JP2006510221A - オーバーモールド・プラスチック・パッケージ用ヒートシンクまたはフラグ用の微小モールドロック - Google Patents

オーバーモールド・プラスチック・パッケージ用ヒートシンクまたはフラグ用の微小モールドロック Download PDF

Info

Publication number
JP2006510221A
JP2006510221A JP2004560294A JP2004560294A JP2006510221A JP 2006510221 A JP2006510221 A JP 2006510221A JP 2004560294 A JP2004560294 A JP 2004560294A JP 2004560294 A JP2004560294 A JP 2004560294A JP 2006510221 A JP2006510221 A JP 2006510221A
Authority
JP
Japan
Prior art keywords
heat sink
main channel
mold
plastic molding
mold lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004560294A
Other languages
English (en)
Other versions
JP2006510221A5 (ja
Inventor
ジェイ. エリオット、アレクサンダー
マーリンガム、エル.エム.
エム. ストローム、ウィリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2006510221A publication Critical patent/JP2006510221A/ja
Publication of JP2006510221A5 publication Critical patent/JP2006510221A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4842Mechanical treatment, e.g. punching, cutting, deforming, cold welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49121Beam lead frame or beam lead device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

パッケージ半導体のヒートシンク(2)上にモールド・ロック(28、30)のシステムを形成し、剥離を防止/緩和する。モールド・ロック(4,12)は、パッケージ半導体ダイの保護カバーを形成するプラスチック成形材(34)に固定する。モールド・ロック(4,12)を微細化して、ヒートシンク(2)のフラグ部およびリード・フレーム(24)内にこれらの配置を可能にし、ヒートシンク/リード・フレーム(2,24)のフラグ部内に形成されたモールド・ロック(4,12)の上に、半導体ダイを固定できるようにする。前記モールド・ロック(4,12)の大きさを小さくすることは、ダイ接着はんだ(36)の目的から逸脱するものではない。

Description

本発明は、半導体のパッケージングの分野に関し、更に特定すれば、半導体パッケージ成形材をヒートシンクに固定するヒートシンク内に形成されるモールド・ロック(mold lock)に関する。
マイクロチップは、種々の異なる材料で形成される。半導体ダイは、シリコン、ガリウム砒素、ゲルマニウム、またはその他の何らかの半導体材料で形成され、ヒートシンクのフラグ部に取り付けることができる。通例、ヒートシンクは銅で形成されている。半導体ダイを銅に接合するには、典型的なダイ接合はんだ配合材を用いる。ヒートシンクは、金属で作られたリード・フレームに取り付けられる。リード・フレームは、マイクロチップの出力電気接点として機能する一連のリード・コンタクトを含む。半導体ダイをリード・フレームに電気的に接続するには、半導体ダイとリード・コンタクトとの間に金属ワイヤを敷設する。半導体ダイ、ワイヤ、およびリード・コンタクトを保護するために、プラスチック成形材が半導体パッケージを封止する。
通常の動作中、マイクロチップは加熱および冷却のサイクルを受ける。これらの加熱および冷却サイクルによって、マイクロチップは膨張および収縮する。マイクロチップは異なる材料で形成されているので、膨張率および収縮率は、マイクロチップ内で均一ではない。マイクロチップを形成する材料が異なれば、異なる率で膨張および収縮する。これらマイクロチップ内における膨張率および収縮率が異なるために、高い内部応力の発生に至る可能性があり、この内部応力がデバイスの破損を招く虞れがある。第一に、プラスチック成形材は十分に異なる率で膨張するために、金属ヒート・シンクおよび金属リード・フレームから分離する可能性がある。この分離を剥離と呼ぶ。プラスチックの成形材がヒートシンクおよびリード・フレームから剥離すると、リード・コンタクトを半導体ダイに連結する金属ワイヤに大きな応力が加えられる。これらの応力は、リード・コンタクトを半導体ダイに連結するワイヤ間の電気的接触を破壊するのに十分な程に高くなる可能性がある。また、剥離によって、水分および酸化によるマイクロチップの故障を招く虞れもある。プラスチックの成形材が剥離して、外界からの経路が半導体ダイおよびワイヤまで形成されるような事態になると、水分がワイヤおよび半導体ダイを攻撃する虞れがある。腐食によって、水分はマイクロチップを破壊する可能性がある。したがって、マイクロチップの保全性を維持し、剥離を防止する方法を開発することが非常に望ましくなってきている。
化学的接合は、プラスチック成形材をヒートシンクに接着する1つの方法である。プラスチック成形材は、エポキシ樹脂で形成されており、エポキシ樹脂の組成は、銅製ヒートシンクの自然酸化物層と化学的に接合する。この化学的接合はプラスチック成形材をヒートシンクには接着するが、連続する加熱および冷却サイクルがこれらの化学的接合を破壊し、プラスチック成形材をヒートシンクから分離させる虞れがある。
プラスチック成形材の化学的組成を変化させて、金属ヒートシンクと同じ熱膨張率をこれに与えることは、剥離の問題に対処する別の方法である。金属マイクロチップ構成要素およびプラスチック成形材の膨張率および収縮率間の差を最小限に抑えれば、剥離の問題は低減する。マイクロチップの金属構成要素およびプラスチック成形材が同じ熱膨張および収縮率をするのであれば、プラスチック成形材と金属ヒートシンクとの間の化学的接合は、熱変動による力学的応力を受けない。この時点では、このような特性を有する信頼性
の高いプラスチック配合材料は、当技術分野では知られていない。
剥離の問題に対処する別の方法は、ヒートシンクおよびプラスチック成形材が機械的に連結(interlock)するように、これらを噛み合わせて接合することによる。プラスチック成形材およびヒートシンクを連結する構造は、一般にモールド・ロックと呼ばれている。現在当技術分野において知られているモールド・ロックの設計では、そのサイズおよび構造から、ヒートシンクのダイ取付区域の外側にこれらを配置しなくてはならない。当技術分野において現在知られているモールド・ロックは、大抵の場合、ヒートシンクのフラグ部を包囲する、溝状モート(moat)構造で形成されている。既知のモート状モールド・ロックを半導体ダイの下に配置すると、モールド・ロックは、半導体ダイをヒートシンクに接合する際に用いたはんだに対して排出路として作用する。その結果、既知のモールド・ロックは、はんだを排出してしまうことによって、半導体ダイとヒートシンクとの間の接合を低下させることになる。加えて半導体ダイのヒートシンクとの界面からはんだを排出することによって、既知のモールド・ロックは、プラスチック成形材およびヒートシンクを半導体ダイの下に配置したときに、これらの間の化学的接合を劣化させる。先に論じたように、プラスチック成形材は、銅製ヒートシンクの酸化物層と化学的接合を形成するような組成を有する。対照的に、プラスチック成形材は、半導体ダイを取り付ける際に用いられるはんだ配合材とは化学的接合を形成しない。既存のモールド・ロックが半導体ダイのヒートシンクとの界面の下ではんだを排出すると、プラスチック成形材のヒートシンクとの界面の面積が減少し、プラスチック成形材のはんだとの界面が増大する。化学的接合ははんだとプラスチック成形材との間には形成されないので、既知のモールド・ロックを半導体ダイの下に形成すると、プラスチック成形材とヒートシンクとの間の接合全体が劣化する。更にまた、既知のモールド・ロックは、接合線の厚さにも悪影響を及ぼす。
半導体ダイのサイズは、ダイを設計する用途によって様々に異なる。現在では、半導体業界が製造するヒートシンクおよびリード・フレームが有するサイズおよび構造は、各個々の半導体ダイのサイズと一致する。半導体ダイの各サイズと一致するようにカスタムのヒートシンクおよびリード・フレームを設計し製造するのは、費用がかかるプロセスである。半導体業界は、マイクロチップを製造するコストを削減する方法を常に求めている。コストを削減する1つの方法は、「1つのサイズで全てに合う」ヒートシンク、および種々の半導体ダイのサイズと適合性のあるリード・フレーム構造を設計することである。この「1つのサイズで全てに合う」ヒートシンクおよびリード・フレーム構造を設計する際、コスト削減および設計時間短縮を図るために、大型および小型の半導体ダイ・サイズ双方と共に用いるときにも、マイクロチップ・パッケージの保全性を維持するモールド・ロック構造を開発することが非常に望ましい。
「1つのサイズで全てに合う」ヒートシンク構造の設計には、モールド・ロックの設計およびマイクロチップの保全性に対して種々の課題がある。これらの設計課題を検討するために、大型の半導体ダイおよび小型の半導体ダイの同一ヒートシンク構造との一体化について調べることにする。大型の半導体ダイをヒートシンクと一体化する場合、プラスチック成形材は、ダイ取付区域の外側のヒートシンクの外縁上に形成されているモールド・ロック、およびフラグ区域内にそれ自体が位置する半導体ダイに面する(see)。しかしながら、小型の半導体ダイを同じヒートシンク上に配置すると、ダイ取付区域の大きな空区域がプラスチック成形材に晒される。このフラグの大きな区域には、先に論じた当技術分野には公知の困難さのために、プラスチック成形材を固着するためのモールド・ロックがない。その結果、小型の半導体ダイおよび「1つのサイズで全てに合うヒートシンク」を有する半導体パッケージには、剥離の危険性がある。したがって、ヒートシンクのフラグ部に使用可能なモールド・ロック構造を開発し、当技術分野では周知の問題に対処することが非常に望まれている。このように、マイクロチップのパッケージ保全性を維持す
る「1つのサイズで全てに合う」ヒートシンク構造を開発することは可能である。
参照符号に基づいて図面を参照すると、図1は、本発明の好適な実施形態の上面図を示す。上面内にモールド・ロック4が形成されているヒートシンク2が示されている。モールド・ロック4は、主チャネル6および副チャネル8を含む。主チャネル6および副チャネル8の双方は、従来の金属型打プロセスによって、ヒートシンク2内に形成される。あるいは、エッチング・プロセスでも、チャネル6,8を形成することができる。主チャネル6および副チャネル8は、合わせて、ヒートシンク2の上面上に配置されているプラスチック成形材にヒートシンク2を機械的に固定するように機能する。副チャネル8の作成によって、あり継ぎ(dovetail)断面形状が形成される。あり継ぎ断面形状10は、木製家具の製造において用いられる接続部があり継ぎと呼ばれており、これに見た目が似ていることから、その名称がつけられた。図1において、あり継ぎ断面形状10は、主チャネル6の各側から延びるあり継ぎ断面形状10があることから、完全なあり継ぎ断面形状である。
図2は、図1の断面2−2に沿った、本発明の好適な実施形態の断面図を示す。主チャネル6が内部に形成されているヒートシンク2が示されている。あり継ぎ断面形状10は、主チャネル6の各側から延びている。あり継ぎ断面形状10は、副チャネル8の製作によって形成される。主チャネル6、副チャネル8、およびあり継ぎ断面形状10全体で、モールド・ロック4を形成する。
図3は、図1の断面3−3に沿った、本発明の好適な実施形態の断面図を示す。主チャネル6の壁から突出したあり継ぎ断面形状10が示されている。主および副チャネル6,8双方は、従来の金属型打プロセスによって形成され、主チャネル6が最初に型打されるので、副チャネル8を型打ちするときに、あり継ぎ10が形成される。あり継ぎ断面形状10は、ヒートシンク2上に保護カバーを形成するプラスチック成形材との機械的固定を形成する構造である。モールド・ロック4は、非常に小さな寸法を有する。一例として、一実施形態では、副チャネル8の深さは0.003インチ、即ち、0.0000762メートルである。主チャネル6の深さの一例は、0.006インチ、即ち、0.0001524である。副チャネル8および主チャネル6は、その他の深さや断面形状でも、所望の用途に応じて用いられる。
図4は、本発明の代替実施形態の上面図である。半あり継ぎ断面形状のモールド・ロック12を有するヒートシンク2の上面が示されている。半あり継ぎ断面形状のモールド・ロック12は、主チャネル6および半あり継ぎ断面形状14を含む。半あり継ぎ断面形状14は、陥凹16の形成によって形成される。図5は、図4の断面5−5に沿った、本発明の代替実施形態の断面図を示す。図6は、図4の断面6−6に沿った本発明の代替実施形態の断面図を示す。図5および図6を参照すると、ヒートシンク2内に主チャネル6が形成されている。半あり継ぎ断面形状14は主チャネル6内部まで達している。半あり継ぎ断面形状14は、ヒートシンク2上に保護カバーを形成するプラスチック成形材との機械的固定を形成する構造である。半あり継ぎ断面形状14は、陥凹16の形成によって作成する。モールド・ロック12の寸法は非常に小さく、一例として、主チャネル6の深さが0.006インチ、即ち、0.0001524メートルである。主チャネル6は、その他の深さでも、用途に応じて用いられる。このようにモールド・ロック12の幾何学的形状を小さくしたことによって、半導体ダイをヒートシンク2に取り付ける際に伴うあらゆる問題をも回避しつつ、プラスチック成形材およびヒートシンク2間の剥離を低減するという所望の効果を達成する。
図7は、図1の断面3−3に沿った、本発明の好適な実施形態を形成する機械的プロセ
スを示す。図7は、モールド・ロック4を形成する2段階の製造プロセスを示す。図7のステップ1では、従来の型打機内の第1パンチ18の下にヒートシンク2を配置する。第1パンチ18をヒートシンク2内に打ち込み、破線で示す主チャネル6を形成する。図7のステップ2では、第1パンチ18よりも広い第2パンチ20の下に、ヒートシンク2を配置する。第2パンチは、破線で示す第2チャネルを形成する。図7のステップ2では、主チャネル6を形成する。図7のステップ3では、主チャネル6および副チャネル8双方を形成する。図7のステップ2に示す副チャネル8の製造によって、あり継ぎ断面形状10を形成する。あり継ぎ断面形状10は、図7のステップ2において破線で示す、ヒートシンク2の材料の変位によって形成する。第2チャネル8をヒートシンク2内に型打することによって、ヒートシンク2の材料が主チャネル6内に変位し、あり継ぎ断面形状10が形成される。
図8は、図4の断面6−6に沿った、本発明の代替実施形態を形成する機械的プロセスを示す。図8は、モールド・ロック12を形成する2段階の製造プロセスを示す。図8のステップ1では、従来の型打機内の第1パンチ18の下にヒートシンク2を配置する。第1パンチ18をヒートシンク2内に打ち込み、破線で示す第1チャネル6を形成する。図8のステップ2では、陥凹16を形成する第2パンチ22の下にヒートシンク2を配置する。パンチ22によって陥凹16を形成すると、ヒートシンク2の材料が主チャネル6内に変位して、図8のステップ3に示すように、半あり継ぎ断面形状14が形成される。
図9は、ヒートシンク上に形成された複数のモールド・ロックを示し、モールド・ロックは成形材に連結されている。金属で作られたリード・フレーム24が示されている。リード・フレーム24は、2つの主要な機能を果たす。リード・フレーム24は、半導体ダイ26を外界に電気的に連結する電気接点を含む。加えて、リード・フレーム24は、ヒートシンク2、リード・フレーム24、および半導体ダイ26を含むマイクロチップの製造を容易にする構造を与える。リード・フレーム24は、金属平板上で行われる一連の漸進金属型打プロセスによって形成される。リード・フレーム24の中には、十分な厚さで作られ、リード・フレーム24がヒートシンク2も形成するようにしたものもある。あるいは、薄いリード・フレームでは、銅製ヒートシンク2をリード・フレーム24に取り付けてもよい。ヒートシンク2は、複数のモールド・ロック4が内部に形成されているものとして示されている。あるいは、半あり継ぎ断面形状のモールド・ロック12をヒートシンク2内に形成することもできる。モールド・ロック4は、3列28,30を形成するように配置されている。列28は、ヒートシンク2の外側領域上に位置する。列30は、ヒートシンク2の内側領域内に位置する。このヒートシンク2の内側領域は、一般にフラグと呼ばれている。何故なら、これは、ダイを取り付けることができるヒートシンクの区域であるからである。列30に隣接して示されているのは、半導体ダイ26である。ダイ26は、このサイズのヒートシンク2にとっては小型のダイである。モールド・ロック4の列28は、ヒートシンク2の外側領域を、ヒートシンク2の上面上に成形されたプラスチック成形材に固定する。列30は、ヒートシンク2の内側領域においてプラスチック成形材をヒートシンク2に固定する機能を果たす。この図では、半導体ダイ26はいずれのモールド・ロック4も覆っていない。その結果、全てのモールド・ロック4が、保護パッケージを形成するプラスチック成形材と連結する。
再度図9を参照すると、列28,30内の各モールド・ロックは、他のモールド・ロック4からある距離の位置に個別に形成されている。その結果、各モールド・ロック4間にはヒートシンク2の材料領域が位置する。
図10は、ヒートシンク上に形成された複数のモールド・ロックを示し、モールド・ロックの一部は、半導体ダイをヒートシンクに接合するために用いられるはんだに連結されている。この場合も、ヒートシンク2は、リード・フレーム24に取り付けられたものと
して示されている。ヒートシンク2は、複数のモールド・ロック4が内部に形成されたものとして示されている。あるいは、半あり継ぎ断面形状のモールド・ロック12をヒートシンク2内に形成することも可能である。モールド・ロック4は、3列28,30を形成するように配置されている。列28は、ヒートシンク2の外側領域上に位置する。列30は、ヒートシンク2の内側部部分に位置する。この場合も、ヒートシンク2のこの内側部部分は一般にフラグと呼ばれている。
図10では、大型の半導体ダイ32がヒートシンク2に取り付けられている。大型の半導体ダイ32では、ヒートシンク2のダイ32によって覆われる面積が多くなる。図10に示すように、ダイ32はモールド・ロック4の列30を覆っている。その結果、列30内のモールド・ロック4は、プラスチック成形材と連結しない。代わりに、列30内のモールド・ロック4は、ダイ32をヒートシンク2に固着するために用いられるはんだ配合材と連結する。図9および図10双方において、半導体ダイ26および32は、はんだ配合材によってヒートシンク2に固着されている。
互いからある距離だけ離れた位置に個別にモールド・ロック4を形成することによって、モールド・ロック4は、ダイ32の下にチャネルを形成しない。これが形成されると、ダイ32の下からヒートシンク2の表面上にはんだが排出されてしまう。更に、モールド・ロック4が小型で断面積が小さいために、半導体ダイ32、ヒートシンク2、およびこれら2つを接続するはんだ間の接合を劣化させることなく、半導体ダイ32を取り付けることが可能となる。
個別のモールド・ロック4を列状に形成することによって、モールド・ロック4は、プラスチック成形材をヒートシンク2に固定する機能を果たすことができる。これらのサイズが小さいにも拘わらず、モールド・ロック4を多数用いると、プラスチック成形材とヒートシンク2との間に所望の機械的固定を得ることができる。
これら微小モールド・ロック4または12の使用によって、ダイ32およびヒートシンク2間の接合に悪影響を及ぼすことなく、モールド・ロック4または12をヒートシンク2上のいずれの位置にでも配することが可能となる。その結果、パッケージ全体の保全性を維持し、剥離を防止しつつ、小型のダイ26または大型のダイ32とでも用いることができる、汎用の「1つのサイズで全てに合う」ヒートシンク2およびリード・フレーム24を製造することが可能となる。ヒートシンク2の表面上に、複数のモールド・ロック4または12を形成する。列28,30に形成したモールド・ロック4を示したが、この列構成は単なる一例に過ぎない。格子パターンまたはチェッカ・パターンというような、モールド・ロックの他の構成も可能である。
ダイ26のような小型の半導体ダイを用いる場合、モールド・ロック4の全てではないにしても、その多数が露出され、プラスチック成形材をヒートシンク2に固定する。このように、モールド・ロック4は、剥離を防止するように機能する。32のような更に大きな半導体ダイを用いた場合、ダイはモールド・ロック4の多くを覆う。しかしながら、モールド・ロック4はかかる小さな幾何学的形状を有し、個別に形成されているという事実により、ダイ32のヒートシンク2への固定や、プラスチック成形材のヒートシンク2への固定を劣化させることなく、大型のダイ32をはんだによってモールド・ロック4上に信頼性高く取り付けることが可能とある。その結果、パッケージ全体を剥離問題に晒すことなく、種々のサイズの半導体ダイと共に使用可能な、汎用の「1つのサイズで全てに合う」ヒートシンクおよびリード・フレームを設計し製造することが可能になる。
図11は、封止された半導体の断面図を示し、モールド・ロックが成形材に連結されている。図11における断面図は、図9における列28,30、ならびに図10における列
28に対応する。図11を再度参照すると、この断面図は、モールド・ロック4が内部に形成されているヒートシンク2を示す。モールド・ロック4は、主チャネル6および副チャネル8を含む。副チャネル8を形成することにより、主チャネル8内に突出したあり継ぎ断面形状10が形成される。プラスチック成形材34が、ヒートシンク2の上面上に形成されている。プラスチック成形材34は、ヒートシンク2の酸化した銅の表面に化学的に接合するような組成を有する熱固化性プラスチックで形成されている。プラスチック成形材24は、封止された半導体全体に保護カバーを形成する。
また、図11は、半導体ダイ26/32の断面図も示す。ダイ26/32は、はんだ36によってヒートシンク2に固定されている。従来のダイ接着はんだが、一般にはんだ36に用いられる。ワイヤ38がダイ26/32から延出し、ダイ26/32をリード・フレーム24に電気的に連結し、半導体パッケージ全体を動作可能とする。プラスチック成形材34は、ワイヤ38を損傷から保護し、ダイを保護するように機能する。
通常の動作中では、ヒートシンク2、ダイ26/32、およびモールド・ロック4を含むマイクロチップは、加熱および冷却のサイクルを受ける。これらの加熱および冷却サイクルによって、マクロチップは膨張および収縮する。対応して、これらの加熱および冷却サイクルによって、プラスチック成形材34、ヒートシンク2、半導体ダイ26/32、リード・フレーム24、およびはんだ36も膨張および収縮する。マイクロチップは異なる材料で形成されているので、膨張率および収縮率はマイクロチップ全体にわたって均一ではない。マイクロチップを形成する異なる材料は、異なる率で膨張および収縮する。マイクロチップを形成するプラスチック成形材34、ヒートシンク2、半導体ダイ26/32、リード・フレーム24、およびはんだ36の膨張率および収縮率が異なるために、高い内部応力が発生し、デバイスの破損を招く虞れがある。第一に、プラスチック成形材34は、十分に異なる率で膨張するため、金属ヒートシンク2およびリード・フレーム24から分離する可能性がある。この分離を剥離と呼ぶ。プラスチック成形材34がヒートシンク2およびリード・フレーム24から剥離すると、リード・フレーム24を半導体ダイ26/32に連結する金属ワイヤ38に大きな応力がかかる。これらの応力は、リード・フレーム24を半導体ダイ26/32に連結するワイヤ38間の電気的接触を破壊する程に大きくなる可能性がある。剥離の結果、マイクロチップの故障を招く虞れがある。したがって、マイクロチップの保全性を維持し、剥離を防止する方法を開発することが非常に望まれている。
剥離によって引き起こされる別の問題は、ワイヤ38および半導体ダイ26/32が水分に晒されることである。水分は、半導体ダイ26/32内に腐食をもたらし、デバイスを故障させる虞れがある。マクロチップの剥離によって、外界から、半導体ダイ26/32が位置するマイクロチップの内部までの経路が開通してしまうと、水分が半導体ダイ26/32を破損する可能性がある。
モールド・ロック4は、プラスチック成形材34をヒートシンク2に固定し、剥離を防止/緩和するように機能する。再度図11を参照すると、プラスチック成形材34は、最初にヒートシンク2に接触するときには液体状態である。液化したプラスチック成形材34は、主チャネル6内においてあり継ぎ断面形状10によって形成される隙間に流入する。プラスチック成形材34は、固化して固体状態となり、結果的にモールド・ロック4によって適所に固定させられる。図11に見られるように、プラスチック成形材34は、機械的に、あり継ぎ断面形状10によって適所に保持されている。その結果、モールド・ロック4は、プラスチック成形材34をヒートシンク2に固定する。つまり、モールド・ロック4は、マイクロチップが加熱および冷却の連続サイクルを受ける際に、プラスチック成形材34がヒートシンク2から剥離するのを防ぐように機能する。剥離を防止することによって、モールド・ロック4は、ワイヤ38にかかる内部応力のレベルを低下させる。
ワイヤ38上の応力レベルを低下させることによって、ワイヤ38がダイ26/32またはリード・フレーム24から離脱する可能性が低下する。したがって、マイクロチップが故障する可能性も低下する。その結果、モールド・ロック4または12はマイクロチップの信頼性を向上させる。
図12は、封止した半導体の断面図であり、ここでは、半導体ダイ26/32をヒートシンク2に取り付けるはんだ層36に、モールド・ロック4を連結する。図12における断面図は、図10におけるモールド・ロック4の列30に対応する。半導体ダイ32は、はんだの層36によってヒートシンク2に取り付けられている。はんだ36は、従来のダイ接着はんだで形成されており、溶融状態になると、モールド・ロック4内に流入する。モールド・ロック4の幾何学的形状が非常に小さいので、ヒートシンク2、はんだ36、およびダイ32間の接合の完全性に対するその影響は最小限となる。加えて、モールド・ロック4の幾何学的形状が小さいことによって、モールド・ロック4のはんだ36の接合線厚さに対する影響が最小となることも確実となる。その結果、大きなダイ32には占有されるが、小さなダイ26には占有されないヒートシンク2上の区域内にモールド・ロック4を製造することが可能となる。したがって、モールド・ロック4は、異なるサイズのダイ26/32と共に用いることができる1つのヒートシンク2およびリード・フレーム24の構造を製造することを可能にする。
モールド・ロック4および12の寸法が小さいことから、更に別の利点も得られる。モールド・ロック4の構造を作成すると、材料本体内に型打することにより材料が圧縮される(upset)。別の言い方をすると、モールド・ロック4を形成する型打プロセスは、単に材料をヒートシンク2の別の部分に変位させるだけである。フライス加工や穿設のような製造プロセスとは異なり、型打プロセスにおいてヒートシンク2から除去される材料はない。モールド・ロック4が大きな幾何学的形状を有する場合、型打プロセスは大量の材料を変位させることになる。したがって、ヒートシンク2上に数個の大きなモールド・ロック構造を作成すると、ヒートシンク2の表面は不規則で非平坦となろう。半導体ダイ26/32を不規則で非平坦のヒートシンクに信頼性高く固定することは不可能である。半導体ダイ26/32のヒートシンク2への接合を容易にするために、圧印プロセスを実行して、ヒートシンク2を平坦化し、型打プロセスによって生じた不規則性や非平面性を除去する。好ましいモールド・ロック4は、その全体の幅が0.006インチ、即ち、0.0001524メートルである。この非常に小さい幾何学的形状が意味するのは、非常に小さいヒートシンク2の材料が、型打プロセスにおいて変位するということである。その結果、型打プロセスの後にヒートシンク2を平坦化するには、最小限の圧印プロセスだけで済む。したがって、ヒートシンク2のフラグ区域内のどこにでもモールド・ロックを配置することが可能となる。
以上、特定的な実施形態を参照しながら本発明を示し説明したが、形状や詳細における種々の変更が、本発明の主旨および範囲から逸脱することなく可能であることは、当業者には理解されよう。
本発明の好適な実施形態の上面図。 図1の断面2−2に沿った、本発明の好適な実施形態の断面図。 図1の断面3−3に沿った、本発明の好適な実施形態の断面図。 本発明の代替実施形態の上面図。 図4の断面5−5に沿った、本発明の代替実施形態の断面図。 図4の断面6−6に沿った、本発明の代替実施形態の断面図。 図1の断面3−3に沿った、本発明の好適な実施形態を形成する機械的プロセスを示す図。 図4の断面6−6に沿った、本発明の代替実施形態を形成する機械的プロセスを示す図。 複数のモールド・ロックをヒートシンク上に形成し、モールド・ロックを成形材に連結した様子を示す図。 複数のモールド・ロックをヒートシンク上に形成し、一部のモールド・ロックを、半導体ダイをヒートシンクに接合するために用いられるはんだに連結した様子を示す図。 モールド・ロックを成形材に連結し、封止した半導体の断面図。 半導体ダイをヒートシンクに接合するはんだにモールド・ロックを連結し、封止した半導体の断面図。

Claims (22)

  1. 剥離を防止するためのマイクロチップ構造であって、
    モールド・ロックと、該モールド・ロックは、
    主チャネルと、
    前記主チャネルの上に形成されている副チャネルと、
    前記主チャネルの壁から前記主チャネル内に突出するあり継ぎ形状と、
    から成ることと、
    前記マイクロチップ構造のヒートシンクの外側縁に沿って形成された前記モールド・ロックの列と、
    前記ヒートシンクのフラグ区域内に形成された前記モールド・ロックのパターンとを備えている、マイクロチップ構造。
  2. 請求項1記載の剥離を防止するためのマイクロチップ構造において、前記パターンは列である、マイクロチップ構造。
  3. 請求項1記載のマイクロチップ構造において、前記主チャネルは、0.012インチ未満の深さを有する、マイクロチップ構造。
  4. 請求項1記載のマイクロチップ構造において、前記副チャネルは、0.008インチ未満の深さを有する、マイクロチップ構造。
  5. 請求項1記載の剥離を防止するためのマイクロチップ構造において、前記ヒートシンクのフラグ区域内に形成された前記モールド・ロックは、プラスチック成形材に連結されている、マイクロチップ構造。
  6. 請求項1記載の剥離を防止するためのマイクロチップ構造において、前記ヒートシンクのフラグ区域内に形成された前記モールド・ロックは、はんだ配合材に連結されている、マイクロチップ構造。
  7. パッケージ半導体において、
    主チャネルと、該主チャネルの壁から当該主チャネルの内部に突出したあり継ぎ形状とを有するモールド・ロックと、
    ヒートシンクであって、該ヒートシンクの外側縁に沿って形成された前記モールド・ロックの列と、前記ヒートシンクの内部に形成された前記モールド・ロックのパターンとを有する、ヒートシンクと、
    前記ヒートシンクの外側縁に沿って形成された前記モールド・ロックに連結されているプラスチック成形材と、
    を備えている、パッケージ半導体。
  8. 請求項7記載のパッケージ半導体において、更に、前記主チャネルの上に形成されている副チャネルを備えている、パッケージ半導体。
  9. 請求項8記載のパッケージ半導体において、前記主チャネルの深さは、0.012インチ未満である、パッケージ半導体。
  10. 請求項9記載のパッケージ半導体において、前記副チャネルの幅は、0.008インチ未満である、パッケージ半導体。
  11. 請求項7記載のパッケージ半導体において、はんだ配合材が前記モールド・ロックのパ
    ターンに連結されている、パッケージ半導体。
  12. 請求項7記載のパッケージ半導体において、前記プラスチック成形材が前記モールド・ロックのパターンに連結されている、パッケージ半導体。
  13. 剥離を防止するためのマイクロチップ構造において、
    ヒートシンク内に形成され、合成材を前記ヒートシンクに固定するモールド・ロック手段であって、
    前記合成材を受容する主チャネル手段と、
    前記合成材を前記モールド・ロック手段に固定するあり継ぎ断面形状手段とから成る、モールド・ロック手段と、
    前記ヒートシンクの外側縁に沿って形成された前記モールド・ロック手段の列と、
    前記ヒートシンクのフラグ区域内に形成された前記ホールド・ロック手段のパターンとを備えている、マイクロチップ構造。
  14. 請求項13記載の剥離を防止するためのマイクロチップ構造において、前記パターンは列である、マイクロチップ構造。
  15. 請求項13記載の剥離を防止するためのマイクロチップ構造において、前記主チャネル手段は、0.012インチ未満の深さを有する、マイクロチップ構造。
  16. 請求項13記載の剥離を防止するためのマイクロチップ構造において、前記合成材はプラスチックである、マイクロチップ構造。
  17. 請求項13記載の剥離を防止するためのマイクロチップ構造において、前記合成材ははんだである、マイクロチップ構造。
  18. 請求項13記載の剥離を防止するためのマイクロチップ構造において、前記モールド・ロック手段は、更に、前記主チャネル手段上に形成され、前記あり継ぎ断面構造手段を形成する副チャネル手段を備えている、マイクロチップ構造。
  19. 請求項18記載の剥離を防止するためのマイクロチップ構造において、前記補助チャネル手段は、0.008インチ未満の深さを有する、マイクロチップ構造。
  20. プラスチック成形材をヒートシンクに固定するプロセスであって、
    前記ヒートシンクの外側縁に沿って、主チャネルの列を型打するステップと、
    前記ヒートシンクのフラグ部内に、主チャネルのパターンを型打するステップと、
    前記主チャネルの列および前記主チャネルのパターン内に達するあり継ぎ断面形状を形成するステップと、
    前記プラスチック成形材を前記ヒートシンク上に堆積するステップと、
    前記プラスチック成形材の一部を前記列の前記主チャネル内に流入させるステップと、
    前記プラスチック成形材を固化させることによって、前記あり継ぎ断面形状によって前記プラスチック成形材を前記列の前記主チャネル内に固定するステップと、
    から成るプロセス。
  21. 請求項20記載のプロセスであって、更に、
    前記プラスチック成形材の一部を前記パターンの前記主チャネル内に流入させるステップと、
    前記プラスチック成形材を固化させることによって、前記あり継ぎ断面形状によって、前記プラスチック成形材を前記パターンの前記主チャネル内に固定するステップとを含む
    、プロセス。
  22. 請求項21記載のプロセスであって、更に、
    前記ヒートシンクのフラグ部上に、はんだ配合材を堆積するステップと、
    前記はんだ配合材を前記パターンの前記主チャネル内に流入させるステップと、
    前記はんだ配合材を固化させることによって、前記あり継ぎ断面形状によって前記はんだ配合材を前記列の前記主チャネル内に固定するステップと、
    を含む、プロセス。
JP2004560294A 2002-12-13 2003-09-30 オーバーモールド・プラスチック・パッケージ用ヒートシンクまたはフラグ用の微小モールドロック Pending JP2006510221A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/318,699 US7091602B2 (en) 2002-12-13 2002-12-13 Miniature moldlocks for heatsink or flag for an overmolded plastic package
PCT/US2003/030859 WO2004055889A1 (en) 2002-12-13 2003-09-30 Miniature moldlocks for heatsink or flag for an overmolded plastic package

Publications (2)

Publication Number Publication Date
JP2006510221A true JP2006510221A (ja) 2006-03-23
JP2006510221A5 JP2006510221A5 (ja) 2006-11-24

Family

ID=32506436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004560294A Pending JP2006510221A (ja) 2002-12-13 2003-09-30 オーバーモールド・プラスチック・パッケージ用ヒートシンクまたはフラグ用の微小モールドロック

Country Status (7)

Country Link
US (2) US7091602B2 (ja)
JP (1) JP2006510221A (ja)
KR (1) KR101017533B1 (ja)
CN (1) CN100407412C (ja)
AU (1) AU2003277127A1 (ja)
TW (1) TWI321834B (ja)
WO (1) WO2004055889A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327767A (ja) * 2004-05-12 2005-11-24 Dowa Mining Co Ltd 窪み加工銅板もしくは銅合金板、その製造方法、および順送金型
JP2013157536A (ja) * 2012-01-31 2013-08-15 Shinko Electric Ind Co Ltd リードフレーム及びその製造方法と半導体装置及びその製造方法
JP2017005124A (ja) * 2015-06-11 2017-01-05 Shマテリアル株式会社 リードフレーム、リードフレームの製造方法、および半導体装置
WO2024075445A1 (ja) * 2022-10-06 2024-04-11 富士電機株式会社 半導体モジュール、半導体装置、及び車両
WO2024090029A1 (ja) * 2022-10-25 2024-05-02 富士電機株式会社 半導体モジュール、半導体装置、及び車両

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091602B2 (en) * 2002-12-13 2006-08-15 Freescale Semiconductor, Inc. Miniature moldlocks for heatsink or flag for an overmolded plastic package
SG157957A1 (en) * 2003-01-29 2010-01-29 Interplex Qlp Inc Package for integrated circuit die
US7061025B2 (en) * 2003-03-10 2006-06-13 Mccolloch Lawrence R Optoelectronic device packaging assemblies and methods of making the same
US7446411B2 (en) * 2005-10-24 2008-11-04 Freescale Semiconductor, Inc. Semiconductor structure and method of assembly
US8030742B2 (en) * 2007-11-30 2011-10-04 Infineon Technologies Electronic device having profiled elements extending from planar surfaces
US7834431B2 (en) * 2008-04-08 2010-11-16 Freescale Semiconductor, Inc. Leadframe for packaged electronic device with enhanced mold locking capability
US8124447B2 (en) * 2009-04-10 2012-02-28 Advanced Semiconductor Engineering, Inc. Manufacturing method of advanced quad flat non-leaded package
CN101882609A (zh) * 2009-05-08 2010-11-10 飞思卡尔半导体公司 用于半导体封装体的引线框
CN102969297A (zh) * 2012-11-20 2013-03-13 无锡市威海达机械制造有限公司 一种浇铸槽型引线框架结构
JP6195771B2 (ja) * 2013-10-02 2017-09-13 株式会社三井ハイテック リードフレーム及びその製造方法並びにそれを用いた半導体装置
US9685351B2 (en) 2014-07-18 2017-06-20 Nxp Usa, Inc. Wire bond mold lock method and structure
US9659843B2 (en) 2014-11-05 2017-05-23 Infineon Technologies Ag Lead frame strip with molding compound channels
KR102427092B1 (ko) * 2015-10-16 2022-08-01 삼성전자주식회사 열 정보 표지를 갖는 반도체 장치
CN105575822B (zh) * 2015-12-28 2018-01-30 四川金湾电子有限责任公司 一种半导体引线框架正面燕尾槽冲压方法
US10998255B2 (en) 2018-07-12 2021-05-04 Nxp Usa, Inc. Overmolded microelectronic packages containing knurled flanges and methods for the production thereof
CN113169074A (zh) * 2018-09-11 2021-07-23 Rjr技术公司 具有改善的部件之间连接的气腔封装
US11837532B2 (en) * 2020-01-15 2023-12-05 Texas Instruments Incorporated Leadframe with delamination resistant feature

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315763A (en) * 1976-07-28 1978-02-14 Hitachi Ltd Resin sealed type semiconductor device
JP2570037B2 (ja) * 1990-12-03 1997-01-08 モトローラ・インコーポレイテッド 分離型ヒートシンク・ボンディングパッドを有する半導体パッケージ
JP2698259B2 (ja) * 1991-11-27 1998-01-19 三洋電機株式会社 ヒートシンクの製造方法
US5278446A (en) * 1992-07-06 1994-01-11 Motorola, Inc. Reduced stress plastic package
JPH07161896A (ja) 1993-12-02 1995-06-23 Hitachi Cable Ltd リードフレームとその製造方法
US5701034A (en) * 1994-05-03 1997-12-23 Amkor Electronics, Inc. Packaged semiconductor die including heat sink with locking feature
JPH08148629A (ja) * 1994-09-20 1996-06-07 Fujitsu Ltd 半導体装置及びその製造方法及び半導体装置用基板
US5535515A (en) * 1995-03-13 1996-07-16 Jacoby; John Method of manufacturing a stress-free heatsink assembly
KR100230515B1 (ko) * 1997-04-04 1999-11-15 윤종용 요철이 형성된 리드 프레임의 제조방법
US6376914B2 (en) 1999-12-09 2002-04-23 Atmel Corporation Dual-die integrated circuit package
US6294409B1 (en) * 2000-01-27 2001-09-25 Siliconware Precisionware Industries Co., Ltd. Method of forming a constricted-mouth dimple structure on a leadframe die pad
DE10054081A1 (de) 2000-10-31 2002-05-08 Heraeus Gmbh W C Verfahren zur Herstellung eines Metallträgerrahmens, Metallrägerrahmen und seine Verwendung
US7091602B2 (en) * 2002-12-13 2006-08-15 Freescale Semiconductor, Inc. Miniature moldlocks for heatsink or flag for an overmolded plastic package

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327767A (ja) * 2004-05-12 2005-11-24 Dowa Mining Co Ltd 窪み加工銅板もしくは銅合金板、その製造方法、および順送金型
JP4565174B2 (ja) * 2004-05-12 2010-10-20 Dowaメタルテック株式会社 窪み加工銅板もしくは銅合金板、その製造方法、および順送金型
JP2013157536A (ja) * 2012-01-31 2013-08-15 Shinko Electric Ind Co Ltd リードフレーム及びその製造方法と半導体装置及びその製造方法
JP2017005124A (ja) * 2015-06-11 2017-01-05 Shマテリアル株式会社 リードフレーム、リードフレームの製造方法、および半導体装置
WO2024075445A1 (ja) * 2022-10-06 2024-04-11 富士電機株式会社 半導体モジュール、半導体装置、及び車両
WO2024090029A1 (ja) * 2022-10-25 2024-05-02 富士電機株式会社 半導体モジュール、半導体装置、及び車両

Also Published As

Publication number Publication date
AU2003277127A1 (en) 2004-07-09
WO2004055889A1 (en) 2004-07-01
CN100407412C (zh) 2008-07-30
US7091602B2 (en) 2006-08-15
TWI321834B (en) 2010-03-11
TW200419739A (en) 2004-10-01
US20040113262A1 (en) 2004-06-17
US20060220187A1 (en) 2006-10-05
KR20050089825A (ko) 2005-09-08
CN1714445A (zh) 2005-12-28
KR101017533B1 (ko) 2011-02-28
US8310042B2 (en) 2012-11-13

Similar Documents

Publication Publication Date Title
US8310042B2 (en) Heatsink moldlocks
EP1905077B1 (en) Semiconductor device
US6630726B1 (en) Power semiconductor package with strap
US7507603B1 (en) Etch singulated semiconductor package
US7781262B2 (en) Method for producing semiconductor device and semiconductor device
KR970010678B1 (ko) 리드 프레임 및 이를 이용한 반도체 패키지
US8350369B2 (en) High power semiconductor package
US6847103B1 (en) Semiconductor package with exposed die pad and body-locking leadframe
US6239487B1 (en) Lead frame with heat spreader and semiconductor package therewith
US6893898B2 (en) Semiconductor device and a method of manufacturing the same
JPH043450A (ja) 樹脂封止型半導体装置
US20040173903A1 (en) Thin type ball grid array package
JP3934079B2 (ja) 半導体装置
US6903270B1 (en) Method and structure for securing a mold compound to a printed circuit board
US20080157297A1 (en) Stress-Resistant Leadframe and Method
US7582974B2 (en) Semiconductor device and method of manufacturing same
JP2005311099A (ja) 半導体装置及びその製造方法
US11728309B2 (en) Clip having locking recess for connecting an electronic component with a carrier in a package
JP4840305B2 (ja) 半導体装置の製造方法
US20120248589A1 (en) Lead frame with coined inner leads
JP2008181985A (ja) 光半導体装置およびその製造方法
JP2001127235A (ja) リードフレームとそれを用いた樹脂封止型半導体装置およびその製造方法
WO2008155726A2 (en) A carrier for electric packages and a method of structuring a carrier
JP2003218312A (ja) 半導体装置
JP2007324394A (ja) モールドパッケージおよびその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112