JP2006506533A - 抵抗加熱ボート及びその製造方法 - Google Patents

抵抗加熱ボート及びその製造方法 Download PDF

Info

Publication number
JP2006506533A
JP2006506533A JP2004562083A JP2004562083A JP2006506533A JP 2006506533 A JP2006506533 A JP 2006506533A JP 2004562083 A JP2004562083 A JP 2004562083A JP 2004562083 A JP2004562083 A JP 2004562083A JP 2006506533 A JP2006506533 A JP 2006506533A
Authority
JP
Japan
Prior art keywords
resistance heating
boat
layer
aluminum
heating boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004562083A
Other languages
English (en)
Other versions
JP4234681B2 (ja
Inventor
ジャエ−イン、ジョン
テ−ギューン、リム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Industrial Science and Technology RIST
Original Assignee
Research Institute of Industrial Science and Technology RIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Industrial Science and Technology RIST filed Critical Research Institute of Industrial Science and Technology RIST
Publication of JP2006506533A publication Critical patent/JP2006506533A/ja
Application granted granted Critical
Publication of JP4234681B2 publication Critical patent/JP4234681B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

本発明に係る抵抗加熱ボートは、抵抗加熱方式で金属蒸発物を基板に真空蒸着させる抵抗加熱ボートにおいて、ボート形状で加工される黒鉛層31と、前記黒鉛層31の表面に形成され、前記黒鉛層31が前記金属蒸発物と反応しないようにする保護層30とを備え、前記保護層30は、アルミニウムリーチ層32と窒素化合物層33とを含むことを特徴とする。
前記抵抗加熱ボートの製造方法は、抵抗加熱方式で金属蒸発物を基板に真空蒸着させる抵抗加熱ボートの製造方法において、黒鉛層31を、蒸発させようとする物質を位置させ得るように表面に蒸発孔2を有するボート形状で加工する段階と、前記黒鉛層31の表面に窒素化合物をコーティングさせる段階と、前記黒鉛層31の蒸発孔2にアルミニウムを位置させた後、熱処理により前記窒素化合物とアルミニウムとを反応させて、黒鉛層31の表面に、前記黒鉛層31が前記金属蒸発物と反応しないようにする保護層30を形成させる段階とを備えることを特徴とする。
本発明によれば、アルミニウムを含む金属を安定的且つ連続的に蒸発させることができるようになる。

Description

本発明は、抵抗加熱式真空蒸着により被膜を蒸着させるための抵抗加熱ボート及びその製造方法に関する。より詳細には、黒鉛をボート形状で加工した後、特定の化合物をコーティングさせることによって、アルミニウムなどの金属を安定的且つ連続的に蒸発させることができる抵抗加熱ボート及びその製造方法に関する。
真空蒸着は、アルミニウム、銀、金、銅、錫などの物質を金属やガラス、またはプラスチックなどの素材にコーティングする一般的な方法であり、真空を用いた物理蒸着技術の1つである。物理蒸着技術は、既存のウェットメッキ方法に比べて環境に及ぼす影響が非常に少ないため、その応用がだんだん増加している。物理蒸着には、大きく、真空蒸着、スパッタリング及びイオンプレーティングが挙げられる。アルミニウムを含む金属を蒸着する場合、一般的な用途には、真空蒸着とスパッタリング方法が主に用いられる。また、耐食性、皮膜の密着力、及び密度を向上させることを目的とする場合は、イオンプレーティング方法が主に用いられる。
真空蒸着を用いて薄膜を製造する方法には、大きく、抵抗加熱式真空蒸着、誘導加熱式真空蒸着、及び電子ビーム加熱式真空蒸着方法が使われている。誘導加熱式真空蒸着は、高周波を利用するため、周辺装置が複雑で、大型のコーティング装置に主に使われている。また、電子ビーム真空蒸着は、蒸発させ得る物質が多様なので、実験室レベルにおける被膜製造はもちろん、大型プラントでも幅広く用いられているが、高価であるという短所がある。一方、抵抗加熱方式は、設置が簡単であり、安価であることから、多様な分野において用いられているが、蒸発させ得る物質が制限されるという短所がある。
抵抗加熱方式とは、耐火物金属や金属間化合物をボートや坩堝またはフィラメント形態で加工した蒸発源を用いて物質を蒸発させる方式を言うが、ここで、蒸発源とは、加工された胴体に電流を直接通過させて加熱させることによって、蒸発源内に含まれた物質を溶かして蒸発させる物体を総称するものを言う。一般的に、ボート形状の蒸発源を多く利用するので、ボート形状の蒸発源をボートと称する。それで、以下では、抵抗加熱式真空蒸着に用いられる蒸発源をボートと称する。抵抗加熱式ボートに使われる物質には、タングステンやモリブデン、タンタルなどのような耐火物金属と、非晶質炭素や黒鉛または金属間複合化合物(TiB・BN)などが挙げられ、これらの材料をコイルやボートまたは坩堝形状で加工して使用している。これらを使用することによって、融点が低く且つ反応性が低い金属に対して高い純度を有する被膜を容易に形成することが可能である。
アルミニウムは、色相が美麗であり、可視光線と紫外線領域において反射率が高く、大気中において耐食性に優れていて、化粧品ケースやアクセサリなどの装飾用被膜はもちろん、ガラスや金属の光反射用コーティング、半導体の導電膜、磁性材料や鋼板の保護被膜、ブラウン管用蛍光体の裏面反射防止用被膜製造、コンデンサ用フィルム製造、包装紙やウェブの包装性及び商品性向上と、プラスチック保護被膜製造などに非常に幅広く用いられている。最近、宇宙開発や航空産業が大きく発達するに伴って、各種素材にアルミニウムを被膜処理することによって、耐食性及び機械的性質を向上させる研究が活発に進行されてきている。
一方、アルミニウムは、融点が低いのに対して、蒸気化する温度が高く、溶融アルミニウムが他の物質との反応性が大きいため、通常の抵抗加熱式ボートを用いた蒸発は、非常に難しい。すなわちアルミニウムと耐火物金属とが反応して化合物を形成しながらボート自体が破損される。したがって、今までアルミニウムを蒸発させるためには、タングステンワイヤーをフィラメント形状に作って蒸発に利用する単発的蒸発方式を利用したり、アルミニウムの濡れ性(又は広がり性とも言う。Wetting性)に優れ、アルミニウムとの反応性が低い金属間化合物ボート(TiB・BN、BNボート、BNヒータとも言う)を主に利用している。タングステンフィラメントを利用する方式は、真空蒸着技術が知られた初期から広く用いられる方法であって、アルミニウムがタングステンの表面に濡れながら蒸発する原理を利用したもので、蒸発率が高いのに対して、アルミニウムがタングステンの表面に広がりながらタングステンと反応するため、寿命が非常に短いという不都合がある。
BNボートは、二臭化チタニウム(TiB)粉末と窒化ホウ素(BN)粉末を略50:50重量%に調節し、高温・高圧下で焼結して製造する。この際、特性を向上させるために、多様な添加物質を添加することができる。前記BNボートにおいて、二臭化チタニウムは、電気伝導性及び濡れ性を良好にするためのものであり、窒化ホウ素は、支持体及び結合体の役目をする。今までこのようなBNボートに関する特許が多数出願されている。
前記BNボートに関する特許は、ボートの寿命や濡れ性などの向上を図るものが主流となっている。しかしながら、前記BNボートは、高価の原料を利用し、高温・高圧の雰囲気で焼結して製造されるので、ボートの価格が非常に高いという短所と、リサイクルが不可能であるという短所がある。このような問題点を解決するために、米国特許第4,847,031号では、BNボートのリサイクル手段を提示している。しかしながら、リサイクルもやはり初期の製造工程と類似な方法を経るようになるので、経済的にあまり利点が多くない。これに加えて、たまには、アルミニウム塊が外部に飛び出されて基板に付着されるいわゆるスプラッシュ(Splash)現像などが問題点として指摘されている。かかるスプラッシュ(Splash)現像は、濡れ性と関連があり、これを解決するための努力は今までも続いている。
黒鉛は、安価であるだけでなく、抵抗加熱ボートとして使用すれば、黒鉛に濡れ性があって、反応性の小さい物質も蒸発可能である。しかしながら、アルミニウムのように黒鉛と反応して金属間化合物を形成する物質を蒸発させるには、いろいろな問題点がある。従って、今までは黒鉛を坩堝形状で加工して、誘導加熱用蒸発源又は電子ビーム用ライナーなど、極めて制限的な用途にのみ使用されてきた。黒鉛をボートとして利用して銅や銀などを蒸発させる場合には、濡れ性が良くなくて、蒸発物が飛散して蒸発率が著しく低下するので、使用が困難であり、アルミニウムや鉄のように黒鉛との反応性が大きい物質の場合には、ボート自体が破損されるからである。
本発明者は、前述したような黒鉛が破損される問題点を解決するために、実験的にアルミニウムを蒸発させる方法に関する発明「アルミニウム蒸発用ボートの製造方法(大韓民国特許088,573号)」に関する特許を出願したことがある。
しかしながら、前記特許の場合、実験室レベルへの応用のための断続的蒸発の場合には問題にならないが、物質を連続的に蒸発させる場合、アルミニウムが蒸発面の外部に流れ出して、ホルダー部分で黒鉛と反応して、ボートが破損されたり、蒸発物がホルダー部分に溜まるという問題、そしてアルミニウムの損失が多く発生するという問題が現れている。すなわち、アルミニウムが残された状態で蒸発がなされている。
本発明は、前述の問題点を解決するためになされたもので、本発明の目的は、安価の黒鉛を利用しながら、黒鉛との濡れ性が悪いか、反応性が大きいアルミニウムのような金属を安定的且つ連続的に蒸発させることができる抵抗加熱ボート及びその製造方法を提供することにある。
前記目的を達成するために、本発明の一態様に係る抵抗加熱ボートは、抵抗加熱方式で金属蒸発物を基板に真空蒸着させる抵抗加熱ボートにおいて、ボート形状で加工される黒鉛層と、前記黒鉛層の表面に形成され、前記黒鉛層が前記金属蒸発物と反応しないようにする保護層とを備え、前記保護層は、アルミニウムリーチ層と窒素化合物層とを含むことを特徴とする。
また、本発明に係る抵抗加熱ボートは、前記保護層が、塊状結晶の形態で分布するホウ素化合物層をさらに含むことを特徴とする。
また、本発明に係る抵抗加熱ボートは、前記保護層の厚さが、20乃至200μmであることを特徴とする。
本発明の他の態様に係る抵抗加熱ボートの製造方法は、抵抗加熱方式で金属蒸発物を基板に真空蒸着させる抵抗加熱ボートの製造方法において、黒鉛層を、蒸発させようとする物質を位置させ得るように表面に蒸発孔を有するボート形状で加工する段階と、前記黒鉛層の表面に窒素化合物をコーティングさせる段階と、前記黒鉛層の蒸発孔にアルミニウムを位置させた後、熱処理により前記窒素化合物とアルミニウムとを反応させて、黒鉛層の表面に、前記黒鉛層が前記金属蒸発物と反応しないようにする保護層を形成させる段階とを備えることを特徴とする。
また、本発明に係る抵抗加熱ボートの製造方法は、前記窒素化合物をコーティングさせる段階において、アルミニウムと窒素化合物との反応を促進させるための触媒剤を前記窒素化合物と一緒にコーティングさせることを特徴とする。
また、本発明に係る抵抗加熱ボートの製造方法は、前記窒素化合物をコーティングさせる段階において、前記窒素化合物は、窒化ホウ素であることを特徴とする。
また、本発明に係る抵抗加熱ボートの製造方法は、前記触媒剤が、酸化アルミニウム、チタニウム、バナジウム、鉄及びシリコンよりなる群から選ばれた1種以上であることを特徴とする。
また、本発明に係る抵抗加熱ボートの製造方法は、前記コーティングさせる段階において、前記コーティングされた厚さが、0.005乃至0.4g/dmとなるように行われることを特徴とする。
また、本発明に係る抵抗加熱ボートの製造方法は、前記コーティングさせる段階において、スプレイ方式でコーティングさせることを特徴とする。
また、本発明に係る抵抗加熱ボートの製造方法は、前記コーティングさせる段階において、ペイント方式でコーティングさせることを特徴とする。
以下、図面を参照して、本発明に係る抵抗加熱ボート及びその製造方法の好適な実施例を詳細に説明する。
図1aは、本発明に係る抵抗加熱ボートの形状を示す平面図、図1bは、本発明に係る抵抗加熱ボートの形状を示す側面図である。
図示するように、ボート10は、胴体部1と、該胴体部1の中央部に形成された蒸発孔2とに分けられる。前記蒸発孔2には、真空蒸着過程で基板に蒸着させようとする金属蒸発物が位置するようになる。また、上記のように、胴体部1と蒸発孔2とから構成されるボート10は、ボート製造装置(図2参照)により支持されながら真空蒸着過程に利用される。
図2は、本発明に係る抵抗加熱ボートを製造するためのボート製造装置を示す概略図である。
図示するように、ボート製造装置20は、多数のボート10を装着できるように構成することが好ましい。前記ボート製造装置20は、多数のボート10を固定させるための多数のボートホルダー24と、前記ボート10を冷却し且つ前記多数のボートホルダー24を支持するための多数の水冷ブロック23と、前記多数の水冷ブロック23を支持するためのホルダー支持台21とから構成される。上記のような構成を有するボート製造装置20に、表面上にコーティング層が形成された多数のボート10を設置した後、熱処理を行うことによって、本発明に係る抵抗加熱ボートを多数個製造することができるようになる。
次に、本発明に係る抵抗加熱ボートの製造方法について説明する。
先ず、黒鉛をボート形状で加工して、胴体部1と、蒸発孔2とから構成されるボート10を形成する。また、前記ボート10に窒素化合物をスプレイ方式でコーティングした後、一定の時間にかけて乾燥させる。この際、前記窒素化合物は、単独で、又は他の添加物と併用して、前記ボート10にコーティングされるように構成することができ、前記コーティング方法は、スプレイ方式はもちろん、ペイント方法も可能である。
一方、前記コーティング層の厚さが0.005g/dm以下となれば、その厚さが薄すぎて、熱処理に際して保護層が良好に形成されず、アルミニウム層が黒鉛層と反応するおそれがある。また、前記コーティング層の厚さが0.4g/dm以上となれば、その厚さが厚すぎて、経済性が劣り、熱伝達が正確に行われなくて、反応速度が非常に遅くなるという短所がある。従って、前記黒鉛層の表面に形成されるコーティング層の厚さは、0.005乃至0.4g/dmであることが好ましい。
また、前記窒素化合物と一緒に添加される添加物は、アルミニウムと窒化ホウ素との反応を円滑にするための触媒剤の役目をするものであり、具体的には、酸化アルミニウム、チタニウム、バナジウム、鉄及びシリコンなどが挙げられる。上記のように、窒素化合物と一緒に添加される触媒剤は、熱処理に際して窒素化合物とアルミニウムとの反応を促進させる役目をするだけでなく、黒鉛層に存在する不純物を除去する役目をもする。
上記のような過程により表面にコーティング層が形成されたボート10を、図2のボート製造装置20に装着する。そして、前記装着されたボート10の蒸発孔2にアルミニウムを入れ、熱処理を行うと、アルミニウムと窒素化合物とが反応して、黒鉛の表面上にアルミニウムリーチ層と窒素化合物層とを含む保護層が形成される。すなわち、窒素化合物のコーティング層にアルミニウム層を位置させた後、熱処理を行う場合、アルミニウムの一部は、前記窒素化合物の窒素と反応して、安定した窒化アルミニウムを形成するようになり、前記保護層には、アルミニウムを主成分とするアルミニウムリーチ層と、窒化アルミニウムを主成分とする窒素化合物層とが形成される。
ここで、前記保護層に形成される窒素化合物層は、窒化アルミニウムを主成分とするもので、コーティング時に添加される窒素化合物とはその成分や性質が異なる。例えば、前記コーティング時に添加される窒素化合物として、窒化ホウ素を使用すれば、前記保護層は、アルミニウムリーチ層と、ホウ素化合物層と、窒化アルミニウムを主成分とする窒素化合物層とから構成される。
従って、本発明に係る抵抗加熱ボートを用いて真空蒸着させる場合、上述のような過程により製造されるボート10の蒸発孔2に、真空蒸着過程で基板に蒸着しようとする金属蒸発物、例えば、アルミニウムを位置させた後、前記ボートに電流を供給して、抵抗加熱式で前記金属蒸発物を蒸発させ、基板に蒸着させるようになる。
次に、上述のような製造方法により製造される本発明に係る抵抗加熱ボートについて説明する。
図3は、本発明に係る抵抗加熱ボートの保護層形成を示す概略的な断面構成図である。
図示するように、本発明に係る抵抗加熱ボートは、大きく、黒鉛層31と、前記黒鉛層31がアルミニウムなどの金属蒸発物と反応することを防止するために、黒鉛層31の表面に形成される保護層30とに分けられる。また、前記保護層30は、アルミニウムリーチ層32と窒素化合物層33とを含み、図3の実施例では、黒鉛層31の表面に窒化ホウ素をコーティングさせた場合である。
図示するように、本実施例において、保護層30は、アルミニウムリーチ層32と、窒素化合物層33と、ホウ素化合物層34とから構成される。より詳細には、黒鉛層31の表面上にアルミニウムリーチ層32が形成され、前記アルミニウムリーチ層32の表面上に窒素化合物層33が形成され、前記アルミニウムリーチ層32の内部に、ホウ素化合物層34が多数の塊状結晶の形態で分布されている。一方、前記ホウ素化合物層34は、主としてホウ化アルミニウムから構成されており、窒素化合物層33は、保護層30の全体に亘って均一に広がっている。
また、前記ホウ素化合物層34は、熱処理の初期には、保護層30の最上部に形成された窒素化合物層33にも存在するが、熱処理が進行するに従ってだんだん下降して、図3に示すように、アルミニウムリーチ層32へ移動するようになり、ホウ素化合物層34の一部は、黒鉛層31までに移動するようになる。前記ホウ素化合物層34は、コーティングされる窒素化合物が窒化ホウ素である場合にのみ発生する化合物なので、窒化ホウ素以外の他の窒素化合物をコーティングさせた場合には、他の化合物が発生するはずである。例えば、窒化チタニウムをコーティングさせた場合には、チタニウム化合物が発生するはずである。但し、前記発生するホウ素化合物、チタニウム化合物のように、コーティングされる窒素化合物によって異に発生する前記化合物は、その自体が安定していて、蒸着しようとする金属蒸発物と反応してはならないし、ボート内において不純物として作用してはならない。
一方、前記保護層30の厚さが20μm以下である場合には、その厚さが薄すぎて、黒鉛層31の保護効果が効率的に発揮されない。また、保護層30の厚さが200μm以上である場合には、その厚さが厚すぎて、
保護層30を形成するのにあって 経済性が劣り、形成された保護層30も、熱損失が大きくなり、金属蒸発物の蒸発時に悪影響を及ぼす。従って、本発明に係る抵抗加熱ボート10の保護層30は、その厚さが20乃至200μmであることが好ましい。
以下では、前記金属蒸発物がアルミニウムである場合を例に挙げて、上述のような構造を有する本発明に係る抵抗加熱ボートを用いて金属蒸発物が蒸発する原理と、金属蒸発物が黒鉛と反応せずに、長時間蒸発が可能な理由を説明すれば、次の通りである。
適正量のアルミニウムをボート10の蒸発孔2に装入して真空を形成した後、ボート10に電力を印加する。電力が印加された前記ボート10は、徐々に加熱されるが、ボート10の温度がアルミニウムの溶融温度より高くなれば、アルミニウムが溶解されつつ、保護層である窒素化合物33の間に濡れ込まれる。かかる状態で、電力を高めて、ボート10の温度を、アルミニウムが蒸発する温度以上に加熱すれば、窒素化合物層33に濡れているアルミニウムが蒸発するようになる。この際、アルミニウムは、蒸発孔2の全体に濡れ込まれながら、高い蒸発率をもって蒸発するようになる。アルミニウムが、高い蒸発率をもって蒸発しながらも黒鉛層31と反応しない理由は、反応エネルギーの側面から説明することかできる。すなわち、アルミニウムが保護層である窒素化合物層33に濡れ込まれるエネルギーが、アルミニウム層が黒鉛層31と反応する時のエネルギーより低くて、アルミニウムが黒鉛層31と反応しないようになる。これは、図3に示すように、アルミニウムを主成分とするアルミニウムリーチ層32が、窒素化合物層33と黒鉛層31の表面との間に存在しても、炭化アルミニウムのような炭素化合物を形成させないという事実からも容易に理解することができる。
次に、本発明の第1実施例に係る抵抗加熱ボートの製造方法について説明する。
本実施例は、ブラウン管コーティングに利用するために、ペレットを一定時間単位で供給する方式のアルミニウムコーティングに使用される抵抗加熱ボートを製造する場合であり、前記製造過程は、真空熱処理を利用する。
先ず、密度が1.8g/cmであり、比抵抗が1100μΩ・cmである黒鉛を、胴体部1が横11cm、縦0.6cm、高さ0.4cmとなるように加工し、蒸発孔2のサイズが横6cm、縦0.4cm、深さ0.25cmとなるように加工する。上記のように蒸発孔2を有するように加工されたボート10に、酸化アルミニウムとチタニウム及びバナジウムが添加された窒化ホウ素を、0.15g/dmの厚さとなるようにスプレイ方式でコーティングした後、一定時間乾燥する。
他の添加物は、アルミニウムと窒化ホウ素との反応を容易にする触媒の役目をするもので、例えば、酸化アルミニウム、チタニウム、バナジウム、鉄及びシリコンなどが含まれ、重量%は、5%以下に調節した。また、窒化ホウ素のコーティング層の厚さは、略0.05乃至4g/dmとなるように製造することが好ましい。
上記のような過程によりコーティング層が形成されたボート10を、図2に示すボート製造装置20のボートホルダー24に装着した後、0.3gのアルミニウムワイヤを蒸発孔2に入れる。そして、真空ポンプ(図示せず)を用いて10−5Torr以下で排気した後、加熱用電源装置(図示せず)に電力を印加して、熱処理によりアルミニウムと窒化ホウ素とを反応させる。この際、前記熱処理時にボート10に印加された電圧は、4.5Vであり、電流は、反応時間によって80乃至110Aまで変動した。前記実施例において、反応時間は、5分であり、反応温度は、1300乃至1500℃であった。このような過程を1回又は数回繰り返して、アルミニウムと黒鉛31とが反応することを防止する保護層30を形成する。上述のような過程により本発明に係る抵抗加熱ボート10が完成されるが、この際、前記熱処理による保護層30の形成は、真空中又は不活性ガス雰囲気の両方で可能である。
図4は、本発明に係る抵抗加熱ボートの保護層形成を示す断面拡大写真である。
ホウ素アルミニウム層34は、主としてホウ化アルミニウムから構成され、塊状結晶の形態を有し、窒素化合物層33は、保護層30の全体に亘って均一に広がっている。一方、前記実施例の方法で形成された保護層30の厚さは、100μmであった。保護層30に存在する不純物などを、いろいろな分析機器を用いて分析した結果、反応が完全になされていない保護層30の場合は、添加剤として使用された酸化アルミニウム、チタニウム、バナジウムなどの不純物が表面層に存在したが、適切な条件で反応した保護層30は、金属成分や他の不純物などは存在しなかった。先に説明した通り、本実施例において、添加剤を使用する理由は、窒化ホウ素とアルミニウムとの反応を促進するためである。
前記実施例の方法で製造したボート10について、ペレット供給が可能な蒸着装置でボート10の寿命を確認した結果、400回以上の蒸着が可能であることを確認した。この時に使用されたペレットの重みは、1つ当たり35mgであった。また、前記実施例で製造されたボート10を用いてアルミニウムを1500Åコーティングして反射率及び成分を調べた結果、既存のBNボートに等しいか、それ以上の結果を得ることができるので、本発明に係る製造方法で製造された抵抗加熱ボートの有用性を確認した。
次に、本発明の第2実施例に係る抵抗加熱ボートの製造方法について説明する。
本実施例は、包装紙やウェブ、コンデンサー用フィルム製造に用いられるアルミニウム被膜を製造するのに使用するためのボート10を具現したもので、アルミニウムワイヤを連続して供給するアルミニウムコーティング装置用ボート10を製造するものの、アルゴンガス雰囲気で熱処理を実施して製造する場合である。
先ず、密度が1.76g/cmであり、比抵抗が1200μΩ・cmである黒鉛塊に対して、胴体部1が横15cm、縦1.9cm、高さ7cmとなるように加工し、蒸発孔2のサイズが横10cm、縦1.5cm、深さ0.2cmとなるように加工する。かくして加工されたボート10に、0.1g/dmの窒化ホウ素を、ペイント技法を用いてコーティングした後、一定時間乾燥させた。
次に、電源が装着された容器内に、上記のように乾燥したボート10を装着し、アルミニウムワイヤを3g装入した後、アルゴンガスを注入して、容器内に存在する空気を除去した。次いで、一方にはアルゴンガスを注入し、他方にはアルゴンガスが排出されるような方式を採択して、アルゴンガス雰囲気を造成した。容器がアルゴンガスで満たされた後、電力を印加して、熱処理によりアルミニウムと窒化ホウ素とを反応させた。反応時に、電力は、電圧を5Vとし、電流は400−600Aの範囲内で変動するように設定した。反応が完了すると、電力を変動せずに、10分間熱処理を実施した。上記のような過程を経て、本発明に係る抵抗加熱ボートを製造した。
また、本実施例の方法で製造された抵抗加熱ボートに対して、ワイヤ連続供給を利用する蒸着装置を用いてボート10の寿命を調べた。この際、供給されたアルミニウムワイヤの線径は、1.6cmであり、ワイヤ供給速度は、1分当たり40cmに調節した。その結果、ボート10が破損せずに、8時間以上連続蒸発が可能であることを確認した。
本実施例の方法で製造された抵抗加熱ボートを用いた連続蒸発実験で、既存のBNボートにおいて問題点として指摘されたスプラッシュ現像を観察した結果、上記のような過程により製造された本発明に係る抵抗加熱ボートでは、スプラッシュ現像は観察されなかった。
上記のような構成を有する本発明に係る抵抗加熱ボート及びその製造方法によれば、アルミニウムを含む金属を安定的且つ連続的に蒸発させることができるので、ブラウン管用アルミニウムコーティングはもちろん、ロールコーティングシステムを用いて連続蒸着を行う包装材生産メーカ、コンデンサ、導電性包装フィルムなどの電子部品生産メーカなど、いろいろな分野の蒸着工程に適用可能である。特に、既存のBNボートに比べて、安価で、蒸発特性に優れているので、工程の安定性による歩留まりの向上及び品質向上はもちろん、最終製品の生産性向上など経済的効果をもたらすことと期待される。
本発明に係る抵抗加熱ボートの形状を示す平面図である。 本発明に係る抵抗加熱ボートの形状を示す側面図である。 本発明に係るボート製造装置を示す概略図である。 本発明に係る抵抗加熱ボートの保護層形成を示す断面構成図である。 本発明に係る抵抗加熱ボートの保護層形成を示す断面拡大写真である。
符号の説明
1 胴体部
2 蒸発孔
10 ボート
20 ボート製造装置
21 ホルダー支持台
23 水冷ブロック
24 ボートホルダー

Claims (10)

  1. 抵抗加熱方式で金属蒸発物を基板に真空蒸着させる抵抗加熱ボートにおいて、
    前記抵抗加熱ボートは、
    ボート形状で加工される黒鉛層31と、
    前記黒鉛層31の表面に形成され、前記黒鉛層31が前記金属蒸発物と反応しないようにする保護層30とを備え、
    前記保護層30は、アルミニウムリーチ層32と窒素化合物層33とを含むことを特徴とする抵抗加熱ボート。
  2. 前記保護層30は、塊状結晶の形態で分布するホウ素化合物層34をさらに含むことを特徴とする請求項1に記載の抵抗加熱ボート。
  3. 前記保護層30の厚さは、20乃至200μmであることを特徴とする請求項1又は2に記載の抵抗加熱ボート。
  4. 抵抗加熱方式で金属蒸発物を基板に真空蒸着させる抵抗加熱ボートの製造方法において、
    黒鉛層31を、蒸発させようとする物質を位置させ得るように表面に蒸発孔2を有するボート形状で加工する段階と、
    前記黒鉛層31の表面に窒素化合物をコーティングさせる段階と、
    前記黒鉛層31の蒸発孔2にアルミニウムを位置させた後、熱処理により前記窒素化合物と前記アルミニウムとを反応させて、黒鉛層31の表面に、前記黒鉛層31が前記金属蒸発物と反応しないようにする保護層30を形成させる段階とを備えることを特徴とする抵抗加熱ボートの製造方法。
  5. 前記窒素化合物をコーティングさせる段階において、前記アルミニウムと前記窒素化合物との反応を促進させるための触媒剤を前記窒素化合物と一緒にコーティングさせることを特徴とする請求項4に記載の抵抗加熱ボートの製造方法。
  6. 前記窒素化合物をコーティングさせる段階において、前記窒素化合物は、窒化ホウ素であることを特徴とする請求項4又は5に記載の抵抗加熱ボートの製造方法。
  7. 前記触媒剤は、酸化アルミニウム、チタニウム、バナジウム、鉄及びシリコンよりなる群から選ばれた1種以上であることを特徴とする請求項5に記載の抵抗加熱ボートの製造方法。
  8. 前記コーティングさせる段階において、前記コーティングされた厚さが、0.005乃至0.4g/dmとなるように行われることを特徴とする請求項4又は5に記載の抵抗加熱ボートの製造方法。
  9. 前記コーティングさせる段階において、スプレイ方式でコーティングさせることを特徴とする請求項4又は5に記載の抵抗加熱ボートの製造方法。
  10. 前記コーティングさせる段階において、ペイント方式でコーティングさせることを特徴とする請求項4又は5に記載の抵抗加熱ボートの製造方法。
JP2004562083A 2002-12-23 2003-12-01 抵抗加熱ボートの製造方法 Expired - Fee Related JP4234681B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2002-0082792A KR100489304B1 (ko) 2002-12-23 2002-12-23 저항가열 보트 및 그 제조방법
PCT/KR2003/002620 WO2004057052A1 (en) 2002-12-23 2003-12-01 Resistance-heated boat and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006506533A true JP2006506533A (ja) 2006-02-23
JP4234681B2 JP4234681B2 (ja) 2009-03-04

Family

ID=36567505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004562083A Expired - Fee Related JP4234681B2 (ja) 2002-12-23 2003-12-01 抵抗加熱ボートの製造方法

Country Status (7)

Country Link
US (1) US20060115243A1 (ja)
JP (1) JP4234681B2 (ja)
KR (1) KR100489304B1 (ja)
CN (1) CN100494476C (ja)
DE (1) DE10393947B4 (ja)
GB (1) GB2411408B (ja)
WO (1) WO2004057052A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030862B4 (de) * 2005-07-01 2009-12-24 Sintec Keramik Gmbh Erstbenetzungshilfsmaterial für einen Verdampferkörper, seine Verwendung zum Herrichten der Verdampferfläche eines Verdampferkörpers und ein elektrisch beheizbarer keramischer Verdampferkörper
US7494616B2 (en) * 2005-11-04 2009-02-24 Momentive Performance Materials Inc. Container for evaporation of metal and method to manufacture thereof
JP2008176567A (ja) * 2007-01-18 2008-07-31 Fujitsu Ltd プリント基板組立体、情報技術装置用筐体及び情報技術装置
DE102010052143B4 (de) * 2010-11-10 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tiegel zur Aufnahme eines Werkstoffs, der mit einem CVD- oder PVD-Verfahren verdampft werden soll
US10184168B2 (en) 2015-01-20 2019-01-22 Kennametal Inc. IMC evaporator boat-thermal insulation cartridge assembly
US20160208373A1 (en) 2015-01-20 2016-07-21 Kennametal Inc. Imc evaporator boat assembly
DE102019110950A1 (de) 2019-04-29 2020-10-29 Kennametal Inc. Hartmetallzusammensetzungen und deren Anwendungen
CN112144018A (zh) * 2020-08-14 2020-12-29 浙江长宇新材料有限公司 一种带氧化物中间层的复合材料制备系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063865A (en) * 1957-06-03 1962-11-13 Nat Steel Corp Process of treating a boron nitride crucible with molten aluminum
DE1289712C2 (de) * 1965-08-11 1973-12-13 Kempten Elektroschmelz Gmbh Verdampfer fuer das Vakuumaufdampfen von Metallschichten auf Werkstoffe
US3553010A (en) * 1967-07-26 1971-01-05 Sigri Elektrographit Gmbh Carbon or graphite formed body
JPS59590B2 (ja) * 1976-02-25 1984-01-07 株式会社日立製作所 抵抗加熱蒸着用ボ−ト
US4264803A (en) * 1978-01-10 1981-04-28 Union Carbide Corporation Resistance-heated pyrolytic boron nitride coated graphite boat for metal vaporization
US4199480A (en) * 1978-05-25 1980-04-22 Gte Sylvania Incorporated Electrically conductive boat for vacuum evaporation of metals
US4446357A (en) * 1981-10-30 1984-05-01 Kennecott Corporation Resistance-heated boat for metal vaporization
US4847031A (en) * 1987-12-16 1989-07-11 Gte Products Corporation Evaporating boats containing titanium diboride
US5239612A (en) * 1991-12-20 1993-08-24 Praxair S.T. Technology, Inc. Method for resistance heating of metal using a pyrolytic boron nitride coated graphite boat
CN1047209C (zh) * 1994-09-28 1999-12-08 先进陶瓷公司 高密度闪蒸器
DE19714433C2 (de) * 1997-04-08 2002-08-01 Celanese Ventures Gmbh Verfahren zur Herstellung einer Beschichtung mit einem Titanborid-gehald von mindestens 80 Gew.-%

Also Published As

Publication number Publication date
KR20040056220A (ko) 2004-06-30
JP4234681B2 (ja) 2009-03-04
CN100494476C (zh) 2009-06-03
US20060115243A1 (en) 2006-06-01
DE10393947B4 (de) 2012-12-13
GB2411408B (en) 2006-03-15
GB0508575D0 (en) 2005-06-01
KR100489304B1 (ko) 2005-05-17
WO2004057052A1 (en) 2004-07-08
CN1714167A (zh) 2005-12-28
GB2411408A (en) 2005-08-31
DE10393947T5 (de) 2006-02-16

Similar Documents

Publication Publication Date Title
EP1497479B1 (en) Methods for deposition of electrolyte films
US2665223A (en) Process for depositing an aluminum film on a substrate by thermal vaporization
FR2583780A1 (fr) Procede de revetement de substrats dans une chambre a vide
JPS6319590B2 (ja)
BRPI0811241B1 (pt) Instalação e método de tratamento a vácuo
JPH026830B2 (ja)
JP4234681B2 (ja) 抵抗加熱ボートの製造方法
EP1354979A1 (en) Method and device for producing organic el elements
JPH06322543A (ja) 超硬合金基板とダイヤモンド膜との間の接着性改善方法
RU2097452C1 (ru) Способ эпитаксиального выращивания монокристаллов нитридов металлов 3а группы химических элементов
JP2006307298A (ja) 窒化物膜及びその成膜方法
KR100407803B1 (ko) 알루미늄 증발용 저항가열 증발원 및 제조 방법
Kumar et al. Modern coating processes and technologies
KR100443232B1 (ko) 유도결합 플라즈마를 이용한 이온 플레이팅 시스템
JPS60184652A (ja) 繊維強化金属の製造方法
JPH046790B2 (ja)
KR101341592B1 (ko) 모재의 내부 표면 코팅방법 및 이에 따른 내부가 코팅된 모재
JPH0229745B2 (ja)
KR100226891B1 (ko) 반응성 물질 증발용 저항 가열증 발원 및 그 제조방법
JP7315148B2 (ja) セラミックス、セラミックスコーティング方法、およびセラミックスコーティング装置
Phani et al. Hot-filament-assisted electron beam deposition of crystalline cubic boron nitride thin films
CA1128423A (en) Boron cantilever and method of making the same
SU1641892A1 (ru) Способ получени углеродсодержащих покрытий в вакууме
KR100958975B1 (ko) 금속소재의 알루미늄-크롬 합금 피막 형성방법
JPH11130583A (ja) シリコン単結晶引き上げ用石英ルツボ及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080523

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080922

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees