿入部72の被検体内に挿入される先端を成す先端部72Aには、各照明光Ler、Leg、Lebで照明された観察対象となる生体粘膜1の像を撮像部12上に結像させる対物レンズ18が配置されている。
また、上記内視鏡部70の内部には、撮像部12で取得した分光画像データGsを分光画像データ演算手段20へ伝送する信号線Sgと、照明光源65から発せられ回転分光フィルタ66で分光された光を伝播させる上記照明光伝播光学系64とがアングル操作部74から挿入部72の先端部72Aに亘って施設されている。
上記照明光伝播光学系64は、照明光源65から発せられ回転分光フィルタ66で分光された赤色域の光、緑色域の光、および青色域の光を、上記照明光伝播光学系64を構成する後述するライトガイド61の一端へ入射させるための集光レンズ62、上記集光レンズ62で集光され上記一端へ入射された上記各光を先端部72Aに導くライトガイド61、および上記先端部72Aに配置され上記ライトガイド61から射出された光束を通し上記光束を広げて生体粘膜1を照明する照明レンズ63からなるものである。
なお、上記照明光伝播光学系64および対物レンズ18の可視波長域における分光透過率は一定である。すなわち、照明光伝播光学系64および対物レンズ18の可視波長域における透過率は波長によらず一定である。
上記長波長域である赤色域における照明光Lerの光強度より上記短波長域である緑色域の照明光Legや青色域の照明光Lebの光強度が大きくなるように生体粘膜1を照明するために、光強度調節手段68が上記照明光源65に供給する電流を調節する。すなわち、上記光強度調節手段68は、緑色域透過フィルタ部分66Gに入射させる光の強度を赤色域透過フィルタ部分66Rに入射させる光の強度より大きくするように調節し、青色域透過フィルタ部分66Bに入射させる光の強度を赤色域透過フィルタ部分66Rに入射させる光の強度より大きくするように調節する。
次に、上記分光画像データ演算手段20について説明する。分光画像データ演算手段20は、例えば、上記生体粘膜1で反射した赤色域の反射光Lkrを撮像部12で受光したときの受光レベルに対する上記生体粘膜1で反射した緑色域の反射光Lkgを撮像部12で受光したときの受光レベルの比率を大きくして得られた、上記緑色域に対応する分光画像データの値を、上記比率を大きくすることのない撮像部12での受光で得られる上記緑色域に対応する分光画像データの値に補正し、さらに、生体粘膜1で反射した赤色域の反射光Lkrを撮像部12で受光したときの受光レベルに対する上記生体粘膜1で反射した青色域の反射光Lkbを撮像部12で受光したときの受光レベルの比率を大きくして得られた上記青色域に対応する分光画像データの値を、上記比率を大きくすることのない撮像部12での受光で得られる上記青色域に対応する分光画像データの値に補正して、上記分光画像推定演算を実行するものである。
なお、上記分光画像データ演算手段20は、上記分光反射率間の比率に対する受光レベル間の比率である比率比較情報を記憶する比率比較情報記憶部22と、予め用意された分光反射推定マトリクスデータを記憶するマトリクスデータ記憶部24と、分光画像推定演算によって分光演算画像データGe求める際の特定波長を指定する特定波長指定スイッチ28と、上記比率比較情報記憶部22が記憶している比率比較情報、マトリクスデータ記憶部24が記憶している分光反射推定マトリクスデータ、および分光画像取得手段10が取得した分光画像データGsを用いて上記特定波長指定スイッチ28で指定された特定波長に関する分光画像推定演算を実行する演算実行部26とを備えている。
なお、上記分光反射推定マトリクスデータは、例えば、胃の粘膜に関する診断用分光画像の作成用に1種類、腸の粘膜に関する診断用分光画像の作成用に1種類等、各器官毎に用意しておくことが望ましい。
上記演算実行部26は、上記分光画像データGsの値を補正した分光画像推定演算を実質的に実行するものであれば実際の演算はどのように行なってもよい。例えば、分光画像取得手段10が取得した分光画像データGsの値そのものを直接補正することなく、その補正分だけ分光反射推定マトリクスデータの係数を変更するようにしてもよい。すなわち、上記分光画像データGsに対する補正分は、演算の都合に応じて上記分光画像推定演算中の適当な演算箇所に割振ることができる。
上記診断用分光画像作成手段30は、画像合成部34および画像合成選択スイッチ32を有している。画像合成選択スイッチ32の切替えにより画像合成部34で作成し表示モニタ82に表示させる診断用分光画像の種類が定められる。
上記診断用分光画像作成手段30には、上記分光画像データ演算手段20によって取得された分光演算画像データGeおよび分光画像取得手段10によって取得された分光画像データGsが入力される。そして、上記画像合成部34が、上記画像合成選択スイッチ32の設定に応じた診断用分光画像データGgを、上記入力された分光演算画像データGeや分光画像データGsに基づいて作成し表示モニタ82に出力する。上記診断用分光画像データGgが入力された表示モニタ82には上記生体粘膜1を示す診断用分光画像が表示される。
なお、上記各部の動作および各動作のタイミングはコントローラ80によって制御される。
次に、本実施の形態における電子内視鏡装置100の作用について説明する。
はじめに、上記分光画像推定演算に用いる分光反射推定マトリクスデータを得るための主成分分析について説明する。
生体粘膜等の測定対象物の可視波長域における分光反射率は、約400nm〜約700nmの波長域の間で波長間隔5nm毎あるいは10nm毎に測定した反射率によって示すことができる。すなわち、分光反射率は61次元あるいは31次元の上記各波長における反射率の離散値として示すことができる。なお、上記分光反射率は、可視波長全域に亘って一定の光強度を有する白色光で生体粘膜1を照明したときの、上記各波長毎における白色光の光強度に対する生体粘膜1で反射した反射光の光強度の比率を測定することによって得られる。
一方、測定対象物となる生体粘膜に関する多数の分光反射率データを主成分分析することにより、上記61次元あるいは31次元より少ない分光反射率データから、上記可視波長全域に亘る分光反射率を復元することができる。
例えば、測定対象物がマンセル色票である場合には、多数のマンセル色票の分光反射率を測定した主成分分析により、第1主成分から第8主成分までの8種類の主成分を利用して上記マンセル色票の可視波長全域に亘る分光反射率を略復元できるという結果が得られている。
また、測定対象物が胃壁等の生体粘膜である場合には、多数の生体粘膜の分光反射率を測定した主成分分析により、第1主成分から第3主成分までの3種類の主成分を利用して上記生体粘膜の可視波長全域に亘る分光反射率を99%復元できるという結果が得られている。
上記3種類の主成分で測定対象物の分光反射率を推定できるということは、例えば、生体粘膜1で反射した反射光の赤色域、緑色域、青色域の3種類の波長域における光強度の情報から可視波長全域に亘る分光反射率を推定できることを意味する。すなわち、可視波長全域に亘り波長間隔5nm毎あるいは10nm毎に分光反射率を推定できる。
生体粘膜の赤色域、緑色域および青色域の3種類の波長域での分光反射率の比、すなわち生体粘膜を白色光で照明したときにこの生体粘膜で反射した反射光の3種類の各波長域での光強度の比を示す分光反射光強度比マトリックスをC、取得したい各特定波長における分光反射率の比、すなわち生体粘膜を白色光で照明して上記生体粘膜で反射した反射光の各特定波長における光強度の比を示す特定波長マトリックスをF、上記主成分分析によって求めた分光反射推定マトリクスデータをAとすると、
Figure 2007097710
の式が成立する。ここで、分光反射推定マトリクスデータAは多数の生体粘膜を測定することによって予め求めることができ、分光反射光強度比マトリックスCは測定によって得ることができるので、特定波長マトリックスFを求めることができる。すなわち、例えば、3種類の特定波長600nm、540nm、420nmにおける生体粘膜の各分光反射率間の比率を求めることができる。より具体的には、3種類の特定の狭帯域波長600nm±5nm、540nm±5nm、420nm±5nmにおける生体粘膜の各分光反射率間の比率を求めることができる。
したがって、上記生体粘膜1を白色光で照明したときにこの生体粘膜で反射した反射光の赤色域、緑色域および青色域の各波長域における各反射光の光強度と、予め用意した分光反射推定マトリクスデータとを用いて、白色光で照明された生体粘膜1で反射した上記白色光の反射光の各特定波長における光強度間の比率を演算によって推定することができる。
上記分光画像推定演算は、上記分光画像データ演算手段20で実行する分光画像推定演算に対応するものである。なお、上記分光画像推定演算による特定波長域における分光画像の取得には、従来より知られている手法を適用することができる。
次に、上記分光画像推定演算の手法を応用し、電子内視鏡装置100によって診断用分光画像を取得する場合について説明する。図3は各照明光の分光光強度分布を示す図、図4は生体粘膜の分光反射率を示す図、図5は生体粘膜で反射した反射光を撮像部で受光したときの反射光の光強度を示す図、図6は生体粘膜で反射した反射光を受光した撮像部での受光レベルを示す図、図7(a)は各透過フィルタ部分の分光透過率特性を示す図、図7(b)は分光画像推定演算で求めた生体粘膜で反射した反射光の特定波長における光強度を示す図である。
なお、図3は縦軸Iに光強度、横軸λに波長を示すものである。図4は縦軸εに反射率、横軸λに波長を示すものである。図5は縦軸Iに光強度、横軸λに波長を示すものである。また、図6は縦軸に受光レベルを示し、横軸方向に青色域の受光レベル、緑色域の受光レベル、赤色域の受光レベルを並べて示している。また、図7(a)は縦軸δに透過率、横軸λに波長を示すものである。図7(b)は縦軸Iに光強度、横軸λに波長を示すものである。
照明光源65から発せられ回転分光フィルタ66で分光された赤色域の光、緑色域の光および青色域の光のそれぞれは、照明光伝播光学系64を通って先端部72Aから順次射出され生体粘膜1を照明する。
図3に、上記先端部72Aから順次射出された各照明光の分光光強度分布、すなわち赤色域の照明光の分光光強度分布Qr、緑色域の照明光の分光光強度分布Qg、青色域の照明光の分光光強度分布Qbを示す。図3から解るように、赤色域Er照明光よりも、緑色域Eg照明光や青色域Eb照明光の方が光強度が大きく、さらに、緑色域Eg照明光より青色域Eb照明光の方が光強度が大きくなっている。赤色域Er照明光の光強度U1rと緑色域Eg照明光の光強度U1gの比U1r:U1gは1:2であり、赤色域Er照明光の光強度U1rと青色域Eb照明光の光強度U1bの比U1r:U1bは1:4である。
なお、上記各照明光の各波長域における光強度には、例えば、各波長域である赤色域Er、緑色域Eg、青色域Ebそれぞれの領域における光強度の平均値等を採用することができる。
一方、白色光の照明を受けた生体粘膜1で反射した上記白色光の反射光の分光光強度分布に対応する上記生体粘膜1の分光反射率は、図4中の線K1で示すように短波長域より長波長域の方が反射率が大きくなる。上記生体粘膜1の分光反射率は予め測定されており、赤色域Erの分光反射率Krは約2%、緑色域Egの分光反射率Kgは約1%、青色域Ebの分光反射率Kbは約0.5%である。したがって、赤色域Erの分光反射率Krと緑色域Egの分光反射率Kgの比Kr:Kgは1:0.5であり、赤色域Erの分光反射率Krと青色域Ebの分光反射率Kbの比Kr:Kbは1:0.25である。
なお、上記各波長域における生体粘膜1の分光反射率には、例えば、各波長域である赤色域Er、緑色域Eg、青色域Ebそれぞれの領域における分光反射率の平均値等を採用することができる。
上記各照明光Ler、Leg、Lebの順次照射を受けて生体粘膜1で反射した各反射光Lkr、Lkg,Lkbは、対物レンズ18を通って撮像部12上に結像され撮像される。
ここで、上記図4中の線K1で示す分光反射率特性を有する生体粘膜1が上記図3中のQ3,Q2,Q1で示す各分光光強度分布を有する各照明光Ler、Leg、Lebで照明される。上記生体粘膜1で反射した各反射光Lkr、Lkg、Lkbの分光反射光強度分布のそれぞれは、図5中の線K2r、K2g、K2bで示すように、各反射光Lkr、Lkg、Lkbの光強度が略一定の値Voを示すものとなる。
したがって、図6に示すように、赤色域Erにおける反射光Lkrを受光した撮像部12での受光レベルJr、緑色域Egにおける反射光Lkgを受光した撮像部12での受光レベルJg、および青色域Ebにおける反射光Lkbを受光した撮像部12での受光レベルJbも略一定の値となる。
上記各受光レベルJr、Jg、およびJbは、撮像部12が飽和することなく受光可能な最大の受光レベルを100%としたときの受光レベルを示すものであり、上記略一定となった撮像部12での受光レベルは、例えば約80%となる。
すなわち、上記分光画像取得手段10は、長波長域である赤色域と短波長域である緑色域とに関し、赤色域Erの反射光Lkrを受光した撮像部12での受光レベルJr(Jr=80%)に対する上記緑色域Egの反射光Lkgを受光した撮像部12での受光レベルJg(Jg=80%)の比率Hjg(Hjg=Jg/Jr=1;図6参照)を、生体粘膜1上の上記反射光Lkの反射領域での赤色域Erにおける分光反射率Kr(2%)に対する緑色域Egにおける分光反射率Kg(1%)の比率Hkg(Hkg=Kg/Kr=0.5;図4参照)より大きく(Hjg=1>Hkg=0.5)なるようにして上記反射光Lkを受光する。上記のようにこの分光画像取得手段10は、短波長域である緑色域における撮像部12での受光レベルを長波長域である赤色域における撮像部12での受光レベルに略一致させるものである。
また、上記分光画像取得手段10は、長波長域である赤色域と短波長域である青色域とに関し、上記赤色域Erの反射光Lkrを受光した撮像部12での受光レベルJr(Jr=80%)に対する上記青色域Ebの反射光Lkbを受光した撮像部12での受光レベルJb(Jb=80%)の比率Hjb(Hjb=Jb/Jr=1;図6参照)を、生体粘膜1上の上記反射光Lkの反射領域での赤色域Erにおける分光反射率Kr(2%)に対する青色域Ebにおける分光反射率Kb(0.5%)の比率Hkb(Hkb=Kb/Kr=0.25;図4参照)より大きく(Hjb=1>Hkb=0.25)なるようにして上記反射光Lkを受光する。上記のようにこの分光画像取得手段10は、短波長域である青色域における撮像部12での受光レベルを長波長域である赤色域における撮像部12での受光レベルに略一致させるものである。
上記赤色域と緑色域とに関し、上記受光レベル間の比率Hjg=1は分光反射率間の比率Hkg=0.5の2倍である。また、上記赤色域と青色域とに関し、上記受光レベル間の比率Hjb=1は分光反射率間の比率Hkb=0.25の4倍である。上記のように赤色域の照明光の光強度および受光レベルを基準にすると、緑色域では照明光の光強度が2倍になっているので受光レベルも2倍になり、青色域では照明光の光強度が4倍になっているので受光レベルも4倍になる。
なお、上記分光画像取得手段10の照明光順次照射手段14は、短波長域である緑色域に対応する短波長域照明光の光強度に対する長波長域である赤色域に対応する長波長域照明光の光強度の比率Hn(Hn=2/1)を、生体粘膜1上の上記反射光の反射領域における長波長域である赤色域での分光反射率に対する上記反射領域における短波長域である緑色域での分光反射率の比率Hk(Hk=1%/2%=1/2)に略一致させた照明光を照射するものである。
また、上記分光画像取得手段10の照明光順次照射手段14は、短波長域である青色域に対応する短波長域照明光の光強度に対する長波長域である赤色域に対応する長波長域照明光の光強度の比率Hn(Hn=4/1)を、生体粘膜1上の上記反射光の反射領域における長波長域である赤色域での分光反射率に対する上記反射領域における短波長域である青色域での分光反射率の比率Hk(Hk=0.5%/2%=1/4)に略一致させた照明光を照射するものでもある。
なお、上記赤色域と緑色域についての受光レベル間の比率Hjgに対する分光反射率間の比率Hkgの大きさに関する情報、および赤色域と青色域についての受光レベル間の比率Hjbに対する分光反射率間の比率Hkbの大きさに関する情報は予め比率比較情報記憶部22に記憶させておく。
撮像部12によって取得された上記生体粘膜1を示す分光画像データGsは、上記信号線Sgを通して分光画像データ演算手段20へ伝送されるとともに、診断用分光画像作成手段30へも伝送される。
分光画像データGsが入力された分光画像データ演算手段20では、特定波長指定スイッチ28によって定めた特定波長における分光画像を示す分光演算画像データGeを求めるための分光画像推定演算を実行する。
なお、上記生体粘膜1の撮像によって得られた分光画像データGsは、白色光に相当する照明によって得られたものではないので、すなわち上記分光画像データGsは生体粘膜1の分光反射率に対応したものではないので、この分光画像データGsを補正することなく上記分光画像推定演算を実行しても、特定波長の分光画像を示す分光演算画像データを求めることはできない。
そのため、上記分光画像データGsの値を白色光に相当する照明によって得られたもの、すなわち生体粘膜1の分光反射率に対応したものとなるように補正した後、上記分光画像推定演算の手法を適用する。
すなわち、分光画像データGsが入力された演算実行部26において、例えば、上記分光画像データGsの値を赤色域における値を基準にして補正する。上記基準とする分光画像データGsの赤色域における値は変更することなくそのままの値とし、緑色域における分光画像データGsの値は受光レベルを2倍にして受光したので1/2倍し、青色域における分光画像データGsの値は受光レベルを4倍にして受光したので1/4倍して補正済の分光画像データを得る。上記補正は比率比較情報記憶部22に記憶させた上記比率比較情報を参照して実施する。
また、特定波長指定スイッチ28により、例えばヘモグロビンの反射率が特に高くなる波長等の生体粘膜1の診断に有効な特定波長を指定する。上記指定された特定波長を示す情報は演算実行部26に入力される。演算実行部26は、マトリクスデータ記憶部24に予め記憶されている分光反射推定マトリクスデータのうちから、上記指定された各特定波長での各分光反射率間の比率、すなわち、各特定波長におけるそれぞれの分光反射光強度間の比率を求めるために使用する分光反射推定マトリクスデータを取得する。
そして、演算実行部26が、上記補正済の分光画像データと、上記特定波長に対応する分光反射推定マトリクスデータとを用いた分光画像推定演算を行って、上記特定波長における分光反射光強度を示す画像データ、すなわち各特定波長における分光画像を示す分光演算画像データGeを得る。
なお、回転分光フィルタ66を通った各照明光での生体粘膜1の照明によって得られた分光測定演算画像データGsは、上記回転分光フィルタ66を構成する赤色域透過フィルタ部分66R、緑色域透過フィルタ部分66G、青色域透過フィルタ部分66Bのそれぞれを通った広帯域である赤色域の反射光、広帯域である緑色域の反射光、広帯域である青色域の反射光の各光強度を示すものであるが、演算によって得られた分光測定演算画像データは、生体粘膜1で反射した反射光の特定波長、すなわち特定の狭波長帯域における光強度を示すものである。
すなわち、図7(a)に示すように、赤色域透過フィルタ部分66Rは赤色波長域Erを透過させる広帯域の分光透過特性Frを有し、緑色域透過フィルタ部分66Gは緑色波長域Egを透過させる広帯域の分光透過特性Fgを有し、青色域透過フィルタ部分66Bは青色波長域Ebを透過させる広帯域の分光透過特性Fbを有するものである。しかしながら、上記各透過フィルタ部分を通した撮像部12の受光で得られた分光測定演算画像データGeを用いて分光画像推定演算を行なうことにより、図7(b)に示すように、上記広帯域より狭い狭帯域からなる任意の波長域λ1、λ2、λ3・・・における上記生体粘膜1で反射した反射光の光強度の値を演算によって推定することができる。なお、図7(b)中の破線K1′は、上記分光画像推定演算を行なって推定可能な上記生体粘膜1で反射した反射光の可視波長全域における光強度の分布を示すものである。
つづいて、上記特定波長における分光画像を示す分光演算画像データGeが、診断用分光画像作成手段30の画像合成部34に入力される。この画像合成部34では、上記入力された分光演算画像データGeと既に入力済みの分光画像データGsとを用いて診断用分光画像Ggを作成する。
例えば、上記分光演算画像データGeから作成される上記特定波長のうちの少なくとも1種類に対応した分光画像を、上記分光画像データGsから作成される通常画像上に合成した診断用分光画像を示す診断用画像データGgや、分光演算画像データGeから作成される互いに異なる2種類あるいは3種類の上記特定波長に対応する分光画像を合成した診断用分光画像を示す診断用画像データGgを作成して表示モニタ82へ伝送する。
上記診断用画像データが入力された表示モニタ82には、この診断用画像データが示す診断用分光画像が表示される。
表示モニタ82に通常画像と分光画像を同時に表示する場合には、例えば、通常の観察に用いられる通常画像と血液を示す特定波長域の反射光を強調した分光画像とを対比して表示させ観察することができるので通常画像の表示のみでは観察できない微細な血管等を観察することができ、生体組織の診断に非常に有用である。
なお、上記表示モニタ82に表示させる診断用画像の種類は、画像合成選択スイッチ32の切替えによって決定する。
ここで、分光画像取得手段10による上記分光反射率間の比率に対する受光レベル間の比率の設定と分光画像データ演算手段20による分光画像推定演算の補正とによって、上記診断用画像データに含まれるノイズ成分を低減する作用について説明する。図8は白色光に相当する照明を受けた生体粘膜で反射した反射光の撮像部での受光レベル中に占める固定ノイズの割合を示す図、図9は生体粘膜で反射した反射光の撮像部での受光レベル中に占める固定ノイズの割合を示す図、図10は補正した受光レベル中に占める固定ノイズの割合を示す図である。
なお、図8、図9および図10では縦軸に受光レベルを示し、横軸方向に青色域の受光レベル、緑色域の受光レベル、赤色域の受光レベルを並べて示している。
分光画像取得手段10における上記生体粘膜1を照明する照明光が白色光に相当する場合、すなわち、順次照射される赤色域の光の光強度、緑色域の光の光強度、青色域の光の光強度が共に等しい場合には、図8に示すように、上記生体粘膜1で反射した反射光を撮像部12で受光したときの赤色域Er、緑色域Eg、青色域Ebの各波長域における受光レベルは、生体粘膜1上の上記反射光の反射領域における分光反射率(図4参照)に応じた受光レベルとなる。すなわち、撮像部12での赤色域Erにおける受光レベルが80%であったとすると、緑色域Egにおける受光レベルは40%、青色域Ebにおける受光レベルは20%となる。
また、上記受光により撮像部12で得られる画像信号には、撮像部12で受光した光の光強度の大きさに比例することなく生じる固定ノイズ成分Ns、例えば暗電流等に起因する固定ノイズ成分Nsが含まれている。このように、受光した光強度の大小にかかわらず最大受光レベルに対して一定量生じる固定ノイズ成分Nsの発生量が最大受光レベルの1%であるとすると、取得された分光画像データのうちの赤色域Erの反射光強度を示す分光画像データには1.25%(1.25%=1%/80%)の固定ノイズ成分Nsrが含まれることになる。同様に、緑色域Egの反射光強度を示す分光画像データには2.5%(2.5%=1%/40%)の固定ノイズ成分Nsg、青色域Ebの反射光強度を示す分光画像データには5%(5%=1%/20%)の固定ノイズ成分Nsbが含まれることになる。
したがって、上記分光画像データを用いて生成した診断用画像にも、上記と同様に、赤色域において1.25%の固定ノイズ成分、緑色域において2.5%の固定ノイズ成分、青色域において5%の固定ノイズ成分を含むものとなる。
これに対して、上記実施の形態では、分光画像取得手段10における上記生体粘膜1を順次照明する各照明光として赤色域の光強度に対して緑色域あるいは青色域の光強度を大きくした各照明光を採用し、上記各照明光の照明を受けた生体粘膜1で反射した反射光を撮像部12で受光したときの各波長域における受光レベルを、図9に示すように共に約80%としている。このような場合には、上記撮像部12で受光した光の光強度の大きさに比例することなく生じる固定ノイズ成分Nsが上記と同様に最大受光レベルの1%であるとすると、取得された分光画像データに含まれる固定ノイズ成分の割合は、赤色域Er、緑色域Eg、および青色域Ebにおいて共に1.25%(1.25%=1%/80%)となる。
そして、上記演算実行部26による分光画像推定演算の補正に伴い分光画像データの値が補正された場合であっても上記分光画像データが含む上記固定ノイズの比率は変わらない。例えば図10に示すように、受光レベルを2倍にして受光した緑色域Egにおける分光画像データの値を1/2倍しても上記緑色域Ebにおける分光画像データが含む上記固定ノイズの比率は変わらない。また、受光レベルを4倍にして受光した青色域Ebにおける分光画像データの値を1/4倍しても上記青色域Ebにおける分光画像データが含む上記固定ノイズの比率は変わらない。すなわち、上記補正済み分光画像データに含まれる固定ノイズ成分の割合は、赤色域Er、緑色域Eg、および青色域Ebにおいて共に1.25%のままである。
したがって、上記赤色域の光強度に対して緑色域あるいは青色域の光強度を大きくした各照明光を採用して取得した分光画像データに含まれる固定ノイズ成分の割合を、上記のように白色光に相当する照明光を採用して取得した分光画像データに含まれる固定ノイズ成分の割合より小さくすることができる。これにより、上記診断用分光画像の品質の低下を抑制することができる。
上記演算実行部26による分光画像推定演算では、分光画像取得手段10が取得した分光画像データの値を補正する例を示したが、このような場合に限らず、その補正分を例えば分光反射推定マトリクスデータの係数を補正するようにして割振ることもできる。
すなわち、上記各照明光の長波長域の光強度に対する上記各照明光の短波長域における光強度の比率を高めて得られた上記分光画像データの値を、上記比率を高めることなく撮像部12で受光したときに得られる分光画像データの値に補正した分光画像推定演算が実質的に実行されるように演算を実行するようにすれば、どのような方式で演算を行なってもよい。
なお、上記分光画像取得手段10による分光画像データGsの取得、分光画像データ演算手段20による分光画像推定演算の実行、診断用分光画像作成手段30による診断用分光画像データの作成等に関する各部の動作および各動作のタイミングはコントローラ80が制御する。
図11(a)は照明光源から射出され分光された光束を絞って通す様子を光軸と直交する方向から見た図、図11(b)は上記様子を光軸方向から見た図である。
上記分光画像取得手段10は、照明光源65に供給する電流を制御して上記各照明光Ler、Leg、Lebの光強度を調節する光強度調節手段68の代わりに、図11(a)、(b)に示すように、生体粘膜1へ順次照射する各照明光の光強度を定める開口絞り75と、開口絞り75の開口量を制御する開口絞り制御手段である回転モータ67とを有するものとしてもよい。なお、上記回転モータ67は上記回転分光フィルタ66を回転させる回転モータを兼用するものである。
ここで、開口絞り75は円板形状を成し、回転モータ67に配された回転分光フィルタ66の前面に重ねて配置される。この開口絞り75は、回転分光フィルタ66中の赤色域透過フィルタ部分66R上に配置された赤色域の照明光Ler用の開口部分75Rと、緑色域透過フィルタ部分66G上に配置された緑色域の照明光Leg用の開口部分75Gと、青色域透過フィルタ部分66B上に配置された青色域の照明光Leb用の開口部分75Bとを有している。
各開口部分は、開口絞り75の回転方向に沿って一定の幅を有しており、赤色域の照明光Ler用の開口部分75Rの幅Wrが最も小さく、緑色域の照明光Leg用の開口部分75Gの幅Wgは上記開口部分75Rの幅Wrより大きく、青色域の照明光Leb用の開口部分75Bの幅Wbが最も大きくなっている。すなわち、各開口部分の幅の大きさは幅Wr<幅Wg<幅Wbの関係を満たすようになっている。
したがって、照明光源65から平行光にせしめられて発せられ各透過フィルタ部分を通った光束の断面積は、赤色域透過フィルタ部分66R上の開口部分75Rを通ったときに最も小さくなり、緑色域透過フィルタ部分66G上の開口部分75Gを通ったときに上記開口部分75Rより大きくなり、青色域透過フィルタ部分66B上の開口部分75Bを通ったときに最も大きくなる。
上記のことにより、既に説明済みの図3に示すように、上記開口絞り75および照明光伝播光学系64を通って先端部72Aから順次射出させる各照明光を、赤色域Er照明光Lerより緑色域Eg照明光Legや青色域Eb照明光Lebの光強度を大きくし、さらに、緑色域Eg照明光Legより青色域Eb照明光Lebの光強度を大きくすることができる。
具体的には、上記と同様に、赤色域Er照明光Lerの光強度U1rと緑色域Eg照明光Legの光強度U1gの比U1r:U1gを1:2とし、赤色域Er照明光Lerの光強度U1rと青色域Eb照明光Lebの光強度U1bの比U1r:U1bを1:4とすることにより、すなわち、各照明光のうちの短波長域である緑色域の照明光の光強度に対する各照明光のうちの長波長域に対応する赤色域の照明光の光強度の比率を上記分光反射率間の比率Hkに略一致させるとともに、各照明光のうちの短波長域である青色域の照明光の光強度に対する各照明光のうちの長波長域に対応する赤色域の照明光の光強度の比率を上記分光反射率間の比率Hkに略一致させることにより、上記の場合と同様に、撮像部12での赤色域Er、緑色域Egおよび青色域Ebにおける各受光レベルを共に等しく例えば80%とすることができ、上記の場合と同様の効果を得ることができる。
上記開口絞り制御手段である回転モータ67は、各照明光のうちの短波長域である緑色域に対応する短波長域照明光の光強度に対する各照明光のうちの長波長域である赤色域に対応する長波長域照明光の光強度の比率Hn(1/2)を、生体粘膜1上の上記反射光の反射領域における長波長域である赤色域での分光反射率に対する上記反射領域における短波長域である緑色域での分光反射率の比率Hk(Hk=1%/2%=1/2)に略一致させるものである。
また、上記開口絞り制御手段である回転モータ67は、各照明光のうちの短波長域である青色域に対応する短波長域照明光の光強度に対する各照明光のうちの長波長域である赤色域に対応する長波長域照明光の光強度の比率Hn(1/4)を、生体粘膜1上の上記反射光の反射領域における長波長域である赤色域での分光反射率に対する上記反射領域における短波長域である青色域での分光反射率の比率Hk(Hk=0.5%/2%=1/4)に略一致させるものでもある。
さらに、照明光伝播光学系64の分光透過率の分布の変更、対物レンズ18の分光透過率の分布の変更、回転分光フィルタ66の各分光透過フィルタ部分の分光透過率の分布の変更、および照明光源65の分光光強度分布の変更等を組み合わせて、上記実施の形態と同様に、撮像部12での赤色域、緑色域および青色域における各受光レベルを共に等しく例えば70%、あるいは90%等とするようにしてもよい。
また、上記説明においては、撮像部12での赤色域、緑色域および青色域における各照明光の受光レベルを略一致させる場合について説明したが、長波長域における受光レベルを低下させることなく短波長域における受光レベルを高めるように、例えば、各受光レベルの差を±10%以内としたり、各波長域における受光手段での各受光レベルのいずれをも最大受光レベルの50%以上、望ましくは80%以上にするように上記各部の分光透過率分布等を設定することにより上記実施の形態と同様の効果を得ることができる。
上記のような場合には、比率比較情報を上記分光画像取得手段10の設定に応じて更新する。すなわち、生体粘膜1における長波長域での分光反射率に対する短波長域での分光反射率の比率に対する生体粘膜1で反射した長波長域の反射光を受光した受光手段での受光レベルに対する短波長域の反射光を受光した受光手段での受光レベルの比率を示す比率比較情報を上記分光画像取得手段10の設定に応じて変更し、上記変更した比率比較情報を比率比較情報記憶部22に記憶させておく。
また、上記互いに異なる各波長域は、赤色域、緑色域、および青色域に限るものではなく、上記とは異なる波長域を利用したり、2種類あるいは4種類以上の互いに異なる波長域、例えば補色であるシアン、マゼンタ、黄色、緑(G・Cy・Mg・Ye)の波長域を用いて上記診断用分光画像を作成するようにしても上記と同様の効果を得ることができる。
本発明の電子内視鏡装置の実施の形態の概略構成を示すブロック図 撮像部および分光モザイクフィルタを拡大して示す斜視図 照明光の分光光強度分布を示す図 生体粘膜の分光反射率を示す図 生体粘膜で反射した反射光を撮像部で受光したときの光強度を示す図 生体粘膜で反射した反射光を受光した撮像部での受光レベルを示す図 図7(a)は各透過フィルタ部分の分光透過率特性を示す図、図7(b)は分光画像推定演算で求めた生体粘膜で反射した反射光の特定波長における光強度を示す図 白色光で照明した生体粘膜で反射した反射光を受光した撮像部での受光レベル中に占める固定ノイズの割合を示す図 生体粘膜で反射した反射光を受光した撮像部での受光レベル中の固定ノイズの割合を示す図 補正した受光レベル中の固定ノイズの割合を示す図 図11(a)は照明光源から射出され分光された光束を絞って通す様子を光軸と直交する方向から見た図、図11(b)は上記様子を光軸方向から見た図
符号の説明
1 生体粘膜
10 分光画像取得手段
12 撮像部
20 分光画像データ演算手段
30 診断用分光画像作成手段
64 照明光伝播光学系
65 照明光源
66 回転分光フィルタ
80 コントローラ
100 電子内視鏡装置

Claims (7)

  1. 互いに異なる波長域に対応した各照明光の順次照射を受けた生体粘膜で反射した前記各照明光の反射光を受光する受光手段を有し、前記生体粘膜の分光画像を示す分光画像データを取得する面順次方式の分光画像取得手段と、
    前記分光画像データと予め入力され記憶された分光反射推定マトリクスデータとに基づく分光画像推定演算により前記生体粘膜の特定波長における分光画像を示す分光演算画像データを得る分光画像データ演算手段と、
    前記分光演算画像データに基づいて前記生体粘膜の診断用分光画像を作成する診断用分光画像作成手段とを備えた電子内視鏡装置において、
    前記分光画像取得手段が、前記互いに異なる波長域のうちの最も長波長側の長波長域の反射光を受光した前記受光手段での受光レベルJpに対する前記長波長域より短波長側の短波長域の反射光を受光した前記受光手段での受光レベルJsの比率Hj(Hj=Js/Jp)を、前記生体粘膜上の前記反射光の反射領域における前記長波長域での分光反射率Kpに対する前記反射領域における前記短波長域での分光反射率Ksの比率Hk(Hk=Ks/Kp)より大きく(Hj>Hk)なるようにして前記反射光を受光するものであり、
    前記分光画像データ演算手段が、前記長波長域の受光レベルに対する前記短波長域の受光レベルの比率を大きくした前記受光手段での受光で得られた前記短波長域に対応する前記分光画像データの値を、前記長波長域の受光レベルに対する前記短波長域の受光レベルの比率を大きくすることのない前記受光手段での受光で得られる前記短波長域に対応する分光画像データの値に補正した分光画像推定演算を実行するものであることを特徴とする電子内視鏡装置。
  2. 前記互いに異なる波長域が、赤色の波長域、緑色の波長域、および青色の波長域であることを特徴とする請求項1記載の電子内視鏡装置。
  3. 前記分光画像取得手段が、前記互いに異なる波長域における前記受光手段での各受光レベルのいずれをも最大受光レベルの50%以上にするものであることを特徴とする請求項1または2記載の電子内視鏡装置。
  4. 前記分光画像取得手段が、前記短波長域における前記受光手段での受光レベルを前記長波長域における前記受光手段での受光レベルに略一致させるものであることを特徴とする請求項1から3のいずれか1項記載の電子内視鏡装置。
  5. 前記分光画像取得手段が、前記生体粘膜へ順次照射される各照明光の光強度を定める開口絞りと、前記開口絞りの開口量を制御する開口絞り制御手段とを有するものであり、前記制御手段が、前記各照明光のうちの前記短波長域に対応する短波長域照明光の光強度に対する前記各照明光のうちの前記長波長域に対応する長波長域照明光の光強度の比率Hnを、前記分光反射率間の比率Hkに略一致させるものであることを特徴とする請求項1から4のいずれか1項記載の電子内視鏡装置。
  6. 前記分光画像取得手段が、前記互いに異なる波長域に対応する各照明光を前記生体粘膜へ順次照射する照明光順次照射手段を有するものであり、前記照明光順次照射手段が、照明光源と、該照明光源から発せられた光を順次互いに異なる波長域に分光して各照明光を生成するための分光手段と、前記照明光源に供給する電流を制御して前記各照明光の光強度を調節する光強度調節手段とを有し、前記短波長域に対応する短波長域照明光の光強度に対する前記長波長域に対応する長波長域照明光の光強度の比率Hnを、前記分光反射率間の比率Hkに略一致させるものであることを特徴とする請求項1から4のいずれか1項記載の電子内視鏡装置。
  7. 前記長波長域が波長600nm〜700nmの波長域、前記短波長域が波長400nm〜500nmの波長域であり、かつ、前記分光画像取得手段が、前記受光レベル間の比率Hjを0.25以上にするものであることを特徴とする請求項1から6のいずれか1項記載の電子内視鏡装置。
JP2005289146A 2005-09-30 2005-09-30 電子内視鏡装置 Expired - Fee Related JP4712505B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289146A JP4712505B2 (ja) 2005-09-30 2005-09-30 電子内視鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289146A JP4712505B2 (ja) 2005-09-30 2005-09-30 電子内視鏡装置

Publications (2)

Publication Number Publication Date
JP2007097710A true JP2007097710A (ja) 2007-04-19
JP4712505B2 JP4712505B2 (ja) 2011-06-29

Family

ID=38025244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289146A Expired - Fee Related JP4712505B2 (ja) 2005-09-30 2005-09-30 電子内視鏡装置

Country Status (1)

Country Link
JP (1) JP4712505B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148340A (ja) * 2007-12-19 2009-07-09 Fujifilm Corp 撮像システム、撮像方法、およびプログラム
US20130338101A1 (en) * 2009-05-29 2013-12-19 Agency For Science, Technology And Research Cell-adhesive, enzymatically crosslinked flavonoid hydrogels and methods for making same
JP2015139657A (ja) * 2014-01-30 2015-08-03 富士フイルム株式会社 プロセッサ装置、内視鏡システム、及び内視鏡システムの作動方法
WO2017168477A1 (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 撮像装置および画像処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053918A (ja) * 1983-09-05 1985-03-28 Olympus Optical Co Ltd 内視鏡装置
JPH0236836A (ja) * 1988-04-22 1990-02-06 Olympus Optical Co Ltd 内視鏡画像処理装置
JPH04341231A (ja) * 1991-05-17 1992-11-27 Fuji Photo Optical Co Ltd 電子内視鏡装置
JPH0584218A (ja) * 1990-10-31 1993-04-06 Olympus Optical Co Ltd 内視鏡装置
JP2001224015A (ja) * 2000-02-07 2001-08-17 Olympus Optical Co Ltd 内視鏡装置及び光源装置
JP2001221956A (ja) * 2000-02-08 2001-08-17 Olympus Optical Co Ltd 内視鏡装置
JP2003093336A (ja) * 2001-09-26 2003-04-02 Toshiba Corp 電子内視鏡装置
JP2003135393A (ja) * 2001-10-30 2003-05-13 Olympus Optical Co Ltd 内視鏡システムの自動調整方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053918A (ja) * 1983-09-05 1985-03-28 Olympus Optical Co Ltd 内視鏡装置
JPH0236836A (ja) * 1988-04-22 1990-02-06 Olympus Optical Co Ltd 内視鏡画像処理装置
JPH0584218A (ja) * 1990-10-31 1993-04-06 Olympus Optical Co Ltd 内視鏡装置
JPH04341231A (ja) * 1991-05-17 1992-11-27 Fuji Photo Optical Co Ltd 電子内視鏡装置
JP2001224015A (ja) * 2000-02-07 2001-08-17 Olympus Optical Co Ltd 内視鏡装置及び光源装置
JP2001221956A (ja) * 2000-02-08 2001-08-17 Olympus Optical Co Ltd 内視鏡装置
JP2003093336A (ja) * 2001-09-26 2003-04-02 Toshiba Corp 電子内視鏡装置
JP2003135393A (ja) * 2001-10-30 2003-05-13 Olympus Optical Co Ltd 内視鏡システムの自動調整方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148340A (ja) * 2007-12-19 2009-07-09 Fujifilm Corp 撮像システム、撮像方法、およびプログラム
US20130338101A1 (en) * 2009-05-29 2013-12-19 Agency For Science, Technology And Research Cell-adhesive, enzymatically crosslinked flavonoid hydrogels and methods for making same
JP2015139657A (ja) * 2014-01-30 2015-08-03 富士フイルム株式会社 プロセッサ装置、内視鏡システム、及び内視鏡システムの作動方法
US10201300B2 (en) 2014-01-30 2019-02-12 Fujifilm Corporation Processor device, endoscope system, operation method for endoscope system
WO2017168477A1 (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 撮像装置および画像処理方法
US10616458B2 (en) 2016-03-28 2020-04-07 Panasonic Intellectual Property Management Imaging apparatus and image processing method

Also Published As

Publication number Publication date
JP4712505B2 (ja) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4727374B2 (ja) 電子内視鏡装置
JP5637834B2 (ja) 内視鏡装置
JP5303012B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
JP5271062B2 (ja) 内視鏡装置およびその作動方法
US9113787B2 (en) Electronic endoscope system
JP6204314B2 (ja) 電子内視鏡システム
JP5191090B2 (ja) 内視鏡装置
US9066676B2 (en) Endoscopic image display apparatus
JP5191329B2 (ja) 画像取得装置
JP5498626B1 (ja) 内視鏡装置
JP5190944B2 (ja) 内視鏡装置および内視鏡装置の作動方法
JP6072374B2 (ja) 観察装置
JP5485215B2 (ja) 内視鏡装置
WO2018043727A1 (ja) 内視鏡システム
CN111989023B (zh) 内窥镜系统及使内窥镜系统工作的方法
JP2016015995A (ja) 電子内視鏡システム及び電子内視鏡用プロセッサ
JP5715602B2 (ja) 内視鏡システム及び内視鏡システムの作動方法
JP4712505B2 (ja) 電子内視鏡装置
WO2018043726A1 (ja) 内視鏡システム
JP5539841B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
WO2018070474A1 (ja) 内視鏡システム
JP2011200364A (ja) 内視鏡装置
JP2012143398A (ja) 内視鏡システム及び画像生成方法
JP2011177532A (ja) 内視鏡装置
JP5695684B2 (ja) 電子内視鏡システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees