JP2007003161A - 熱交換器とその製造方法 - Google Patents

熱交換器とその製造方法 Download PDF

Info

Publication number
JP2007003161A
JP2007003161A JP2005187418A JP2005187418A JP2007003161A JP 2007003161 A JP2007003161 A JP 2007003161A JP 2005187418 A JP2005187418 A JP 2005187418A JP 2005187418 A JP2005187418 A JP 2005187418A JP 2007003161 A JP2007003161 A JP 2007003161A
Authority
JP
Japan
Prior art keywords
heat exchanger
flame retardant
surface treatment
gas shielding
porous member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005187418A
Other languages
English (en)
Inventor
Hidemoto Arai
秀元 荒井
勝 ▲高▼田
Masaru Takada
Kenzo Takahashi
健造 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005187418A priority Critical patent/JP2007003161A/ja
Publication of JP2007003161A publication Critical patent/JP2007003161A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】加工時のブロッキングやべたつきによる加工不良がなく、熱交換器を構成する接着剤の接着性が良好で気体遮蔽性の高い熱交換器の製造方法を得ること。
【解決手段】所定の素材をコルゲート加工して間隔保持部材を形成する第1の工程と、板状の多孔質部材からなる仕切部材の片面に間隔保持部材を接着して熱交換器構成部材を作製する第2の工程と、熱交換器構成部材の仕切部材側に気体遮蔽機能を有する樹脂を含む水溶媒系の表面処理用薬剤を塗布し、熱交換器構成部材の間隔保持部材側に水溶媒系の接着剤を塗布する第3の工程と、熱交換器構成部材の接着剤が塗布された間隔保持部材に他の熱交換器構成部材の仕切部材を重ね合わせて接着第4の工程と、を含む。
【選択図】 図4

Description

この発明は、流体間での熱交換を行なわせる主として空調分野に利用される積層構造の熱交換器とその製造方法に関するものである。
近年、暖房および冷房などの空調機器は、発達かつ普及してきており、空調装置を用いた居住区域が拡大するにつれて、換気において温度および湿度を回収できる空調用の熱交換器に対する重要性が高まってきている。
これらの何れの従来における熱交換器も、伝熱性と通湿性とを有する仕切板により間隔板を挟み込み、所定の間隔をおいて、複数層に重ね合わせた基本構造を採っている。仕切板は、方形の平板となっており、間隔板は、投影平面において仕切板に一致する鋸波状または正弦波状の波形を成形した波板となっている。
また、間隔板は、その波形の成形方向を交互に90度またはそれに近い角度を持たせて仕切板の間に挟着されている。仕切板と間隔板によって囲まれる各層間に構成される空間は、一層おきにその波形の成形方向が交互に直交するように構成されるので、それぞれの向きに延びる空間を、一次気流と二次気流をそれぞれ別々に通す二系統の流体通路として利用することができる。
熱交換器の仕切板に要求される特性としては、通気性が低く、透湿性が高いことである。これは、使用時に屋外から屋内に吸込まれる新鮮な外気と屋内から屋外へ排気される汚れた空気とが混合することなく、しかも顕熱と同時に潜熱も熱交換できるようにするために、水蒸気を吸込み空気と排出空気の間で効率よく移行させることが要求されるからである。
そして、このような要求に対処できる仕切板の素材については、たとえば吸湿剤としてハロゲン化リチウムを含む水溶性高分子物質を多孔質部材に含浸または塗布することにより得られるような気体遮蔽物が挙げられる(たとえば、特許文献1参照)。
上記したような多孔質部材に水溶性高分子物質を含浸または塗布した透湿性気体遮蔽物で仕切板を構成した熱交換器においては、夏期などの温度と湿度が高い条件下では、仕切板の吸湿により水溶性高分子物質の一部が溶け、ブロッキング現象がおき、コルゲート時などの巻き戻し作業時に素材が破れるといった問題点がある。
また、この種の熱交換器は、間隔板を構成する素材をコルゲート加工しながら仕切板を構成する素材に接着して得られる片面段ボール構造物を熱交換器構成部材として、複数枚積層することにより製造されている。コルゲート加工は、間隔板の素材を成形する互いに噛み合って回転する歯車状の上下のコルゲータと、仕切板の素材を間隔板の素材に回転しながら押付けるプレスロールを中核として構成されていて、間隔板の段形状を整えるために、上下のコルゲータとプレスロールは通常、150℃以上の高温に維持されている。したがって、仕切板素材の水溶性高分子物質の一部がプレスロールの熱によって溶け、プレスロールに融着しやすくなってしまう。一方、プレスロールの温度を下げると、仕切板の素材のプレスロールへの融着は防止できるものの、コルゲートの段形状が崩れてしまい、熱交換器構成部材として使えないものになってしまう。
そこで、従来は、仕切部材の片面のみに吸湿や温度により軟化やべたつきをおこす透湿層を形成し、この透湿層面にてコルゲート加工をおこなう方法が考案されている(たとえば、特許文献2参照)。
また、近年ではべたつきや融着の原因となる気体遮蔽膜形成薬剤であるポリビニルアルコール(PVA)そのものを使用しない無孔系透湿膜や基材そのもので気体が透過しにくいものに吸湿および難燃処理されたものが選択されている(たとえば、特許文献3,4参照)。
特公昭58−46325号公報 特開2001−27489公報 国際公開第2002/099193号パンフレット 特開2003−148892公報
従来の熱交換器では、吸湿剤を仕切部材に含浸させたり塗工したりすることによって処理を行い、透湿性能を向上させている。しかしながら、吸湿剤の量と透湿性能はある程度の量までは比例関係にあるが、仕切部材そのものに気体遮蔽機能を持たせているために、仕切部材の材料の構造が緻密になり吸湿処理薬剤を思うように吸収させることができず、加工時のブロッキングやベタつきによる加工不良が発生してしまうという問題点があった。また、仕切部材が緻密すぎるためコルゲート加工および積層工程時に使用する接着剤も素材内部に浸透し難く、その結果十分な接着強度が得られないという問題点もあった。
この発明は、上記に鑑みてなされたもので、加工時のブロッキングやべたつきによる加工不良がなく、熱交換器を構成する接着剤の接着性が良好で気体遮蔽性の高い熱交換器とその製造方法を得ることを目的とする。
上記目的を達成するため、この発明にかかる熱交換器は、板状の多孔質部材からなる仕切部材の片面にコルゲート加工された間隔保持部材を接着した熱交換器構成部材を、複数接着剤で接着し、積層してなる熱交換器において、前記仕切部材の前記間隔保持部材が接着されている面と反対面に気体遮蔽機能を有する樹脂を含む表面処理膜を形成することを特徴とする。
この発明によれば、コルゲート加工で貼合される仕切部材の面は多孔質であるためコルゲート時にもっともよく使用される水溶媒の接着剤にて容易に貼合でき、強度も十分得ることができる。また、べたつきやブロッキングの原因となる気体遮蔽機能を有するポリビニルアルコールなどの樹脂をコルゲート加工時には使用しないので、取り扱いが容易になると共に、コルゲート加工時の温度を十分に高温にできるので、加工速度も従来に比較してより高速に行うことができる。
以下に添付図面を参照して、この発明にかかる熱交換器とその製造方法の好適な実施の形態を詳細に説明する。
実施の形態1.
図1は、この発明にかかる熱交換器の全体構成を示す斜視図であり、図2は、図1の熱交換器を構成する熱交換器構成部材の構成を示す斜視図であり、図3は、図2の熱交換器構成部材の端面を示す側面図であり、図4は、熱交換器構成部材を製造するためのコルゲート加工を行うシングルフェーサ装置の概略構成を模式的に示す図であり、図5は、熱交換器を製造する溶媒塗布装置の概略構成を模式的に示す図である。
この実施の形態1では、図1に示されるような積層構造の六面体に構成された空調用に適した熱交換器1とその製造方法について説明する。この製造方法で得られる熱交換器1は、伝熱性と通湿性とを有する薄肉の仕切部材2の片面に間隔保持部材3を接着した熱交換器構成部材6を、複数層に重ね合わせて接着した構成を有する。熱交換器1を構成している仕切部材2は正方形や菱形の平板として構成され、間隔保持部材3は投影平面形状が仕切部材2に一致する鋸波状または正弦波状の波形を成形した波板に形成されている。この間隔保持部材3を仕切部材2の間にその波形の成形方向(波の山(または谷)を結ぶ同位相の線の方向)を、所定の角度に交差させて挟着させる。たとえば、間隔保持部材3の波形の成形方向を交互に90度またはそれに近い角度を持たせて挟着させると図1に示されるような構造となり、一次気流(イ)と二次気流(ロ)を通す流体通路4,5がこれらの各層間に一層おきに構成される。また、裁断した熱交換器構成部材6を、間隔保持部材3の波形の成形方向が平行となるように積層することで、対向流型の熱交換器1を得ることができる。
この熱交換器1は、図2および図3に示されるように、一枚の仕切部材2の片面に間隔保持部材3を接着した熱交換器構成部材6を積層接着した構成を有する。仕切部材2には、図3に示すように板状の多孔質部材7の間隔保持部材3が形成されない方の面に、気体遮蔽機能を有する樹脂、難燃剤および吸湿剤を混合した表面処理膜8が形成される。なお、この表面処理膜8を形成する表面処理用薬剤としては、塗布または塗工するために水溶性のものが扱い易く、望ましい。気体遮蔽機能を有する樹脂としては、ポリビニルアルコールなどが適しており、吸湿剤としては塩化リチウムなどが適しており、難燃剤としては、吸湿剤に用いる塩化リチウムと反応しないスルファミン酸グアニジンなどが適している。
多孔質部材7は、厚さ10〜120μm程度で、坪量が10〜150(g/m2)のセルロース繊維を主とする紙材が望ましい。多孔質部材7のシート厚みは、透湿性能の点を考慮すると、薄膜化することが望ましいが、薄くし過ぎると後加工時の引っ張り強度が小さくなり、加工時に破れ易くなる。そのため、透湿性能と引っ張り強度を考慮すると、多孔質部材7の厚みは、10〜50μmが好ましい。この実施の形態1では、厚みが10〜50μmの範囲で、坪量が10〜50(g/m2)程度の紙材からなる多孔質部材7を採用した。多孔質部材7を構成する紙材における親水性繊維の主成分には、セルロース繊維を用いることが好ましい。このように、多孔質部材7を構成する紙材の親水性繊維の主成分に、セルロース繊維を用いることにより、低コストで、かつ引っ張り強度を高くすることができる。
つぎに、このような熱交換器1の製造方法について図4と図5を参照しながら説明する。図4に示されるように、熱交換器構成部材6を作製するシングルフェーサ装置は、仕切部材2となる多孔質部材7を送るとともに、この多孔質部材7に間隔保持部材3を回転しながら押付けるプレスロール10と、間隔保持部材3の材料となるセルロース繊維を主とする素材(紙材)9を送り、互いに噛み合って回転する歯車状の上段と下段の一対からなるコルゲータ11,12と、一対のコルゲータ11,12で断面形状が波型にされた間隔保持部材3と多孔質部材7とを接着する接着剤14を貯蔵する糊貯蔵層13と、下段のコルゲータ12に送られる間隔保持部材3に糊付けするための糊付けロール15と、を備える。なお、糊貯蔵層13には、水溶媒系の酢酸ビニル系エマルジョン接着などの接着剤14が貯蔵されている。
このようなシングルフェーサ装置のプレスロール10に仕切部材2を構成する多孔質部材7が送り込まれる。また、セルロース繊維を主とする素材を用いた間隔保持部材3となる紙材9がシングルフェーサ装置の一対のコルゲータ11,12に送り込まれる。歯車状の上段と下段の一対のコルゲータ11,12が噛み合って回転することによって、上段と下段のコルゲータ11,12の歯車の噛み合う位置で紙材9は波形に成型される。
下段のコルゲータ12の一部の歯車の頂部は糊付けロール15と接触した状態にあるので、糊付けロール15の回転によって糊貯蔵層13内で接着剤14が付着した糊付けロール15の面が、下段のコルゲータ12の一部に接触する。これにより、下段のコルゲータ12で送られる波型の紙材9の谷(山)となる部分(後に多孔質部材7と接触する部分)が糊付けされる。その後、この糊付けされた紙材9は、プレスロール10から送られてくる多孔質部材7と接着される。この際、下段のコルゲータ12の一部とプレスロール10とは接触しているため、プレスロール10によって送られる多孔質部材7と下段のコルゲータ12によって送られる糊付けされた波形の紙材9とは、所定の圧力で圧縮され、両者は強固に接着される。なお、プレスロール10と一対のコルゲータ11,12は、段形状を整え易い所定の温度(通常、150℃以上の温度)に維持されている。
以上により、片面段ボール状の熱交換器構成部材6が製造される。また、仕切部材2は、紙素材のような多孔質部材7を用いているため、素材の表裏がない上に、熱および吸湿による加工上の不具合もないので、高速にそして安定した作業を実施することができる。
図5に示されるように、溶媒塗布装置は、シングルフェーサ装置で作製された熱交換器構成部材6の間隔保持部材3の波上の頂点部に水溶媒系の接着剤の糊付けを行う糊付けローラ21と、熱交換器構成部材6の反対側の面に表面処理層を形成する薬剤塗布ローラ22と、によって構成される。糊付けローラ21には、図示していないが、接着剤をそのローラ表面に供給するための仕掛が備えられており、薬剤塗布ローラ22にも、図示していないが、気体遮蔽機能を有する樹脂、難燃剤および吸湿剤を混合した表面処理用薬剤をそのローラ表面に供給するための仕掛が備えられている。
図4のシングルフェーサ装置で作製された熱交換器構成部材6を所定の寸法、形状に裁断し、間隔保持部材3が図の下側を向くように2つの糊付けローラ21と薬剤塗布ローラ22との間に挿入する。間隔保持部材3がこれらの2つの糊付けローラ21と薬剤塗布ローラ22との間を送られる間に、下側の糊付けローラ21では、熱交換器構成部材6の間隔保持部材3の波状の頂点部に水溶媒系の接着剤を塗布する。また、上側の薬剤塗布ローラ22では、上記した気体遮蔽機能を有する樹脂、難燃剤および吸湿剤を混合した表面処理用薬剤を、10〜20g/m2の割合で仕切部材2の表面に塗工する。そして、2つの糊付けローラ21と薬剤塗布ローラ22から排出された熱交換器構成部材6を順に、その間隔保持部材3の波形の成形方向が隣接する上下の層で所定の位置関係となるように(たとえば、波形の成形方向が互いに90度の向きとなるように)積層し、接着剤を乾燥させて熱交換器1が構成される。
なお、この実施の形態1においては、多孔質部材7の片面に、気体遮蔽機能を含む表面処理膜8に透湿性の高いポリウレタンまたはポリエチレングリコールを含んだポリエステルエラストマ素材を、コーティングまたはラミネート加工したものや、透湿性空気遮蔽膜を形成する有機材料を用いた樹脂フィルムをラミネート加工して気体遮蔽機能を有する表面処理膜8を形成して仕切部材2の素材としたものを用いても同様の効果を得ることができる。
この実施の形態1によれば、熱交換器1を構成するための熱交換器構成部材6を積層して接着する積層工程では、気体の分離機能性膜である表面処理膜8は、形成された後すぐに熱交換器1の内部に位置することになるので表面処理膜8への傷つけや、吸湿時のべたつきなどを軽減することができる。その結果、加工性と膜破れに対する信頼性を向上させることができる。また、積層工程で、空気遮蔽機能を兼ねるポリビニルアルコールのような透湿性を有する表面処理膜8を形成し、積層加工の前工程に当たる図4に示すコルゲート加工工程では表面処理膜を形成しないので、段形状を整えるための上下のコルゲータ11,12とプレスロール10の温度を高く維持しても、熱で透湿性成分が溶融することがなく、加工時のトラブルになることもない。
さらに、積層工程時にポリビニルアルコールなどの透湿性を有する表面処理膜8を形成する場合に水溶媒の表面処理用薬剤を選択したので、水溶媒の接着剤との相性も良好で、透湿性成分が水分の蒸発により硬化する前に接着剤成分が透湿膜層(表面処理膜8)を抜けて基材の多孔質部材7へ到達させることができ、接着強度を十分確保することができる。
さらにまた、図6に示すような従来の積層接着工程において、間隔保持部材3の波状の頂点部に糊付けローラ21をもちいて水溶媒系の接着剤を塗布した際に、間隔保持部材3として紙などの水分による伸縮を伴う素材を選択していると、接着剤中の水分により間隔保持部材3が伸びることにより熱交換器構成部材6の反りやカールにつながり、積層加工時のトラブルになっていた。この問題に対して、この実施の形態1では、接着剤塗布面との反対側から、水溶媒系の薬剤(水溶媒に溶かした気体遮蔽機能を有する樹脂などを含む表面処理用薬剤)を塗るようにしたので、熱交換器構成部材6の表裏で、水分による素材の伸びが釣り合い、反りが低減される。そのため、熱交換器構成部材6全体の反りを小さく抑えることができるので生産性を上げることができる。また、各層の反りやカールが無く、平行にまっすぐ積層できるので、流路の曲がりがなく、低圧損でかつ外観品質を向上させることができる。
実施の形態2.
この実施の形態2では、仕切部材2に用いる多孔質部材7に、JIS A 1322に適合する難燃素材を用いる場合を示す。つまり、実施の形態1の図3に示される熱交換器構成部材6において、難燃剤を含む多孔質部材7を仕切部材2として用い、この仕切部材2の間隔保持部材3が形成されない側の面に、気体遮蔽機能を有する樹脂と吸湿剤とを含む表面処理膜8を形成した構成を有する。そして、この熱交換器構成部材6を複数積層させることで、実施の形態2の熱交換器1が構成される。難燃剤として、スルファミン酸グアニジンなどを用いることができる。また、この場合、原紙(多孔質部材7)の比重で10〜40%の量を混抄する。なお、実施の形態1と基本的に同一の構成には同一の符号を付して、その説明を省略している。
つぎに、このような構成を有する熱交換器1の製造方法について説明する。なお、この実施の形態2でも、熱交換器1の製造は、実施の形態1の図4と図5に示される装置を用いて行われる。まず、図4に示されるシングルフェーサ装置でコルゲート処理を行う場合には、プレスロール10には、難燃化処理を行った多孔質部材7が供給される。そして、間隔保持部材3となる紙材9が一対のコルゲータ11,12で波状に成型された後に、その波状の頂点部に糊付けロール15で水溶媒系の接着剤14が塗布され、上記難燃化処理を行った多孔質部材7にプレスロール10で押付けられ、熱交換器構成部材6が作製される。その後、この熱交換器構成部材6の接着剤14を乾燥させて、所定の寸法、形状に裁断する。
ついで、図5に示される溶媒塗布装置に、所定の寸法、形状に裁断した熱交換器構成部材6を、間隔保持部材3が形成された側を下向きにして供給する。このとき、上側から薬剤塗布ローラ22を用いて仕切部材2の間隔保持部材3が貼合されていない面に、気体遮蔽機能をもつ樹脂と吸湿剤を混合した表面処理用薬剤を塗布または塗工していく。この表面処理用薬剤として、水溶性のものが扱いやすいので好ましい。また、気体遮蔽機能を持つ樹脂としてポリビニルアルコールなどが適しており、吸湿剤として塩化リチウムが選択される。この表面処理用薬剤を、仕切部材2上に10〜20g/m2の割合で塗工する。また、下側からは糊付けローラ21を用いて、仕切部材2の間隔保持部材3の波状の頂点部に水溶媒系の接着剤を塗布していく。この加工工程により、仕切部材2に吸湿機能強化や気体遮蔽機能を新たに付加することができる。
その後、この接着剤を塗布した熱交換器構成部材6を、その間隔保持部材3の波形の成形方向が上下に隣接する熱交換器構成部材6間で所定の位置関係となるように積層接着することによって、図1に示すような熱交換器1が製造される。
この実施の形態2によれば、実施の形態1の効果に加えて、予め難燃処理を行った多孔質部材7を使用するため、後工程である積層工程時に難燃剤を含めた表面処理用薬剤を塗布する実施の形態1に比較して、表面処理用薬剤に難燃剤を加える必要がなく、表面処理用薬剤の量を少なくすることができる。その結果、加工スピードを向上させることができる。また、薬剤塗工量の総量に加工上の制約がある場合に、気体遮蔽剤の割合を増加させて気体遮蔽機能の強化を行ったり、吸湿剤の割合を増加させて透湿性能を強化させたりするなどの要求に応じた作り分けも可能となる。
実施の形態3.
この実施の形態3では、仕切部材2に用いる多孔質部材7に、予め吸湿処理を行ったものを用いる場合を示す。つまり、実施の形態1の図3に示される熱交換器構成部材6において、吸湿剤を含む多孔質部材7を仕切部材2として用い、この仕切部材2の間隔保持部材3が形成されない側の面に、気体遮蔽機能を有する樹脂と難燃剤とを含む表面処理膜8を形成した構成を有する。そして、この熱交換器構成部材6を複数積層させることで、実施の形態3の熱交換器1が構成される。吸湿剤として、塩化リチウムや塩化カルシウムなどの水溶媒タイプが扱いやすいので好ましい。また、この場合、原紙(多孔質部材7)の比重で5〜20%の量を混抄する。なお、実施の形態1と基本的に同一の構成には同一の符号を付して、その説明を省略している。
つぎに、このような構成を有する熱交換器1の製造方法について説明する。なお、この実施の形態3でも、熱交換器1の製造は、実施の形態1の図4と図5に示される装置を用いて行われる。まず、図4に示されるシングルフェーサ装置でコルゲート処理を行う場合には、プレスロール10には、吸湿処理を行った多孔質部材7が供給される。そして、間隔保持部材3となる紙材9がコルゲータ11,12で波状に成型された後に、その波状の頂点部に糊付けロール15で水溶媒系の接着剤14が塗布され、上記吸湿処理を行った多孔質部材7にプレスロール10で押付けられ、熱交換器構成部材6が作製される。その後、この熱交換器構成部材6の接着剤14を乾燥させて、所定の寸法、形状に裁断する。
ついで、図5に示される溶媒塗布装置に、所定の寸法、形状に裁断した熱交換器構成部材6を、間隔保持部材3が形成された側を下向きにして供給する。このとき、上側から薬剤塗布ローラ22を用いて仕切部材2の間隔保持部材3が貼合されていない面に、気体遮蔽機能を持つ樹脂と難燃剤を混合した表面処理用薬剤を10〜20g/m2の割合で塗布または塗工していく。この表面処理用薬剤として、水溶性のものが扱いやすく望ましい。また、気体遮蔽機能を持つ樹脂としてポリビニルアルコールなどが適している。さらに、実施の形態1のように難燃剤と吸湿剤を分けて塗ることができるので、難燃剤として、吸湿剤に用いる塩化リチウムと反応しないスルファミン酸グアニジン以外のもの、たとえばリン化合物なども選択が可能となり、難燃剤選択の自由度が広がる。また、下側からは糊付けローラ21を用いて、仕切部材2の間隔保持部材3の波状の頂点部に水溶媒系の接着剤を塗布していく。この加工工程により、仕切部材2に難燃機能や気体遮蔽機能を新たに付加することができる。
その後、この接着剤を塗布した熱交換器構成部材6を、その間隔保持部材3の波形の成形方向が隣接する熱交換器構成部材6間で所定の角度となるように積層接着することによって、図1に示すような熱交換器1が製造される。
この実施の形態3によれば、実施の形態1の効果に加えて、予め吸湿処理を行った多孔質部材7を使用するため、後工程である積層工程時に吸湿剤を含めた表面処理用薬剤を塗布する実施の形態1の場合に比較して、薬剤の量を少なくできるので、加工スピードを向上させることができるという効果を有する。また、薬剤を塗る量の総量に加工上の制約がある場合に、気体遮蔽剤の割合を増加させ気体遮蔽機能の強化を行ったり、難燃剤の割合を増加させて難燃性能を強化させたりするなどの要求に応じた作り分けが可能となる。
実施の形態4.
この実施の形態4では、仕切部材2に用いる多孔質部材7に、予め吸湿剤と難燃剤を含浸させたものを用いる場合を示す。つまり、実施の形態1の図3に示される熱交換器構成部材6において、吸湿剤と難燃剤とを含む多孔質部材7を仕切部材2として用い、この仕切部材2の間隔保持部材3が形成されない側の面に、気体遮蔽機能を有する樹脂を含む表面処理膜8(気体遮蔽膜)を形成した構成を有する。そして、この熱交換器構成部材6を複数積層させることで、実施の形態4の熱交換器1が構成される。吸湿剤として、塩化リチウムなどを用いることができ、難燃剤としてスルファミン酸グアニジンなどを用いることができる。また、塩化リチウムを吸湿剤として用いる場合には、原紙(多孔質部材7)の比重で10〜40%の量を混抄し、スルファミン酸グアニジンを難燃剤として用いる場合にも、原紙(多孔質部材7)の比重で10〜40%の量を混抄する。このように、難燃剤を予め多孔質部材7に混抄しておくことによって、表面のべと付きが軽減され、仕切部材2は扱い易くなる。
つぎに、このような構成を有する熱交換器1の製造方法について説明する。なお、この実施の形態4でも、熱交換器1の製造は、実施の形態1の図4と図5に示される装置を用いて行われる。まず、図4に示されるシングルフェーサ装置でコルゲート処理を行う場合には、プレスロール10には、吸湿処理と難燃化処理を施した多孔質部材7が供給される。そして、間隔保持部材3となる紙材9がコルゲータ11,12で波状に成型された後に、その波状の頂点部に糊付けロール15で水溶媒系の接着剤14が塗布され、上記吸湿処理と難燃化処理を行った多孔質部材7にプレスロール10で押付けられ、熱交換器構成部材6が作製される。この実施の形態4で用いられる仕切部材2は、予め含浸処理または塗工などにより吸湿処理と難燃処理が行われており、特に素材の表裏がない上に、熱と吸湿による加工上の不具合もなく、高速かつ安定した熱交換器構成部材6の製造作業を実施することができる。その後、接着剤14を乾燥させて、所定の寸法、形状に裁断する。
つぎに、図5に示される薬剤塗布装置に、所定の寸法、形状に裁断した熱交換器構成部材6を、間隔保持部材3が形成された側を下向きにして供給する。このとき、上側から薬剤塗布ローラ22を用いて仕切部材2の間隔保持部材3が貼合されていない面に、気体遮蔽機能を持つ樹脂からなる表面処理用薬剤を塗布または塗工していく。この表面処理用薬剤として、ポリビニルアルコールなどを用いることができる。また、下側からは糊付けローラ21を用いて、仕切部材2の間隔保持部材3の波状の頂点部に水溶媒系の接着剤を塗布していく。この加工工程により、気体遮蔽膜(表面処理膜8)が形成され、仕切部材2に気体遮蔽機能を新たに付加することができる。
その後、この接着剤を塗布した熱交換器構成部材6を、その間隔保持部材3の波形の成形方向が上下の層で隣接する熱交換器構成部材6間で所定の角度となるように積層接着することにより、図1に示すような熱交換器1が製造される。
なお、多孔質部材7の代わりに、無孔系素材を用いてポリビニルアルコールを無くした仕切部材2を用いても同様に、熱および吸湿による加工上の不具合がなく、高速にかつ安定した熱交換器構成部材6の製造作業を行うことができる。しかし、無孔系素材という孔のない素材に対して、この実施の形態4で使用する仕切部材2は、ベースが多孔質であるために、接着剤が素早く素材の内部に浸透するので、十分なアンカ効果による接合強度を確保することができる。これにより、さらに加工スピードを改善することができる。また、積層工程時の接着においても、無孔系の仕切板に対してより接着強度を向上させることができる。
また、この実施の形態4においては、多孔質部材7の片面に、気体遮蔽膜(表面処理膜8)に透湿性の高いポリウレタンまたはポリエチレングリコールを含んだポリエステルエラストマ素材を、コーティングまたはラミネート加工したものや、透湿性空気遮蔽膜を形成する有機材料を用いた樹脂フィルムをラミネート加工して気体遮蔽膜(表面処理膜8)を形成して仕切部材2の素材としたものを用いても同様の効果を得ることができる。
この実施の形態4によれば、実施の形態1の効果に加えて、予め吸湿処理と難燃処理を行った多孔質部材7を使用するため、後工程である積層工程時に吸湿剤と難燃剤を含めた表面処理用薬剤を塗布する実施の形態1の場合に比較して、表面処理用薬剤に吸湿剤と難燃剤を混合する必要がなく、表面処理用薬剤の量を少なくできるので、加工スピードを向上させることができるという効果を有する。
実施の形態5.
この実施の形態5では、仕切部材2として所定の透気度を有する多孔質部材7を用いる場合を示す。この多孔質部材7は、アルカリ溶液などを用いて、高度に粘状叩解した微細な親水性繊維を使用して、温水中で抄き合わせ、水分率15〜25%の湿紙巻き取りを行った後、ロールで紙を圧縮するカレンダ加工の各工程条件の組合せによって作製する。これにより、空気遮蔽機能性シート状素材からなる多孔質部材7が作製される。また、多孔質部材7は、乾燥と同時に強圧力が加えられるため、高密度、透明性と高平滑度が確保された状態で作製される。
抄き合わせ水分率に関しては、湿りすぎていると巻き取り仕上げにブロッキングしたり紙切れしたりし易くなり、また、乾きすぎた状態でカレンダ加工を行っても狙ったように密度の高い紙が得られ難い。これは、乾きすぎていると、繊維間での動きが少なくなり、再結合による高密度化が進まないからであると推定される。これらの実験の結果を考慮すると、抄き合わせ水分率は、15〜20%の範囲の湿紙巻き取りで行うことが望ましい。
多孔質部材7は、空隙率を20〜30%前後に抑えて、JIS P 8117で規定される透気度を200〜700秒(sec)/100cc以上を確保したものを用いることが望ましい。透気度が200sec/100cc以上に確保されることにより、熱交換換気装置として重要項目である炭酸ガスの移行率を、5%以下に抑えることができる。
この実施の形態5では、仕切部材2として、図3に示すように板状の多孔質部材7に予め吸湿剤として塩化リチウムを使用し、難燃剤としてスルファミン酸グアニジンを使用したものを用いている。吸湿剤は、薬剤にもよるが、塩化リチウムの場合には原紙(多孔質部材7)の比重で10〜40%が混抄される。また、難燃剤も原紙(多孔質部材7)の比重で10〜40%が混抄される。難燃剤を予め多孔質部材7に混抄しておくことによって、表面のべと付きが軽減され扱い易くなる。このようにして得られた多孔質部材7は、無孔質と呼ばれる空気遮蔽機能性シートの空隙率の低さによる薬液の浸透が悪く、その結果薬液を多く塗工できないという問題と、接着加工時の接着剤の浸透が悪く接着不良になる虞を解決することができる。
なお、このような透気度が200sec/100cc以上の多孔質部材7を用いた場合の熱交換器1の製造方法は、多孔質部材7に上記透気度が200sec/100cc以上の多孔質部材7が用いられる点を除いて、上述した実施の形態4で説明したものと同様であるので、その説明を省略する。
なお、この実施の形態5においては、多孔質部材7の片面に、気体遮蔽機能を含む表面処理膜8に透湿性の高いポリウレタンまたはポリエチレングリコールを含んだポリエステルエラストマ素材を、コーティングまたはラミネート加工したものや、透湿性空気遮蔽膜を形成する有機材料を用いた樹脂フィルムをラミネート加工して気体遮蔽機能を有する表面処理膜8を形成して仕切部材2の素材としたものを用いても同様の効果を得ることができる。また、この実施の形態5では、JIS P 8117で規定される透気度を200〜700秒(sec)/100cc以上を確保した多孔質部材7を実施の形態4に適用した場合を説明したが、実施の形態1〜3に上記多孔質部材7を適用してもよい。さらに、以上の場合において、間隔保持部材3として、JIS A 1322で規定される難燃紙を用いてもよい。
この実施の形態5によれば、多孔質部材7に透気度が200sec/100cc以上の素材を使用することによって、気体遮蔽機能を有する表面処理膜8を形成するためのポリビニルアルコールなどの塗布量を減らすことができ、また多孔質部材7にある程度の気体遮蔽性があるので、表面処理膜8(気体遮蔽層)にできるピンホールを減らすことができる。この実施の形態5の実験によれば、透気度が200sec/100cc以上の多孔質部材7を用いない場合に比べて、ポリビニルアルコールの付着量を1〜2g/m2減らすことができた。
また、実施の形態4と同様にベースが多孔質であるために、接着剤が素早く素材の内部に浸透するので、十分なアンカ効果による接合強度を確保することができる。さらに、この実施の形態5では、積層工程時にポリビニルアルコールによる透湿層(気体遮蔽層)を形成することになるが、水溶媒の薬剤を選択することにより、水溶媒の接着剤との相性も良好で、透湿膜層が水分の蒸発により硬化する前に接着剤成分が透湿層(気体遮蔽層)を抜けて基材の多孔質部材7に到達できるので、接着強度も十分確保することができる。この積層加工時の接着においても無孔系の仕切板に比して、接着強度を向上させることができる。
以上のように、この発明にかかる熱交換器の製造方法は、気体遮蔽性、吸湿性および難燃性を有し、作製中における難燃化処理を行う薬剤のべと付きを抑えて、熱交換器構成部材の反りやカールを抑えることができる熱交換器の製造に有用である。
この発明による熱交換器の全体構成を示す斜視図である。 図1の熱交換器を構成する熱交換器構成部材の構成を示す斜視図である。 図2の熱交換器構成部材の端面を示す側面図である。 熱交換器構成部材を製造するためのコルゲート加工を行うシングルフェーサ装置の概略構成を模式的に示す図である。 熱交換器を製造する溶媒塗布装置の概略構成を模式的に示す図である。 従来の積層接着工程の様子を示す図である。
符号の説明
1 熱交換器
2 仕切部材
3 間隔保持部材
4,5 流体通路
6 熱交換器構成部材
7 多孔質部材
8 表面処理膜(気体遮蔽膜)
10 プレスロール
11 上段コルゲータ
12 下段コルゲータ
13 糊貯蔵層
14 接着剤
15,21 糊付けローラ
22 薬剤塗布ローラ

Claims (14)

  1. 板状の多孔質部材からなる仕切部材の片面にコルゲート加工された間隔保持部材を接着した熱交換器構成部材を、複数接着剤で接着し、積層してなる熱交換器において、
    前記仕切部材の前記間隔保持部材が接着されている面と反対面に気体遮蔽機能を有する樹脂を含む表面処理膜を形成することを特徴とする熱交換器。
  2. 前記表面処理膜は、前記気体遮蔽機能を有する樹脂の他に、難燃剤と吸湿剤を含むことを特徴とする請求項1に記載の熱交換器。
  3. 前記仕切部材は、難燃処理された多孔質部材からなり、
    前記表面処理膜は、気体遮蔽機能を有する樹脂の他に、吸湿剤を含むことを特徴とする請求項1に記載の熱交換器。
  4. 前記仕切部材は、吸湿処理された多孔質部材からなり、
    前記表面処理膜は、気体遮蔽機能を有する樹脂の他に、難燃剤を含むことを特徴とする請求項1に記載の熱交換器。
  5. 前記仕切部材は、難燃処理および吸湿処理された多孔質部材からなることを特徴とする請求項1に記載の熱交換器。
  6. 前記多孔質部材は、200秒/100cc以上のJIS P 8117で規定される透気度を有することを特徴とする請求項1〜5のいずれか1つに記載の熱交換器。
  7. 前記間隔保持部材は、JIS A 1322で規定される難燃紙であることを特徴とする請求項6に記載の熱交換器。
  8. 所定の素材をコルゲート加工して間隔保持部材を形成する第1の工程と、
    板状の多孔質部材からなる仕切部材の片面に前記間隔保持部材を接着して熱交換器構成部材を作製する第2の工程と、
    前記熱交換器構成部材の前記仕切部材側に気体遮蔽機能を有する樹脂を含む水溶媒系の表面処理用薬剤を塗布し、前記熱交換器構成部材の前記間隔保持部材側に水溶媒系の接着剤を塗布する第3の工程と、
    前記熱交換器構成部材の接着剤が塗布された前記間隔保持部材に他の熱交換器構成部材の仕切部材を重ね合わせて接着する第4の工程と、
    を含むことを特徴とする熱交換器の製造方法。
  9. 前記第3の工程で、前記表面処理用薬剤には、気体遮蔽機能を有する樹脂の他に、難燃剤と吸湿剤が含まれることを特徴とする請求項8に記載の熱交換器の製造方法。
  10. 前記第2の工程で、前記仕切部材として、難燃剤を混抄した多孔質部材を用い、
    前記第3の工程で、前記表面処理用薬剤には、気体遮蔽機能を有する樹脂の他に、吸湿剤が含まれることを特徴とする請求項8に記載の熱交換器の製造方法。
  11. 前記第2の工程で、前記仕切部材として、吸湿剤を混抄した多孔質部材を用い、
    前記第3の工程で、前記表面処理用薬剤には、気体遮蔽機能を有する樹脂の他に、難燃剤が含まれることを特徴とする請求項8に記載の熱交換器の製造方法。
  12. 前記第2の工程で、前記仕切部材として、難燃剤と吸湿剤を混抄した多孔質部材を用いることを特徴とする請求項8に記載の熱交換器の製造方法。
  13. 前記第2の工程で、前記多孔質部材として、JIS P 8117で規定される透気度が200秒/100cc以上のものを用いることを特徴とする請求項8〜12のいずれか1つに記載の熱交換器の製造方法。
  14. 前記第1の工程で、前記間隔保持部材として、JIS A 1322で規定される難燃紙を用いることを特徴とする請求項13に記載の熱交換器の製造方法。
JP2005187418A 2005-06-27 2005-06-27 熱交換器とその製造方法 Pending JP2007003161A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187418A JP2007003161A (ja) 2005-06-27 2005-06-27 熱交換器とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187418A JP2007003161A (ja) 2005-06-27 2005-06-27 熱交換器とその製造方法

Publications (1)

Publication Number Publication Date
JP2007003161A true JP2007003161A (ja) 2007-01-11

Family

ID=37688960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187418A Pending JP2007003161A (ja) 2005-06-27 2005-06-27 熱交換器とその製造方法

Country Status (1)

Country Link
JP (1) JP2007003161A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719789A (ja) * 1993-07-02 1995-01-20 Abb Gadelius Kk 全熱交換器の複合伝熱エレメント
JPH08219676A (ja) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp 熱交換器及び熱交換器の間隔板並びに熱交換器の仕切板
JP2001027489A (ja) * 1999-05-10 2001-01-30 Mitsubishi Electric Corp 熱交換器及び熱交換器の製造方法
JP2002310589A (ja) * 2001-04-11 2002-10-23 Mitsubishi Electric Corp 熱交換素子
JP2003148892A (ja) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp 熱交換器及び熱交換換気装置
JP2005121264A (ja) * 2003-10-15 2005-05-12 Mitsubishi Electric Corp 全熱交換素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719789A (ja) * 1993-07-02 1995-01-20 Abb Gadelius Kk 全熱交換器の複合伝熱エレメント
JPH08219676A (ja) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp 熱交換器及び熱交換器の間隔板並びに熱交換器の仕切板
JP2001027489A (ja) * 1999-05-10 2001-01-30 Mitsubishi Electric Corp 熱交換器及び熱交換器の製造方法
JP2002310589A (ja) * 2001-04-11 2002-10-23 Mitsubishi Electric Corp 熱交換素子
JP2003148892A (ja) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp 熱交換器及び熱交換換気装置
JP2005121264A (ja) * 2003-10-15 2005-05-12 Mitsubishi Electric Corp 全熱交換素子

Similar Documents

Publication Publication Date Title
JP3969064B2 (ja) 熱交換器及び熱交換換気装置
US6536514B1 (en) Heat exchanger and method for preparing it
JP5503285B2 (ja) 全熱交換素子およびその製造方法
JP4206894B2 (ja) 全熱交換素子
JP3501075B2 (ja) 熱交換器及び熱交換器の製造方法
US20110192579A1 (en) Total heat exchange element and total heat exchanger
JP5036813B2 (ja) 熱交換素子、熱交換器および熱交換素子の製造方法
JP2738284B2 (ja) 熱交換器及びその間隔板並びに熱交換器の仕切板の製造方法
JP2007315649A (ja) 全熱交換器
JP2002310589A (ja) 熱交換素子
JP2007003161A (ja) 熱交換器とその製造方法
JP4305530B2 (ja) 熱交換器
JP2002228382A (ja) 熱交換器
JP2017213721A (ja) 積層シートおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713