JP2007065602A - 液晶装置及び電子機器 - Google Patents
液晶装置及び電子機器 Download PDFInfo
- Publication number
- JP2007065602A JP2007065602A JP2005281394A JP2005281394A JP2007065602A JP 2007065602 A JP2007065602 A JP 2007065602A JP 2005281394 A JP2005281394 A JP 2005281394A JP 2005281394 A JP2005281394 A JP 2005281394A JP 2007065602 A JP2007065602 A JP 2007065602A
- Authority
- JP
- Japan
- Prior art keywords
- region
- liquid crystal
- crystal device
- reflective
- conductive portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Liquid Crystal (AREA)
Abstract
【課題】 透過型表示と反射型表示とで略同一の表示特性(階調特性)を得ることが可能な非マルチギャップ構造を有する半透過反射型の液晶装置等を提供する。
【解決手段】 液晶装置は、ノーマリーブラックの表示モードを有するとともに、1つのサブ画素領域内に透過領域及び反射領域を有し、その両者の領域においてセルギャップが同一に設定された構造を有する半透過反射型の液晶装置である。この液晶装置は、透過領域及び反射領域に各々独立した画素電極及びこれらに接続されたTFD素子を夫々有する。特に、この液晶装置では、透過領域及び反射領域におけるTFD素子の相対的な大きさ(面積)が異なるように設定されているため、反射領域に対応する表示特性(階調特性)と、透過領域に対応する表示特性(階調特性)とを略同一にすることができ、高品位な表示を得ることができる。
【選択図】 図8
【解決手段】 液晶装置は、ノーマリーブラックの表示モードを有するとともに、1つのサブ画素領域内に透過領域及び反射領域を有し、その両者の領域においてセルギャップが同一に設定された構造を有する半透過反射型の液晶装置である。この液晶装置は、透過領域及び反射領域に各々独立した画素電極及びこれらに接続されたTFD素子を夫々有する。特に、この液晶装置では、透過領域及び反射領域におけるTFD素子の相対的な大きさ(面積)が異なるように設定されているため、反射領域に対応する表示特性(階調特性)と、透過領域に対応する表示特性(階調特性)とを略同一にすることができ、高品位な表示を得ることができる。
【選択図】 図8
Description
本発明は、各種情報の表示に用いて好適な液晶装置等に関する。
従来より、相互に対向する2枚の基板のうち、一方の基板に走査線等が形成される一方、他方の基板にデータ線、TFD(Thin Film Diode)素子などのスイッチング素子及び画素電極等が形成され、その両基板の間に液晶が封入されて構成される半透過反射型の液晶装置が知られている。そのような液晶装置では、いずれか一方の基板の外面側に照明装置(バックライト)が配置されている。このため、かかる液晶装置では、バックライトから出射された照明光を利用して透過型表示が行われると共に、外光を利用して反射型表示が行われる。
ここで、かかる液晶装置において、液晶層の厚さ(セルギャップ)を「d」、液晶の屈折率異方性を「Δn」、これらの積算値、即ち液晶のリタデーションを「Δnd」とした場合、反射型表示が行われる反射領域に対応する、液晶のリタデーションは、入射光が液晶層を2回通過してから観察者に至るので「2×Δnd」となる一方、透過型表示が行われる透過領域に対応する、液晶のリタデーションは、バックライトからの照明光が液晶層を1回だけ通過するので「1×Δnd」となる。
このため、かかる液晶装置では、スイッチング素子等を通じて画素電極に同一の駆動電圧を印加した場合、反射型表示が行われる場合と透過型表示が行なわれる場合とで、コントラストや明るさ等の表示特性(階調特性)が異なってしまい、表示品位が低下してしまうという問題が生じ得る。
そこで、上記の不具合を解消する液晶装置として、例えば、反射表示部に相当する液晶層の厚さを、透過表示部に相当する液晶層の厚さより小さく設定することにより高コントラストな表示を得ることのできる半透過反射型の液晶装置が提案されている(例えば、特許文献1を参照)。
なお、反射率の低下を最小限に抑制することが可能な垂直配向モードの反射型液晶表示装置が知られている(例えば、特許文献2を参照)。かかる特許文献2の液晶装置では、コンタクトホールを反射電極の中心に配置し、さらに、そのコンタクトホールと重なる位置に液晶分子の配向を制御する配向制御構造物を配置するようにしている。これにより、反射率の低下を最小限に抑制するようにしている。
しかしながら、上記した特許文献1などの、いわゆるマルチギャップ構造を有する液晶装置では、画素領域における反射領域内等に所定厚さの絶縁層を設けるなどしてマルチギャップの形成のための製造工程を設ける必要がある。このため、マルチギャップを有しない構造、換言すれば、非マルチギャップ構造(シングルギャップ構造)を有する液晶装置を製造する場合と比較して、その分だけ製造工程が増え、製品コストが増加してしまうという問題がある。
また、このような液晶装置では、そのマルチギャップ構造によって、画素領域内にセルギャップの薄い領域とセルギャップの厚い領域との境に絶縁層が傾斜した領域(以下「テーパー領域」と呼ぶ)が形成されているため、そのテーパー領域において液晶の配向不良による光漏れが生じてコントラストが低下し、表示品位が低下してしまうという問題もある。
本発明は、以上の点に鑑みてなされたものであり、透過型表示と反射型表示とで略同一の表示特性(階調特性)を得ることが可能な非マルチギャップ構造を有する半透過反射型の液晶装置及び電子機器を提供することを課題とする。
本発明の1つの観点では、1サブ画素領域内に透過領域及び反射領域を有し、ノーマリーブラックに設定されてなる液晶装置は一対の基板を備え、前記一対の基板のうち一方の基板は配線を有し、前記一方の基板において前記透過領域及び前記反射領域には、各々独立した画素電極が配置されてなるとともに、前記画素電極及び前記配線にはそれぞれスイッチング素子が接続されてなり、前記反射領域の前記スイッチング素子は、前記透過領域に対応する透過率−電圧の特性曲線と前記反射領域に対応する反射率−電圧の特性曲線を揃えるように、前記透過領域の前記スイッチング素子と大きさが異なっている。
上記の液晶装置は、一対の基板を備え、1サブ画素領域内に透過型表示が行われる透過領域及び反射型表示が行われる反射領域を有し、ノーマリーブラックに設定されてなる。つまり、この液晶装置は、ノーマリーブラックの表示モードを有する、半透過反射型の液晶装置である。
好適な例では、前記一対の基板の間には負の誘電率異方性を有する液晶層が保持されていると共に、前記透過領域に対応する前記液晶層の厚さは、前記反射領域に対応する前記液晶層の厚さと略同一に設定されており、非マルチギャップ(シングルギャップ)構造を有するのが好ましい。
この液晶装置において、一対の基板のうち一方の基板は配線を有している。ここで、配線は、データ信号が供給されるデータ線又は走査信号が供給される走査線とすることができる。また、一方の基板において、透過領域及び反射領域には、各々独立した画素電極が配置されてなるとともに、その画素電極及び配線には、それぞれTFD素子などのスイッチング素子が接続されている。これにより、この液晶装置では、透過領域及び反射領域の各々に対応する各スイッチング素子を通じて、対応する画素電極を各々独立に制御することができる。即ち、この液晶装置は、液晶の駆動時、透過領域に対応する液晶の配向制御と、反射領域に対応する液晶の配向制御を各々独立に実行することができる。
特に、この液晶装置では、反射領域のスイッチング素子は、前記透過領域に対応する透過率−電圧の特性曲線と前記反射領域に対応する反射率−電圧の特性曲線を揃えるように、透過領域のスイッチング素子と大きさ(面積)が異なっている。好適な例では、前記反射領域に配置されてなる前記画素電極に接続されてなる前記スイッチング素子の大きさは、前記透過領域に配置されてなる前記画素電極に接続されてなる前記スイッチング素子の大きさよりも大きいのが好ましい。これにより、反射領域に対応する表示特性(階調特性)と、透過領域に対応する表示特性(階調特性)とを最適な関係に設定することができる。
本発明の他の観点では、液晶装置は、1サブ画素領域内に透過領域及び反射領域を有し、ノーマリーブラックに設定されてなる液晶装置は、一対の基板を備え、前記一対の基板のうち一方の基板は第1の配線を有し、前記一方の基板において前記透過領域及び前記反射領域には、各々独立した画素電極が配置されてなるとともに、前記画素電極及び前記第1の配線にはそれぞれスイッチング素子が接続されてなり、前記一方の基板は、前記第1の配線と交差し、且つ前記画素電極に対向するように延び、前記画素電極との間で電界を発生させる第2の配線をさらに有し、前記透過領域及び前記反射領域において、前記スイッチング素子と前記第2の配線との間には保持容量が形成され、前記第2の配線と前記画素電極の間隔及び前記保持容量の大きさは、前記透過領域と前記反射領域とで異なる値に設定されており、前記反射領域の前記スイッチング素子の大きさは、前記透過領域に対応する透過率−電圧の特性曲線と前記反射領域に対応する反射率−電圧の特性曲線を揃えるように、前記透過領域の前記スイッチング素子と大きさが異なっている。
上記の液晶装置は、一対の基板を備え、1サブ画素領域内に透過型表示が行われる透過領域及び反射型表示が行われる反射領域を有し、ノーマリーブラックに設定されてなる。つまり、この液晶装置は、ノーマリーブラックの表示モードを有する、半透過反射型の液晶装置である。
好適な例では、前記一対の基板の間には負の誘電率異方性を有する液晶層が保持されていると共に、前記透過領域に対応する前記液晶層の厚さは、前記反射領域に対応する前記液晶層の厚さと略同一に設定されており、非マルチギャップ(シングルギャップ)構造を有するのが好ましい。
この液晶装置において、一対の基板のうち一方の基板は第1の配線を有している。また、一方の基板において、透過領域及び反射領域には、各々独立した画素電極が配置されてなるとともに、その画素電極及び配線には、それぞれTFD素子などのスイッチング素子が接続されている。また、一方の基板は、第1の配線と交差し、且つ画素電極に対向するように延び、その画素電極との間で電界を発生させる第2の配線と、をさらに有する。好適な例では、第2の配線は、データ信号が供給されるデータ線又は走査信号が供給される走査線とすることができる一方、それに対応して第1の配線は、走査線又はデータ線とすることができる。また、第2の配線は画素電極との間で、横方向の電界(横電界)を発生させる機能を有し、これにより液晶層内における液晶分子の配向が制御される。つまり、これにより、スイッチング素子を用いた横電界方式或いはIPS方式の液晶装置を構成することができる。
また、この液晶装置では、透過領域及び反射領域の各々に独立した画素電極を設けており、その各々の画素電極は、対応するスイッチング素子を介して第1の配線に接続されている。これにより、透過領域及び反射領域の画素電極を各々独立に制御することができる。即ち、液晶の駆動時、透過領域に対応する液晶の配向制御と、反射領域に対応する液晶の配向制御を各々独立に実行することができる。
さらに、この液晶装置では、透過領域及び反射領域において、スイッチング素子と第2の配線との間には保持容量が形成されており、第2の配線と画素電極の間隔及び保持容量の大きさは、透過領域と反射領域とで異なる値に設定されており、反射領域のスイッチング素子は、前記透過領域に対応する透過率−電圧の特性曲線と前記反射領域に対応する反射率−電圧の特性曲線を揃えるように、透過領域のスイッチング素子と大きさ(面積)が異なっている。好適な例では、前記反射領域に配置されてなる前記画素電極に接続されてなる前記スイッチング素子の大きさは、前記透過領域に配置されてなる前記画素電極に接続されてなる前記スイッチング素子の大きさよりも大きいのが好ましい。
これにより、透過領域に対応する液晶の応答時間と反射領域に対応する液晶の応答時間を一致させることができる。また、透過領域に対応する液晶に印加される電圧と、反射領域に対応する液晶に印加される電圧を夫々異ならせることができ、透過領域に対応する液晶の再配向状態と、反射領域に対応する液晶の再配向状態を適切な関係に設定することができる。その結果、透過領域の光学的特性と反射領域の光学的特性とを所望の関係に設定することができる。即ち、反射領域に対応する表示特性(階調特性)と、透過領域に対応する表示特性(階調特性)とを最適な関係に設定することができる。
好適な例では、前記第1の配線及び前記第2の配線は、各々前記透過領域と前記反射領域とに渡って設けられている。これにより、第1の配線及び第2の配線を夫々透過領域と反射領域とで共通の配線として用いることができる。
また、好適な例では、前記第2の配線は、前記第1の配線の延在する方向と略直交する方向に延在し且つ適宜の間隔をおいて配置された直線状の複数の導電部を有するのが好ましいと共に、前記画素電極は、前記導電部の各々の間において前記導電部と略平行に配置された直線状の複数の透明導電部を有するのが好ましく、また、前記第2の配線と前記画素電極の間隔は、前記導電部と当該導電部に隣接する前記透明導電部との電極間隔に対応しているのが好ましい。
上記の液晶装置の一つの態様では、前記透過領域の前記スイッチング素子の大きさは、前記1サブ画素領域の数量及び前記1サブ画素領域の大きさ又は前記透過領域の大きさに基づき設定されており、前記反射領域の前記スイッチング素子の大きさは、前記透過領域に対応する透過率−電圧の特性曲線の最大透過率100%となる電圧をVtとし、前記反射領域に対応する反射率−電圧の特性曲線の最大反射率100%となる電圧をVrとしたときに、下記の式、Vt=Vr又は|Vr−Vt|/Vt<約0.1に基づき設定されている。
この態様では、透過領域のスイッチング素子の大きさ(面積)は、この液晶装置に設けられる1サブ画素領域の数量、及び、1サブ画素領域の大きさ(面積)又は透過領域の大きさ(面積)に基づき設定されている。そして、反射領域のスイッチング素子の大きさ(面積)は、透過領域に対応する透過率−電圧の特性曲線(V−T特性曲線)の最大透過率100%となる電圧をVtとし、また、反射領域に対応する反射率−電圧の特性曲線(V−R特性曲線)の最大反射率100%となる電圧をVrとしたときに、下記の式、Vt=Vr(VtとVrとが等号となる式)、又は、|Vr−Vt|/Vt<約0.1(VrとVtの差の絶対値をVtで除算した値が約0.1未満を充足する式)に基づき設定されている。
これにより、かかるV−R特性曲線とV−T特性曲線とを略一致させる、或いは揃えることができる。その結果、反射領域に対応する表示特性(階調特性)と、透過領域に対応する表示特性(階調特性)とを略同一にすることができ、高品位な表示を得ることができる。
上記の液晶装置の他の態様では、前記透過領域の前記画素電極は、前記反射領域の前記画素電極と大きさが略同一に設定され、前記反射領域の前記スイッチング素子の大きさは、前記透過領域の前記スイッチング素子の2倍の大きさに設定されている。
この態様では、透過領域の画素電極は、反射領域の画素電極と大きさが略同一に設定されている。そして、反射領域のスイッチング素子の大きさは、透過領域のスイッチング素子の2倍の大きさに設定されている。
ここで、スイッチング素子の大きさ(面積)が大きくなると、それに伴ってスイッチング素子の容量は大きくなり、スイッチング素子の抵抗値は小さくなる。これにより、反射領域に対応する反射率−電圧の特性曲線(V−R特性曲線)はなだらかな曲線になると共に、当該V−R特性曲線は、透過領域に対応する透過率−電圧の特性曲線(V−T特性曲線)と略一致する或いは揃う。即ち、この態様では、反射領域に対応する液晶に印加される電圧が、透過領域に対応する液晶に印加される電圧の半分程度になる。このため、反射領域と透過領域とで液晶分子の傾倒角度を相対的に異ならせることができ、反射領域に対応する液晶のリタデーションと、透過領域に対応する液晶のリタデーションを略同一に設定することができる。その結果、反射領域に対応する表示特性(階調特性)と、透過領域に対応する表示特性(階調特性)とを略同一にすることができ、高品位な表示を得ることができる。
好適な例では、前記反射領域に対応する前記一対の基板のうちいずれかには反射層が設けられているのが好ましい。また、反射層としては、例えば、アルミニウムや銀などを薄膜状にしたものとすることができる、或いは、低屈折率物質(例えば、二酸化ケイ素など)からなる層と、高屈折率物質(例えば、二酸化チタンなど)からなる層とを交互に積層してなる誘電体ミラーとすることができる。
また、好適な例では、前記スイッチング素子は、タンタル膜などよりなる第1金属膜と、前記第1金属膜上に形成され、酸化タンタル膜よりなる絶縁膜と、少なくとも前記絶縁膜上に形成され、クロム膜などよりなる第2金属膜とを有して構成され、TFD素子などの二端子素子とすることができる。また、当該スイッチング素子は、前記絶縁膜を介して前記第1金属膜と前記第2金属膜とが平面的に重なる領域に位置しているのが好ましい。
また、上記の液晶装置を表示部として備える電子機器を構成することができる。
以下、図面を参照して本発明を実施するための最良の形態について説明する。尚、以下の各種の実施形態は、本発明を液晶装置に適用したものである。ここで、本発明の概要を述べると、本発明は、電圧をかけたときの透過率を調整するものであり、これにより透過型表示と反射型表示とで略同一の表示特性(階調特性)を得る。ところで、ノーマリーホワイトの液晶装置では、電圧無印加時に透過率のピークが来ており、透過表示時と反射表示時とで透過率に差がついてしまっている。このため、ノーマリーホワイトの表示モードを有する液晶装置では、本発明を適用しても調整できる範囲が限られてしまう。そこで、以下の各種の実施形態では、ノーマリーブラックの表示モードを有する液晶装置に本発明を適用する。但し、そのような問題を考慮しなくても良ければ、ノーマリーホワイトの液晶装置にも本発明を適用可能であることは勿論である。
[第1実施形態]
(液晶装置の構成)
まず、本発明の第1実施形態に係る液晶装置の構成について説明する。
[第1実施形態]
(液晶装置の構成)
まず、本発明の第1実施形態に係る液晶装置の構成について説明する。
図1は、本発明の第1実施形態に係る液晶装置100の概略構成を模式的に示す平面図である。図1では、主として、液晶装置100の電極及び配線の構成を平面図として示している。
ここに、第1実施形態の液晶装置100は、スイッチング素子としてTFD素子を用いたアクティブ・マトリクス駆動方式であって、反射型表示モードと透過型表示モードを併せ持つ半透過反射型の液晶装置である。また、液晶装置100は、ノーマリーブラックの表示モードを有する垂直配向方式の液晶装置である。また、液晶装置100は、透過型表示が行われる透過領域に対応する液晶層の厚さと、反射型表示が行われる反射領域に対応する液晶層の厚さとが同一の大きさに設定された、非マルチギャップ(シングルギャップ)構造を有する液晶装置である。
まず、図2を参照して、透過型表示が行われる透過領域を通る位置で切断したときの液晶装置100の断面構成について説明する。図2は、図1における切断線A−A’に沿った断面図であり、特に、透過領域を通る位置で切断したときの液晶装置100の断面図である。
図2において、液晶装置100は、素子基板91と、その素子基板91に対向して配置されるカラーフィルタ基板92とが、複数の金属粒子などの導通部材7が混入された枠状のシール部材3を介して貼り合わされ、その内側に負の誘電率異方性を有する液晶が封入されて液晶層4が形成されてなる。そして、透過領域に対応する液晶層4の厚さ(セルギャップ)はd1に設定されている。
まず、透過領域に対応する素子基板91の断面構成は次の通りである。
下側基板1の内面上には、樹脂材料よりなる樹脂層17が形成されている。樹脂層17上には、サブ画素領域SG毎に、ITO(Indium-Tin Oxide)などの透明導電材料よりなる画素電極10tが形成されている。樹脂層17の内面上であって、相隣接する画素電極10tの間には、クロムなどの金属材料よりなるデータ線32が形成されている。樹脂層17、画素電極10t及びデータ線32等の内面上には図示しない垂直配向膜が形成されている。また、下側基板1の内面上の左右周縁部には、クロムなどの金属材料よりなる引き回し配線31が形成されており、当該引き回し配線31の終端部は、シール部材3内まで延在しており、その内部に混入された導通部材7と電気的に接続されている。
次に、透過領域に対応するカラーフィルタ基板92の断面構成は次の通りである。
上側基板2の内面上には、サブ画素領域SG毎に、R(赤)、G(緑)、B(青)の3色の着色層6R、6G、6Bが形成されている。着色層6R、6G及び6Bによりカラーフィルタが構成される。図示のように、画素領域Gは、R、G、Bのサブ画素から構成されるカラー1画素分の領域を示している。なお、以下の説明において、色を問わずに着色層を指す場合は単に「着色層6」と記し、色を区別して着色層を指す場合は「着色層6R」などと記す。
上側基板2の内面上であって、各着色層6を区画する位置には、一方のサブ画素から他方のサブ画素への光の混入を防止するため、黒色遮光層BMが形成されている。この黒色遮光層BMは、黒色の樹脂材料、例えば黒色の顔料を樹脂中に分散させたもの等を用いることが可能である。なお、第1実施形態では、これに代えて、R、G、Bの各着色層6が相互に重ね合わされて形成された重ね遮光層(図示略)を用いてもよい。黒色遮光層BM及び着色層6の内面上には、透明樹脂材料等からなる保護層18が形成されている。この保護層18は、カラーフィルタ基板92の製造工程中に使用される薬剤等による腐食や汚染から、着色層6を保護する機能を有する。保護層18の内面上には、ITOなどの透明導電材料よりなる走査線8が形成されている。走査線8はストライプ形状を有するように形成されている。そして、走査線8の一端側はシール部材3内まで延在しており、導通部材7と電気的に接続されている。このため、下側基板1の引き回し配線31と、上側基板2の走査線8とは、シール部材3内に混入された導通部材7を介して上下導通している。下側基板2における走査線8等の内面上には、図示しない垂直配向膜が形成されている。
また、下側基板1の外面上には位相差板(1/4波長板)13が配置され、その位相差板13の外面上には偏光板14が配置されている。また、偏光板14の外面上には、照明装置としてのバックライト15が配置されている。バックライト15は、例えば、LED(Light Emitting Diode)等といった点状光源や、冷陰極蛍光管等といった線状光源と導光板を組み合わせたものなどが好適である。一方、上側基板2の外面上には位相差板(1/4波長板)11が配置され、その位相差板11の外面上には偏光板12が配置されている。
さて、かかる構成を有する液晶装置100において透過型表示がなされる場合、バックライト15から出射した照明光は、図2に示す経路Tに沿って進行し、樹脂層17、画素電極10t、走査線8及び着色層6R、6G、6B等を夫々通過して観察者に至る。このため、その照明光は、着色層6R、6G、6Bを夫々透過することにより所定の色相及び明るさを呈する。こうして、所望のカラー表示画像が観察者により視認される。
次に、図3を参照して、反射型表示が行われる反射領域を通る位置で切断したときの液晶装置100の断面構成について説明する。図3は、図1における切断線B−B’に沿った断面図であり、特に、反射領域を通る位置で切断したときの液晶装置100の断面図である。
図3において、素子基板91とカラーフィルタ基板92の配置関係は上記同様である。なお、反射領域Erに対応する液晶層4の厚さは、透過領域Etに対応する液晶層4の厚さと略同一のd1に設定されている。
まず、反射領域に対応する素子基板91の断面構成は次の通りである。
下側基板1の内面上には、サブ画素領域SG毎に、アルミニウム、アルミニウム合金、銀合金等の薄膜材料により形成された反射層5が形成されている。反射層5及び下側基板2の内面上には樹脂層17が形成されている。樹脂層17上には、サブ画素領域SG毎に、ITOなどの透明導電材料よりなり、画素電極10tと独立に設けられた画素電極10rが形成されている。なお、その他の断面構成は、上述した透過領域に対応する素子基板91の断面構成と同様である。一方、反射領域に対応するカラーフィルタ基板92の断面構成は、上記した透過領域に対応するカラーフィルタ基板92の断面構成と同様である。
さて、かかる構成を有する液晶装置100において反射型表示がなされる場合、液晶装置100に入射した外光は、図3に示す経路Rに沿って進行する。つまり、液晶装置100に入射した外光は、反射層5によって反射され観察者に至る。この場合、その外光は、着色層6R、6G、6Bが形成されている領域を夫々通過して、その着色層6R、6G、6Bの下側に位置する反射層5により反射され、再度、着色層6R、6G、6Bを夫々通過することによって所定の色相及び明るさを呈する。こうして、所望のカラー表示画像が観察者により視認される。
(電極及び配線構成)
次に、図1、図4及び図5を参照して、第1実施形態の素子基板91及びカラーフィルタ基板92の電極及び配線の構成について説明する。
次に、図1、図4及び図5を参照して、第1実施形態の素子基板91及びカラーフィルタ基板92の電極及び配線の構成について説明する。
図4は、素子基板91を正面方向(即ち、図2及び図3における下方)から観察したときの素子基板91の電極及び配線などの構成を平面図として示す。図4は、カラーフィルタ基板92を正面方向(即ち、図2及び図3における上方)から観察したときのカラーフィルタ基板92の電極の構成を平面図として示す。図3及び図4において、電極や配線以外のその他の要素は説明の便宜上図示を省略している。
図1において、素子基板91の画素電極10と、カラーフィルタ基板92の走査線8との交差する領域が表示の最小単位であるサブ画素領域SGを構成する。そして、このサブ画素領域SGが紙面縦方向及び紙面横方向に複数個、マトリクス状に並べられた領域が有効表示領域V(2点鎖線により囲まれる領域)である。この有効表示領域Vに、文字、数字、図形等の画像が表示される。なお、図1、図3及び図4において、液晶装置100の外形と、有効表示領域Vとによって区画された領域は、画像表示に寄与しない額縁領域38となっている。
先ず、図4を参照して、素子基板91の電極及び配線の構成などについて説明する。なお、図4では、素子基板91の張り出し領域36側の一辺91aから反対側の一辺91cへ向かう方向をY方向とし、一辺91dから一辺91bへ向かう方向をX方向とする。
素子基板91は、複数のデータ線32、複数のTFD素子21r及び21t(図6を参照)、複数の画素電極10r及び10t(図6を参照)、複数の引き回し配線31、YドライバIC34、複数のXドライバIC33、複数の外部接続用配線35、並びにFPC(Flexible Printed Circuit)90を備えている。なお、各サブ画素領域SGは、図6に示すように、透過領域Et及び反射領域Erを有し、その領域の各々には、データ線と接続されたTFD素子21r及び21tと、その各TFD素子21r及び21tに接続された画素電極10r及び10tとを有しているが、この点については後述する。
各データ線32は、張り出し領域36から有効表示領域VにかけてY方向に延在するように形成されている。各データ線32は、X方向に一定の間隔をおいて形成されている。
各引き回し配線31は、本線部分31aと、その本線部分31aに対して略直角に折れ曲がる屈曲部分31bとにより構成されている。各本線部分31aは、額縁領域38内を張り出し領域36からY方向に延在するように形成されている。また、各本線部分31aは、X方向に一定の間隔をおいて形成されている。各屈曲部分31bは、額縁領域38内において、各本線部分31aの終端部から左右に位置するシール部材3内まで延在するように形成されている。そして、各屈曲部分31bの終端部は、シール部材3内において導通部材7に電気的に接続されている。
各引き回し配線31は、本線部分31aと、その本線部分31aに対して略直角に折れ曲がる屈曲部分31bとにより構成されている。各本線部分31aは、額縁領域38内を張り出し領域36からY方向に延在するように形成されている。また、各本線部分31aは、X方向に一定の間隔をおいて形成されている。各屈曲部分31bは、額縁領域38内において、各本線部分31aの終端部から左右に位置するシール部材3内まで延在するように形成されている。そして、各屈曲部分31bの終端部は、シール部材3内において導通部材7に電気的に接続されている。
素子基板91の張り出し領域36上には、YドライバIC34、及び、複数のXドライバIC33が、図示しないACF(Anisotropic Conductive Film:異方性導電膜)を介して実装されている。
YドライバIC34は、複数の引き回し配線31の駆動を担う。YドライバIC34の入力側は、ACFを介して、複数の外部接続用配線35の一端側に電気的に接続されている一方、YドライバIC34の出力側は、ACFを介して、複数のデータ線32の一端側に電気的に接続されている。
各XドライバIC33は、複数のデータ線32の駆動を担う。各XドライバIC33の入力側は、ACFを介して、複数の外部接続用配線35の一端側に電気的に接続されている一方、各XドライバIC33の出力側は、ACFを介して、複数の引き回し配線31の一端側に電気的に接続されている。FPC90に設けられた複数の出力配線(図示略)は、ACFを介して、複数の外部接続用配線35の他端側に電気的に接続されている。
以上の電極及び配線構造を有する素子基板91では、例えば携帯電話や情報端末などの電子機器からFPC90、YドライバIC34及び各XドライバIC33を介して、それぞれデータ線32にデータ信号が、また、引き回し配線31に走査信号が出力される。
次に、カラーフィルタ基板92の電極の構成について説明する。
図5に示すように、カラーフィルタ基板92は、X方向に延在する複数の走査線8を有している。各走査線8の左端部或いは右端部は、図1及び図5に示すように、シール部材3内まで延在しており、そのシール部材3内に混入された導通部材7に電気的に接続されている。
以上に述べた、カラーフィルタ基板92と素子基板91とが枠状のシール部材3を介して貼り合わされた状態が図1に示されている。図示のように、カラーフィルタ基板91の各走査線8は、素子基板92の各データ線32に対して略直交しており、且つ、X方向に列をなす複数の画素電極10と平面的に重なり合っている。このように、各走査線8と各画素電極10とが重なり合う領域がサブ画素領域SGを構成する。
また、カラーフィルタ基板92の走査線8と、素子基板91の引き回し配線31とは、図示のように左辺側と右辺側との間で交互に重なり合っており、その走査線8と引き回し配線31とは、シール部材3内に混入された導通部材7を介して上下導通している。つまり、カラーフィルタ基板92の各走査線8と、素子基板91の各引き回し配線31との導通は、図示のように左辺側と右辺側との間で交互に実現されている。このため、カラーフィルタ基板92の各走査線8は、素子基板91の各引き回し配線31を介して、紙面左右に夫々位置する各XドライバIC33に電気的に接続されている。
以上の構成を有する液晶装置100では、YドライバIC34から複数の引き回し配線31に走査信号が、また、各XドライバIC33から複数のデータ線32にデータ信号が夫々出力されることにより、各TFD素子21r及び21tを介して各画素電極10r及び10tと各走査線8との間に所定の電圧を印加することにより、液晶層4の液晶分子の配向(傾倒方向)が制御され、光の透過率が変化して階調表示が行われる。
(画素構成)
次に、図6を参照して、1つの画素領域Gの平面構成について説明する。ここで、1つの画素領域Gは、R、G、Bに対応する3つのサブ画素領域SGにより構成され、さらに、各サブ画素領域SGは、1つの反射領域Erと、その1つの反射領域Erの約2倍程度の大きさを有する、1つの透過領域Etとにより構成されている。なお、以下では、上記において説明した要素については同一の符号を付し、その説明は省略する。
次に、図6を参照して、1つの画素領域Gの平面構成について説明する。ここで、1つの画素領域Gは、R、G、Bに対応する3つのサブ画素領域SGにより構成され、さらに、各サブ画素領域SGは、1つの反射領域Erと、その1つの反射領域Erの約2倍程度の大きさを有する、1つの透過領域Etとにより構成されている。なお、以下では、上記において説明した要素については同一の符号を付し、その説明は省略する。
図6(a)は、素子基板91において、1つの画素領域Gの平面的なレイアウトを拡大して示す平面図である。図6(b)は、図6(a)における切断線C−C’に沿った部分断面図であり、特に、透過領域Etに対応して設けられたTFD素子21tの断面構成を示す。
各反射領域Erに対応する下側基板1上には、矩形状の形状を有する反射層5が形成されている。各反射領域Erに対応する各反射層5上及び各透過領域Etに対応する下側基板1上等には、樹脂層17が形成されている。各反射領域Erに対応する樹脂層17上には、反射層5と略同一の大きさを有する画素電極10rが形成されている。一方、各透過領域Etに対応する樹脂層17上には、画素電極10rと略同一の大きさを有する画素電極10a、当該画素電極10aに比べて小さな形状を有する画素電極10b、及び、当該画素電極10aと略同一の大きさを有する画素電極10cを含む画素電極10tが形成されている。画素電極10aは、一定の間隔をおいて画素電極10r及び画素電極10cと相隣接する位置に設けられ、当該画素電極10aと当該画素電極10cとは、画素電極10bを通じて繋がっている。このため、画素電極10a、10b及び10cは各々繋がっているが、それらの各画素電極は、画素電極10rに繋がっていない。
樹脂層17上において、各反射領域Erに対応する各画素電極10rの右下隅の位置には1つのTFD素子21rが設けられていると共に、各透過領域Etに対応する各画素電極10cの右下隅の位置には1つのTFD素子21tが設けられている。このため、各画素領域Gには、2つのTFD素子が設けられている。
ここで、図6(b)を参照して、TFD素子21tの断面構成について説明する。なお、TFD素子21rの断面構成はTFD素子21tの断面構成と同様であるため、以下では、その説明は省略する。
TFD素子21tは、第1のTFD素子22及び第2のTFD素子23を有して構成される。第1のTFD素子22及び第2のTFD素子23は、タンタル等からなる島状の第1金属膜322と、この第1金属膜322の表面を陽極酸化することによって形成され、酸化タンタルからなる絶縁膜323と、この表面に形成されて相互に離間する第2金属膜316、336とを有する。このうち、第2金属膜316、336は、クロム等の同一導電膜をパターニングしたものであり、前者の第2金属膜316はデータ線32の一部をなす一方、後者の第2金属膜336は画素電極10cに接続するために用いられる。また、第1のTFD素子22は、データ線32側から画素電極10c側に向かって見ると順番に、第1金属膜322/絶縁膜323/第2金属膜336となって、金属/絶縁体/金属の構造を採るため、その電流−電圧特性は正負双方向にわたって非線形となる。第2のTFD素子23は、データ線32側から画素電極10c側に向かって見ると順番に、第2金属膜316/絶縁膜323/第1金属膜322となって、第1のTFD素子22とは逆向きの構造を採る。このため、第2のTFD素子23の電流−電圧特性は、第1のTFD素子22の電流−電圧特性を、原点を中心に点対称化したものとなる。その結果、TFD素子21tは、2つのTFD素子22及び23を互いに逆向きに直列接続した状態となるため、1つのTFD素子を用いた場合と比べると、電流−電圧の非線形特性が正負双方向にわたって対称化されることになる。
図6(a)に戻り、X方向に相隣接するサブ画素領域SGの間に対応する樹脂層17上には、データ線32がY方向に延在するように形成されている。また、各データ線32は、各反射領域Erに対応する各TFD素子21rを介して各画素電極10rに接続されていると共に、当該各データ線32は、各透過領域Etに対応する各TFD素子21tを介して各画素電極10cに接続されている。このため、各画素電極10rは、対応する各TFD素子21rを通じて、対応する各データ線32に電気的に接続されていると共に、各画素電極10a、各画素電極10b及び各画素電極10cは、対応する各TFD素子21tを通じて、各データ線32に電気的に接続されている。樹脂層17、各データ線32、各TFD素子21t及び21r、並びに各画素電極10r及び10tの上には、図示しない垂直配向膜が形成されている。また、X方向に列をなす複数の画素電極10r及び10tは、対向基板たるカラーフィルタ基板92に設けられた1つの走査線8(二点鎖線で囲まれる領域)と対向している。
(透過領域と反射領域における表示特性の調整方法)
次に、図7及び図8等を参照して、第1実施形態の液晶装置100に係る、透過領域と反射領域における表示特性(階調表示)の調整方法について説明する。なお、本発明の説明中、「液晶の反射率・・・」という表現は、液晶装置100内へ光が入射して液晶層4を透過し、その光が反射領域Erに設けられた反射層5によって反射された後に、その光が再度液晶層4を透過して観察者により観察された光と、液晶装置100への入射光との比を表すものである。
次に、図7及び図8等を参照して、第1実施形態の液晶装置100に係る、透過領域と反射領域における表示特性(階調表示)の調整方法について説明する。なお、本発明の説明中、「液晶の反射率・・・」という表現は、液晶装置100内へ光が入射して液晶層4を透過し、その光が反射領域Erに設けられた反射層5によって反射された後に、その光が再度液晶層4を透過して観察者により観察された光と、液晶装置100への入射光との比を表すものである。
図7(a)は、図6(a)における破線領域E1に対応する平面図であり、より具体的には、反射領域Erに設けられたTFD素子21rを拡大して示す平面図である。一方、図7(b)は、図6(a)における破線領域E2に対応する平面図であり、より具体的には、透過領域Etに設けられたTFD素子21tを拡大して示す平面図である。
図8は、液晶の透過率(及び反射率)と印加電圧の関係を示すグラフである。図8において、縦軸は透過率(又は反射率)(%)を、また、横軸は液晶層4に印加する印加電圧(V)を夫々示す。また、図8において、グラフGr’は、透過領域Etのセルギャップと反射領域Erのセルギャップを略同一に設定したときの、反射領域Erに対応する液晶の反射率−印加電圧の関係を示すグラフ(以下、「V−R特性曲線Gr’」とも呼ぶ)である。グラフGrは、本発明を適用したときの反射領域Erに対応する液晶の反射率−印加電圧の関係を示すグラフ(以下、「V−R特性曲線Gr」とも称する)である。グラフGtは、透過領域Etに対応する液晶の透過率−印加電圧の関係を示すグラフ(以下、「V−T特性曲線Gt」とも称する)である。
一般的に、非マルチギャップ(シングルギャップ)構造を有する半透過反射型の液晶装置では、反射領域Erに対応するセルギャップと透過領域Etに対応するセルギャップが略同一の厚さに設定されている。このため、かかる液晶装置では、上記したように、反射領域Erに対応する液晶のリタデーションは「2×Δnd」となる一方、透過領域Etに対応する液晶のリタデーションは「1×Δnd」となる。そして、そのような構造を有する液晶装置において、透過領域Etと反射領域Erの画素電極の大きさ(面積)を同一に設定し、且つ、TFD素子等を通じて反射領域Er及び透過領域Etの各画素電極に同一の駆動電圧を印加した場合、反射領域Erに対応する反射率−印加電圧の特性曲線は、図8に示すように、V−R特性曲線Gr’になる一方、透過領域Etに対応する透過率−印加電圧の特性曲線は、V−T特性曲線Gtになる。このため、V−R特性曲線Gr’は、V−T特性曲線Gtに比べて急峻性を有するグラフとなる。その結果、かかる液晶装置では、反射型表示が行われる場合と透過型表示が行なわれる場合とでコントラストや明るさ等の表示特性(階調特性)が異なってしまい、表示品位が低下してしまうという問題が生じ得る。
そこで、このような問題を解消する方法として、反射領域Erに対応するセルギャップを透過領域Etに対応するセルギャップの約1/2の厚さに設定して反射領域Erに対応する液晶のリタデーションと透過領域Etに対応する液晶のリタデーションを同一に設定し、これにより反射領域Erの表示特性(階調特性)と透過領域Etの表示特性(階調特性)を略同一に設定した、いわゆるマルチギャップ構造を有する半透過反射型の液晶装置(以下、「比較例」とも呼ぶ)が知られている。このような液晶装置では、通常、マルチギャップ構造を形成するために画素領域内において反射領域Erに対応する位置にセルギャップを調整するための絶縁層を設ける一方、透過領域Etに対応する位置に当該絶縁層を設けないこととしている。
このようなマルチギャップ構造を有する液晶装置は、上記のように透過領域Etと反射領域Erとで表示特性(階調特性)を略同一に設定できるという利点はあるものの、以下のような問題がある。即ち、かかる液晶装置では、画素領域内にセルギャップの薄い領域とセルギャップの厚い領域との境に絶縁層が傾斜した領域(テーパー領域)が存在するため、そのテーパー領域において液晶の配向不良による光漏れが生じてコントラストが低下し、表示品位が低下するという問題を有している。また、かかる液晶装置では、非マルチギャップ構造を有する液晶装置と比較して、マルチギャップ構造を形成するための製造工程を設けなければならず、その分、製品コストが増加してしまうという問題がある。
そこで、本発明の第1実施形態に係る液晶装置100では、以上に述べた課題を踏まえ、下記の方法を採用することにより、マルチギャップ構造を採用することなく、透過領域Etと反射領域Erとで略同一の表示特性(階調特性)を実現して高品位な表示を得る。
概略を述べると、本発明の第1実施形態では、非マルチギャップ構造で、且つ、上記したように透過領域Etと反射領域Erとに各々独立の画素電極10r及び10t並びにこれらに接続されるTFD素子21r及び21tを夫々設けた構造を前提とした上で、さらに、所定の条件の下に、透過領域EtのTFD素子21tと反射領域ErのTFD素子21rとで素子寸法を夫々異ならせる。
まず、第1実施形態に係る液晶装置100のように、1つのサブ画素領域SGにおいて、反射領域Erに設けられる画素電極10の大きさ(面積)と、透過領域Etに設けられる画素電極10の大きさ(面積)とが非同一の場合には、次のようにして透過領域EtのTFD素子21tと、反射領域ErのTFD素子21rとで素子寸法を夫々異ならせる。
具体的には、まず、図1及び図6(b)等において、液晶装置100に設けられる、1つのサブ画素領域SGの数量、及び精細度、即ち1つのサブ画素領域SGの大きさ(面積)又は透過領域の画素電極の大きさ(面積)に基づいて、透過領域Etに設けられるTFD素子21tの大きさ(面積)を設定する。
ここで、TFD素子21tの大きさ(面積)は、図7(b)に示すように、第1のTFD素子22の大きさ(面積)Stと、第2のTFD素子23の大きさ(面積)Stを合計した値となる。第1のTFD素子22の大きさ(面積)St及び第2のTFD素子23の大きさ(面積)Stを夫々変えるには、第2金属膜336の線幅(X方向における長さ)d6、及び、第2金属膜316を含むデータ線32の線幅(X方向における長さ)d6を夫々変えることにより(以下、「第1の線幅変更方法」と呼ぶ)、或いは、絶縁膜323を含む第1金属膜322の線幅(Y方向における長さ)d4を変えることにより(以下、「第2の線幅変更方法」と呼ぶ)、或いは、第1の線幅変更方法及び第2の線幅変更方法の両方を変えることにより(以下、「第3の線幅変更方法」と呼ぶ)実現可能である。
上記したように第2金属膜316を含むデータ線32及び第2金属膜316は、クロム等の金属により形成され、また、第1金属膜322はタンタル等の材料により形成されるので、製造上の観点を考慮すると、本発明では、TFD素子21tの大きさ(面積)を高精度に変える方法として、上記した第3の線幅変更方法を採用するのが好ましい。なお、反射領域Erに対応して設けられるTFD素子21rの大きさ(面積)は、上記したTFD素子21tと同様に、第1乃至第3の線幅変更方法を用いて変えることができる。
次に、反射領域Erに対応して設けられるTFD素子21rの大きさ(面積)は、図8において、透過領域Etに対応する液晶層4に電圧を印加していったときに、かかるV−T特性曲線Gtの最大透過率100%に対応する印加電圧をVtとし、また、反射領域Erに対応する液晶層4に電圧を印加していったときに、かかるV−R特性曲線Gr’の最大透過率100%に対応する印加電圧をVrとしたときに、Vt=Vr、又は、{|Vr−Vt|/Vt}< 約0.1に基づき設定する。なお、その大きさ(面積)は上記した方法により変えることができる。
これにより、かかるV−R特性曲線Gr’は、図8において、V−T特性曲線Gtと略一致或いは揃う方向にシフトしてV−R特性曲線Grとなる。その結果、本発明の第1実施形態に係る液晶装置100において、反射領域Erに対応する表示特性(階調特性)と、透過領域Etに対応する表示特性(階調特性)とを略同一にすることができ、高品位な表示を得ることができる。
また、第1実施形態に係る液晶装置100において、1つのサブ画素領域SGにおいて、反射領域Erに設けられる画素電極10の大きさ(面積)と、透過領域Etに設けられる画素電極10の大きさ(面積)とを略同一に設定した場合には(図示略)、反射領域ErのTFD素子21rの要素である第1及び第2のTFD素子の大きさ(面積)Srと、透過領域EtのTFD素子21tの第1及び第2のTFD素子の大きさ(面積)Stとの関係を、Sr=2×Stに設定する、即ち、反射領域ErのTFD素子21rの大きさ(面積)を、透過領域EtのTFD素子21tの大きさ(面積)の2倍に設定する。
ここで、TFD素子の大きさ(面積)が大きくなると、それに伴ってTFD素子の容量は大きくなり、TFD素子の抵抗値は小さくなる。これにより、図8において、V−R特性曲線Gr’はなだらかな曲線になると共に、当該V−R特性曲線Gr’は、V−T特性曲線Gtと略一致或いは揃う方向にシフトしてV−R特性曲線Grとなる。即ち、この場合、かかる液晶装置100では、反射領域Erに対応する液晶に印加される電圧が、透過領域Etに対応する液晶に印加される電圧の半分程度になる。このため、この液晶装置100では、反射領域Erと透過領域Etとで液晶分子の傾倒角度を相対的に異ならせることができ、反射領域Erに対応する液晶のリタデーションと、透過領域Etに対応する液晶のリタデーションを略同一に設定することができる。その結果、本発明の第1実施形態に係る液晶装置100において、反射領域Erに対応する表示特性(階調特性)と、透過領域Etに対応する表示特性(階調特性)とを略同一にすることができ、高品位な表示を得ることができる。
[第2実施形態]
第2実施形態は、いわゆるIPS(In Plane Switching)方式を有する液晶装置に本発明を適用し、上記の第1実施形態と同様の作用効果を得る。
第2実施形態は、いわゆるIPS(In Plane Switching)方式を有する液晶装置に本発明を適用し、上記の第1実施形態と同様の作用効果を得る。
(液晶装置の構成)
まず、本発明の第2実施形態に係る液晶装置の構成について説明する。なお、以下において、第1実施形態と同一の要素については同一の符号を付し、その説明は簡略化又は省略する。
まず、本発明の第2実施形態に係る液晶装置の構成について説明する。なお、以下において、第1実施形態と同一の要素については同一の符号を付し、その説明は簡略化又は省略する。
図9は、第2実施形態に係る液晶装置200の概略構成を模式的に示す平面図である。図9では、主として、液晶装置200の電極及び配線の構成を平面図として示している。
ここに、第2実施形態に係る液晶装置200は、TFD素子を用いたアクティブ・マトリクス駆動方式の液晶装置である。また、液晶装置200は、ノーマリーブラックの表示モードを有する垂直配向方式の液晶装置である。また、この液晶装置200は、電極が形成された基板側において、当該基板面に略平行な方向に電界を発生させて液晶分子の配向を制御する、IPS方式などのいわゆる横電界方式の液晶装置である。このため、この液晶装置200では高い視野角を得ることが可能となっている。また、この液晶装置200は、反射型表示モードと透過型表示モードを併せ持つ、いわゆる半透過反射型の液晶装置でもある。また、この液晶装置200は、透過型表示が行われる透過領域に対応する液晶層の厚さと、反射型表示が行われる反射領域に対応する液晶層の厚さとが同一の大きさに設定された、非マルチギャップ(シングルギャップ)構造を有する液晶装置である。特に、この液晶装置200では、透過領域Et及び反射領域Erに各々独立の画素電極50t及び50r並びにこれらに接続されるTFD素子21t及び21rが夫々設けられ、この点に関し第1実施形態と同様の構成を有している。
ここに、第2実施形態に係る液晶装置200は、TFD素子を用いたアクティブ・マトリクス駆動方式の液晶装置である。また、液晶装置200は、ノーマリーブラックの表示モードを有する垂直配向方式の液晶装置である。また、この液晶装置200は、電極が形成された基板側において、当該基板面に略平行な方向に電界を発生させて液晶分子の配向を制御する、IPS方式などのいわゆる横電界方式の液晶装置である。このため、この液晶装置200では高い視野角を得ることが可能となっている。また、この液晶装置200は、反射型表示モードと透過型表示モードを併せ持つ、いわゆる半透過反射型の液晶装置でもある。また、この液晶装置200は、透過型表示が行われる透過領域に対応する液晶層の厚さと、反射型表示が行われる反射領域に対応する液晶層の厚さとが同一の大きさに設定された、非マルチギャップ(シングルギャップ)構造を有する液晶装置である。特に、この液晶装置200では、透過領域Et及び反射領域Erに各々独立の画素電極50t及び50r並びにこれらに接続されるTFD素子21t及び21rが夫々設けられ、この点に関し第1実施形態と同様の構成を有している。
図10は、図9の液晶装置200において、1つの横列をなす反射領域を通る切断線D−D’に沿った概略断面図である。一方、図11は、図9の液晶装置200において、1つの横列をなす透過領域を通る切断線E−E’に沿った概略断面図である。図10及び図11おいて、1つのサブ画素領域SGは、1つの反射領域Erと1つの透過領域Etとを含んで構成されている。
まず、図10を参照して、1つの横列をなす反射領域Erに対応する液晶装置200の断面構成について説明し、続いて、図11を参照して、1つの横列をなす透過領域Etに対応する液晶装置200の断面構成について説明する。そして、その後、素子基板93の電極及び配線の構成について説明する。なお、第2実施形態では、素子基板93が電極及び配線を有する基板を構成している。
図10において、液晶装置200は、素子基板93と、その素子基板93に対向して配置されるカラーフィルタ基板94とが枠状のシール部材3を介して貼り合わされ、その内部に、負の誘電率異方性を有する液晶が封入されて液晶層4が形成されてなる。また、この液晶装置200において、素子基板93とカラーフィルタ基板94の間であって、反射領域Erの適切な位置には、スペーサ(図示略)が配置され、かかるスペーサにより透過領域に対応する液晶層4の厚さ(セルギャップ)はd2に設定されている。
下側基板1の内面上には、表面に微細な凹凸を有する樹脂散乱層71が形成されている。樹脂散乱層71の材料としては、アクリル樹脂などの絶縁性を有し且つ透光性を有する材料が好ましい。反射領域Erに対応する樹脂散乱層71の内面上には、反射層5が形成されている。各反射層5には樹脂散乱層71の微細な凹凸が反映されており、各反射層5の内面上には微細な凹凸が形成されている。好適な例では、各反射層5は、絶縁性を有する反射層、いわゆる「誘電体ミラー」を適用することができる。ここで、「誘電体ミラー」とは、一般に、低屈折率物質(例えば、二酸化ケイ素など)からなる層と、高屈折率物質(例えば、二酸化チタンなど)からなる層とを交互に積層してなるものをいう。誘電体ミラーの要素である各層の厚さ、積層数等を最適な値に設定することにより、R、G、Bの各波長の光を選択的に効率良く反射させることができる。
樹脂散乱層71及び反射層5の内面上には、保護層19が形成されている。保護層19の材料としては、アクリル樹脂などの絶縁性を有し且つ透光性を有する材料が好ましい。この保護層19は、液晶装置200の製造工程中に使用される薬剤等による腐食や汚染から反射層5などを保護する機能を有する。反射領域Erに対応する保護層19の内面上には、データ線72の要素である、第1導電部72a、第2導電部72b、第3導電部72c及び第4導電部72dなどを含む1つの電極部72Rが形成されている。第1導電部72aと第2導電部72b、第2導電部72bと第3導電部72c、及び第3導電部72cと第4導電部72dは、それぞれ一定の間隔をおいて保護層19の内面上に配置されている。電極部72Rを含むデータ線72はタンタルタングステン(TaW)等にて形成されている。なお、データ線72の表面上には絶縁膜が形成されているが、図10では、便宜上、その絶縁膜の図示は省略している。
また、反射領域Erに対応する保護層19の内面上において、第1導電部72aと第2導電部72bの間、第2導電部72bと第3導電部72cの間、及び第3導電部72cと第4導電部72dの間には、画素電極50の要素である第1透明電極部50a、第2透明電極部50b及び第3透明電極部50cを有する1つの画素電極50rが形成されている。
また、下側基板1の内面上の左右周縁部には、引き回し配線31が形成されており、各引き回し配線31は樹脂散乱層71により覆われている。少なくとも電極部72Rを含むデータ線72、画素電極50r及び保護層19等の内面上には、配向膜(図示略)が形成されている。また、下側基板1の内面上であって且つ各反射領域Erの隅の位置近傍には、TFD素子21r(図13を参照)が形成されている。
一方、上側基板2の内面上には、サブ画素領域SG毎に、着色層6R、6G、及び6Bが形成されている。そして、着色層6R、6G、及び6Bの各々は、反射領域Er内における電極部72R及び画素電極50r、及び、後述する透過領域Et内における電極部72T及び画素電極50tに対向している。また、上側基板2の内面上であって且つ各着色層6を区画する位置には、黒色遮光層BMが形成されている。着色層6及び黒色遮光層BMの内面上には、アクリル樹脂等からなる保護層18が形成されている。なお、反射領域Erに対応する液晶層4の厚さは、透過領域Etに対応する液晶層4の厚さと略同一のd2に設定されている。
下側基板1の外面上には、位相差板(1/4波長板)13が配置され、その位相差板13の外面上には偏光板14が配置されている一方、偏光板14の外面上には、バックライト15が配置されている。
さて、本実施形態の液晶装置200において反射型表示がなされる場合、液晶装置200に入射した外光は、図10に示す経路Rに沿って進行する。つまり、液晶装置200に入射した外光は、反射層5によって反射され観察者に至る。この場合、その外光は、着色層6、画素電極50及び保護層19等が形成されている領域を通過して、その保護層19の下側にある反射層5により反射され、再度保護層19、画素電極50及び着色層6等を通過することによって所定の色相及び明るさを呈する。こうして、所望のカラー表示画像が観察者により視認される。
続いて、図11を参照して、1つの横列をなす透過領域Etに対応する、液晶装置200の断面構成について説明する。
透過領域Etに対応する下側基板1の内面上には、データ線72の要素である、第1導電部72k、第2導電部72L、第3導電部72m及び第4導電部72nなどを含む1つの電極部72Tが形成されている。第1導電部72kと第2導電部72L、第2導電部72Lと第3導電部72m、及び第3導電部72mと第4導電部72nは、それぞれ一定の間隔をおいて下側基板1の内面上に配置されている。電極部72Tは、上記した電極部72Rと同様にタンタルタングステン(TaW)等にて形成されており、その電極部72Tの表面上には図示しない絶縁膜が形成されている。また、透過領域Etに対応する下側基板1の内面上において、第1導電部72kと第2導電部72Lの間、第2導電部72Lと第3導電部72mの間、及び第3導電部72mと第4導電部72nの間には、画素電極50の要素である、第1透明電極部50d、第2透明電極部50e及び第3透明電極部50fを有する1つの画素電極50tが形成されている。少なくとも電極部72Tを含むデータ線72、画素電極50t及び下側基板1等の内面上には、配向膜(図示略)が形成されている。また、下側基板1の内面上であって且つ各透過領域Etの隅の位置近傍には、TFD素子21t(図13を参照)が形成されている。
一方、図11に示されるカラーフィルタ基板94の構成は、図10と同様であるため、その説明は省略する。
さて、本実施形態の液晶装置200において透過型表示がなされる場合、バックライト15から出射した照明光は、図11に示す経路Tに沿って進行し、画素電極50及び着色層6等を通過して観察者に至る。この場合、その照明光は、着色層6を透過することにより所定の色相及び明るさを呈する。こうして、所望のカラー表示画像が観察者により視認される。
(素子基板の電極及び配線構成)
次に、図9及び図12を参照して、第2実施形態の素子基板93の電極及び配線の構成について説明する。図12は、素子基板93を正面方向(即ち、図10及び図11における上方)から観察したときの素子基板93の電極及び配線などの構成を平面図として示す。また、図12において、電極や配線以外のその他の要素は説明の便宜上図示を省略している。
次に、図9及び図12を参照して、第2実施形態の素子基板93の電極及び配線の構成について説明する。図12は、素子基板93を正面方向(即ち、図10及び図11における上方)から観察したときの素子基板93の電極及び配線などの構成を平面図として示す。また、図12において、電極や配線以外のその他の要素は説明の便宜上図示を省略している。
図9において、紙面横方向に延在する、各引き回し配線31の要素である折れ曲がり部分31bと、紙面縦方向に延在する各データ線72とが交差する付近の領域が表示の最小単位であるサブ画素領域SGを構成する。そして、1つのサブ画素領域SGは、上記したように、1つの反射領域Erと1つの透過領域Etとを含んで構成される。このサブ画素領域SGが紙面縦方向及び紙面横方向に複数個、マトリクス状に並べられた領域が有効表示領域V(2点鎖線により囲まれる領域)である。なお、図9及び図12において、液晶装置200の外周と、有効表示領域Vとによって区画された領域は、画像表示に寄与しない額縁領域38である。
素子基板93は、複数のTFD素子21t及び21r、複数の画素電極50t及び50r、複数の引き回し配線31、複数のデータ線72、YドライバIC34、複数のXドライバIC33、並びに複数の外部接続用端子35などを備えている。
素子基板93の張り出し領域36上には、複数のXドライバIC33、及びYドライバIC34が例えばACFを介して、それぞれ実装されている。張り出し領域36上には、複数の外部接続用端子35が形成されている。複数のXドライバIC33、及びYドライバIC34の各入力端子(図示略)は、導電性を有するバンプを介して、その複数の外部用接続端子35にそれぞれ接続されている。外部接続用端子35は、ACFや半田などを介して、FPC90に接続されている。これにより、例えば携帯電話や情報端末などの電子機器から液晶装置200へ信号や電力が供給される。
複数のXドライバIC33の出力端子(図示略)は、導電性を有するバンプを介して、複数の引き回し配線31に接続されている。各XドライバIC33は、複数の引き回し配線31の駆動を担う。すなわち、複数のXドライバIC33によって、1垂直走査期間において引き回し配線31が順次排他的に1本ずつ選択されるとともに、選択された引き回し配線31には、選択電圧の走査信号が供給される一方、他の非選択の引き回し配線31には、非選択電圧の走査信号が供給される。
YドライバIC34の出力端子(図示略)は、導電性を有するバンプを介して、複数のデータ線72に接続されている。YドライバIC34は、複数のデータ線72の駆動を担う。すなわち、YドライバIC34は、各XドライバIC33により選択された引き回し配線31に対応する画素電極50に対し、表示内容に応じたデータ信号を、それぞれ対応するデータ線72を介して供給するものである。
各画素電極50は、引き回し配線31の折れ曲がり部分31bとデータ線72との交差する位置付近に形成される。各画素電極50は、サブ画素領域SG毎に、画素電極50r及び50tを有して構成される。画素電極50rは、図13を参照して理解されるように、更に、複数の透明電極部により構成され、サブ画素領域SG内における反射領域Er内に形成される一方、画素電極50tは、複数の透明電極部により構成され、サブ画素領域SG内における透過領域Et内に形成される。
各TFD素子21rは、各サブ画素領域SG内における各反射領域Erの隅の位置近傍に形成され(図13を参照)、対応する各引き回し配線31の要素である折れ曲がり部分31bに電気的に接続されている。各TFD素子21rは、各反射領域Er内に対応する画素電極50rを駆動する機能を有する。
各TFD素子21tは、各サブ画素領域SG内における各透過領域Etの隅の位置近傍に形成され(図13を参照)、対応する各引き回し配線31の要素である折れ曲がり部分31bに電気的に接続されている。各TFD素子21tは、各透過領域Et内に対応する画素電極50tを駆動する機能を有する。
複数のデータ線72は、張り出し領域36から有効表示領域VにかけてY方向に延在するように形成されていると共に、各データ線72は一定の間隔をおいて形成されている。各データ線72は、本線部分72y、電極部72R及び72Tを有している。1つの電極部72R及び1つの電極部72Tは1つのサブ画素領域SG内に形成される。本線部分72yは、Y方向に相隣接する、各サブ画素領域SG内の電極部72R及び72Tを電気的に接続する機能を有している。
複数の引き回し配線31の折れ曲がり部分31bは、第1実施形態と異なり、図示のように左辺側と右辺側との間で交互に額縁領域38から有効表示領域V内にかけて形成されている。また、各折れ曲がり部分31bは、適宜の間隔をおいて、対応する各TFD素子21r及び21tに電気的に接続されており、各TFD素子21r及び21tは、対応する各画素電極50r及び50tに電気的に接続されている。そして、以上に述べた素子基板93と、カラーフィルタ基板94とをシール部材3を介して貼り合わせた状態が図9に示されている。
かかる液晶装置200では、各XドライバIC33から複数の引き回し配線31に走査信号が、YドライバIC34から複数のデータ線72にデータ信号が夫々出力されると、図10及び図11に示すように、各サブ画素領域SG内において、データ線72の要素である電極部72Rと画素電極50rの間で、及び、データ線72の要素である電極部72Tと画素電極50tの間で、素子基板93の基板面に略平行な方向に横電界Eが生じて、液晶分子の配向が制御され表示状態が制御される。
(サブ画素の構成)
次に、図13乃至図16等を参照して、第2実施形態に係る素子基板93における、1つのサブ画素の構成について説明する。
次に、図13乃至図16等を参照して、第2実施形態に係る素子基板93における、1つのサブ画素の構成について説明する。
図13は、図12における素子基板93を平面視したときの、1つのサブ画素領域SGに対応する複数の要素を拡大して示す部分平面図である。図13において、二点鎖線にて囲まれる領域は、1つのサブ画素領域SGを示している。
図14(a)は、図13における切断線H−H’に沿った部分断面図であり、特に反射領域Er内に形成される電極部72R及び画素電極50r等のレイアウトを示す部分断面図を示している。一方、図14(b)は、図13における切断線I−I’に沿った部分断面図であり、特に透過領域Et内に形成される電極部72T及び画素電極50t等のレイアウトを示す部分断面図を示している。
図15(a)は、図13における切断線F−F’に沿った部分断面図である。特に、図15(a)は、反射領域Er内に形成される補助電極部336a、及び、透過領域Et内に形成される補助電極部336bを通る位置で切断したときの、反射領域Er内の各要素と透過領域Et内の各要素のレイアウトを示す部分断面図である。一方、図15(b)は、図13における切断線G−G’に沿った部分断面図である。特に、図15(b)は、反射領域Er内に形成されるTFD素子21r、及び、透過領域Et内に形成されるTFD素子21tを通る位置で切断したときの、反射領域Er内の各要素と透過領域Et内の各要素のレイアウトを示す部分断面図である。なお、図14及び図15において、データ線72の表面上には絶縁膜が形成されているが、便宜上、その図示は省略している。
図13に示すように、1つのサブ画素領域SGは、1つの反射領域Erと、1つの透過領域Etとを含んで構成され、当該1つの反射領域Erは、当該1つの透過領域Etの上側に位置している。
まず、図13、図14(a)及び図15等を参照して、1つの反射領域Er内に形成される複数の要素の構成等について説明する。
反射領域Er内には、複数の要素、即ち、樹脂散乱層71、反射層5、保護層19、データ線72の要素である電極部72R、画素電極50r及びTFD素子21r等が形成される。電極部72Rは、略櫛歯状に類似した形状をなしており、第1導電部72a、第2導電部72b、第3導電部72c、第4導電部72d、第5導電部72e及び第6導電部72f等を更に有している。画素電極50rは、第1透明電極部50a、第2透明電極部50b及び第3透明電極部50cを更に有している。
反射領域Erに対応する下側基板1上には、電極部72Rの要素のうち、少なくとも第5導電部72e及び第6導電部72f、並びに、樹脂散乱層71及びTFD素子21rが夫々形成される。第5導電部72eは、第1部分72ea(L字状の破線部分)と、第2部分72eb(矩形状の破線部分)とを結合した形状を有している。図13に示すように、第5導電部72eは、反射領域Er内の下側付近に且つX方向に延在するように形成されている。第6導電部72fは、直線状の形状をなし、反射領域Er内の上側付近に且つX方向に延在するように形成されている。下側基板1上であって且つ第5導電部72eと第6導電部72fの間に対応する位置には、樹脂散乱層71(一点鎖線にて囲まれる領域)が一定の膜厚を有するように形成されている。なお、樹脂散乱層71の周囲は、テーパー状の形状に形成されているが、図15等ではその図示を省略している。樹脂散乱層71上には、誘電体ミラーとしての反射層5が形成されている。反射層5上には、保護層19が一定の膜厚を有するように形成されている。なお、保護層19の周囲は、テーパー状の形状を有するように形成されているが、図15等ではその図示を省略している。TFD素子21rは、下側基板1上であって且つ反射領域Er内の左下隅付近に形成されている。
ここで、第2実施形態のTFD素子21の断面構成は、上記した第1実施形態と同様であるが、当該TFD素子21と他の要素との相対的な位置関係についての理解を容易とするため、以下では、図16(a)を参照して、TFD素子21等の断面構成について簡略化して説明する。図16(a)は、図13における切断線X1−X2に沿った部分断面図であり、特に反射領域Er内に形成されるTFD素子21r付近の断面構成を示す。
TFD素子21rは、図16(a)に示すように、第1のTFD素子22及び第2のTFD素子23により構成される。第1のTFD素子22及び第2のTFD素子23の第2金属膜316は、引き回し配線31の要素である折れ曲がり部分31bが用いられる。
第1のTFD素子22及び第2のTFD素子23の第2金属膜336の一部分(補助電極部336a)は、図13及び図16(a)において、第5導電部72eの要素である第2部分72ebと平面的に重なる位置に形成される。なお、第2実施形態では、補助電極部336aは、当該第2部分72ebの面積と略同一に設定されているが、実際には、後述のように各種の設計仕様に応じてその面積は変えられる。そして、補助電極部336aは、図16(a)に示すように、絶縁膜323を介して、第5導電部72eの要素である第2部分72ebに対向している。これにより、補助電極部336aと第5導電部72eの間には絶縁膜323を誘電体とする保持容量C1が形成されている。また、補助電極部336aは、図13及び図16(a)に示すように、反射領域Er内の画素電極50rと電気的に接続される。保護層19上には、電極部72Rの要素のうち、第1導電部72a、第2導電部72b、第3導電部72c及び第4導電部72d、並びに画素電極50rの構成要素である、第1透明電極部50a、第2透明電極部50b及び第3透明電極部50cが夫々形成されている。
第1導電部72a、第2導電部72b、第3導電部72c及び第4導電部72dは、直線状の形状をなし、夫々適宜の間隔L10をおいて形成されている。このため、第1導電部72aと第2導電部72bの間、第2導電部72bと第3導電部72cの間、第3導電部72cと第4導電部72dの間には、夫々一定の間隔L10を有する間隙40が形成されている。
第1導電部72aは、Y方向に延在するように形成されており、反射領域Er内において左端付近に位置している。第1導電部72aの上端は第6導電部72fの左端側に繋がっていると共に、第1導電部72aの下端は第5導電部72eの要素である第2部分eaの左端側に繋がっている。第2導電部72bは、第1導電部72aに隣接する位置に且つY方向に延在するように形成されている。第2導電部72bの上端は第6導電部72fに繋がっていると共に、第2導電部72bの下端は第5導電部72eの要素である第1部分72eaに繋がっている。第3導電部72cは、第2導電部72bに隣接する位置に且つY方向に延在するように形成されている。第3導電部72cの上端は第6導電部72fに繋がっていると共に、第3導電部72cの下端は第5導電部72eの要素である第2部分72ebに繋がっている。第4導電部72dは、第3導電部72cに隣接する位置に且つY方向に延在するように形成されている。また、第4導電部72dは、反射領域Er内の右端付近に位置している。第4導電部72dの上端は第6導電部72fに繋がっていると共に、第4導電部72dの下端は第5導電部72eの要素である第2部分72ebに繋がっている。
図13及び図16(a)に示すように、画素電極50rの要素のうち、第1透明電極部50aは、第1導電部72aと第2導電部72bの間に形成された間隙40内において、Y方向に延在するように形成されている。そして、第1透明電極部50aと第2導電部72bとの間は一定の間隔L1に設定されている。また、第1透明電極部50aの上端は、第6導電部72fの下端付近に位置している。なお、第6導電部72fの表面上には図示しない絶縁膜が形成されているため、第1透明電極部50aの上端と第6導電部72fとは電気的に接続されていない。また、第1透明電極部50aの下端付近は、略L字状の形状に形成されており、その略L字状の形状に対応する部分は、第5導電部72eの要素である第1部分72ea及び第2部分72ebの一部分と平面的に重なり合っている。また、第1透明電極部50aの下端付近は、図13及び図16(a)に示すように、補助電極部336a上に位置しており、当該補助電極部336aと電気的に接続されている。
第2透明電極部50bは、直線状の形状をなしており、第2導電部72bと第3導電部72cの間に形成された間隙40内において、Y方向に延在するように形成されている。そして、第2透明電極部50bと第3導電部72cとの間は一定の間隔L1に設定されている。また、第2透明電極部50bの上端は、第6導電部72fの下端付近に位置している。なお、上記のように第6導電部72fの表面上には図示しない絶縁膜が形成されているため、第2透明電極部50bの上端と第6導電部72fとは電気的に接続されていない。第2透明電極部50bの下端付近は、図13及び図16(a)に示すように、補助電極部336a上に位置しており、当該補助電極部336aと電気的に接続されている。
第3透明電極部50cは、第2透明電極部50bと同一形状をなしており、第3導電部72cと第4導電部72dの間に形成された間隙40内において、Y方向に延在するように形成されている。そして、第3透明電極部50cと第4導電部72dとの間は一定の間隔L1に設定されている。また、第3透明電極部50cの上端は、第6導電部72fの下端付近に位置している。なお、上記のように第6導電部72fの表面上には図示しない絶縁膜が形成されているため、第3透明電極部50cの上端と第6導電部72fとは電気的に接続されていない。第3透明電極部50cの下端付近は、図13及び図16(a)に示すように、補助電極部336a上に位置しており、当該補助電極部336aと電気的に接続されている。
次に、図13、図14(b)及び図15等を参照して、1つの透過領域Et内に形成される複数の要素の構成について説明する。
透過領域Etに対応する下側基板1上には、複数の要素、データ線72の要素である電極部72T、画素電極50t及びTFD素子21t等が形成される。
電極部72Tは、図13に示すように、電極部72Rを略上下反転させた形状を有しており、第1導電部72k、第2導電部72L、第3導電部72m、第4導電部72n、第5導電部72p及び第6導電部72Q等を有している。
第5導電部72pは、第5導電部72eを上下反転させた形状をなしていると共に、第1部分72pa(L字状の破線部分)と、第2部分72pb(矩形状の破線部分)とを結合した形状を有している。第5導電部72pは、引き回し配線31の折れ曲がり部分31bを基準としたときに、第5導電部72eと対称的な位置に配置されている。ここで、引き回し配線31の折れ曲がり部分31bは、図13に示すように、下側基板1上において、反射領域Erと透過領域Etの間に形成されている。このため、第5導電部72pは、透過領域Et内の上側付近に位置している。第6導電部72Qは、第6導電部72fと同一形状をなし、図13に示す引き回し配線31の折れ曲がり部分31bを基準に、第6導電部72fと対称的な位置に配置されている。このため、第6導電部72Qは、透過領域Et内の下側付近に位置している。
第1導電部72k、第2導電部72L、第3導電部72m及び第4導電部72nは、直線状の形状をなし、夫々適宜の間隔L10をおいて形成されている。このため、第1導電部72kと第2導電部72Lの間、第2導電部72Lと第3導電部72mの間、第3導電部72mと第4導電部72nの間には、夫々一定の間隔L10を有する間隙40が形成されている。
第1導電部72kは、第1導電部72aと同一形状をなし、図13に示す引き回し配線31の折れ曲がり部分31bを基準としたときに、第1導電部72eと対称的な位置に配置されている。このため、第1導電部72kは、透過領域Et内の左端付近に位置している。第1導電部72kの上端は第5導電部72pの要素である第1部分72paの左端側に繋がっていると共に、第1導電部72kの下端は第6導電部72Qの左端側に繋がっている。
第2導電部72Lは、第2導電部72bと同一形状をなし、図13に示す引き回し配線31の折れ曲がり部分31bを基準としたときに、第2導電部72bと対称的な位置に配置されている。第2導電部72Lの上端は第5導電部72pの要素である第1部分72paに繋がっていると共に、第2導電部72Lの下端は第6導電部72Qに繋がっている。
第3導電部72mは、第3導電部72cと同一形状をなし、図13に示す引き回し配線31の折れ曲がり部分31bを基準としたときに、第3導電部72cと対称的な位置に配置されている。第3導電部72mの上端は第5導電部72pの要素である第2部分72pbに繋がっていると共に、第3導電部72mの下端は第6導電部72Qに繋がっている。
第4導電部72nは、第4導電部72dと同一形状をなし、図13に示す引き回し配線31の折れ曲がり部分31bを基準としたときに、第4導電部72dと対称的な位置に配置されている。このため、第4導電部72nは、透過領域Et内の右端付近に位置している。第4導電部72nの上端は第5導電部72pの要素である第2部分72pbに繋がっていると共に、第4導電部72nの下端は第6導電部72Qに繋がっている。
TFD素子21tは、図13に示すように、透過領域Et内の左上隅付近に形成されている。図16(b)は、図13における切断線X1−X3に沿った部分断面図であり、特に透過領域Et内に形成されるTFD素子21t付近の断面構成を示す。
図16(b)に示すように、TFD素子21tは、第1のTFD素子22及び第2のTFD素子23により構成される。TFD素子21tの要素である第2金属膜336の一部分(補助電極部336b)は、図13及び図16(b)において、第5導電部72pの要素である第2部分72pbと平面的に重なる位置に形成される。なお、第2実施形態では、補助電極部336bは、当該第2部分72pbの面積と略同一に設定されているが、上記した補助電極部336aと同様に、実際には、後述のように各種の設計仕様に応じてその面積は変えられる。そして、補助電極部336bは、図16(b)に示すように、絶縁膜323を介して、第5導電部72pの要素である第2部分72pbに対向している。これにより、補助電極部336bと第5導電部72pの間には絶縁膜323を誘電体とする保持容量C2が形成されている。また、補助電極部336bは、図13及び図16(b)に示すように、透過領域Et内の画素電極50tと電気的に接続される。
画素電極50tは、図13に示すように、画素電極50rを上下反転させた形状を有しており、第1透明電極部50d、第2透明電極部50e及び第3透明電極部50fを有している。
図13及び図14(b)に示すように、第1透明電極部50dは、第1導電部72kと第2導電部72Lの間に形成された間隙40内において、Y方向に延在するように形成されている。そして、第1透明電極部50dと第2導電部72Lとの間は一定の間隔L2(≠L1)に設定されている。このため、第1透明電極部50dは、図13に示す引き回し配線31の折れ曲がり部分31bを基準としたとき、第1透明電極部50aと対称的な位置に配置されていない。第1透明電極部50dの上端付近は、略L字状の形状に形成されており、その略L字状の形状に対応する部分は、第5導電部72pの要素である第1部分72pa及び第2部分72pbの一部分と平面的に重なり合っている。第1透明電極部50dの上端付近は、図13及び図16(b)に示すように、補助電極部336b上に位置しており、当該補助電極部336bと電気的に接続されている。一方、第1透明電極部50dの下端は、第6導電部72Qの上端付近に位置している。なお、第6導電部72Qの表面上には図示しない絶縁膜が形成されているため、第1透明電極部50dの下端と第6導電部72Qとは電気的に接続されていない。
第2透明電極部50eは、第2導電部72Lと第3導電部72mの間に形成された間隙40内において、Y方向に延在するように形成されている。そして、第2透明電極部50eと第3導電部72mとの間は一定の間隔L2(≠L1)に設定されている。このため、第2透明電極部50eは、図13に示す引き回し配線31の折れ曲がり部分31bを基準としたとき、第2透明電極部50bと対称的な位置に配置されていない。第2透明電極部50eの上端は、図13及び図16(b)に示すように、補助電極部336b上に位置しており、当該補助電極部336bと電気的に接続されている。一方、第2透明電極部50eの下端は、第6導電部72Qの上端付近に位置している。なお、上記のように第6導電部72Qの表面上には図示しない絶縁膜が形成されているため、第2透明電極部50eの上端と第6導電部72Qとは電気的に接続されていない。
第3透明電極部50fは、第3導電部72mと第4導電部72nの間に形成された間隙40内において、Y方向に延在するように形成されている。そして、第3透明電極部50fと第4導電部72nとの間は一定の間隔L2(≠L1)に設定されている。このため、第3透明電極部50fは、図13に示す引き回し配線31の折れ曲がり部分31bを基準としたとき、第3透明電極部50cと対称的な位置に配置されていない。第3透明電極部50fの上端は、図13及び図16(b)に示すように、補助電極部336b上に位置しており、当該補助電極部336bと電気的に接続されている。一方、第3透明電極部50fの下端は、第6導電部72Qの上端付近に位置している。なお、上記のように第6導電部72Qの表面上には図示しない絶縁膜が形成されているため、第3透明電極部50fの上端と第6導電部72Qとは電気的に接続されていない。
また、1つのサブ画素領域SG内における、反射領域Erと透過領域Etの間の構成は次の通りである。
即ち、下側基板1上であって且つ反射領域Erと透過領域Etの間には、1つの引き回し配線31の折れ曲がり部分31b、及び、データ線72の要素である本線部分72yが形成されている。1つの引き回し配線31の折れ曲がり部分31bは、X方向に延在するように形成されている。本線部分72yは、第2導電部72bと第2導電部72Lの間に位置しており、反射領域Er内の電極部72Rと、透過領域Et内の電極部72Tとを繋いでいる。なお、図13に示される反射領域Er内の電極部72Rは、その反射領域Erの上側に且つ隣接する他のサブ画素における透過表示領域内の電極部31T(図示略)と本線部分72yにより繋がっていると共に、同図に示される透過領域Et内の電極部72Tは、その透過領域Etの下側に且つ隣接する他のサブ画素における反射領域内の電極部72R(図示略)と本線部分72yにより繋がっている。
このため、各XドライバIC33から出力された走査信号は、本線部分31a(図12を参照)、折れ曲がり部分31b、TFD素子21r及び21t、並びに画素電極50r及び50tの順に出力されると共に、YドライバIC34から出力されたデータ信号は、本線部分72y、電極部72T、本線部72y、電極部72R、本線部分72yの順に出力される。これにより、図13において、素子基板93等の基板面と略平行なX方向に横電界Eが生じ、液晶層4の液晶分子の配向が制御される。
次に、第2実施形態に係る液晶装置200に特有の点について説明する。
第2実施形態に係る液晶装置200は、各種の設計仕様に応じて、一般的に知られた横電界方式のしきい値電圧Vc(フレデリクス転移のしきい値電圧Vc)の式に基づいて、反射領域Erの光学的特性と透過領域Etの光学的特性とが所望の関係になるように設定することができるという特有の点がある。
ここで、横電界方式のしきい値電圧Vcは、液晶層4の粘性係数、弾性係数、誘電率異方性、液晶層4に印加される電界強度等の因子によって決定される。
具体的には、しきい値電圧Vcの式は、
Vc = (π×L/d)×√{K2/(ε0×|Δε|)} (式1)
で与えられる。なお、上記の式1において、「L」は電極間ギャップ、「d」はセルギャップ、「K2」はツイストの弾性定数、「ε0」は真空の誘電率、「Δε」は誘電率異方性を夫々示している。
Vc = (π×L/d)×√{K2/(ε0×|Δε|)} (式1)
で与えられる。なお、上記の式1において、「L」は電極間ギャップ、「d」はセルギャップ、「K2」はツイストの弾性定数、「ε0」は真空の誘電率、「Δε」は誘電率異方性を夫々示している。
第2実施形態の液晶装置200において、反射領域Erに対応する液晶層4のしきい値電圧をVc1、及び、透過領域Etに対応する液晶層4のしきい値電圧をVc2とした場合に、当該しきい値電圧Vc1の値と、当該しきい値電圧Vc2の値とが一致するように、容量比の大きさ、セルギャップの厚さ、透明電極部と導電部との電極間隔の大きさを夫々最適な値に設定することにより、上記の目的を達成することができる。なお、反射領域Erに対応する液晶層4のしきい値電圧Vc1の値と、透過領域Etに対応する液晶層4のしきい値電圧Vc2の値を同一に設定することにより、反射領域Erに対応する液晶分子の動き始めの応答時間と、透過領域Etに対応する液晶分子の動き始めの応答時間とを一致させることができる。
ここで、上記の式1の右項中、「π」、及び「{K2/(ε0×|Δε|)}」の値を一定とし、反射領域Er及び透過領域Etの各々に対応する容量比を考慮した場合、反射領域Erに対応する液晶層4のしきい値電圧Vc1と、透過領域Etに対応する液晶層4のしきい値電圧Vc2は、夫々次式のように変形できる。
まず、反射領域Erに対応する液晶層4のしきい値電圧Vc1の式は、
Vc1 = {a1/(1+a1)}×(L1/d2) (式2)
で与えられる。ここで、「a1」は容量比(実質的な画素電極50の容量をTFD素子21rの容量で除算した値)であり、具体的には「画素電極50rの容量」と「補助電極部336aの位置に形成される保持容量C1」を加算した値を、「TFD素子21rの容量」で除算した値であり、「L1」は第1透明電極部50aと第2導電部72bの間隔、第2透明電極部50bと第3導電部72bの間隔、及び、第3透明電極部50cと第4導電部72dの間隔であり、「d2」は反射領域Erに対応するセルギャップ(図10に示す液晶層4の厚さ)である。
Vc1 = {a1/(1+a1)}×(L1/d2) (式2)
で与えられる。ここで、「a1」は容量比(実質的な画素電極50の容量をTFD素子21rの容量で除算した値)であり、具体的には「画素電極50rの容量」と「補助電極部336aの位置に形成される保持容量C1」を加算した値を、「TFD素子21rの容量」で除算した値であり、「L1」は第1透明電極部50aと第2導電部72bの間隔、第2透明電極部50bと第3導電部72bの間隔、及び、第3透明電極部50cと第4導電部72dの間隔であり、「d2」は反射領域Erに対応するセルギャップ(図10に示す液晶層4の厚さ)である。
一方、透過領域Etに対応する液晶層4のしきい値電圧Vc2の式は、
Vc2 = {a2/(1+a2)}×(L2/d2) (式3)
で与えられる。ここで、「a2」は容量比(実質的な画素電極50tの容量をTFD素子21tの容量で除算した値)であり、具体的には「画素電極50tの容量」と「補助電極部336bの位置に形成される保持容量C2」を加算した値を、「TFD素子21tの容量」で除算した値であり、「L2」は第1透明電極部50dと第2導電部72Lの間隔、第2透明電極部50eと第3導電部72mの間隔、及び、第3透明電極部50fと第4導電部72nの間隔であり、「d2」は透過領域Etに対応するセルギャップ(図11に示す液晶層4の厚さ)である。
Vc2 = {a2/(1+a2)}×(L2/d2) (式3)
で与えられる。ここで、「a2」は容量比(実質的な画素電極50tの容量をTFD素子21tの容量で除算した値)であり、具体的には「画素電極50tの容量」と「補助電極部336bの位置に形成される保持容量C2」を加算した値を、「TFD素子21tの容量」で除算した値であり、「L2」は第1透明電極部50dと第2導電部72Lの間隔、第2透明電極部50eと第3導電部72mの間隔、及び、第3透明電極部50fと第4導電部72nの間隔であり、「d2」は透過領域Etに対応するセルギャップ(図11に示す液晶層4の厚さ)である。
そして、上記の式2の右項と上記の式3の右項とを等号で結び、例えば、(L2/d2)について求めると、
(L2/d2)={{(1+a2)×a1}/{(1+a1)×a2}}×(L1/d2) (式4)
を得ることができる。
(L2/d2)={{(1+a2)×a1}/{(1+a1)×a2}}×(L1/d2) (式4)
を得ることができる。
本発明の液晶装置200では、各種の設計仕様に応じて、上記の式4が成立するように、「L2」、「d2」、「a2」、「a1」、「L1」の各パラメータの値を変えて、反射領域Erに対応する液晶の配向制御と、透過領域Etに対応する液晶の配向制御とを各々独立に実行にする。これにより、反射領域Erに対応する液晶層4に印加する電圧と、透過領域Etに対応する液晶層4に印加する電圧を異ならせることができ、反射領域Erに対応する液晶の再配向状態と、透過領域Etに対応する液晶の再配向状態を適切な関係に設定することができる。その結果、第2実施形態では、反射領域Erの光学的特性と透過領域Etの光学的特性とを所望の関係に設定することができる。
第2実施形態に係る液晶装置200における好適な設計値の一例として、上記の式4に基づき、透過領域Etに対応する各パラメータを、「d2」=3μm、「L2」=5μm、「a2」=1/8に夫々設定した場合には、反射領域Erに対応する各パラメータを、「d2」=3μm、「L1」=2.5μm、「a1」=1/8に夫々設定することができる。なお、ここで、透過領域Etの容量比である「a2」及び反射領域Erの容量比である「a1」は、夫々保持容量C2及びC1の大きさを変えることにより調整できる。保持容量C2及びC2の大きさは、一般的な静電容量の式に基づいて、例えば、図13及び図16において、補助電極部336a及び336bの面積を変える、或いは補助電極部336aと第5導電部72eの要素である第2部分72ebとの間の絶縁膜323の厚さd30を変える、及び/又は、補助電極部336bと第5導電部72pの要素である第2部分72pbとの間の絶縁膜323の厚さd31を変えるなどの方法により調整することができる。なお、上記の設計値は一例であり、第2実施形態では、設計仕様に応じて、上記の式4が成立するように種々の設計をすることができる。
以上の構成を有する第2実施形態では、特に、透過領域Etに対応する画素電極50tの大きさ(面積)と、反射領域Erに対応する画素電極50rの大きさ(面積)が略同一に設定されているので、反射領域ErのTFD素子21rの大きさ(面積)を、透過領域EtのTFD素子21tの大きさ(面積)の2倍に設定することで、上記した第1実施形態と同様の作用効果を得ることができる。
また、第2実施形態では、図13を参照して理解されるように、反射領域Erに対応する画素電極50tの要素である、第1透明電極部50a、第2透明電極部50b及び第3透明電極部50cの線幅(X方向における長さ)を変えることにより、また、透過領域Etに対応する画素電極50tの要素である、第1透明電極部50d、第2透明電極部50e及び第3透明電極部50fの各線幅(X方向における長さ)を変えることにより、反射領域Erに対応する画素電極50rと、透過領域Etに対応する画素電極50tとの相対的な大きさ(面積)を変えることができる。この場合、反射領域Erに対応する画素電極50rの大きさ(面積)と、透過領域Etに対応する画素電極50tの大きさ(面積)が非同一となるので、上記した第1実施形態と同様の方法に基づき、透過領域Etに対応するTFD素子21tと、反射領域Erに対応するTFD素子21rの相対的な大きさ(面積)を変えることで、上記した第1実施形態と同様の作用効果を得ることができる。
[変形例]
上記の第1又は第2実施形態では、素子基板91又は93側に反射層5を設けるように構成したが、これに代えて、本発明では、当該反射層5をカラーフィルタ基板92又は94側に設けるようにしても構わない。また、本発明では、その趣旨を逸脱しない範囲において液晶装置100及び200の構成等につき種々の変形をすることが可能である。
上記の第1又は第2実施形態では、素子基板91又は93側に反射層5を設けるように構成したが、これに代えて、本発明では、当該反射層5をカラーフィルタ基板92又は94側に設けるようにしても構わない。また、本発明では、その趣旨を逸脱しない範囲において液晶装置100及び200の構成等につき種々の変形をすることが可能である。
[電子機器]
次に、本発明による液晶装置100又は200を電子機器の表示装置として用いる場合の実施形態について説明する。
次に、本発明による液晶装置100又は200を電子機器の表示装置として用いる場合の実施形態について説明する。
図17は、本実施形態の全体構成を示す概略構成図である。ここに示す電子機器は、上記の液晶装置100又は200と、これを制御する制御手段410とを有する。ここでは、液晶装置100又は200を、パネル構造体403と、半導体ICなどで構成される駆動回路402とに概念的に分けて描いてある。また、制御手段410は、表示情報出力源411と、表示情報処理回路412と、電源回路413と、タイミングジェネレータ414と、を有する。
表示情報出力源411は、ROM(Read Only Memory)やRAM(Random Access Memory)などからなるメモリと、磁気記録ディスクや光記録ディスクなどからなるストレージユニットと、デジタル画像信号を同調出力する同調回路とを備え、タイミングジェネレータ414によって生成された各種のクロック信号に基づいて、所定フォーマットの画像信号などの形で表示情報を表示情報処理回路412に供給するように構成されている。
表示情報処理回路412は、シリアル−パラレル変換回路、増幅・反転回路、ローテーション回路、ガンマ補正回路、クランプ回路などの周知の各種回路を備え、入力した表示情報の処理を実行して、その画像情報をクロック信号CLKとともに駆動回路402へ供給する。駆動回路402は、走査線駆動回路、データ線駆動回路及び検査回路を含む。また、電源回路413は、上述の各構成要素にそれぞれ所定の電圧を供給する。
次に、本発明に係る液晶装置100又は200を適用可能な電子機器の具体例について図18を参照して説明する。
まず、本発明に係る液晶装置100又は200を、可搬型のパーソナルコンピュータ(いわゆるノート型パソコン)の表示部に適用した例について説明する。図18(a)は、このパーソナルコンピュータの構成を示す斜視図である。同図に示すように、パーソナルコンピュータ710は、キーボード711を備えた本体部712と、本発明に係る液晶表示パネルを適用した表示部713とを備えている。
続いて、本発明に係る液晶装置100又は200を、携帯電話機の表示部に適用した例について説明する。図18(b)は、この携帯電話機の構成を示す斜視図である。同図に示すように、携帯電話機720は、複数の操作ボタン721のほか、受話口722、送話口723とともに、本発明に係る液晶装置100又は200を適用した表示部724を備える。
なお、本発明に係る液晶装置100又は200を適用可能な電子機器としては、図18(a)に示したパーソナルコンピュータや図18(b)に示した携帯電話機の他にも、液晶テレビ、ビューファインダ型・モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、ディジタルスチルカメラなどが挙げられる。
また、本発明は、液晶装置のみでなく、エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置、プラズマディスプレイ装置、電気泳動ディスプレイ装置、電子放出素子を用いた装置(Field Emission Display及びSurface-Conduction Electron-Emitter Display等)などの各種の電気光学装置においても本発明を同様に適用することが可能である。
1 上側基板、 2 下側基板、 4 液晶層、 6 着色層、 8 走査線、 10、50 画素電極、 21、21t、21r TFD素子、 22 第1のTFD素子、 23 第2のTFD素子、 91、93 素子基板、 92、94 カラーフィルタ基板、 100、200 液晶装置。
Claims (12)
- 1サブ画素領域内に透過領域及び反射領域を有し、ノーマリーブラックに設定されてなる液晶装置であって、
一対の基板を備え、
前記一対の基板のうち一方の基板は配線を有し、
前記一方の基板において前記透過領域及び前記反射領域には、各々独立した画素電極が配置されてなるとともに、前記画素電極及び前記配線にはそれぞれスイッチング素子が接続されてなり、
前記反射領域の前記スイッチング素子は、前記透過領域に対応する透過率−電圧の特性曲線と前記反射領域に対応する反射率−電圧の特性曲線を揃えるように、前記透過領域の前記スイッチング素子と大きさが異なっていることを特徴とする液晶装置。 - 1サブ画素領域内に透過領域及び反射領域を有し、ノーマリーブラックに設定されてなる液晶装置であって、
一対の基板を備え、
前記一対の基板のうち一方の基板は第1の配線を有し、
前記一方の基板において前記透過領域及び前記反射領域には、各々独立した画素電極が配置されてなるとともに、前記画素電極及び前記第1の配線にはそれぞれスイッチング素子が接続されてなり、
前記一方の基板は、前記第1の配線と交差し、且つ前記画素電極に対向するように延び、前記画素電極との間で電界を発生させる第2の配線をさらに有し、
前記透過領域及び前記反射領域において、前記スイッチング素子と前記第2の配線との間には保持容量が形成され、
前記第2の配線と前記画素電極の間隔及び前記保持容量の大きさは、前記透過領域と前記反射領域とで異なる値に設定されており、
前記反射領域の前記スイッチング素子の大きさは、前記透過領域に対応する透過率−電圧の特性曲線と前記反射領域に対応する反射率−電圧の特性曲線を揃えるように、前記透過領域の前記スイッチング素子と大きさが異なっていることを特徴とする液晶装置。 - 前記一対の基板の間には負の誘電率異方性を有する液晶層が保持されていることを特徴とする請求項1又は2に記載の液晶装置。
- 前記透過領域に対応する前記液晶層の厚さは、前記反射領域に対応する前記液晶層の厚さと略同一に設定されていることを特徴とする請求項3に記載の液晶装置。
- 前記反射領域に配置されてなる前記画素電極に接続されてなる前記スイッチング素子の大きさは、前記透過領域に配置されてなる前記画素電極に接続されてなる前記スイッチング素子の大きさよりも大きいことを特徴とする請求項1又は2に記載の液晶装置。
- 前記透過領域の前記スイッチング素子の大きさは、前記1サブ画素領域の数量及び前記1サブ画素領域の大きさ又は前記透過領域の大きさに基づき設定されており、
前記反射領域の前記スイッチング素子の大きさは、
前記透過領域に対応する透過率−電圧の特性曲線の最大透過率100%となる電圧をVtとし、前記反射領域に対応する反射率−電圧の特性曲線の最大反射率100%となる電圧をVrとしたときに、下記の式、
Vt=Vr又は|Vr−Vt|/Vt<約0.1に基づき設定されていることを特徴とする請求項1又は2に記載の液晶装置。 - 前記透過領域の前記画素電極は、前記反射領域の前記画素電極と大きさが略同一に設定され、前記反射領域の前記スイッチング素子の大きさは、前記透過領域の前記スイッチング素子の2倍の大きさに設定されていることを特徴とする請求項1又は2に記載の液晶装置。
- 前記反射領域に対応する前記一対の基板のうちいずれかには反射層が設けられていることを特徴とする請求項1又は2に記載の液晶装置。
- 前記スイッチング素子は、第1金属膜と、前記第1金属膜上に形成された絶縁膜と、少なくとも前記絶縁膜上に形成された第2金属膜とを有して構成され、
当該スイッチング素子は、前記絶縁膜を介して前記第1金属膜と前記第2金属膜とが平面的に重なる領域に位置していることを特徴とする請求項1又は2に記載の液晶装置。 - 前記第1の配線及び前記第2の配線は、各々前記透過領域と前記反射領域とに渡って設けられていることを特徴とする請求項2に記載の液晶装置。
- 前記第2の配線は、前記第1の配線の延在する方向と略直交する方向に延在し且つ適宜の間隔をおいて配置された直線状の複数の導電部を有すると共に、前記画素電極は、前記導電部の各々の間において前記導電部と略平行に配置された直線状の複数の透明導電部を有し、
前記第2の配線と前記画素電極の間隔は、前記導電部と当該導電部に隣接する前記透明導電部との電極間隔に対応していることを特徴とする請求項2に記載の液晶装置。 - 請求項1乃至11のいずれか一項に記載の液晶装置を表示部として備えることを特徴とする電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005281394A JP2007065602A (ja) | 2005-08-03 | 2005-09-28 | 液晶装置及び電子機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005225046 | 2005-08-03 | ||
JP2005281394A JP2007065602A (ja) | 2005-08-03 | 2005-09-28 | 液晶装置及び電子機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007065602A true JP2007065602A (ja) | 2007-03-15 |
Family
ID=37927835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005281394A Withdrawn JP2007065602A (ja) | 2005-08-03 | 2005-09-28 | 液晶装置及び電子機器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007065602A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008304493A (ja) * | 2007-06-05 | 2008-12-18 | Hitachi Displays Ltd | 液晶表示装置及び液晶表示パネル |
JP2009294633A (ja) | 2007-09-26 | 2009-12-17 | Nec Lcd Technologies Ltd | 液晶表示装置 |
-
2005
- 2005-09-28 JP JP2005281394A patent/JP2007065602A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008304493A (ja) * | 2007-06-05 | 2008-12-18 | Hitachi Displays Ltd | 液晶表示装置及び液晶表示パネル |
JP2009294633A (ja) | 2007-09-26 | 2009-12-17 | Nec Lcd Technologies Ltd | 液晶表示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7688408B2 (en) | Liquid crystal device and electronic apparatus | |
JP4645488B2 (ja) | 液晶装置及び電子機器 | |
JP4717672B2 (ja) | 液晶装置及び電子機器 | |
JP4434166B2 (ja) | 液晶装置及び電子機器 | |
EP1983368A1 (en) | Liquid crystal apparatus and electronic device | |
JP2007264367A (ja) | 液晶装置及び電子機器 | |
US7068338B2 (en) | Electro-optical device substrate, electro-optical device, and electronic apparatus | |
JP2006126788A (ja) | 液晶装置及び電子機器 | |
JP4197000B2 (ja) | 電気光学装置および電子機器 | |
JP4501899B2 (ja) | 液晶表示装置および電子機器 | |
JP2007226200A (ja) | 液晶装置及び電子機器 | |
JP2006139058A (ja) | 液晶表示装置および電子機器 | |
JP2007139948A (ja) | 電気光学装置及び電子機器 | |
US7834968B2 (en) | Liquid crystal device and electronic apparatus | |
JP2006259501A (ja) | 液晶装置及び電子機器 | |
JP4453434B2 (ja) | 液晶装置及び電子機器 | |
US10866441B2 (en) | Liquid crystal display device | |
JP2007065602A (ja) | 液晶装置及び電子機器 | |
JP2007086506A (ja) | 電気光学装置及び電子機器 | |
JP2006091486A (ja) | 電気光学装置及び電子機器 | |
JP2007226199A (ja) | 液晶装置及び電子機器 | |
JP4622427B2 (ja) | 液晶装置及び電子機器 | |
JP2005316404A (ja) | 電気光学装置及び電子機器 | |
JP2007121326A (ja) | 電気光学装置及び電子機器 | |
JP2006003808A (ja) | 液晶装置及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070404 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |