JP2007010452A - 電磁駆動型角速度センサおよびその駆動回路 - Google Patents

電磁駆動型角速度センサおよびその駆動回路 Download PDF

Info

Publication number
JP2007010452A
JP2007010452A JP2005191021A JP2005191021A JP2007010452A JP 2007010452 A JP2007010452 A JP 2007010452A JP 2005191021 A JP2005191021 A JP 2005191021A JP 2005191021 A JP2005191021 A JP 2005191021A JP 2007010452 A JP2007010452 A JP 2007010452A
Authority
JP
Japan
Prior art keywords
electrode
weight
rotation detection
angular velocity
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005191021A
Other languages
English (en)
Inventor
Tsuyoshi Kosugi
津代志 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Star Micronics Co Ltd
Original Assignee
Star Micronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Star Micronics Co Ltd filed Critical Star Micronics Co Ltd
Priority to JP2005191021A priority Critical patent/JP2007010452A/ja
Publication of JP2007010452A publication Critical patent/JP2007010452A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】 電磁駆動型角速度センサにおいて、静電誘導により、駆動電極の電位変動の影響が回転検出用電極に及ぶことで発生する静電誘導ノイズを低減する。
【解決手段】
駆動電極101の両端に互いに逆位相の駆動信号を供給し、また回転検出用電極102の両端からの誘導起電力の検出を差動アンプ104によって差動検出する。さらに振動体である重り100をNまたはP型のシリコンで構成し、それをアース電位に接続する。これにより、駆動電極101の電位変動に起因して、静電誘導効果によって回転検出電極102に現れるノイズを抑制する。
【選択図】 図2

Description

本発明は、回転に伴う角速度を電磁的に検出する角速度センサにおいて、検出信号に含まれるノイズを低減することができる技術に関する。
電磁型ジャイロと呼ばれている電磁駆動型角速度センサが知られている。この角速度センサは、例えばZ軸方向に静磁場が加えられたXYZ軸直交空間において、X−Y平面内に平板状の重りを周囲から弾性的に支持し、さらにこの重りの表面に駆動用電極および回転検出用電極を形成した基本構造を有している。
この構造において、駆動用電極に駆動信号(AC電流)を流すと、駆動用電極に駆動信号の周波数に応じた周期的なローレンツ力が働き、重りがX−Y平面内の例えばX軸方向に振動する。ここで、Z軸回りの回転が起こると、振動する重りにコリオリの力が働き、Y軸方向の振動成分が発生する。
これらの振動が発生した際、回転検出用電極は、磁束を横切った振動をするので、そこには誘導起電力が発生する。この回転検出用電極に誘導される誘導起電力(誘導電圧)は、上述したZ軸回りの回転の変化に影響を受ける。コリオリの力は、Z軸回りの回転の角速度に比例するので、この回転検出用電極に誘導される誘導起電力からZ軸回りの角速度情報を得ることができる。このような電磁駆動型角速度センサとしては、例えば特許文献1に記載されているものが公知である。
特開平11−264739号公報(請求項1等)
しかしながら、上述した原理によって動作する電磁駆動型角速度センサにおいては、回転検出用電極に発生するノイズが問題となる。このノイズは、センサ出力のオフセットとなるので、角速度の検出精度を高める上では、極力小さく押さえ込むことが望まれる。
本発明者らの解析によれば、このノイズには、駆動用電極から回転検出用電極に静電誘導される成分が含まれている。すなわち、理想的には、静磁場と、重りの振動との相互作用によって、回転検出用電極に誘導起電力が生じることが望ましいのであるが、現実には、駆動用電極に発生する電位の変動の影響が、静電誘導により回転検出用電極に及び、それがノイズ(以下、静電誘導ノイズ)として観察されてしまう。特に電磁駆動型角速度センサでは、シリコンを材料とした重りに形成された駆動用電極の両端に電流を流して駆動力を発生させる方式であるため、駆動用電極の両端方向に電圧を印加する必要があり、駆動用電極の電位の変動がシリコンの面方向に生じるため、シリコンに影響を与えやすく、よって、静電誘導ノイズを発生しやすい。
以下、上記静電誘導ノイズの発生原理について説明する。図8は、一般的な電磁駆動型角速度センサの基本的な構造を示す概念図である。図8(A)は、上面図であり、図8(B)は側面図である。図8に示す電磁駆動型角速度センサは、振動する重りとして機能するシリコン基材700、その表面に形成された絶縁膜705(例えば酸化珪素膜)、絶縁膜705上に形成された駆動用電極701および回転検出用電極702を備えている。
この構成においては、駆動用電極701の一端はグランド電位に接続され、他端には駆動信号源703からAC駆動信号が供給される。また回転検出用電極702の一端はグランド電位に、他端はアンプ704に接続され、誘起する電圧信号がこのアンプ704によって増幅され、図示しない周辺回路の検出回路系に出力される。なお、シリコン基材700はどの電位にも接続されておらず、電気的には浮いた状態となっている。
図8には、ある瞬間において、駆動用電極に+電位が生じた状態が示されている。図示するように、ある瞬間において、駆動用電極701の電位が+になると、静電誘導の原理により、絶縁膜705を挟んだシリコン基材700側の表面に−電荷が誘起される。この−電荷の誘起は、回転検出用電極702に面したシリコン基材700の表面への+電荷の誘起を促す。これは、半導体であるシリコン基材700は、全体として、電気的に中性でなければならず、それ故に、電気的に浮いた状態であれば、部分的に−電荷が誘起されると、他の部分にそれを打ち消す+電荷が誘起されるからである。
この回転検出用電極702に面したシリコン基材700の表面に誘起された+電荷は、静電誘導の原理により回転検出用電極702に−電荷を誘起する。この回転検出用電極702に誘起される−電荷は、電極702に接続されるアンプ704とグランドのインピーダンスを考慮すると、グランドからの電荷の移動によるものとなる。この−電荷の移動により電極702には電流を生じ、その結果、電極702はグランドに対して所定レベルの電圧を発生することになる。駆動用電極701の電位は周期的に変化するから、上記の原理によって生じる回転検出用電極702の電圧変動もまた周期的なものとなる。こうして、駆動用電極701の電位の変動に影響されて、シリコン基材700を介した静電誘導によって、回転検出用電極702に電圧が発生する。これが、静電誘導ノイズとなる。
本発明は、上述した要因によって生じるノイズ成分を抑えることができる技術を提供することを目的とする。
本発明は、枠状の支持体と、この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、この重りを前記支持体に弾性的に支持する支持部材と、前記重りに磁場を加える磁石とを有し、前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサであって、前記駆動用電極の一端および他端には、互いに逆位相の駆動信号が加えられることを特徴とする。
また本発明は、枠状の支持体と、この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、この重りを前記支持体に弾性的に支持する支持部材と、前記重りに磁場を加える磁石とを有し、前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサであって、前記回転検出用電極の両側から得られる出力に対して差動検出が行われることを特徴とする。
また本発明は、枠状の支持体と、この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、この重りを前記支持体に弾性的に支持する支持部材と、前記重りに磁場を加える磁石とを有し、前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサであって、前記重りはNまたはP型のシリコンであり、グランド電位に接続されていることを特徴とする。
本発明によれば、以下の3つの要因により、静電誘導ノイズが抑えられる。第1に、本発明の電磁駆動型角速度センサにおいて、駆動用電極の一端および他端には、互いに逆位相の駆動信号が加えられる。この構成によれば、ある瞬間において、グランド電位に対して、駆動用電極の一端が+電位である場合に、他端は−電位となる。このため、駆動用電極の平均電位を見た場合、この駆動用電極の平均電位がグランド電位に対して+または−電位とならず、前述した静電誘導の発生を抑えることができる。
この原理について、図1を用いて説明する。図1は、本発明の作用を説明するための概念図である。図1には、振動する重りであるシリコン基材100、駆動用電極101、回転検出用電極102、駆動信号源103aおよび103b、および差動アンプ104が示されている。なお、シリコン基材100の表面には、酸化珪素膜が形成されており、その上に駆動用電極101と回転検出用電極102が形成されている。
ここで、駆動信号源103aおよび103bは、互いに同じ周波数および同じ電圧値であり、逆位相(位相が180度異なる)のAC信号を生成する。
図1には、駆動用電極101の両端に逆位相の駆動信号を加えた場合におけるある瞬間が概念的に示されている。この場合、駆動用電極101の一端側がグランド電位に対して+電位となると、他端側はグランド電位に対して−電位となる。このため、駆動用電極101には電流が生じるものの、その平均電位としては、+電位と−電位とがキャンセルされ、全体として見た場合、駆動用電極101がグランド電位に対して+あるいは−の電位になることはない。
したがって、重りであるシリコン基材100を介した静電誘導効果による回転検出電極102への電荷の誘起は抑制され、回転検出用電極102に現れる静電誘導ノイズを抑えることができる。
第2に本発明の電磁駆動型角速度センサにおいては、回転検出用電極の両端から得られる出力に対して差動検出が行われる。この構成によれば、回転検出用電極に誘起される電荷は、差動アンプ104の+入力端子および−入力端子を経由し、回転検出用電極の両端側から供給される。この電荷の移動により回転検出用電極に電流が生じるものの、発生する電圧は同レベルであって逆極性となり、互いにキャンセルするように働く。よって、静電誘導ノイズの発生を抑えることができる。
以下、この原理について、図2を用いて説明を加える。図2は、本発明の作用を説明するための概念図である。ここで、図2(A)は、上面図であり、図2(B)は、側面図である。また、図2(B)には、振動する重りとなるシリコン基材100がN型半導体であり、さらにそれが接地された状態が示されている。
図2(A)には、ある瞬間において、何らかの理由により、駆動用電極101がグランド電位に対して+電位となり、その影響により静電誘導効果により、回転検出用電極102がグランド電位に対して−電位に至る状況が示されている。
この場合、回転検出用電極102の両端に差動アンプ104の+入力端子および−入力端子を経由して−電荷が供給されており、−電荷の移動により発生する電圧は+入力端子を経由するものと、−入力端子を経由するもので互いにキャンセルされる。これにより、回転検出用電極102に発生する静電誘導ノイズの影響を排除することができる。
第3に、本発明の電磁駆動型角速度センサにおいては、重りはNまたはP型のシリコンであり、グランド電位に接続されている。この構成によれば、駆動用電極101の電位によって、重りであるシリコン基材100側に発生する電荷はグランドとの間で静電誘導が行われる。図2(B)に示すように、シリコン基材100側に−電荷が誘起される場合には、この−電荷はグランドとの間で電荷の移動を生じる。したがって、回転検出用電極102側のシリコン基材100の表面付近106には、その−電荷に対応する+電荷は誘起されない。これにより、回転検出用電極102に静電誘導ノイズが現れることを抑えることができる。
特にこの構成においては、重りを構成するシリコン基材100をNまたはPの導電型とすることで、その導電率を下げ、上述した重りとグランド間の電荷の移動を効果的に行えるようにすることができる。
以上述べたように、本発明の電磁駆動型角速度センサにおいては、回転検出用電極に現れる静電誘導ノイズを抑えるための工夫を組み合わせることで、静電誘導ノイズを低減することができる。後述の実証例からも明らかなように、これら静電誘導ノイズを抑えるための工夫は、それぞれその効果が確認されている。
本発明は、電磁駆動型角速度センサの駆動回路として把握することもできる。すなわち、本発明の電磁駆動型角速度センサの駆動回路は、枠状の支持体と、この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、この重りを前記支持体に弾性的に支持する支持部材と、前記重りに磁場を加える磁石とを有し、前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサの駆動回路であって、前記駆動用電極の一端および他端に互いに逆位相の駆動信号を加える駆動部を備えることを特徴とする。
本発明によれば、電磁駆動型角速度センサにおいて、駆動用電極の一端および他端には互いに逆位相の駆動信号が加えられるため、駆動用電極の平均電位は、グランド電位に対して+あるいは−の電位になることはない。よってシリコンを介在した静電誘導ノイズの発生を抑制できる。また回転検出用電極の両端から得られる出力に対して差動検出を行うことで、駆動用電極の電位変動による静電誘導ノイズが発生したとしても、そのノイズは互いにキャンセルされ、ノイズの影響を排除することができる。さらに重りとしてNまたはP型のシリコンを採用し、それをグランド電位に接続することで、駆動用電極の電位変動によるシリコン内における電荷の移動を抑制し、シリコンを介在した静電誘導ノイズの発生を抑えることができる。
(1)第1の実施形態
1.実施形態の構成
図3は、本発明を利用した電磁駆動型角速度センサのセンサ素子の概要を示す上面図である。図3には、矩形形状の枠構造体301、振動体として機能する略十字型(略X型)の重り302、枠構造体301に重り302を弾性的に支持する支持部材303を備えたセンサ素子300が示されている。
枠構造体301、重り302および支持部材301は、抵抗率が0.05Ω・cmのN型シリコン単結晶ウエハを利用し、MEMS(Micro Electro Mechanical System)加工技術を利用して一体成形されている。ここで使用するシリコンウエハとしては、N型、P型を問わず、抵抗率が0.01〜0.1Ω・cm程度の低抵抗のものが望ましい。また、8個の支持部材303は、図示されるように複雑に屈曲しており、それ自体が弾性部材(バネ)としても機能する。重り302の四隅のそれぞれは、2本の支持部材303を介して枠構造体301に支持されている。この構造によれば、重り302は支持部材303を介して枠構造体301に弾性的に支持される。そのため、重り302は、枠構造体301に対して相対的に振動することができる。
略十字型の重り302上には、図示しない酸化珪素膜が形成され、その上に駆動用電極、回転検出用電極およびモニタ電極(駆動検出電極)が形成されている。各電極は、シリコンICプロセスにおいて利用されるシリコンウエハ上への金属薄膜の形成技術を利用して形成されている。各電極の配置状態については後述する。
また、図示省略するが、重り302上に形成された各種電極から支持部材303上に電極材料がそのまま延在し、それが引き出し配線となり、さらにその引き出し配線は、枠構造体301まで延在し、引き出し電極に至っている。この枠構造体301上に形成された引き出し電極に後述する周辺回路が接続される。
また、枠構造体301は、符号304で示されるように、後述する電磁駆動型角速度センサユニットのグランド電位に電気的に接続されている。この構造において、重り302は、支持体303と枠構造体301を介して、センサユニットのグランド電位(アース電位)に電気的に接続されることになる。
図4は、発明を利用した電磁駆動型角速度センサの概要を示す断面図である。なお、図4の矢印404の方向から見たセンサ素子300の状態が図3に示されている。
この電磁駆動型角速度センサ400は、磁性体(鉄)により構成されたヨーク401、磁場Bを生成するための磁石402、N型単結晶シリコンウエハを加工することで形成されたセンサ素子300(図3参照)、およびこのセンサ素子300を保持するための非磁性材料(ガラス)から構成されるセンサ素子保持部材403を備えている。
ヨーク401には、上下に一対の突出部401aおよび401bが形成され、この突出部401aと401bとの間に集中的に磁場Bが形成されるようになっている。また、突出部401aおよび401bは、重り302(図3参照)の十字型(X字型)形状に合わせて突出した断面形状を有し、重り302が存在する部分において選択的に磁場Bが加わるようになっている。
この構造においては、磁石402において生成された磁束が、ヨーク401内を通り、突出部401aと401bとの間に静磁場Bを形成する。この静磁場Bは、平面形状のセンサ素子300の重り302(図3参照)に対して、その面に垂直な向きから加えられる。なお、センサ素子300と後述する周辺回路との間の配線は、図4では省略されている。
図5は、図3の重り302上における各電極の配置状態を示した概念図である。図5に示すように、重り302上には、「逆くの字」形状の駆動用電極501、「V字」形状の回転検出用電極502a、「逆V字」形状の回転検出用電極502b、および「くの字」形状のモニタ電極503が配置されている。
駆動用電極501は、その端部の一方が駆動信号源504aに接続され、他方が駆動信号源504bに接続されている。回転検出用電極502aは、その端部の一方が差動アンプ505aの+入力端子に接続され、他方が差動アンプ505aの−入力端子に接続されている。回転検出用電極502bは、その端部の一方が差動アンプ505bの+入力端子に接続され、他方が差動アンプ505bの−入力端子に接続されている。モニタ電極503は、その端部の一方が差動アンプ506の+入力端子に接続され、他方が差動アンプ506の−入力端子に接続されている。
ここで、駆動信号源504aと504bとは、差動駆動源として機能する。すなわち、駆動信号源504aと504bは、全く同じ機能を備え、その出力信号の位相のみが180度異なるように設定されている。すなわち、駆動信号源504aと504bとは、位相が180度異なるだけで、同じ電圧および電流値のAC信号を出力する。
図5に示す構成によれば、駆動用電極501には、差動駆動により駆動用信号が供給される。また、回転検出用電極502aおよび502bからは、その両端に発生する電圧が差動検出される。また、モニタ電極503においても、その両端に発生する電圧が差動検出される。
図6は、発明を利用した電磁駆動型角速度センサシステムの概要を示すブロック図である。図6には、駆動系600aおよび検出系600bから構成される電磁駆動型角速度センサシステム(電磁駆動型角速度センサユニット)600が示されている。電磁駆動型角速度センサシステム600は、センサ素子300の周辺回路として、ゲインコントローラ601、フィルタ602、アンプ603、アンプ604、検波器605およびフィルタ606を備えている。
ゲインコントローラ601には、図5に示す駆動信号源504aおよび504bが含まれている。またアンプ603には、図5に示す差動アンプ506が含まれ、アンプ604には、図5に示す差動アンプ505aおよび505bが含まれている。
ここで、センサ素子300の枠構造体301(図3参照)は、図6に示すシステムを格納する図示しない金属製の筐体へ接続され、重り302のグランド電位への接続が確保されている。この筐体は、システムの電気的なグランド(アース)として機能する。また、図6に示す各ユニットの電気回路のアース電位部分もこの図示しない筐体に接続されている。
この構成においては、ゲインコントローラ601から出力される差動駆動信号(AC電流)がセンサ素子300の駆動用電極501(図5参照)に供給される。この際、静磁場(図4の磁場B)の影響により、駆動用電極501に周期的なローレンツ力が働く。このローレンツ力は、駆動信号の周期に応じた振動駆動力となり、その向きは、フレミングの左手則に従って図3〜5中に記載されたX軸の方向となる。駆動用電極501は重り302上に形成されているので、この振動駆動力により、重り302がX軸方向に振動する。
そして、この振動によりモニタ電極503に電磁誘導による誘導起電力(誘導電圧)が発生し、それが駆動検出信号として差動アンプ506(図5参照)により差動検出される。この検出信号は、アンプ603から、フィルタ602と検波器605とに送られる。
フィルタ602はローパスフィルタであり、不要な高周波成分を減衰させ、そこでフィルタリングされた信号がゲインコントローラ601に送られる。ゲインコントローラ601は、この信号に基づいて、センサ素子300の重り302(図3参照)の振動が所定の共振状態になるように、駆動信号源504aおよび504bの出力を制御する。
このフィードバック制御により、センサ素子300における重り302の振動が所定の共振状態で安定する。
他方において、図5に示す回転検出用電極502aおよび502bには、重り302がY軸方向に振動した際に、誘導起電力が生じ、それが回転検出信号としてアンプ604内の差動アンプ505aおよび505bによって検出される。
検波器605(図6参照)は、アンプ603から出力される駆動検出信号を利用して、アンプ604から出力される回転検出信号を検波し、Z軸回転の角速度情報を含んだ検波信号を生成する。フィルタ606は、ローパスフィルタであり、検波信号に含まれる高周波成分を除去し、Z軸(図3または図5のX−Y平面に垂直な軸)回転の角速度に対応したDC出力信号を出力する。
2.実施形態の動作
動作に当たっては、まず図4に示すように静磁場Bが加わった状態において、駆動系600a(図6参照)の作用により、重り302(図3参照)をX軸方向に振動させ、それを安定な共振振動状態とする。この状態において、Z軸(図3または図5のX−Y平面に垂直な軸)回転が発生すると、その回転の角速度に応じた回転検出信号が、アンプ604(図6参照)によって検出され、それが検波器605において検波され、フィルタ606から角速度に応じたDC出力信号が得られる。
以下、具体的な例を挙げ、出力信号が得られる仕組みについて説明する。まず、Z軸回転がない場合の動作を説明する。この場合、X軸方向に振動する重り302には、コリオリの力は加わらない。また、この状態においては、X軸方向への振動であるので、回転検出用電極502aおよび502bのそれぞれにおいて、誘導電圧が打ち消され、その両端には、誘導起電力は発生しない。一方、モニタ電極503の両端には、誘導起電力が発生し、それが駆動検出信号として差動アンプ506によって検出される。
この場合、回転検出信号は、ゼロであり、図6の検波器605からの検波信号もゼロとなる。当然、検出系600bから出力信号は出力されない。
次に、センサ素子300がZ軸回りに回転する場合を考える。この場合、X軸方向おいて振動する重り302には、コリオリの力が働き、Y軸方向への振動成分が生じる。
Y軸方向への振動は、回転検出用電極502aおよび502bに誘導起電力を生成し、それが回転検出信号となる。この誘導起電力は、Y軸方向への振動に伴うものであり、駆動信号の周波数と同じ周波数のAC信号電圧となる。また、上記コリオリの力は、Z軸回転の角速度に比例するから、上記回転検出信号は、そのZ軸回転の角速度に対応したものとなる。
回転検出用電極502aおよび502bに誘導された誘導起電力は、回転検出信号としてアンプ604(図6参照)内の差動アンプ505aおよび505bによって差動検出される。この検出信号は、図6のアンプ604から検波器605に出力される。検波器605は、アンプ603から出力される駆動検出信号を利用した検波を行う。この際、回転検出信号と同じ周波数を有する駆動検出信号を利用して検波を行うことで、回転検出信号に含まれるAC成分が除去され、Z軸回転の角速度に対応したDC検波出力が得られる。
本実施形態においては、駆動信号を差動信号とし、さらに回転検出信号の検出を差動検出とし、さらに駆動用電極501と、回転検出用電極502aおよび502bとの土台となる単結晶シリコンにより構成される重り302を、低抵抗のN型とし、さらに重り302をグランド電位に電気的に接続している。これにより、回転検出用電極502aおよび502bに誘導される静電誘導ノイズを抑え、検波出力にオフセット信号(ノイズ信号)が現れる不都合が抑制される。
3.実証試験の結果
上述した実施形態の電磁駆動型角速度センサにおけるノイズ抑制効果を調べた結果を説明する。図7は、図3〜図6に示す構成において、重り302を接地した場合と接地しない場合における回転検出用電極502aに現れたノイズ成分の検出結果を示すグラフである。
図7に示されるように、重り302を接地することで、回転検出用電極に現れるノイズ成分を大きく低減することができる。なお、図7には、図1および図2に示したモデルに基づいた解析モデルによるシミュレーション結果(解析値)と実測データとが示されている。図7から、解析値と実測データの一致が高い精度で得られていることが分かる。また、このことより、図1および図2に示すモデルの妥当性を確認することができる。
Figure 2007010452
表1は、差動駆動、重りの接地および差動検出の各対策を実施した場合における回転検出用電極に現れたノイズレベルを測定した結果である。表に示すように、個々の対策の効果は大きく、対策を複数組み合わせて実施した場合には、駆動用電極の磁場による電磁誘導ノイズが顕在化してくるため、実測データからは組み合わせによる静電誘導ノイズ低減効果は把握しづらくなっている。この電磁誘導ノイズを排除するために、実際に重りの振動は生じないものの、駆動用電極501に同位相で信号を供給し、電位変化のみを生じさせ、回転検出用電極502a、502bに生じるノイズのデータを比較値として測定している。
表1において、方式の欄における片側というのは、駆動用電極501の一端に駆動信号源を接続し、他端は接地した場合(つまりアンバランス駆動した場合)である。差動というのは、図5に示すように駆動用電極501を差動駆動した場合である。同位相というのは、図5に示す構成において、駆動信号源504aと504bとを同位相で動作させ、同位相の駆動信号を駆動用電極501の両端に加えた場合である。
また、電極の欄のX+は、図5に示すモニタ電極503を指し、Y−は、回転検出用電極502bを指し、Y+は、回転検出用電極502aを指す。なお、駆動信号の周波数は100kHである。
表1の実験NO.1およびNO.2の組と、実験NO.3およびNO.4の組とを比較することで、差動駆動の効果を確認することができる。すなわち、駆動信号の駆動方式を片側駆動から差動駆動にすることで、回転検出用電極(Y+とY−)およびモニタ電極(X+)に現れるノイズを抑えられることが分かる。特に実験NO.1とNO.3とを比較すると、重りを接地しなかった場合におけるノイズ低減効果は極めて大きいことが分かる。
また、実験NO.1とNO.2との比較により、重り(振動体)の接地の有無による効果の違いを確認することができる。また、実験NO.7とNO.8との比較によっても、重り(振動体)の接地の有無による効果の違いを確認することができる。また、実験NO.7とNO.8の組と、実験NO.9とNO.10の組との比較により、差動検出の効果を確認することができる。
なお、実験NO.3とNO.4の組と、実験NO.5とNO.6の組との比較からは、差動検出の効果、および重りの接地の効果はさほど明確ではない。これは、駆動信号によって発生する変動する磁場の影響によって、回転検出用電極やモニタ電極に電磁誘導ノイズが生成され、その影響によって、差動検出の効果、および重りの接地の効果がマスクされてしまうからである。
一方、実験NO.7〜NO.10においては、駆動電極の両端に同位相の駆動信号を供給することで、駆動電極に電流を流さず、電位変化のみを与え、駆動用電極が作る磁場による電磁誘導ノイズが生成されないようにしている。この場合、上述した影響が抑えられるので、差動検出の効果、および重りの接地効果を明確に確認することができる。
この実験結果に示されるように、静電誘導ノイズに対する個々の対策の効果は非常に大きいことが分かる。実験NO.3〜NO.6では実際に対策が採用されうる条件にて実験を行っている。この実験結果においては、差動駆動の効果により、電磁誘導ノイズ成分が顕在化し、他の対策の効果が判別しにくくなっている。しかし、上記実験結果の比較から明らかなように、個々の対策はそれぞれ効果的であり、これら対策を複数組み合わせた場合には、さらに静電誘導ノイズに対する効果が向上する。
以上述べたように、駆動電極の差動駆動、回転検出用電極からの信号の差動検出、および重り(振動体)の接地を行うことで、検出されるノイズ成分を低減することができる。
本発明は、回転に伴う角速度を電磁的に検出する角速度センサに利用することができる。
発明の作用を説明するための概念図である。 発明の作用を説明するための概念図である。 発明を利用した電磁駆動型角速度センサのセンサ素子の概要を示す上面図である。 発明を利用した電磁駆動型角速度センサの概要を示す断面図である。 重り(振動体)上における電極の配置状態を示す概念図である 発明を利用した電磁駆動型角速度センサシステムの概要を示すブロック図である。 重りの接地効果を検証したデータを示すグラフである。 一般的な電磁駆動型角速度センサの基本的な構造を示す概念図である。
符号の説明
100…振動する重りであるシリコン基材、101…駆動用電極、102…回転検出用電極、103a…駆動信号源、103b…駆動信号源、104…差動アンプ、105…絶縁膜、106…接地効果によって電荷の誘起が抑制される領域、300…センサ素子、301…枠構造体、302…重り(振動体)、303…支持部材、400…電磁駆動型角速度センサ、401…ヨーク、401a…ヨークの突出部、401b…ヨークの突出部、402…磁石、403…センサ素子保持部材、404…図3の平面図を見る視線方向、501…駆動用電極、502a…回転検出用電極、502b…回転検出用電極、503…モニタ電極、504a…駆動信号源、504b…駆動信号源、505a…差動アンプ、505b…差動アンプ、506…差動アンプ、600…電磁駆動型角速度センサシステム、600a…駆動系、600b…検出系、601…ゲインコントローラ、602…フィルタ、603…アンプ、604…アンプ、605…検波器、606…フィルタ、700…シリコン基材、701…駆動電極、702…回転検出用電極、703…駆動信号源、704…アンプ、705…絶縁膜。

Claims (4)

  1. 枠状の支持体と、
    この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、
    この重りを前記支持体に弾性的に支持する支持部材と、
    前記重りに磁場を加える磁石とを有し、
    前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、
    この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサであって、
    前記駆動用電極の一端および他端には、互いに逆位相の駆動信号が加えられることを特徴とする電磁駆動型角速度センサ。
  2. 枠状の支持体と、
    この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、
    この重りを前記支持体に弾性的に支持する支持部材と、
    前記重りに磁場を加える磁石とを有し、
    前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、
    この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサであって、
    前記回転検出用電極の両側から得られる出力に対して差動検出が行われることを特徴とする電磁駆動型角速度センサ。
  3. 枠状の支持体と、
    この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、
    この重りを前記支持体に弾性的に支持する支持部材と、
    前記重りに磁場を加える磁石とを有し、
    前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、
    この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサであって、
    前記重りはNまたはP型のシリコンであり、グランド電位に接続されていることを特徴とする電磁駆動型角速度センサ。
  4. 枠状の支持体と、
    この支持体の内側に配置され、駆動用電極および回転検出用電極が形成された所定の質量を有する重りと、
    この重りを前記支持体に弾性的に支持する支持部材と、
    前記重りに磁場を加える磁石とを有し、
    前記駆動用電極に電流を流すことによって生じるローレンツ力により前記重りを振動させ、
    この振動に直交する方向に働くコリオリ力の作用によって前記回転検出用電極に生じる誘導起電力を検出する電磁駆動型角速度センサの駆動回路であって、
    前記駆動用電極の一端および他端に互いに逆位相の駆動信号を加える駆動部を備えることを特徴とする電磁駆動型角速度センサの駆動回路。
JP2005191021A 2005-06-30 2005-06-30 電磁駆動型角速度センサおよびその駆動回路 Pending JP2007010452A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191021A JP2007010452A (ja) 2005-06-30 2005-06-30 電磁駆動型角速度センサおよびその駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191021A JP2007010452A (ja) 2005-06-30 2005-06-30 電磁駆動型角速度センサおよびその駆動回路

Publications (1)

Publication Number Publication Date
JP2007010452A true JP2007010452A (ja) 2007-01-18

Family

ID=37749171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191021A Pending JP2007010452A (ja) 2005-06-30 2005-06-30 電磁駆動型角速度センサおよびその駆動回路

Country Status (1)

Country Link
JP (1) JP2007010452A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985197B2 (en) 2007-05-22 2011-07-26 Hoya Corporation Therapeutic-substance carrying/administering appliance
CN102650519A (zh) * 2011-02-25 2012-08-29 索尼公司 角速度传感器
WO2020080336A1 (ja) * 2018-10-15 2020-04-23 株式会社鷺宮製作所 振動発電素子および振動発電装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985197B2 (en) 2007-05-22 2011-07-26 Hoya Corporation Therapeutic-substance carrying/administering appliance
CN102650519A (zh) * 2011-02-25 2012-08-29 索尼公司 角速度传感器
JP2012177610A (ja) * 2011-02-25 2012-09-13 Sony Corp 角速度センサ
CN102650519B (zh) * 2011-02-25 2016-06-01 索尼公司 角速度传感器
US9885576B2 (en) 2011-02-25 2018-02-06 Sony Semiconductor Solutions Corporation Angular velocity sensor
WO2020080336A1 (ja) * 2018-10-15 2020-04-23 株式会社鷺宮製作所 振動発電素子および振動発電装置

Similar Documents

Publication Publication Date Title
KR101901809B1 (ko) 가속도계 상에서 자기 물질들을 이용하는 자력계
JP4365323B2 (ja) パラメータ利得を備えたmemsジャイロスコープ
Li et al. Three-axis Lorentz-force magnetic sensor for electronic compass applications
JP6191151B2 (ja) 物理量センサ
US4562430A (en) Position detection device for magnetic bearing
JP2007304099A (ja) 慣性センサのリフト効果を打ち消すための電極の使用
JP2010256332A (ja) 振動片、振動子および物理量検出装置
JPH11352143A (ja) 加速度センサ
Rouf et al. Area-efficient three axis MEMS Lorentz force magnetometer
JP2010169681A (ja) 磁束密度増加ダルソンバルmems加速度計のためのシステムおよび方法
JP5671245B2 (ja) 磁気感度が低減されたmemsジャイロスコープ
JP3812543B2 (ja) 角速度センサ装置及びその調整方法
JP2020106394A (ja) 磁場検出装置および磁場検出方法
JP2007010452A (ja) 電磁駆動型角速度センサおよびその駆動回路
JP2009128164A (ja) 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置
JP5516391B2 (ja) サーボ型静電容量式センサ装置
RU2490754C1 (ru) Микроэлектромеханический датчик магнитного поля
JPH11351878A (ja) 振動型角速度センサ
JP2013108929A (ja) 高精度化された振動型ジャイロ
JP5036218B2 (ja) 角速度センサ
JP2007271514A (ja) 角速度センサ
JP2000105124A (ja) 静電駆動,静電検出式の角速度センサ
JP2007003225A (ja) 電磁駆動型角速度センサおよびその駆動方法
CN111183112B (zh) 具有干扰模式的抑制的mems设备以及相应的运行方法
JP2000131074A (ja) 静電駆動の角速度検出装置