JP2007017127A - 膨張弁 - Google Patents

膨張弁 Download PDF

Info

Publication number
JP2007017127A
JP2007017127A JP2005201628A JP2005201628A JP2007017127A JP 2007017127 A JP2007017127 A JP 2007017127A JP 2005201628 A JP2005201628 A JP 2005201628A JP 2005201628 A JP2005201628 A JP 2005201628A JP 2007017127 A JP2007017127 A JP 2007017127A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
valve body
passage
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005201628A
Other languages
English (en)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2005201628A priority Critical patent/JP2007017127A/ja
Publication of JP2007017127A publication Critical patent/JP2007017127A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Abstract

【課題】 弁体の横振動を阻止して騒音の発生を防止できる膨張弁を、低コストに提供する。
【解決手段】 本発明の膨張弁によれば、弁座13に一体成形された収容部41からなる横振動防止構造により、弁体14が弁部の開閉方向と直角な方向、つまり横方向へ移動するのが阻止されるため、弁体14の横振動が阻止され、騒音の発生が防止される。また、横振動防止構造がボディ2をダイカスト成形する際に同時に形成されるため、切削加工等に比べて加工時間が短くなり、また材料の歩留まりも向上する。その結果、低コストに製造することができる。特に、収容部41が複数の係止部42及び通路部43からなり、その形状が複雑になっているが、ダイカストによれば容易に形成できるという利点がある。
【選択図】 図2

Description

本発明は、上流側から導入された冷媒を内部の弁部を通過させることにより絞り膨張させて下流側に導出する膨張弁に関する。
自動車用エアコン装置の冷凍サイクルは、一般に、循環する冷媒を圧縮するコンプレッサと、圧縮された冷媒を凝縮するコンデンサと、冷凍サイクル内の冷媒を溜めるとともに凝縮された冷媒を気液に分離するレシーバと、分離された液冷媒を絞り膨張させる膨張弁と、膨張弁で膨張された冷媒を蒸発させるエバポレータとにより構成されている。
このうち、膨張弁には、例えばエバポレータ出口の冷媒の温度及び圧力を感知してエバポレータに送り出す冷媒の流量を制御する温度式膨張弁が用いられる。この温度式膨張弁は、レシーバからエバポレータへ向かう冷媒を通過させる第1の通路と、エバポレータから戻ってきた冷媒を通過させてコンプレッサへ導出する第2の通路が形成されたボディを備える。このボディの第1の通路の中間部には、冷媒の流量を調整するための弁部を構成する弁孔が設けられている。この弁孔の端部周端縁により規定される弁座には、同じく弁部を構成する例えば球状の弁体が接離する。また、このボディの第2の通路側の端部には、この第2の通路を流れる冷媒の温度及び圧力を感知して、シャフトを介して弁体に開弁方向の駆動力を付与するパワーエレメントが設けられている。さらに、ボディの第1の通路側の端部には、弁体をシャフトと反対側で支持するとともに、その弁体に閉弁方向の付勢力を付与するスプリングが配置されている(例えば特許文献1参照)。
そして、パワーエレメントによる開弁方向の力とスプリングによる閉弁方向の力とがバランスする位置に弁体が保持され、そのときの弁開度に応じた流量の冷媒が弁部を通過して流れるようになっている。
ところで、このような膨張弁のボディは、一般に、軽量で加工性に優れたアルミニウム合金を押出成形して中実の半製品を作製した後、第1の通路(弁孔を含む)や第2の通路を切削加工して製造される。その後、シャフト、弁体、スプリング、パワーエレメント等が順次組み付けられる。このとき、シャフトと弁体とは互いに逆方向から組み付けられるが、球状の弁体は平坦なシャフトの端面にほぼ点接触で当接しているに過ぎない。このため、第1の通路を介して高圧の冷媒が導入されると、弁体がその冷媒流によってシャフトの端面に沿って横方向に振動し、その振動が増幅されることにより騒音が発生する場合があった。
このような弁体の横振動の問題を解決するために、例えばシャフトの弁体との当接面に凹部を形成することにより、弁体が横方向に移動するのを阻止するようにした膨張弁が提案されている(例えば特許文献2参照)。
また、弁体におけるシャフトの端面との接触面を平坦に形成してその接触部の摩擦力を大きくすることにより、弁体が横方向に移動するのを抑制できるようにした膨張弁も提案されている(例えば特許文献3参照)。
特開平11−325660号公報 特開2001−91108号公報 特開2000−18773号公報
しかしながら、一般に面積が小さいシャフトの端面に弁体の形状に沿った球面状の凹部を加工したり、小さな球状の弁体の一部に平坦面を加工したりするには精密な加工技術を要する。また、これらの加工を特に切削により行う場合には、加工時間がかかるとともに材料の歩留まりが悪いため、製造コストが嵩むといった問題がある。
なお、このような問題は、温度式膨張弁に限らず、電磁式その他の膨張弁においても同様に存在する場合がある。
本発明は、このような点に鑑みてなされたものであり、弁体の横振動を阻止して騒音の発生を防止できる膨張弁を、低コストに提供することを目的とする。
本発明では上記問題を解決するために、上流側から導入された冷媒を、内部の弁部を通過させることにより絞り膨張させて下流側へ供給する膨張弁において、金属のダイカストにより弁座が一体成形されたボディと、前記弁座に接離可能に配置されて前記弁部を開閉する弁体と、前記ダイカストにより前記弁座に一体成形され、前記弁体が前記弁座に接離する際に前記弁部の開閉方向と直角な方向への移動するのを阻止する横振動防止構造と、を備えたことを特徴とする膨張弁が提供される。
このような膨張弁においては、弁座に一体成形された横振動防止構造により、弁体が弁部の開閉方向と直角な方向、つまり横方向へ移動するのが阻止されるため、弁体の横振動が防止される。この横振動防止構造は、ボディのダイカスト成形の際に同時に成形されるため、複雑な形状であっても簡易かつ迅速に形成される。
本発明の膨張弁によれば、弁座に一体成形された横振動防止構造により弁体の横振動が阻止され、騒音の発生が防止される。また、横振動防止構造がボディのダイカスト成形の際に同時に形成されるため、切削加工等に比べて加工時間が短くなり、また材料の歩留まりも向上する。その結果、低コストに製造することができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。本実施の形態は、本発明の膨張弁を自動車用エアコン装置の冷凍サイクルに適用される温度式膨張弁として具体化したものである。図1は、本実施の形態に係る膨張弁の中央縦断面図である。
膨張弁1は、後述するアルミニウム合金のダイカストによって形成されたボディ2を有する。このボディ2は略角柱状をなすが、その側面のいたるところに軽量化のための肉抜き部が設けられている。ボディ2の内部には冷媒の絞り膨張を行う弁部が設けられ、その長手方向の端部には、感温部として機能するパワーエレメント3が設けられている。
ボディ2の側部には、レシーバ(コンデンサ側)から高温・高圧の液冷媒を受けるポート4と、弁部を介して絞り膨張された低温・低圧の冷媒をエバポレータへ供給するポート5と、エバポレータから戻ってきた冷媒を受けるポート6と、その冷媒をコンプレッサへ戻すポート7とが設けられている。ポート4、ポート5及びこれらをつなぐ冷媒通路により第1の通路8が構成され、ポート6、ポート7及びこれらをつなぐ冷媒通路により第2の通路9が構成されている。第1の通路8のポート4及びポート5の各開口端には、それぞれレシーバ、エバポレータにつながる配管を接続する際に介装させるシール部材のシール面が設けられている。このシール面は、その開口端に向って広がるようにテーパ状に形成されている。また、第2の通路9のポート6及びポート7の各開口端にも、それぞれエバポレータ、コンプレッサにつながる配管を接続する際に介装させるシール部材のシール面が設けられている。このシール面も、その開口端に向って広がるようにテーパ状に形成されている。
また、ボディ2において、第1の通路8のポート4側に位置する冷媒の導入通路10と、ポート5側に位置する冷媒の導出通路11との間には、これらを接続する弁孔12が形成されており、この弁孔12の上流側開口端部により弁座13が構成されている。導入通路10と導出通路11は、図示のように互いに異なる軸線上に沿って延びるように配置されており、弁孔12が両通路に直交するように形成されて両通路を接続している。なお、弁部の詳細な構成については後述する。
弁座13の上流側には、弁座13とともに弁部を構成する球状の弁体14が配置されている。また、ボディ2の下端部には、この第1の通路8にほぼ直交して外部と連通する開口部15が形成されており、この開口部15を封止するようにアジャストねじ16が螺合されている。アジャストねじ16の先端面には円溝状のスプリング受け部17が形成され、このスプリング受け部17には、弁体14との間に介装されてこの弁体14を弁座13に着座させる方向に付勢するコイルスプリング18の一端部が収容されて支持されている。このアジャストねじ16のボディ2への螺入量を調整することで、コイルスプリング18の荷重を調整できるようなっている。つまり、このアジャストねじ16は、開口部15内で位置調整されることによりコイルスプリング18の弾性力を調整可能なアジャスト機構として機能する。また、アジャストねじ16とボディ2との間には、内部の冷媒が開口部15を通って外部に漏洩することを阻止するOリング19が介装されている。
また、ボディ2の上端部には、第2の通路9にほぼ直交して外部と連通する開口部20が形成されており、この開口部20を封止するようにパワーエレメント3が固定されている。このパワーエレメント3は、ステンレス材からなるアッパーハウジング21及びロアハウジング22と、これらによって囲まれた空間を仕切るように配置された可撓性のある金属薄板からなるダイヤフラム23と、このダイヤフラム23の下面に配置されたディスク24とによって構成されている。アッパーハウジング21とダイヤフラム23とによって密閉された感温室には、感温用ガスが封入されている。パワーエレメント3とボディ2との間には、内部の冷媒が開口部20を通って外部に漏洩することを阻止するOリング25が介装されている。第2の通路9を通過する冷媒の圧力及び温度は、ディスク24に設けられた孔部又はスリットを通ってダイヤフラム23の下面に伝達される。
ディスク24の下方には、ダイヤフラム23の変位を弁体14へ伝達するシャフト26が配置されている。このシャフト26は、ボディ2に形成された貫通孔27を挿通している。この貫通孔27は、その上部に大径部28、下部に小径部29を有しており、大径部28の上部開口端は、テーパ状の面取りがされた形状に形成されている。貫通孔27の大径部28には、シャフト26と貫通孔27との間を完全にシールするOリング30が配置され、貫通孔27における冷媒のバイパス漏れを完全に防止するように構成されている。
シャフト26の上部は、第2の通路9を横切って配置されたホルダ31により保持されている。ホルダ31の下端部は貫通孔27の大径部28に嵌入されており、その下部端面が貫通孔27の上部開口端方向へのOリング30の移動を規制している。シャフト26の下端部は、小径部29を貫通して弁孔12に達している。シャフト26の上端部は、ディスク24の下面に当接しているが、そのディスク24の当接面はシャフト26の軸線に直角に交わる平面に対して傾斜している。その結果、ダイヤフラム23の軸線方向の動きが、シャフト26に軸線方向の荷重を与えるとともに横方向の荷重をも与えるようになっている。これにより、ダイヤフラム23の動きをシャフト26に伝えるとき、シャフト26に横荷重の分力が働き、ポート4の流体通路を流れる高圧冷媒に圧力変動があってもシャフト26の動作が敏感に反応しないようにしてシャフト26の長手方向の振動を抑制している。
また、ボディ2においてポート4及びポート7が開口する側の側面の中央には、所定深さのねじ穴32が設けられている。このねじ穴32は、コンプレッサ及びレシーバにつながる各配管を接続するための図示しない固定プレートを取り付ける際に、その固定プレートを固定するためのボルトを締結させるためのものである。さらに、ボディ2には、これを前後方向に貫通する図示しない一対の捨て穴が設けられている(図3参照)。この捨て穴は、ボディ2に図示しない配管を接続するための固定プレートを取り付ける際に、その固定プレートを固定するためのボルトを挿通するためのものである。
なお、ボディ2の各側面のいたるところには、ボディ2の軽量化を図るために複数の肉抜き部33が設けられている。このような比較的複雑な形状であっても、ダイカストによれば容易に形成することができる。
次に、弁部の構成について詳細に説明する。図2は、弁部の構成を表す説明図である。(A)は弁部近傍を下方(弁体に対してシャフトと反対側)からみた図であり、(B)は(A)のA−A矢視断面図である。
この弁部には、ダイカストによりボディ2に一体成形された横振動防止構造が設けられている。この横振動防止構造は、特に同図(B)に示すように、内部が弁孔12に連通するように形成され、弁体14をその下端部を除いて収容可能な収容部41からなる。
この収容部41は、特に同図(A)に示されるように、その軸線周りに等間隔(約120度おき)で設けられた3つの係止部42と、隣接する係止部42の間にそれぞれ設けられた3つの通路部43とからなり、弁体14を取り囲むように配設されている。
係止部42は、弁孔12に連通する孔部の壁が部分的に内方に突出したような形状を有し、その先端が弁体14の外周面と僅かなクリアランスをあけて配置されている。すなわち、係止部42の先端を結ぶ仮想円の直径が、弁体14の直径よりも上記クリアランス分大きくなるように形成されている。その結果、弁体14が半径方向に移動したときには、係止部42の先端が外周面にほぼ点接触にて当接してこれを半径方向に係止し、弁体14の横振動を防止する。
一方、通路部43は、弁体14が収容部41に収容されているときに、弁体14の外周面との間に形成される冷媒通路に必要流量の冷媒の流れを確保できる大きさを有する。すなわち、このとき形成される3つの冷媒通路の断面積の総和が、弁部の全開時に弁体14と弁座13との間に形成される開口部の最大開口面積以上となるように形成されており、弁部を通過する必要流量の冷媒の流れが確保されるようになっている。
また、収容部41の弁孔12との接続部には、弁孔12側に向って小径化するテーパ面が設けられ、その弁孔12側の端部内周端縁によって上記弁座13が構成されている。
次に、本実施の形態の膨張弁の製造方法の要部について説明する。図3は、膨張弁の製造方法の要部概略を示す説明図である。なお、説明の便宜上、図示においては膨張弁の形状を単純化している。
膨張弁1は、アルミニウム合金のダイカストによって製造される。本実施の形態においては、図示のような第1金型50、第2金型60及びマンドレル70を含む装置が用いられる。これら第1金型50、第2金型60及びマンドレル70によって、ボディ2の本体及び冷媒通路等を形成するチャンバが構成される。
第1金型50は、ポート4及び7が位置する側であるボディ2の前半部を成形するためのチャンバ51を有する。そのチャンバ51内には、ポート4,7をそれぞれ形成するためのポート形成部52,53、ねじ穴32の下穴を形成するためのねじ穴形成部54、一対の捨て穴を形成するための捨て穴形成部55が、それぞれ開口部に向って突設されている。ポート形成部52及び53の基端部は、図示しないが、上述したシール部材のシール面を形成するためにテーパ状になっている。また、マンドレル70を挿通するための挿通穴を形成するマンドレル挿通部形成溝56、及び溶融したアルミニウム合金を注入するための注入路を形成する注入路形成溝57が、それぞれチャンバ51に連通して設けられている。
一方、第2金型60は、ポート5及び6が位置する側であるボディ2の後半部を成形するためのチャンバ61を有する。そのチャンバ61には、ポート5,6をそれぞれ形成するためのポート形成部62,63が、それぞれ開口部に向って突設されている。ポート形成部62及び63の基端部は、図示しないが、上述したシール部材のシール面を形成するためにテーパ状になっている。また、第1金型50と組み合わせた際にマンドレル挿通部形成溝56とともにマンドレル70を挿通する挿通穴を形成するマンドレル挿通部形成溝64、及び注入路形成溝57とともに溶融したアルミニウム合金を注入するための注入路を形成する注入路形成溝65が、それぞれチャンバ61に連通して設けられている。
さらに、マンドレル70は段付円筒状をなし、上述した開口部15を形成するアジャスト部形成部71、及び第2の通路8の弁部(弁孔12及び収容部41を含む)を構成する弁部形成部72が設けられている。
そして、ボディ2を製造する際には、第1金型50、第2金型60及びマンドレル70を組み立てた状態で注入路から溶融したアルミニウム合金を注入してダイカストを行う。本実施の形態においては、このアルミニウム合金として鋳造性に優れたAl−Si−Cu系のものを使用する。具体的には、Siが9.6〜12.0重量%、Feが0〜1.3重量%、Cuが1.5〜3.5重量%、Mnが0〜0.5重量%、Mgが0〜0.3重量%、Znが0〜1.0重量%、Niが0〜0.5重量%、Snが0〜0.3重量%、残部がAl及び不可避不純物からなるものを使用する。特に、Siを9.6〜12.0重量%含めることにより、溶融したアルミニウム合金の流動性を良好に保持することができ、またCuを1.5〜3.5重量%に抑えることにより、材料の収縮欠陥を抑制することができる。
そして、そのアルミニウム合金が硬化すると、マンドレル70を抜いた後に第1金型50と第2金型60とを分離する。そして、このようにして成形されたボディ2の半製品に、パワーエレメント3の取り付け穴となる開口部20、アジャストねじ16の取り付け穴となる開口部15、及びねじ穴32のそれぞれのねじ部を加工し、さらにOリング25の介装部と貫通孔27を加工することにより、ボディ2が完成する。
そして、弁体14が取り付けられたコイルスプリング18をアジャストねじ16に取り付け、そのアジャストねじ16をボディ2の下側の開口部15から挿入し、螺合して固定する。続いて、シャフト26を挿通したホルダ31などをボディ2の上側の開口部20から挿入し、さらに、Oリング25が装着されたパワーエレメント3を螺合して固定する。そして、この状態からアジャストねじ16の螺入量を微調整してコイルスプリング18による荷重を設定する。
図1に戻り、以上のように構成された膨張弁1は、エバポレータから戻ってきて第2の通路9を通過する冷媒の圧力及び温度をパワーエレメント3が感知し、その冷媒の温度が高い又は圧力が低い場合には、シャフト26を介して弁体14を開弁方向へ押して弁座13からのリフト量を大きくし、逆にその温度が低い又は圧力が高い場合には、弁体14を閉弁方向へ移動させて弁座13からのリフト量を小さくして弁開度を制御するようにしている。一方、レシーバから供給された液冷媒は、ポート4を介して弁体14のある空間に流入し、弁開度が制御された弁部を通過することで絞り膨張され、低温・低圧の冷媒になる。その冷媒は、ポート5から出てエバポレータに供給され、ここで車室内の空気と熱交換されて膨張弁1のポート6に戻される。このとき、膨張弁1は、エバポレータの出口の冷媒が所定の過熱度を有するようにエバポレータへ供給する冷媒の流量を制御するので、エバポレータからは冷媒が完全に蒸発された状態でコンプレッサに戻される。
以上に説明したように、膨張弁1によれば、ボディ2がアルミニウム合金のダイカストにより形成されるため、肉抜き部の多い複雑な形状であっても容易に作製することができる。例えば押出成形によればボディ2の側面の相交わる方向にそれぞれ肉抜き部を設けることは困難であるが、ダイカストによればこれを容易に行うことができる。その結果、ボディ2の形状の自由度が向上するとともに、膨張弁1の大幅な軽量化を図ることができる。また、押出加工等と比較しても切削加工を大幅に少なくして材料の歩留まりを良くすることができるため、膨張弁1の製造コストを低減させることができる。
また、弁座13に一体成形された横振動防止構造により、弁体14が弁部の開閉方向と直角な方向、つまり横方向へ移動するのが阻止されるため、弁体14の横振動が防止される。その結果、弁体14の横振動による騒音の発生がなくなる。また、横振動防止構造がボディ2をダイカスト成形する際に同時に形成されるため、切削加工等に比べて加工時間が短くなり、また材料の歩留まりも向上する。その結果、低コストに実現することができる。特に、収容部41が複数の係止部42及び通路部43からなり、その形状が複雑になっているが、ダイカストによれば容易に形成できるという利点がある。
以上、本発明の好適な実施の形態について説明したが、本発明はその特定の実施の形態に限定されるものではなく、本発明の精神の範囲内での変化変形が可能であることはいうまでもない。図4〜図8は、それぞれ上記実施の形態の変形例を表す説明図であり、図2に対応する。なお、各図において上記実施の形態と同様の構成部分については同一の符号を付している。
図4は、第1の変形例に係る横振動防止構造を表す説明図である。(A)は弁部近傍を下方からみた図であり、(B)は(A)のB−B矢視断面図である。
第1の変形例の横振動防止構造は、その収容部141の横断面が略正三角形状に構成されている。この収容部141の3つの係止部142は、その三角形の各辺の中央部にあたる壁面からなり、3つの通路部143が、その三角形の頂部に位置する。弁体14が半径方向に移動しようとしたときには、係止部142が弁体14の外周面にほぼ点接触にて当接してこれを半径方向に係止し、弁体14の横振動を防止する。
一方、通路部143と弁体14との間に形成される3つの冷媒通路の断面積の総和が、弁部の全開時に弁体14と弁座13との間に形成される開口部の最大開口面積以上となるように形成されており、弁部を通過する必要流量の冷媒の流れが確保されるようになっている。
図5は、第2の変形例に係る横振動防止構造を表す説明図である。(A)は弁部近傍を下方からみた図であり、(B)は(A)のC−C矢視断面図であり、(C)は(A)のD−D矢視断面図である。
第2の変形例の横振動防止構造においては、その収容部241が、その軸線周りに等間隔(約90度おき)で設けられた4つの係止部242と、隣接する係止部242の間にそれぞれ設けられた4つの通路部243とからなり、弁体14を取り囲むように配設されている。弁体14が半径方向に移動しようとしたときには、係止部242が弁体14の外周面にほぼ点接触にて当接してこれを半径方向に係止し、弁体14の横振動を防止する。
一方、通路部243と弁体14との間に形成される4つの冷媒通路の断面積の総和が、弁部の全開時に弁体14と弁座13との間に形成される開口部の最大開口面積以上となるように形成されており、弁部を通過する必要流量の冷媒の流れが確保されるようになっている。
図6は、第3の変形例に係る横振動防止構造を表す説明図である。(A)は弁部近傍を下方からみた図であり、(B)は(A)のE−E矢視断面図であり、(C)は(A)のF−F矢視断面図である。
第3の変形例の横振動防止構造は、その収容部341の横断面が略正方形状に構成されている。この収容部341の4つの係止部342は、その正方形の各辺の中央部にあたる壁面からなり、4つの通路部343が、その正方形の頂部に位置する。弁体14が半径方向に移動したときには、係止部342が弁体14の外周面にほぼ点接触にて当接してこれを半径方向に係止し、弁体14の横振動を防止する。
一方、通路部343と弁体14との間に形成される4つの冷媒通路の断面積の総和が、弁部の全開時に弁体14と弁座13との間に形成される開口部の最大開口面積以上となるように形成されており、弁部を通過する必要流量の冷媒の流れが確保されるようになっている。
図7は、第4の変形例に係る横振動防止構造を表す説明図である。(A)は弁部近傍を下方からみた図であり、(B)は(A)のG−G矢視断面図であり、(C)は(A)のH−H矢視断面図である。
第4の変形例の横振動防止構造においては、その収容部441が、その軸線周りに等間隔(約45度おき)で設けられた8つの係止部442と、隣接する係止部442の間にそれぞれ設けられた8つの通路部443とからなり、弁体14を取り囲むように配設されている。弁体14が半径方向に移動したときには、係止部442が弁体14の外周面にほぼ点接触にて当接してこれを半径方向に係止し、弁体14の横振動を防止する。
一方、通路部443と弁体14との間に形成される8つの冷媒通路の断面積の総和が、弁部の全開時に弁体14と弁座13との間に形成される開口部の最大開口面積以上となるように形成されており、弁部を通過する必要流量の冷媒の流れが確保されるようになっている。
図8は、第5の変形例に係る横振動防止構造を表す説明図である。(A)は弁部近傍を下方からみた図であり、(B)は(A)のI−I矢視断面図であり、(C)は(A)のJ−J矢視断面図である。
第5の変形例の横振動防止構造においては、その収容部541が、その軸線周りに等間隔(約60度おき)で設けられた6つの係止部542と、隣接する係止部542の間にそれぞれ設けられた6つの通路部543とからなり、弁体14を取り囲むように配設されている。弁体14が半径方向に移動したときには、係止部542が弁体14の外周面にほぼ点接触にて当接してこれを半径方向に係止し、弁体14の横振動が防止される。
一方、通路部543と弁体14との間に形成される6つの冷媒通路の総和が、弁部の全開時に弁体14と弁座13との間に形成される開口部の最大開口面積以上となるように形成されており、弁部を通過する必要流量の冷媒の流れが確保されるようになっている。
なお、上記実施の形態及び各変形例においては、アルミニウム合金のダイカストによるボディの成形を温度式膨張弁に適用した例を示したが、電磁式その他の膨張弁にも適用できることは言うまでもない。また、アルミニウム合金に限らず、亜鉛合金、マグネシウム合金、銅合金その他の金属のダイカストによりボディを形成することもできる。
実施の形態に係る膨張弁の中央縦断面図である。 弁部の構成を表す説明図である。 膨張弁の製造方法の要部概略を示す説明図である。 第1の変形例に係る横振動防止構造を表す説明図である。 第2の変形例に係る横振動防止構造を表す説明図である。 第3の変形例に係る横振動防止構造を表す説明図である。 第4の変形例に係る横振動防止構造を表す説明図である。 第5の変形例に係る横振動防止構造を表す説明図である。
符号の説明
1 膨張弁
2 ボディ
3 パワーエレメント
8 第1の通路
9 第2の通路
12 弁孔
13 弁座
14 弁体
26 シャフト
31 ホルダ
33 肉抜き部
41,141,241,341,441,541 収容部
42,142,242,342,442,542 係止部
43,143,243,343,443,543 通路部

Claims (8)

  1. 上流側から導入された冷媒を、内部の弁部を通過させることにより絞り膨張させて下流側へ供給する膨張弁において、
    金属のダイカストにより弁座が一体成形されたボディと、
    前記弁座に接離可能に配置されて前記弁部を開閉する弁体と、
    前記ダイカストにより前記弁座に一体成形され、前記弁体が前記弁座に接離する際に前記弁部の開閉方向と直角な方向への移動するのを阻止する横振動防止構造と、
    を備えたことを特徴とする膨張弁。
  2. 冷凍サイクルに設けられて動作し、コンデンサ側から流入した冷媒を前記弁部を通過させることにより絞り膨張させてエバポレータへ供給し、前記エバポレータから戻ってきた冷媒の圧力と温度を感知して前記弁部の開度を制御するとともに、その冷媒をコンプレッサ側に導出する温度式膨張弁として構成され、
    前記コンデンサ側からの冷媒を導入して、中間部に設けられた前記弁部を通過させて前記エバポレータへ導出するための第1の通路と、前記エバポレータから戻ってきた冷媒を導入して前記コンプレッサ側へ導出するための第2の通路とが形成された前記ボディと、
    前記ボディにおいて、前記第2の通路に対して前記第1の通路とは反対側に設けられ、前記第2の通路を流れる冷媒の温度及び圧力を感知し、シャフトを介して前記第1の通路に配置された前記弁体に駆動力を伝達することにより前記弁部の開度を制御し、前記エバポレータへ導出する冷媒の流量を制御するパワーエレメントと、
    を備えたことを特徴とする請求項1記載の膨張弁。
  3. 前記弁体を前記シャフトと反対側から支持し、前記シャフトによる駆動力と対抗する付勢力を付与するスプリングを備えたことを特徴とする請求項2記載の膨張弁。
  4. 前記横振動防止構造は、前記弁座を規定する弁孔に内部が連通するとともに、上流側から前記弁体を少なくとも部分的に収容する収容部からなり、
    前記収容部は、
    前記弁体の外周面と所定のクリアランスをあけて配設され、前記弁体が横方向に移動しようとしたときに前記外周面に部分的に当接してこれを係止可能な複数の係止部と、
    隣接する前記係止部の間にそれぞれ設けられ、前記弁体との間に冷媒通路を形成する複数の通路部と、
    からなることを特徴とする請求項3記載の膨張弁。
  5. 前記通路部と前記弁体との間に形成される複数の冷媒通路の断面積の総和が、前記弁部の全開時の最大開口面積以上となるように形成されたことを特徴とする請求項4記載の膨張弁。
  6. 前記弁体が球状をなし、
    前記収容部は、その断面における前記係止部の内側先端を結ぶ円の直径が、前記弁体の直径よりも前記クリアランス分大きくなるように形成され、前記弁体を取り囲むように配設されていることを特徴とする請求項5記載の膨張弁。
  7. 前記収容部の前記弁孔との接続部にテーパ面が設けられ、その内周端縁によって前記弁座が構成されたことを特徴とする請求項6記載の膨張弁。
  8. 前記金属がアルミニウム合金であることを特徴とする請求項1記載の膨張弁。
JP2005201628A 2005-07-11 2005-07-11 膨張弁 Pending JP2007017127A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201628A JP2007017127A (ja) 2005-07-11 2005-07-11 膨張弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201628A JP2007017127A (ja) 2005-07-11 2005-07-11 膨張弁

Publications (1)

Publication Number Publication Date
JP2007017127A true JP2007017127A (ja) 2007-01-25

Family

ID=37754436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201628A Pending JP2007017127A (ja) 2005-07-11 2005-07-11 膨張弁

Country Status (1)

Country Link
JP (1) JP2007017127A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099895A3 (de) * 2009-03-06 2011-01-06 Otto Egelhof Gmbh & Co.Kg Ventilanordnung, insbesondere für ein expansionsventil
WO2015177290A1 (de) * 2014-05-23 2015-11-26 Otto Egelhof Gmbh & Co. Kg Expansionsventil
EP3163224A1 (de) * 2015-10-27 2017-05-03 Mahle International GmbH Ventileinrichtung, insbesondere expansionsventil, für eine klimatisierungsanlage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099895A3 (de) * 2009-03-06 2011-01-06 Otto Egelhof Gmbh & Co.Kg Ventilanordnung, insbesondere für ein expansionsventil
WO2015177290A1 (de) * 2014-05-23 2015-11-26 Otto Egelhof Gmbh & Co. Kg Expansionsventil
EP3163224A1 (de) * 2015-10-27 2017-05-03 Mahle International GmbH Ventileinrichtung, insbesondere expansionsventil, für eine klimatisierungsanlage
US10197315B2 (en) 2015-10-27 2019-02-05 Mahle International Gmbh Valve mechanism for an air conditioning system

Similar Documents

Publication Publication Date Title
JP2007183082A (ja) 膨張弁
EP2482010B1 (en) Expansion valve
US7624930B2 (en) Temperature-type expansion valve
US20070283717A1 (en) Expansion valve
JP6064114B2 (ja) 膨張弁
JP6085763B2 (ja) 電磁弁
US6241157B1 (en) Expansion valve
JP2007032862A (ja) 膨張弁
JP4848548B2 (ja) 電磁弁付き膨張弁
JP2007017127A (ja) 膨張弁
JP3899055B2 (ja) 膨張弁
JP6007369B2 (ja) 制御弁
JP5227967B2 (ja) 膨張弁
JP6402314B2 (ja) 膨張弁
JP6379959B2 (ja) 冷凍サイクル用圧縮機
JP2007032863A (ja) 膨張弁
JP2003130500A (ja) 電磁弁一体型膨張弁
JP2009236148A (ja) 圧力制御弁
JP2009156512A (ja) 膨張弁
JP2014066376A (ja) 制御弁
JP2007147241A (ja) 膨張弁
JP2008286425A (ja) 膨張弁